COUNTEREXAMPLES TO L COLLAPSING
ESTIMATES

XIUMIN DU AND MATEI MACHEDON

ABSTRACT. We show that certain L? space-time estimates for gen-
eralized density matrices which have been used by several authors
in recent years to study equations of BBGKY or Hartree-Fock type,
do not have non-trivial LPL? generalizations.

1. INTRODUCTION AND MAIN RESULTS

In recent years, effective equations approximating the evolution of
a large number of interacting Bosons or Fermions have been studied
extensively. The best known example is the celebrated work of Erdés,
Schlein and Yau [5], [6].

Since that work, a number of authors have studied the related Gross-
Pitaevskii or BBGKY hierarchies, or the Hartree-Fock or Hartree-Fock-
Bogoliubov equations, using harmonic analysis techniques and space-
time L? estimates for a suitable trace density of solutions of the linear
Schrédinger equation. We call such estimates “collapsing estimates”,
and list several instances, all in 3 space dimensions (thus, z € R?, etc.).

If

it(Ap+Ay—Asz)

G(t,x,y,z)=¢e¢ 2 Go, (1)
then
Hva(ta T,T, x) HLQ(dtdI) 5 "vaysz()(i[), Y, Z) HLQ(dwdydz)' (2)

This estimate was used in the study of the Gross-Pitaevskii or BBGKY
hierarchies. See [11] (where the estimate originates), as well as [1], [3],
[4].

Another related example is: if

it(Az+Ay)

A(taxvy) =€ 2 A07 (3)
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then
IIVI2AR 2, 2) || egaany S NIVIPIVE?Mo(2,9) | L2 (aeay)  (4)

This estimate is useful for the Hartree-Fock-Bogoliubov equations, see
[9], [10].
Finally, if

it(Agp—Ay)

L(t,z,y)=e 2z Ty, (5)
then

IVl 2V Tt 2, )l azqanany Se (V) 2V, 75 To(@, ) | 2oy
(6)
Such estimates are relevant to both the Hartree-Fock-Bogoliubov equa-
tions mentioned above, and Hartree-Fock. See Theorem 3.3 in [2].

We also mention the approach of [7], [8] which applies to equation
(5) and allows a wide range of LP(dt)L9(dx) estimates on the left hand
side, but the right hand side of the inequality is estimated in a Schatten
norm.

It is natural to ask whether one can replace the L?(dt) L*(dz) norm on
the left hand side of estimates (2), (4) or (6) by an LP(dt)L9(dx) norm,
while keeping the right hand side in a Sobolev norm, which is useful
for applications to PDEs. One can trivially make p or ¢ bigger than 2
by putting more derivatives on the right hand side, so the interesting
question is if one can make p or ¢ less than 2.

The main result of this note is that this is impossible.

We prove the following closely related results.

Theorem 1.1. Let A be given by (3), with z,y € R". Assume

IIVIZA(E 2, 2)] Lr(a Logan) S [|Ao(, )]
for some a >0, > 0. Then p > 2 and q > 2.

Hs(dzdy) (7)

Theorem 1.2. Let I" be given by (5), with z,y € R™. Assume

IIVIZL(E, 2, 2)| Leanyzagn) < [To(z, y)]
for some a > 0,8 > 0. Thenp > 2 and q > 2.

H (dzdy) (8)

Theorem 1.3. Let G be given by (1), with z,y,z € R". Assume
IIVIZGE, 2, 2, 2)| L@y Loty S [Go(,y, 2)]
for some a >0, > 0. Thenp> 2 and q > 2.

H (dwdydz) (9)
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2. PROOFS
2.1. Proof of Theorem 1.1.

2.1.1. Necessity of p > 2. Let R be a large number (which will ap-
proach oo at the end of the proof). Let C be a fixed large number
(depending on n). Let
_leP4ly[?
Fo(l’, y) =e€ 208
so that

it(Agp+Ay) 1 |2+ y|2

-2 ppa— = T2 it)
e Fy:= F(t,z,y) it it/(C’R))”e CR+iD) | (10)

We think of F(t,x,y) as the basic “vertical tube” solution to the linear
Schrodinger equation in 2n 4+ 1 dimensions which is essentially 1 if
2|, ly| < RY?,0 <t < R. The rigorous statement is that C' is chosen
so that RF (¢, x,y) > 3 in the above range. Also, the Fourier transform
(in space) of F is essentially supported at frequencies |¢[, ] < R™1/2.

