
COUNTEREXAMPLES TO Lp COLLAPSING
ESTIMATES

XIUMIN DU AND MATEI MACHEDON

Abstract. We show that certain L2 space-time estimates for gen-
eralized density matrices which have been used by several authors
in recent years to study equations of BBGKY or Hartree-Fock type,
do not have non-trivial LpLq generalizations.

1. Introduction and main results

In recent years, effective equations approximating the evolution of
a large number of interacting Bosons or Fermions have been studied
extensively. The best known example is the celebrated work of Erdös,
Schlein and Yau [5], [6].

Since that work, a number of authors have studied the related Gross-
Pitaevskii or BBGKY hierarchies, or the Hartree-Fock or Hartree-Fock-
Bogoliubov equations, using harmonic analysis techniques and space-
time L2 estimates for a suitable trace density of solutions of the linear
Schrödinger equation. We call such estimates “collapsing estimates”,
and list several instances, all in 3 space dimensions (thus, x ∈ R3, etc.).

If

G(t, x, y, z) = e
it(∆x+∆y−∆z)

2 G0, (1)

then

‖∇xG(t, x, x, x)‖L2(dtdx) . ‖∇x∇y∇zG0(x, y, z)‖L2(dxdydz). (2)

This estimate was used in the study of the Gross-Pitaevskii or BBGKY
hierarchies. See [11] (where the estimate originates), as well as [1], [3],
[4].

Another related example is: if

Λ(t, x, y) = e
it(∆x+∆y)

2 Λ0, (3)

Date: February 21, 2020.
1991 Mathematics Subject Classification. 35Q55.
Key words and phrases. Collapsing estimates.

1



2 X. DU AND M. MACHEDON

then

‖|∇|1/2x Λ(t, x, x)‖L2(dtdx) . ‖|∇|1/2x |∇|1/2y Λ0(x, y)‖L2(dxdy). (4)

This estimate is useful for the Hartree-Fock-Bogoliubov equations, see
[9], [10].

Finally, if

Γ(t, x, y) = e
it(∆x−∆y)

2 Γ0, (5)

then

‖|∇x|
1
2 〈∇x〉2εΓ(t, x, x)‖L2(dtdx) .ε ‖〈∇x〉

1
2
+ε〈∇y〉

1
2
+εΓ0(x, y)‖L2(dxdy).

(6)

Such estimates are relevant to both the Hartree-Fock-Bogoliubov equa-
tions mentioned above, and Hartree-Fock. See Theorem 3.3 in [2].

We also mention the approach of [7], [8] which applies to equation
(5) and allows a wide range of Lp(dt)Lq(dx) estimates on the left hand
side, but the right hand side of the inequality is estimated in a Schatten
norm.

It is natural to ask whether one can replace the L2(dt)L2(dx) norm on
the left hand side of estimates (2), (4) or (6) by an Lp(dt)Lq(dx) norm,
while keeping the right hand side in a Sobolev norm, which is useful
for applications to PDEs. One can trivially make p or q bigger than 2
by putting more derivatives on the right hand side, so the interesting
question is if one can make p or q less than 2.

The main result of this note is that this is impossible.
We prove the following closely related results.

Theorem 1.1. Let Λ be given by (3), with x, y ∈ Rn. Assume

‖|∇|αxΛ(t, x, x)‖Lp(dt)Lq(dx) . ‖Λ0(x, y)‖Hs(dxdy) (7)

for some α ≥ 0, s ≥ 0. Then p ≥ 2 and q ≥ 2.

Theorem 1.2. Let Γ be given by (5), with x, y ∈ Rn. Assume

‖|∇|αxΓ(t, x, x)‖Lp(dt)Lq(dx) . ‖Γ0(x, y)‖Hs(dxdy) (8)

for some α ≥ 0, s ≥ 0. Then p ≥ 2 and q ≥ 2.

