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Abstract. We develop preconditioners for systems arising from finite element discretizations of
parabolic problems which are fourth order in space. We consider boundary conditions which yield
a natural splitting of the discretized fourth order operator into two (discrete) linear second order
elliptic operators, and exploit this property in designing the preconditioners. The underlying idea
is that efficient methods and software to solve second order problems with optimal computational
effort are widely available. We propose symmetric and non-symmetric preconditioners, along with
theory and numerical experiments. They both document crucial properties of the preconditioners
as well as their practical performance. It is important to note that we neither need Hs-regularity,
s > 1, of the continuous problem nor quasi-uniform grids.
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1. Introduction. For suitable boundary conditions, combining semi-implicit
time discretization with time-step ∆t and operator splitting for evolution equations
governed by (nonlinear) fourth order operators leads to linear elliptic systems of the
form

u− ∆t div(a gradv) = f,

div(b gradu) + v = g,
(1.1)

on a bounded polyhedral domain Ω ⊆ Rd, d ≥ 1. Hereafter, a and b are measurable
functions with values on symmetric positive definite (s.p.d.) matrices and satisfying

λa(x)|ξ|2 ≤ ξT a(x)ξ ≤ Λa(x)|ξ|2, λb(x)|ξ|2 ≤ ξT b(x)ξ ≤ Λb(x)|ξ|2, (1.2)

for all ξ ∈ Rd. In this paper we develop preconditioners for spatially discretized
versions of this system, for instance via finite element methods, thereby relying on
the existence of efficient methods and software for each component of the system
[18, 20, 21, 23, 37, 40, 48, 49, 50, 52, 53, 54], especially on graded meshes [1, 26, 49,
51]. Similar ideas have been developed for the bi-harmonic operator with Dirichlet
boundary conditions u = ∂νu = 0, typical in structural mechanics, and quasi-uniform
meshes in [15, 16, 19, 44, 45]. Materials science and fluid dynamics problems come
with different boundary conditions which yield the operator splitting (1.1). We are
interested in the latter case, graded shape-regular meshes, and condition numbers
which are insensitive to ∆t and the mesh size.

In § 1.1 we motivate the importance of studying (1.1) for geometric PDE, discuss
boundary conditions in § 1.2 giving rise to (1.1) along with its weak formulation, and
close the Introduction in § 1.3 with a presentation of the preconditioners for (1.1).
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1.1. Motivation: Geometric PDE. Evolution equations governed by (non-
linear) fourth order operators arise in a number of fields from materials science and
fluid dynamics to geometry. Surface diffusion is a geometric flow governed by the
following equation on an evolving hypersurface (or curve) Γ ⊂ Rd of co-dimension 1

V = −∆ΓH, (1.3)

where V is the normal velocity, H is the total curvature of Γ (sum of principal cur-
vatures), and ∆Γ is the Laplace-Beltrami operator on Γ [3, 4, 5, 6, 8, 11, 24]. It
is important to realize that, once written parametrically, ∆Γ is like a second order
elliptic operator with variable coefficients, and so is its finite element counterpart
[6, 7, 8, 25, 27, 32, 41]. Equation (1.3) may be viewed as a gradient flow for the
surface area

∫
Γ 1 of Γ with the H−1-metric on Γ. For graphs Γ, described by the

function u over Ω ⊂ Rn−1, we have [5, 27]

H = div
∇u
q(u)

, V =
∂tu

q(u)
,

where q(u) =
√

1 + |∇u|2. This leads to the natural operator splitting

∂tu

q(u)
= ∆Γv, v = − div

∇u
q(u)

,

with v = −H . Once supplemented with, for instance, periodic boundary conditions,
this system can be rewritten in Ω as follows:

∂tu− div
(
(q(u)

(
I − ∇u⊗∇u

q(u)2

)
∇v
)

= 0, v + div
∇u
q(u)

= 0. (1.4)

A semi-implicit Euler discretization in time with time-step ∆t leads to (1.1) for un-
knowns un, vn with a = q(un−1)(I − q(un−1)

−2∇un−1 ⊗∇un−1) and b = q(un−1)
−1.

For closed surfaces, we mention the parametric method of [5], which leads to a
system essentially of the form (1.1). The following fundamental geometric relationship
between position X and vector-valued curvature H = Hν, with ν being the unit outer
normal to Γ, plays a key role [31]:

H = −∆ΓX. (1.5)

In particular, integration by parts on Γ, along with V = ∂tX ·ν, transforms (1.3) and
(1.5) into the following system [6]:

∂tX · ν − ∆ΓH = 0, Hν + ∆ΓX = 0. (1.6)

Employing a semi-implicit Euler discretization ∂tXn ≈ ∆t−1(Xn − Xn−1), which
keeps the geometry Γ,ν and operator ∇Γ explicitly evaluated on Γn−1, converts (1.6)
into a system of the form (1.1), with vector-valued u = Xn and scalar v = Hn.