We choose the function A(t, z,y) to be a sum of translates and mod-
ulations of F(t,z,y) which are inclined at 45 degrees and are trained

to reach the region |z| < <&, |y < &, R — R2 < t < R with almost
the same oscillation (and almost no cancellations). The summands will
have Fourier transforms essentially supported in balls of radius R~1/2
centered at unit vectors.

Explicitly, choose roughly R""2 points (z, yr) which are spaced at
distance R'/? from each other on the sphere |(z,%)| = R. For technical

reasons, we only choose points for which all coordinates are > £

10n
Define (&, mi) = —(xkéyk)-

Choose the following initial conditions:

Ao(z,y) = Z /A By (2 + 2,y + U

The functions being summed are approximately orthogonal and each
have L? norm ~ R™/?:

/ | Fo(x + ap, y + yi) Fo(x 4+ 21,y + y1) | dedy = 7" (CR)"e

_ @goyr)— Gy
ICR .

(11)
Recalling that the sum has ~ R 3 terms, we derive
_1
[ AollL2(dzayy S R"3.

The same type of upper bound holds for higher order derivatives (since
|(&k, )| = 1), thus, for each fixed s,

| Aol i (day) < R (12)
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The solution looks like
Cip S P ) e
A(t,x,y):Ze 2 e R F(tax+xk_t€kay+yk_t77k)
= e_i% Z ei(z.gk—i_y‘nk)F(tu T+ Ty — tgka Y+ Yr — t77k>,
and
|A(t7 z, y)| Z %Z ei(Z.ngry.nk)F(t? T+ x — tgka Yy + Yk — tnk) ~ Rn7%7

if |(z,y)| < -+, R— R2 <t < R. Thus

100°
11
R»R"™2 5 ”A(tax7x)||Lp(dt)Lq(d73)’ (13)
so, recalling (12), if

IACE 2, 2) || e Laan) S I180(2; )|l 1o (dvay)

then p > 2.

Using the product rule and the lower bounds on the components of
&k, Mk, same argument works for ordinary derivatives of order a = m €
N.

To justify the statement for fractional derivatives of non-integer
order «, do a Littlewood-Paley decomposition in space A(t,-, ) =
PoioA(t, -, -) + P>10A(t, -, -), where P<jg localizes functions of 2n vari-
ables, smoothly at frequencies < 10. Then Ps19A(t, -, -) is exponentially
small as R — oo. This is true for the function Fy, and its translates
by a unit vector in Fourier space.

A crude estimate is

[ P>10A(t, )]

For our counterexample, we use P<1oA(t, -, ) instead of A(t, -, ).
Thus for R suPﬁciently large, |V™P<iogA(t, z,y)| ~ |[VA(t, z,y)| ~
Rz if |(z,y)] < L 05> R—Rz <t < R. The function (P<yoA) (t, 2, x) is
supported, in Fourier space, at frequencies || < 20. Denote, by abuse
of notation, P9y the operator localizing functions of n variables at
frequencies || < 20. Let m € N, m > a. Then the operator |v|aP<20

(defined in the obvious way on the Fourier transform side) is bounded
on all L” spaces, and

-VR
Hs 55 e .

L n—= m
R%R"™2 < [V (P<yol) (, 2, 2) || o (aty o (a)

vm o
=== NG P<oo|V|* (P<1oA) (t, z, ) || Lo (at) Lo (d2)

S V™ (P<ioA) (8, 2, 2) || o aryadn)



COUNTEREXAMPLES TO L? COLLAPSING 5
while

_1
| P<1oMol| s (dedyy S C"R"™ 4.

Letting R — oo, we conclude p > 2 as before.

2.1.2. Necessity of ¢ > 2. Let F(t,z,y) be the basic vertical tube solu-
tion of height R (as (10)). Let m > 1. Choose roughly R™"~3 points
a1, which are spaced at distance ~ Rz in a large ball B(0, R™) of radius
R™ in R". Fix a unit vector £ € S" 1.

We take initial conditions

Ao(w,y) = /< Z Fo(x + .y + ).
Then

A(t,z,y) = ellety)semit Z F(t,x 4z — t&,y + xp — t€).