Theorem 1.3. Let G be given by (1), with x, y, z ∈ Rn. Assume

‖|∇|αxG(t, x, x, x)‖Lp(dt)Lq(dx) . ‖G0(x, y, z)‖Hs(dxdydz) (9)

for some α ≥ 0, s ≥ 0. Then p ≥ 2 and q ≥ 2.
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2. Proofs

2.1. Proof of Theorem 1.1.

2.1.1. Necessity of p ≥ 2. Let R be a large number (which will ap-
proach ∞ at the end of the proof). Let C be a fixed large number
(depending on n). Let

F0(x, y) = e−
|x|2+|y|2

2CR

so that

e
it(∆x+∆y)

2 F0 := F (t, x, y) =
1

(1 + it/(CR))n
e−
|x|2+|y|2
2(CR+it) . (10)

We think of F (t, x, y) as the basic “vertical tube” solution to the linear
Schrödinger equation in 2n + 1 dimensions which is essentially 1 if
|x|, |y| ≤ R1/2, 0 ≤ t ≤ R. The rigorous statement is that C is chosen
so that <F (t, x, y) ≥ 1

2
in the above range. Also, the Fourier transform

(in space) of F is essentially supported at frequencies |ξ|, |η| ≤ R−1/2.
We choose the function Λ(t, x, y) to be a sum of translates and mod-

ulations of F (t, x, y) which are inclined at 45 degrees and are trained

to reach the region |x| ≤ 1
100

, |y| ≤ 1
100

, R − R 1
2 < t < R with almost

the same oscillation (and almost no cancellations). The summands will
have Fourier transforms essentially supported in balls of radius R−1/2

centered at unit vectors.
Explicitly, choose roughly Rn− 1

2 points (xk, yk) which are spaced at
distance R1/2 from each other on the sphere |(x, y)| = R. For technical
reasons, we only choose points for which all coordinates are ≥ R

10n
.

Define (ξk, ηk) = (xk,yk)
R

.
Choose the following initial conditions:

Λ0(x, y) =
∑

ei(x·ξk+y·ηk)F0(x+ xk, y + yk).

The functions being summed are approximately orthogonal and each
have L2 norm ∼ Rn/2:∫ ∣∣F0(x+xk, y+ yk)F0(x+xl, y+ yl)

∣∣dxdy = πn(CR)ne−
|(xk,yk)−(xl,yl)|

2

4CR .

(11)

Recalling that the sum has ∼ Rn− 1
2 terms, we derive

‖Λ0‖L2(dxdy) . Rn− 1
4 .

The same type of upper bound holds for higher order derivatives (since
|(ξk, ηk)| = 1), thus, for each fixed s,

‖Λ0‖Hs(dxdy) . Rn− 1
4 . (12)
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The solution looks like

Λ(t, x, y) =
∑

e−it
(|ξk|

2+|ηk|
2)

2 ei(x·ξk+y·ηk)F (t, x+ xk − tξk, y + yk − tηk)

= e−i
t
2

∑
ei(x·ξk+y·ηk)F (t, x+ xk − tξk, y + yk − tηk),

and∣∣Λ(t, x, y)
∣∣ ≥ <∑ ei(x·ξk+y·ηk)F (t, x+ xk − tξk, y + yk − tηk) ∼ Rn− 1

2 ,

if |(x, y)| ≤ 1
100

, R−R 1
2 < t < R. Thus

R
1
2pRn− 1

2 . ‖Λ(t, x, x)‖Lp(dt)Lq(dx), (13)

so, recalling (12), if

‖Λ(t, x, x)‖Lp(dt)Lq(dx) . ‖Λ0(x, y)‖Hs(dxdy),

then p ≥ 2.
Using the product rule and the lower bounds on the components of

ξk, ηk, same argument works for ordinary derivatives of order α = m ∈
N.

To justify the statement for fractional derivatives of non-integer
order α, do a Littlewood-Paley decomposition in space Λ(t, ·, ·) =
P≤10Λ(t, ·, ·) + P≥10Λ(t, ·, ·), where P≤10 localizes functions of 2n vari-
ables, smoothly at frequencies ≤ 10. Then P≥10Λ(t, ·, ·) is exponentially
small as R → ∞. This is true for the function F0, and its translates
by a unit vector in Fourier space.