In contrast to surface diffusion, the L2-gradient flow for the bending energy
∫
Γ
H2

gives rise to the so-called Willmore flow in 3D

V = ∆ΓH +
H

2

(
2H2 − κ

)
, (1.7)

where κ stands for the Gauss curvature. For graphs Γ described by a function u, this
geometric PDE becomes [27]

∂tu

q
− div

(1

q

(
I − ∇u⊗∇u

q2

)
∇v
)
− 1

2
div
(H2

q
∇u
)

= 0,
v

q
+ div

∇u
q
, (1.8)
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where v = qH . Again a semi-implicit time discretization leads to a system similar
to (1.1). For the parametric case, we mention the vector-valued formulation of [17],
which replaces (1.7) by

∂tX − ∆ΓH + divΓ

(
(∇ΓX + ∇ΓX

T )∇ΓH
)
− 1

2
∇Γ divΓ H = 0. (1.9)

and couples it with (1.5); see the related methods in [32, 41]. In contrast, the method
of [8] is based on the following equivalent system:

∂tX · ν − ∆ΓH +
1

2
H3 −H |∇Γν|2 = 0, Hν + ∆ΓX = 0. (1.10)

A semi-implicit time discretization Xn = Xn−1 + ∆tVn, as with (1.6), converts (1.9)
and (1.5) (resp. (1.10) and (1.5)) into a system with basic structure similar to (1.1)
for the vector-valued functions u = Vn, v = Hn (resp. u = Xn, v = Hn).

The celebrated Cahn-Hilliard equation, describing the evolution of a binary mix-
ture with concentration u and chemical potential v, reads [2, 13, 24, 27]

∂tu− div
(
M(u)∇v

)
= 0, v + ∆u = ψ(u), (1.11)

where the mobility M(u) > 0 may depend on concentration, and ψ is the derivative
of a potential with double-wells of equal heights at ±1; for instance ψ(u) = u(u2− 1).
Semi-implicit time discretization leads again to (1.1).

The mobility M(u) may be degenerate in some applications. For instance, a
surface Γ evolving by surface diffusion can be recovered as the limit ǫ ↓ 0 of the
zero-level set of the solution u, with singularly perturbed chemical potential

v + ǫ∆u =
1

ǫ
ψ(u),

and degenerate mobility M(u) = 1 − u2 [9, 24, 27]. Lubrication theory for thin films
yields similar equations with degenerate mobility [12, 14, 35, 36]. Semi-implicit time
discretization in turn gives rise to (1.1) with degenerate a and/or b. Our theory below
does not cover these degeneracies, but we explore computationally the preconditioners
robustness with respect to coefficient degeneracies in §7.

Similar diffuse interface approaches are available to approximate Willmore flow,
as well as several variants, in the limit of interface thickness ǫ ↓ 0 [27, 28, 29, 30]. We
finally mention the coupling of membrane bending with orientational order of bilipds
via director fields [10]. These models lead to PDE in Ω similar to (1.1).

1.2. Weak Formulation and Boundary Conditions. We now discuss the
weak formulation of (1.1) along with boundary conditions which allow operator split-
ting. Periodic boundary conditions are customary for (1.3) and (1.7) when the surface
Γ is without boundary, as well as for (1.11); in this case, we add the constraint

∫

Ω

u =

∫

Ω

v = 0, (1.12)

to gain uniqueness of (1.1). Alternatively, we assume that the boundary Γ of Ω is split
into two disjoint parts ΓD and ΓN . We impose homogeneous Dirichlet and Neumann
boundary conditions on ΓD, ΓN , respectively:

u = v = 0 on ΓD × (0, T ), (1.13)

ν · a∇v = ν · b∇u = 0 on ΓN × (0, T ), (1.14)
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with ν the outer normal to Γ. In case the Dirichlet part ΓD of Γ has zero Haussdorff
measure Hd−1(ΓD) = 0, we supplement (1.14) with the vanishing conditions (1.12).
Then problem (1.1) takes the weak form: find u, v ∈ V such that

(u, φ) + ∆t(a grad v, gradφ) = (f, φ), ∀ φ ∈ V

−(b gradu, gradψ) + (v, ψ) = (g, ψ), ∀ ψ ∈ V,

where the subspace V of H1(Ω) incorporates the boundary condition (1.13) or the
vanishing condition (1.12). The key property of V used below is that the seminorm

√
(∇v,∇v) be actually a norm in V. (1.15)

We stress that homogeneous Dirichlet boundary conditions for the 4th order operator
∆2u, namely u = ∂νu = 0, do not yield the factorization (1.1). We refer to [38] as
well as [15, 16, 19, 44, 45] for this case, which is important in plate theory but is
excluded from the present analysis.