There are roughly R™ 2 terms in the sum. The summands are
essentially orthogonal (as in (11) ) and each term has L? norm ~ R"/2,
thus

||A0||L2(dzdy) ~ R%—F%

On the other hand, each F(t,x 4 xy — t&, y + x, — t€) is essentially 1 on
a tube T}, of radius R'/? and length R in 2n+1 dimensions, and rapidly
decaying out of Tj. Note that at ¢t = 0, T} is centered at (0, —zg, —xx).
Moreover, these tubes T}, are in the same direction (1,&,£) and hence
disjoint. Therefore, |A(t,x,y)| = 1 on the union of the tubes Tj. In
particular, |A(t,z,z)] 2 1 for 0 < ¢t < R and = € B(t{, R™). We
only need the previous estimate for 0 < ¢t < 1, where the claim is
obvious. In addition, the Fourier transform of A(t,z, ) is supported
(essentially) in a R~2 neighbourhood of the point 2¢ , with €] =1, so
|V|“A(t, z,2)| Z 1 for 0 <t <1andx € B(t{, R™). Thus

mn

[IV[*A(t, 2, )| Lo o)y Laany & B0

Y

while ||Ao]

necessary.

He(dady) ~ || Dol 22(dzdy) ~ Rit% and m > 1, s0 ¢ > 2 is

2.2. Proof of Theorem 1.2. The examples for I' are similar to those
for A, and are included for completeness.
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2.2.1. Necessity of p > 2. First we take the basic “vertical tube” solu-
tion. Let

. 2 2
Fola,y) = o k"
so that
it(Ag—Ay) 1 = 1w
Q%Fo = F(t, xZ, y) = —tQQe 2(CR+it) o 2(0%*'”) . (14)
1+ (zr)?)?
The solution F(t, x,y) is essentially 1if |z|, |y] < RY?,0 <t < R. More
precisely, we choose a large constant C' = C(n) so that RF (¢, z,y) > 3
in the above range. Also, as before, the Fourier transform (in space)
of F is essentially supported at frequencies |¢], |n| < R™'/2.
Pick roughly R"2 points (g, yr) which are spaced at distance ~
RY2 from each other on the surface {(z,y) : |z| = |y|, £ < |z] < R}.

Define (&g,??k) = %(:L’k,yk) so that |£k|2 - ’nk|2 =0 and |(€k77]k)| ~ 1.
Take the following initial conditions

Lo(z,y) = Z TV By (2 4w,y + yk)

so that the solution is

(2 =lngl®)
F(t,x,y) = Ze_’t s i el(l“fk_y‘nk)F(t’ T+ x) — tfk;, Y+ yp — tnk)

= STV (2 ay — Y+ Y — t).

Since the ~ R""2 terms in [’y are essentially orthogonal and each
have L? norm ~ R"?, we get

_1
||F0||L2(dxdy) 5 R"" 1.
Moreover, since |(&, nx)| ~ 1, there also holds

_1
IToll s (dedy) S R 7. (15)

Y

From the expression of I', we see that

1 1 1
|F(t,l‘,y)|an7§ forl(xay)‘ §m7R_R§ <t <R

Therefore,
1 1
HF<th7x>HLP(dt)Lq(d$) z R2pR 2’

so, recalling (15), if

IT(t, 2, @) || o (aryLagdey S (1To(@s Y)|| s (dady)
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then p > 2. From a similar argument to the one in subsection 2.1.1 (i.e.
only using xy, yx for which all coordinates of &, and —n; are > ﬁ),
p > 2 is also necessary for estimates of the form

VT 2, 2) | oo @y o) S [Tol@, )]

Hs(dzdy)-

2.2.2. Necessity of ¢ > 2. Let F(t,z,y) be the basic vertical tube solu-
tion of height R (as (14)). Let m > 1. Choose roughly R™"~> points
a2 which are spaced at distance ~ Rz in a large ball B(0, R™) of radius
R™ in R™. Fix a unit vector £ € S"~ 1.

We take initial conditions

FO(xa y) - eixf Z FO(:L‘ + Tk, Y + .Ik),
so that the solution is

L(t,z,y) = emfZF(t,x + oz — tE, Y + xp).