A crude estimate is

‖P≥10Λ(t, ·, ·)‖Hs .s e
−
√
R.

For our counterexample, we use P≤10Λ(t, ·, ·) instead of Λ(t, ·, ·).
Thus, for R sufficiently large, |∇mP≤10Λ(t, x, y)| ∼ |∇mΛ(t, x, y)| ∼

Rn− 1
2 if |(x, y)| ≤ 1

100
, R−R 1

2 < t < R. The function (P≤10Λ) (t, x, x) is
supported, in Fourier space, at frequencies |ξ| ≤ 20. Denote, by abuse
of notation, P≤20 the operator localizing functions of n variables at
frequencies |ξ| ≤ 20. Let m ∈ N, m > α. Then the operator ∇m

|∇|αP≤20
(defined in the obvious way on the Fourier transform side) is bounded
on all Lp spaces, and

R
1
2pRn− 1

2 . ‖∇m (P≤10Λ) (t, x, x)‖Lp(dt)Lq(dx)

= ‖ ∇
m

|∇|α
P≤20|∇|α (P≤10Λ) (t, x, x)‖Lp(dt)Lq(dx)

. ‖|∇|α (P≤10Λ) (t, x, x)‖Lp(dt)Lq(dx),



COUNTEREXAMPLES TO Lp COLLAPSING 5

while

‖P≤10Λ0‖Hs(dxdy) . CnRn− 1
4 .

Letting R→∞, we conclude p ≥ 2 as before.

2.1.2. Necessity of q ≥ 2. Let F (t, x, y) be the basic vertical tube solu-
tion of height R (as (10)). Let m� 1. Choose roughly Rmn−n

2 points

xk which are spaced at distance ∼ R
1
2 in a large ball B(0, Rm) of radius

Rm in Rn. Fix a unit vector ξ ∈ Sn−1.
We take initial conditions

Λ0(x, y) = ei(x+y)·ξ
∑

F0(x+ xk, y + xk).

Then

Λ(t, x, y) = ei(x+y)·ξe−it
∑

F (t, x+ xk − tξ, y + xk − tξ).

There are roughly Rmn−n
2 terms in the sum. The summands are

essentially orthogonal (as in (11) ) and each term has L2 norm ∼ Rn/2,
thus

‖Λ0‖L2(dxdy) ∼ R
n
4
+mn

2 .

On the other hand, each F (t, x+xk− tξ, y+xk− tξ) is essentially 1 on
a tube Tk of radius R1/2 and length R in 2n+1 dimensions, and rapidly
decaying out of Tk. Note that at t = 0, Tk is centered at (0,−xk,−xk).
Moreover, these tubes Tk are in the same direction (1, ξ, ξ) and hence
disjoint. Therefore, |Λ(t, x, y)| & 1 on the union of the tubes Tk. In
particular, |Λ(t, x, x)| & 1 for 0 ≤ t ≤ R and x ∈ B(tξ, Rm). We
only need the previous estimate for 0 ≤ t ≤ 1, where the claim is
obvious. In addition, the Fourier transform of Λ(t, x, x) is supported

(essentially) in a R−
1
2 neighbourhood of the point 2ξ , with |ξ| = 1, so

||∇|αΛ(t, x, x)| & 1 for 0 ≤ t ≤ 1 and x ∈ B(tξ, Rm). Thus

‖|∇|αΛ(t, x, x)‖Lp([0,1])Lq(dx) & R
mn
q ,

while ‖Λ0‖Hs(dxdy) ∼ ‖Λ0‖L2(dxdy) ∼ R
n
4
+mn

2 and m � 1, so q ≥ 2 is
necessary.