1.3. Discrete Systems and Preconditioners. Let T be a shape-regular but
possibly graded mesh of Ω. If VT ⊆ V denotes a finite element space over T (see
Section 3 for details), we consider the following finite element discretization:

uT , vT ∈ VT :

{
(uT , φ) + ∆t (a gradvT , gradφ) = (f, φ)

−(b graduT , gradψ) + (vT , ψ) = (g, φ)
∀φ, ψ ∈ VT .

(1.16)
We define the discrete operators AT : VT → VT and BT : VT → VT by

(AT φ, ψ) = (a gradφ, gradψ), (BT φ, ψ) = (b gradφ, gradψ) ∀φ, ψ ∈ VT , (1.17)

and note that both AT , BT are s.p.d., that is, they are symmetric (w.r.t. the L2 inner
product) and positive definite. The discretized system in VT now reads

uT + ∆t AT vT = fT

−BT uT + vT = gT ,

which can be equivalently written as

(I + ∆t AT BT )uT = fT − ∆tAT gT = FT . (1.18)

Notice that operator D = (I + ∆t AT BT ) is symmetric in the inner product induced
by A−1

T . We set

τ =
√

∆t and S := τAT , T := τBT . (1.19)

Therefore D = (I + ST ), and (1.18) now reads

DuT = (I + ST )uT = FT . (1.20)

In this paper we study left, right and left-right preconditioners for this system:

Left Preconditioner: We use P 2
L := (I +S)2 as a left preconditioner for D, leading

to the following preconditioned operator

P−2
L D = (I + S)−2(I + ST ) = (I + S)−2S(S−1 + T ).
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This can also be interpreted as a left symmetric preconditioner P̃L := (I + S)2S−1

applied to the symmetric operator D̃ = (S−1+T ). We implement this preconditioned
system within the algorithm Preconditioned Conjugate Gradient (PCG), and recall

that within this solver, using P̃L as a left preconditioner for D̃ is equivalent to solving

for the symmetric operator P̃
−1/2
L D̃P̃

−1/2
L . In § 4 we study the spectral radius of

P̃−1
L D̃ which coincides with that of P̃

−1/2
L D̃P̃

−1/2
L , and conclude that P 2

L (resp. P̃L)

is a good preconditioner for D (resp. D̃).

Right Preconditioner: We use P 2
R = (I + T )2 as a right preconditioner for D,

leading to the following preconditioned operator

DP−2
R = (I + ST )(I + T )−2 = (T−1 + S)T (I + T )−2.

This is again the composition of two symmetric operators D̄ = T−1 + S and P̃R =
T (I+T )−2. The implementation of this within PCG leads to solving for the symmetric

operator P̃
−1/2
R D̄P̃

−1/2
R , and the situation is analogous to the Left Preconditioner,

after interchanging the roles of S and T . Due to this analogy we conclude that the
same properties of the Left Preconditioner carry over to the Right Preconditioner,
and the analysis of the latter is omitted.

Left-Right Preconditioner: We use PL = (I+S) and PR = (I+T ) as left and right
preconditioners for D, respectively, leading to the following preconditioned operator

P−1
L DP−1

R = (I + S)−1(I + ST )(I + T )−1

It turns out that this preconditioner exhibits better balance, performance, and robust-
ness than the others but at the expense of symmetry. In § 5 we analyze the location
of the spectrum of P−1

L DP−1
R and use our findings to study convergence rates for

Richardson and GMRes methods in §§ 5.2 and 5.3, respectively.

In order to apply these preconditioners, efficient methods for solving systems

(I + τCT )vT = zT , CT vT = zT (1.21)

are required, where CT is a s.p.d. operator associated to a second order elliptic prob-
lem and τ > 0 is arbitrary. Systems (1.21) can be solved with optimal computational
effort thanks to multilevel solvers such as multigrid and BPX preconditioners. We
refer to [18, 20, 21, 23, 37, 40, 48, 49, 50, 52, 53, 54] for the general methodology
mostly on quasi-uniform meshes T and [1, 26, 49, 51] for graded meshes. The sym-

metric operator D̃ = S−1 + T is related to Tikhonov regularization, and multilevel
preconditioners were proposed in [22] for quasi-uniform meshes of size h and τ ≥ h2,
∆t = τ2 being the regularization parameter (see Corollary 2.1 and conditions (2.7)
and (2.8) as well as the discussion in page 476 of [22]).