Note that I'(t,z,z) 2 1 for 0 < t < 1 and |z| < R™. Moreover,
the Fourier transform of I'(¢, x, x) is essentially supported in a R~1/?
neighborhood of the point £ with [¢] = 1.

Then, the necessity of ¢ > 2 follows from the same calculation as in
subsection 2.1.2.

2.3. Proof of Theorem 1.3. The examples for G are similar to those
in previous subsections.

2.3.1. Necessity of p > 2. First we take the basic “vertical tube” solu-
tion. Let

eyl ? 41212
2CR

Fo(z,y,z) =e
so that

it(Ag+Ay—Az)
2

e Fy:=F(t,z,y,2)

1 I P e T
— _e  2(CR+it) ¢~ 2(CR—i0) (16)

(5 (1= )
The solution F(t,z,v, ) is essentially 1 if |(z,y,2)] < RY/?,0 <t < R.
Also, the Fourier transform (in space) of F' is essentially supported at
frequencies |(¢,7,¢)| < R™Y2.
Pick roughly R™ points (g, Yk, z,,) which are spaced at distance
~ RY2 from each other on the surface {(z,y,z) : [z]*+|y|* = [2]>, & <
|z|, |y| < R}. Define (&, nx, (k) = %(mk,yk,zk) so that

&l + el = |G> and (&, mrs Gi)| ~ 1.
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Take the following initial conditions
Gol,y,2) = _ e CEHVIT=WEy (@ 4 g,y + gy, 2 + 2)

so that the solution is

G(t,z,y,z2)

= Z e TEAY I Z G Pt 0 g — tE,y + Yk — e, 2 + 2k — tCh),
since [§[* + [me|* = [G[*.

Since the ~ R terms in Gy are essentially orthogonal and each
has L? norm ~ R34 we get

| Goll 2(dwdydz) S R%1.

Moreover, since |(&, mx, k)| ~ 1, there also holds

3n_1
| Goll s (dwdyazy S B2 4. (17)

From the expression of G, we see that

n— 1 1
G(t,z,y,2)| 2 R*T for |(z,y,2)] < g R R <t<R

Therefore,
L o8n—1
||G(t7x,x7w)||Lp(dt)Lq(dz) > R¥»R 7 .
Recalling (17), if

|G (¢, 2,2, 2) || Loy agazy S 1Gol(2, Y, 2) | s (dedydz).

then p > 2. From a similar argument as in subsection 2.1.1, p > 2 is
also necessary for estimates of the form

IIVIZG(E, z, 2, )| Loy agaa) S [|Gola,,: 2)]

Hs(dzdydz) -

2.3.2. Necessity of ¢ > 2. Let F(t,z,y,z) be the basic vertical tube
solution of height R (as (16)). Let m > 1. Choose roughly R™ 2
points x, which are spaced at distance ~ Rz in a large ball B(0, R™)
of radius R™ in R™. Fix a unit vector £ € S" 1.

We take initial conditions

Golz,y, 2) = pilrty—2)€ Z Fy(x + o,y + T, 2 + 33),
so that the solution is
G(t,x,y)
= ez lety=2)t Z Ft,x +xp — t&,y + xp — t&, 2 + x5, — ££).
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There are roughly R™ 2 terms in the sum. The summands are
essentially orthogonal and each term has L? norm ~ R3%/*, thus

1Goll 2 (dwdyaz) ~ B2 T2

On the other hand, each F(t,x + x) — t&,y + xp — t&, 2z + x — t&)
is essentially 1 on a tube T}, of radius R'? and length R in 3n + 1
dimensions, and rapidly decaying out of T;. Note that at ¢ = 0, T
is centered at (0, —xy, —xk, —xk). Moreover, these tubes T} are in the
same direction (1,¢, &, ) and hence disjoint. Therefore, |G(t, x,y, z)| 2
1 on the union of the tubes Tj. In particular, |G(t,z,z,2z)| 2 1 for
0<t<Randze B(t{,,R"). Thus
HG(t,l‘, xvx)‘|Lp([071])Lq(dz) Z R%

(with a similar estimate for |V|*G(t,z,x,x)), while ||Gollms(dwdy) ~
R3t% and m > 1, so ¢ > 2 is necessary.
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