2.2. Proof of Theorem 1.2. The examples for Γ are similar to those
for Λ, and are included for completeness.
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2.2.1. Necessity of p ≥ 2. First we take the basic “vertical tube” solu-
tion. Let

F0(x, y) = e−
|x|2+|y|2

2CR

so that

e
it(∆x−∆y)

2 F0 := F (t, x, y) =
1

(1 + ( t
CR

)2)
n
2

e−
|x|2

2(CR+it) e−
|y|2

2(CR−it) . (14)

The solution F (t, x, y) is essentially 1 if |x|, |y| ≤ R1/2, 0 ≤ t ≤ R. More
precisely, we choose a large constant C = C(n) so that <F (t, x, y) ≥ 1

2

in the above range. Also, as before, the Fourier transform (in space)
of F is essentially supported at frequencies |ξ|, |η| ≤ R−1/2.

Pick roughly Rn− 1
2 points (xk, yk) which are spaced at distance ∼

R1/2 from each other on the surface {(x, y) : |x| = |y|, R
2
≤ |x| ≤ R}.

Define (ξk, ηk) = 1
R

(xk, yk) so that |ξk|2 − |ηk|2 = 0 and |(ξk, ηk)| ∼ 1.
Take the following initial conditions

Γ0(x, y) =
∑

ei(x·ξk−y·ηk)F0(x+ xk, y + yk)

so that the solution is

Γ(t, x, y) =
∑

e−it
(|ξk|

2−|ηk|
2)

2 ei(x·ξk−y·ηk)F (t, x+ xk − tξk, y + yk − tηk)

=
∑

ei(x·ξk−y·ηk)F (t, x+ xk − tξk, y + yk − tηk).

Since the ∼ Rn− 1
2 terms in Γ0 are essentially orthogonal and each

have L2 norm ∼ Rn/2, we get

‖Γ0‖L2(dxdy) . Rn− 1
4 .

Moreover, since |(ξk, ηk)| ∼ 1, there also holds

‖Γ0‖Hs(dxdy) . Rn− 1
4 . (15)

From the expression of Γ, we see that

|Γ(t, x, y)| & Rn− 1
2 for |(x, y)| ≤ 1

100
, R−R

1
2 < t < R.

Therefore,

‖Γ(t, x, x)‖Lp(dt)Lq(dx) & R
1
2pRn− 1

2 ,

so, recalling (15), if

‖Γ(t, x, x)‖Lp(dt)Lq(dx) . ‖Γ0(x, y)‖Hs(dxdy),
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then p ≥ 2. From a similar argument to the one in subsection 2.1.1 (i.e.
only using xk, yk for which all coordinates of ξk and −ηk are ≥ 1

10n
),

p ≥ 2 is also necessary for estimates of the form

‖|∇|αxΓ(t, x, x)‖Lp(dt)Lq(dx) . ‖Γ0(x, y)‖Hs(dxdy).

2.2.2. Necessity of q ≥ 2. Let F (t, x, y) be the basic vertical tube solu-
tion of height R (as (14)). Let m� 1. Choose roughly Rmn−n

2 points

xk which are spaced at distance ∼ R
1
2 in a large ball B(0, Rm) of radius

Rm in Rn. Fix a unit vector ξ ∈ Sn−1.
We take initial conditions

Γ0(x, y) = eix·ξ
∑

F0(x+ xk, y + xk),

so that the solution is

Γ(t, x, y) = eix·ξ
∑

F (t, x+ xk − tξ, y + xk).

Note that Γ(t, x, x) & 1 for 0 ≤ t ≤ 1 and |x| ≤ Rm. Moreover,
the Fourier transform of Γ(t, x, x) is essentially supported in a R−1/2

neighborhood of the point ξ with |ξ| = 1.
Then, the necessity of q ≥ 2 follows from the same calculation as in

subsection 2.1.2.

2.3. Proof of Theorem 1.3. The examples for G are similar to those
in previous subsections.

2.3.1. Necessity of p ≥ 2. First we take the basic “vertical tube” solu-
tion. Let

F0(x, y, z) = e−
|x|2+|y|2+|z|2

2CR

so that

e
it(∆x+∆y−∆z)

2 F0 : = F (t, x, y, z)

=
1

(1 + it
CR

)n(1− it
CR

)
n
2

e−
|x|2+|y|2
2(CR+it) e−

|z|2
2(CR−it) . (16)

The solution F (t, x, y, z) is essentially 1 if |(x, y, z)| ≤ R1/2, 0 ≤ t ≤ R.
Also, the Fourier transform (in space) of F is essentially supported at
frequencies |(ξ, η, ζ)| ≤ R−1/2.