Therefore, we focus our attention on the study of the proposed preconditioned
operators assuming that optimal solution techniques for systems (1.21) are available.
We start presenting remarkable computational results for the three preconditioned
operators in § 2. After a brief discussion of preliminary results in § 3, we estimate the

spectral radius of the symmetric preconditioned operator P̃
−1/2
L D̃P̃

−1/2
L in § 4 and

we study the location of the spectrum of the nonsymmetric preconditioned operator
P−1

L DP−1
R in § 5. In the symmetric case, convergence rates for preconditioned conju-

gate gradient (PCG) and GMRes (S-GMRes) directly follow. In the non-symmetric
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case, instead, we study convergence rates for Richardson and GMRes methods in § 5.2
and § 5.3, respectively, and their application to finite element discretizations in § 5.4.
It is worth stressing that our results are valid for any polynomial degree and we neither
need Hs-regularity, s > 1, of the continuous problem (1.1) nor quasi-uniform grids T .
In § 6 we apply the proposed preconditioners to a semi-implicit time stepping of the
governing system (1.4) for surface diffusion. We conclude in § 7 with computational
experiments revealing the relative merits of each preconditioner.

2. Numerical Study of Preconditioners. In this section we present a pre-
liminary study of the computational performance of the preconditioners presented in
§ 1.3. As the domain of interest we choose the L-shaped domain

Ω := (−1, 1) × (−1, 1) \ [0, 1] × [0, 1],

to verify that the results do not require full H2-regularity of (1.1). We consider the
following four examples, in the sequel referred to as nice, semi , nasty, and degenerate,
which reflect situations of increasing difficulty.

Example 2.1 (Nice): We consider

a(x1, x2) = 1, b(x1, x2) =

{
0.6, if x2 < x1,

1.2, otherwise.

Example 2.2 (Semi): We consider

a(x1, x2) = 1 + 0.1|x1| + |x2|, b(x1, x2) = 1.5 + 0.5 sin(5πx1) sin(8πx2).

Example 2.3 (Nasty): We consider

a(x1, x2) = 0.3 + 0.1|x1| + |x2|, b(x1, x2) = 10 + 3 sin(5πx1) sin(8πx2).

Example 2.4 (Degenerate): The goal of the last example is to investigate the behavior
of the preconditioners, when coefficient a degenerates, a case that is not covered by
our theory:

a(x1, x2) = 0.1|x1| + |x2| b(x1, x2) = 10 + 3 sin(5πx1) sin(8πx2).

Notice that coefficient a vanishes for x = (x1, x2) = 0.
We deal with both uniform and graded meshes T , and we let VT be the finite

element space of piecewise linear functions with homogeneous Dirichlet boundary
conditions. In the rest of this section we report on the behavior of the different
preconditioned systems for the examples 2.1–3. Example 2.4 falls out of our theory,
and we discuss it in § 7.

For the computations below we observe that there is a canonical homeomorphism
m : L(VT ) → R

N×N , with N = dim VT , between the algebra of linear operators
L(VT ) on VT and the algebra of matrices RN×N representing the operator for the
nodal basis (φi)

N
i=1 of VT . More precisely, operators A = AT , B = BT have the

matrix representation

m(A) = M
−1

A, m(B) = M
−1

B,

where M is the mass matrix and A,B are the stiffness matrices, respectively, defined
by

Mi,j = (φj , φi), Ai,j = (a∇φj ,∇φi), Bi,j = (b∇φj ,∇φi).
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Fig. 2.1. Condition numbers versus τ for the symmetrically preconditioned systems. The
columns correspond to Examples 2.1–2.3 whereas the rows to uniform grids (top) and graded
grids (bottom).

Thus (λ, e) ∈ R×VT is an eigenpair of A, if and only if (λ, e) ∈ R×RN is an eigenpair

of M−1A, where e = (ej)
N
j=1 is the nodal vector of e: e =

∑N
j=1 ejφj . The adjoint

operator A∗ (with respect to the L2 inner product) has the matrix representation
m(A∗) = M−1AT , whence

m(A∗A) = M
−1

A
T
M

−1
A.

We used the finite element toolbox ALBERTA [43] to compute the matrices
A,B,M and employed the sparse tools of MATLAB to provide matrix-vector prod-
ucts involving matrices associated with operators P , D and R, as well as spectra and
condition numbers of these matrices. Moreover, both CG and GMRes were executed
within MATLAB and iteration numbers for them were obtained by the procedures
provided by MATLAB. In Figures 2.1 and 2.2 below, “dim” stands for dim VT . The
results reported in these figures are in excellent agreement with the theory of § 4 and
§ 5.

2.1. Left Preconditioner. Figure 2.1 shows the condition numbers κ versus τ

for the symmetric preconditioned system P̃
−1/2
L D̃P̃

−1/2
L with

D̃ = S−1 + T, P̃L = (I + S)2S−1,

for both uniform meshes (top row) and graded meshes (bottom row). Different regimes
with respect to τ and meshsize can be clearly observed. For large values of τ , we have
P̃L ≈ S and D̃ ≈ T , whence the preconditioned system satisfies

P̃−1
L D̃ ≈ S−1T = A−1

T BT ;

since A−1
T BT is an operator of order zero, its condition number is essentially indepen-

dent of the meshsize. On the other hand, for very small values of τ , P̃L ≈ S−1 ≈ D̃,
and thus the preconditioned system behaves like

P̃−1
L D̃ ≈ I;
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Fig. 2.2. Spectral radius ρ(Q) for Richardson’s iteration operator Q versus τ for the
left/right non-symmetrically preconditioned system. The columns correspond to Examples
2.1–3 whereas the rows to uniform grids (top) and graded grids (bottom).

consequently the condition number tends to 1 as τ → 0. However, for intermediate
values of τ , κ depends on both τ and meshsize, but it is uniformly bounded. The
different behavior of κ for the considered examples confirms the dependence of an
upper bound for κ on the relationship between a and b, which is further explained in
§ 4. On the other hand, we observe no substantial difference between uniform and
graded grids.

2.2. Left-Right Preconditioner. We consider the (non-symmetric) Left-Right
preconditioned operator P−1

L DP−1
R = (I + S)−1(I + ST )(I + T )−1. We report in

Figure 2.2 the spectral radius ρ(Q) of the Richardson’s iteration operator Q = I −
P−1

L DP−1
R as a function of τ , for uniform meshes (top row) and graded meshes (bottom

row). The value of ρ(Q) appears to be uniformly away from 1, irrespective of τ and
meshsize, but to depend on the relationship between matrices a and b. This is further
explained in § 5.

3. Preliminary Results. For two complex numbers z1, z2 ∈ C, whenever we
write z1 ≥ z2, we understand that z1 − z2 ∈ R and that z1 − z2 ≥ 0, and likewise for
“≤”, “>”, “<”.

In the following H denotes a finite dimensional Hilbert space with inner product
(·, ·) and norm ‖ · ‖. For any operator M : H → H we denote its spectrum by
σ(M), and the operator norm induced by the norm of H with ‖M‖. We use the fact
that if A : H → H is s.p.d., then there exists a s.p.d. operator A1/2 : H → H with
A1/2A1/2 = A. In the sequel, we will also use the following elementary lemmas, whose
proofs are straightforward, and thus omitted here.

Lemma 3.1. Let M,N : H → H be linear operators. Then σ(MN) = σ(NM).
Lemma 3.2. Let A,B be s.p.d. in H. If there exist two positive constants C1, C2

such that

C1(Au, u) ≤ (Bu, u) ≤ C2(Au, u) ∀ u ∈ H,

then the condition number cond(A−1/2BA−1/2) with respect to the H-norm is bounded
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by C2/C1.

4. Analysis of the Left Preconditioner. In this section we show that

P̃L := (I + S)2S−1

is a “good” preconditioner for the symmetric operator D̃ = S−1 + T . More precisely,

we prove that the condition number of the preconditioned system P̃
−1/2
L D̃P̃

−1/2
L is

bounded by a constant depending on the coefficient matrices a, b, but is otherwise
independent of the meshsize and τ (see Corollary 4.2 below).

The idea behind the preconditioner P̃L can readily be seen in the particular case
of AT = BT , that yields S = T = τAT . In this case, since all operators commute, we
can write

σ(P̃−1
L D̃) = σ

(
(I + τAT )−2(I + τ2A2

T )
)

=
{
(1 + τ2λ2)/(1 + τλ)2| λ ∈ σ(AT )

}

so that

σ(P̃−1
L D̃) = σ(P̃

−1/2
L D̃P̃

−1/2
L ) ⊂ [1/2, 1],

whence, the condition number of the preconditioned operator satisfies

cond
(
P̃

−1/2
L D̃P̃

−1/2
L

)
≤ 2.

For the general case AT 6= BT , the lack of commutativity leads to the following
slightly weaker results.

Theorem 4.1. Let S and T be s.p.d. operators on H, and 0 < λ ≤ Λ be constants
such that

(
(S−1w,w) + (Sw,w)

)
≥ λ

(
(S−1w,w) + (Tw,w)

)
, (4.1)

(
(S−1w,w) + (Sw,w)

)
≤ Λ

(
(S−1w,w) + (Tw,w)

)
, (4.2)

for all w ∈ H. If P = (I + S)2S−1, then

cond(P−1/2(S−1 + T )P−1/2) ≤ 2Λ

λ
.

We postpone the proof of the theorem, and first show some implications related
to the efficient solution of (1.20).

Corollary 4.2 (Symmetric preconditioner). If the ellipticity assumptions (1.2)

hold, then the condition number of the preconditioned operator P̃
−1/2
L D̃P̃

−1/2
L is uni-

formly bounded with a constant solely dependent on the eigenvalues λa, Λa, λb, and
Λb in (1.2), namely,

cond
(
P̃

−1/2
L D̃P̃

−1/2
L

)
≤ 2

max{Λ+, 1}
min{λ−, 1} , (4.3)

with Λ+ := supx∈Ω Λa(x)/λb(x), λ
− := infx∈Ω λa(x)/Λb(x).