Pick roughly R
3n−1

2 points (xk, yk, zk) which are spaced at distance
∼ R1/2 from each other on the surface {(x, y, z) : |x|2 + |y|2 = |z|2, R

2
≤

|x|, |y| ≤ R}. Define (ξk, ηk, ζk) = 1
R

(xk, yk, zk) so that

|ξk|2 + |ηk|2 = |ζk|2 and |(ξk, ηk, ζk)| ∼ 1.
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Take the following initial conditions

G0(x, y, z) =
∑

ei(x·ξk+y·ηk−z·ζk)F0(x+ xk, y + yk, z + zk)

so that the solution is

G(t, x, y, z)

=
∑

ei(x·ξk+y·ηk−z·ζk)F (t, x+ xk − tξk, y + yk − tηk, z + zk − tζk),

since |ξk|2 + |ηk|2 = |ζk|2.
Since the ∼ R

3n−1
2 terms in G0 are essentially orthogonal and each

has L2 norm ∼ R3n/4, we get

‖G0‖L2(dxdydz) . R
3n
2
− 1

4 .

Moreover, since |(ξk, ηk, ζk)| ∼ 1, there also holds

‖G0‖Hs(dxdydz) . R
3n
2
− 1

4 . (17)

From the expression of G, we see that

|G(t, x, y, z)| & R
3n−1

2 for |(x, y, z)| ≤ 1

100
, R−R

1
2 < t < R.

Therefore,

‖G(t, x, x, x)‖Lp(dt)Lq(dx) & R
1
2pR

3n−1
2 .

Recalling (17), if

‖G(t, x, x, x)‖Lp(dt)Lq(dx) . ‖G0(x, y, z)‖Hs(dxdydz),

then p ≥ 2. From a similar argument as in subsection 2.1.1, p ≥ 2 is
also necessary for estimates of the form

‖|∇|αxG(t, x, x, x)‖Lp(dt)Lq(dx) . ‖G0(x, y, z)‖Hs(dxdydz).

2.3.2. Necessity of q ≥ 2. Let F (t, x, y, z) be the basic vertical tube
solution of height R (as (16)). Let m � 1. Choose roughly Rmn−n

2

points xk which are spaced at distance ∼ R
1
2 in a large ball B(0, Rm)

of radius Rm in Rn. Fix a unit vector ξ ∈ Sn−1.
We take initial conditions

G0(x, y, z) = ei(x+y−z)·ξ
∑

F0(x+ xk, y + xk, z + xk),

so that the solution is

G(t, x, y)

= e
−it
2 ei(x+y−z)·ξ

∑
F (t, x+ xk − tξ, y + xk − tξ, z + xk − tξ).
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There are roughly Rmn−n
2 terms in the sum. The summands are

essentially orthogonal and each term has L2 norm ∼ R3n/4, thus

‖G0‖L2(dxdydz) ∼ R
n
2
+mn

2 .

On the other hand, each F (t, x + xk − tξ, y + xk − tξ, z + xk − tξ)
is essentially 1 on a tube Tk of radius R1/2 and length R in 3n + 1
dimensions, and rapidly decaying out of Tk. Note that at t = 0, Tk
is centered at (0,−xk,−xk,−xk). Moreover, these tubes Tk are in the
same direction (1, ξ, ξ, ξ) and hence disjoint. Therefore, |G(t, x, y, z)| &
1 on the union of the tubes Tk. In particular, |G(t, x, x, x)| & 1 for
0 ≤ t ≤ R and x ∈ B(tξ, Rm). Thus

‖G(t, x, x, x)‖Lp([0,1])Lq(dx) & R
mn
q

(with a similar estimate for |∇|αG(t, x, x, x)), while ‖G0‖Hs(dxdy) ∼
R

n
2
+mn

2 and m� 1, so q ≥ 2 is necessary.
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