Proof. Since for all w ∈ H

(AT w,w) ≥ λ−(BT w,w), (AT w,w) ≤ Λ+(BT w,w),

9



the assertion follows from Theorem 4.1 upon choosing the L2–inner product (·, ·) in
H = VT and Λ = max{Λ+, 1}, λ = min{λ−, 1}.

A crucial feature of P̃L is that the resulting preconditioned operator P̃
−1/2
L D̃P̃

−1/2
L

turns out to be symmetric, which allows the use of preconditioned CG to solve (1.20).

To this end, we only need the evaluation of P̃−1
L rather than P̃

−1/2
L . As an immediate

consequence of Corollary 4.2, and well known results on the convergence rate of the
Conjugate Gradient method [34], we obtain the following corollary:

Corollary 4.3. Let the ellipticity assumptions (1.2) hold, let u denote the exact

solution to D̃u = F̃ with D̃ = S−1 + T . Then, the Conjugate Gradient method for
solving this system, preconditioned with P̃L = (I + S)2S−1, generates a sequence of
iterates uk satisfying

‖|u− uk‖| ≤ 2

(√
κ− 1√
κ+ 1

)k

‖|u− u0‖|

with ‖|v‖| :=
(
v, P̃

−1/2
L D̃P̃

−1/2
L v)1/2 and

κ = cond
(
P̃

−1/2
L D̃P̃

−1/2
L

)
≤ 2

max{Λ+, 1}
min{λ−, 1} ,

where Λ+ := supx∈Ω Λa(x)/λb(x), λ
− := infx∈Ω λa(x)/Λb(x). That is, the conver-

gence rate in the P̃
−1/2
L D̃P̃

−1/2
L -norm is dictated by the condition number κ, which

solely depends on the eigenvalues λa, Λa, λb, and Λb in (1.2), but is otherwise inde-
pendent of the discretization parameters T , τ .

Having established the implications of Theorem 4.1 we now proceed to its proof.
Proof of Theorem 4.1. Observe first that

P−1/2(S−1 + T )P−1/2 = (I + S)−1S1/2(S−1 + T )S1/2(I + S)−1

= (I + S)−1(I + S1/2TS1/2)(I + S)−1

=
[
(I + S)2

]−1/2
(I + S1/2TS1/2)

[
(I + S)2

]−1/2
.

Due to Lemma 3.2 it is thus sufficient to show that

1

2Λ

(
(I + S)2v, v

)
≤ (v, v) + (S1/2TS1/2v, v) ≤ 1

λ

(
(I + S)2v, v

)

for all v ∈ H. To this end we observe that, since S is s.p.d. we have
(
(I + S)2v, v

)
= (v, v) + 2(Sv, v) + (Sv, Sv) ≥ (v, v) + (Sv, Sv) (4.4)

and also, by Cauchy-Schwarz’s inequality,
(
(I + S)2v, v

)
= (v, v) + 2(Sv, v) + (Sv, Sv) ≤ 2(v, v) + 2(Sv, Sv). (4.5)

Setting w := S1/2v and using (4.1) and (4.4) we get
(
(I + S)2v, v

)
≥ (v, v) + (Sv, Sv) = (S−1w,w) + (Sw,w)

≥ λ
(
(S−1w,w) + (Tw,w)

)
= λ

(
(v, v) + (S1/2TS1/2v, v)

)
.

Similarly, using (4.2) and (4.5), we obtain
(
(I + S)2v, v

)
≤ 2
(
(v, v) + (Sv, Sv)

)
= 2
(
(S−1w,w) + (Sw,w)

)

≤ 2Λ
(
(S−1w,w) + (Tw,w)

)
= 2Λ

(
(v, v) + (S1/2TS1/2v, v)

)
,

and the assertion is proved.
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5. Analysis of the Left-Right Preconditioner. Giving up symmetry might
seem questionable because preconditioned CG is a very effective method. However,
on the one hand our symmetric preconditioners only take into account information
arising from one operator S = τAT or T = τBT . On the other hand we have found
that in many practical examples a non-symmetric preconditioner using both operators
S and T is superior; this is the case when a(x) and b(x) are quite different. In this
section we study the non-symmetric preconditioned system

P−1
L DP−1

R = (I + S)−1(I + ST )(I + T )−1.

We first prove that all the eigenvalues of the preconditioned system (I+S)−1(I+
ST )(I + T )−1 belong to a ball separated from the origin: we show the existence of
δ0 ∈ (0, 1), independent of space and time discretization parameters, such that all
the eigenvalues of the preconditioned system belong to {z ∈ C : |z − (1 + δ0)/2| <
(1 − δ0)/2}; see Figure 5.1 below. This result hinges on the structural assumptions
(5.5) and (5.6) on S and T , which are later proved to hold for the operators arising
from finite element discretizations in § 5.4. We use this spectral analysis to study the
convergence rates of Richardson’s method in § 5.2 and GMRes in § 5.3.

5.1. Spectral Analysis. Since the spectrum of (I + S)−1(I + ST )(I + T )−1

coincides with those of (I + T )−1(I + S)−1(I + ST ) and (I + ST )(I + T )−1(I + S)−1

due to Lemma 3.1, the analysis of the spectrum of (I + T )−1(I + S)−1(I + ST ) that
follows applies to any of these three preconditioned systems.

We start with the following simple observation.
Lemma 5.1. If S, T are s.p.d., then

σ
(
(I + T )−1(I + S)−1(I + ST )

)
= M

(
(σ((S + T )−1(I + ST ))

)
,

where M is the Möbius transformation defined by M(z) := z
1+z .

Proof. We first observe that (e, λ) is an eigenpair of (I + T )−1(I + S)−1(I + ST )
if and only if e 6= 0 and

(I + ST )e = λ(I + S)(I + T )e = λ(I + ST + S + T )e,

which is equivalent to

(1 − λ)(I + ST )e = λ(S + T )e.

Clearly λ 6= 1 for otherwise S + T would be singular. Thus (e, λ) is an eigenpair of
(I + T )−1(I + S)−1(I + ST ) if and only if

(I + ST )e =
λ

1 − λ
(S + T )e,

and therefore λ is an eigenvalue of (I +T )−1(I +S)−1(I +ST ) if and only if µ = λ
1−λ

is an eigenvalue of (S + T )−1(I + ST ). This holds if and only if M(µ) = λ.
With the help of Lemma 5.1, we will study the eigenvalues of (I + T )−1(I +

S)−1(I+ST ) through exploring the location of the eigenvalues of (S+T )−1(I +ST ).
Lemma 5.2. If S, T are s.p.d., then

Reσ((S + T )−1(I + ST )) > 0.
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Proof. Let (e, µ) be an eigenpair of (S+T )−1(I+ST ), then (I+ST )e = µ(S+T )e
and

(µS − I)e = (S − µI)Te;

notice that µ = x+ iy with x, y ∈ R may not be real. Therefore, for any f ∈ H,

((µS − I)e, f) = (Te, (S − µ̄I)f). (5.1)

We now want to choose f fulfilling (S − µ̄I)f = e. If this were not possible, then
µ̄ = µ > 0 would be an eigenvalue of S because S is s.p.d.. Thanks to Lemma 5.3
below, this would imply that µ = Reµ = 1 and the claim follows.

Otherwise, let f ∈ H satisfy

(S − µ̄I)f = e,

and rewrite (5.1) in the form

µ(Sf, Sf)− (Sf, f) − µµ̄(Sf, f) + µ̄(f, f) = (Te, e). (5.2)

Taking the real and imaginary parts of (5.2) we get

−x2(Sf, f) + x
(
(Sf, Sf) + (f, f)

)
− y2(Sf, f) − (Sf, f) = (Te, e), (5.3)

y
(
(Sf, Sf) − (f, f)

)
= 0. (5.4)

Equation (5.3) can be written as

x2 − x
(Sf, Sf) + (f, f)

(Sf, f)
+ y2 = − (Sf, f) + (Te, e)

(Sf, f)

whence

(x− a)2 + y2 = r2

with

a =
(Sf, Sf) + (f, f)

2(Sf, f)
, r2 = a2 − (Sf, f) + (Te, e)

(Sf, f)
.

This shows that µ lies on the boundary of a ball centered at a > 0 with radius r,
0 ≤ r < a, and thus µ is located in the right complex half plane.

Lemma 5.3. Let S, T be s.p.d. and (e, µ) an eigenpair of (S + T )−1(I + ST )
such that µ is also an eigenvalue of S. Then, either the equation

(S − µI)f = e

admits a solution f , or µ = 1.
Proof. Observe first that µ ∈ σ(S) implies µ ∈ R+, and e ∈ rg(S − µI) if and

only if e ⊥ ker(S −µI)H = ker(S − µI) because µ ∈ R. Moreover, the fact that (e, µ)
is an eigenpair of (S + T )−1(I + ST ) implies

1

µ
(I + ST )e = (S + T )e.
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Let now h ∈ ker(S − µI) \ {0}, i.e. Sh = µh. Then

(h, e) =
1

µ
(Sh, e) =

1

µ
(h, Se) =

1

µ
(h,

1

µ
(I + ST )e− Te),

whence

(h, e) =
1

µ2
(h, e) − 1

µ
(h, T e) +

1

µ2
(h, STe).

Upon multiplying by µ2 and rearranging terms we arrive at

(µ2 − 1)(h, e) = (h, STe)− µ(h, T e) = (Sh, T e)− µ(h, T e) = µ(h, T e)− µ(h, T e) = 0.

This statement is the assertion in disguise.
To get more uniform bounds on the eigenvalues we have to make two structural

assumptions. They will turn out to be quite natural in the applications with FEM of
§ 5.4.

Assumption 1: There exists a constant α > 0 such that

(Tg, g) ≥ α(Sg, g) for all g ∈ H. (5.5)

Assumption 2: There exists a constant K > 0 such that

||S−1T || ≤ K. (5.6)

Theorem 5.4. Let S, T be s.p.d. and let Assumptions 1, 2 hold. Let

b :=
2
√
α

1 +K
, c :=

2 min{α, 1}
1 + α

. (5.7)

There exists a constant a ≥ c such that if r = a
√

1 − c/a then

σ((S + T )−1(I + ST )) ⊆ B(a, r) ∪ {x ∈ R | x ≥ b} ∪ {1} ⊂ C+.

Proof. We will refine the argument of proof of Lemma 5.2. We adopt the notation
of such proof and estimate the right-hand side of (5.2) using (5.5) as follows:

(Te, e) ≥ α(Se, e) = α
(
S(S − µ̄I)f, (S − µ̄I)f

)

= α
[
(S2f, Sf)− (S2f, µ̄f) − (µ̄Sf, Sf) + (µ̄Sf, µ̄f)

]

= α
[
(S2f, Sf)− 2x(Sf, Sf) + (x2 + y2)(Sf, f)

]
,

where µ = x+ iy. Combining this estimate with (5.3) we get

−
[
(Sf, f) + α(S2f, Sf)

]

≥ x2(1 + α)(Sf, f) − 2x
[
α(Sf, Sf) +

(f, f) + (Sf, Sf)

2

]
+ y2(1 + α)(Sf, f).

We first examine the case that y 6= 0. Using (5.4) and normalizing f , namely
taking (f, f) = (Sf, Sf) = 1, which does not restrict generality, the above estimate
reads

x2(1 + α)(Sf, f) − 2x(1 + α) + y2(1 + α)(Sf, f) ≤ −
[
(Sf, f) + α(S2f, Sf)

]
.
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Reordering and completing the square, we thus infer

(x− ãµ)2 + y2 ≤ ã2
µ − ãµ

(Sf, f) + α(S2f, Sf)

1 + α
=: r̃2, (5.8)

with ãµ = 1/(Sf, f) > 0. Note that by construction the right-hand side of (5.8) is
non-negative. To proceed further, we need to estimate r̃ in terms of ãµ.

Since S is s.p.d. we can write

1 = (Sf, Sf) = (S3/2f, S1/2f) ≤ 1

2

[
(S3/2f, S3/2f) + (S1/2f, S1/2f)

]

=
1

2

[
(Sf, f) + (S2f, Sf)

]
≤ 1

2 min{α, 1}
[
(Sf, f) + α(S2f, Sf)

]
,

(5.9)

whence

(Sf, f) + α(S2f, Sf)

1 + α
≥ 2 min{α, 1}

1 + α
= c

with c > 0 depending only on α, but not on µ, and c ≤ ãµ. We thus conclude
that if µ ∈ σ

(
(S + T )−1(I + ST )

)
and µ /∈ R, then there exists ãµ > 0 such that

µ ∈ B(ãµ, ãµ

√
1 − c/ãµ). Therefore, if a := max{ãµ | µ ∈ σ

(
(S+T )−1(I+ST )

)
\R},

Lemma 5.5 below yields

σ
(
(S + T )−1(I + ST )

)
\ R ⊂ B(a, a

√
1 − c/a),

and proves the theorem provided y 6= 0. It remains to examine the case y = 0.
We thus consider pure real eigenvalues µ ∈ R. We already know from Lemma 5.2

that µ > 0. Let us re-start the analysis for this case from the equality

µ(S + T )e = (I + ST )e.

Multiplying by g := S−1e we get

µ =
((I + ST )e, g)

(Se, g) + (Te, g)
=

(S−1e, e) + (Te, e)

(e, e) + (S−1Te, e)
.

Making use of Assumption 1 and arguing as in (5.9), the numerator becomes

(S−1e, e) + (Te, e) ≥ (S−1e, e) + α(Se, e) ≥ 2
(
S−1/2e,

√
αS1/2e

)
= 2

√
α (e, e).

On the other hand, employing Assumption 2, the denominator is bounded from above
by

(e, e) + (S−1Te, e) ≤ (1 +K) (e, e).

Therefore, we finally conclude µ ≥ 2
√

α
1+K = b, which is the asserted estimate.

Lemma 5.5. Let 0 < c < a1 < a2, and let ri = ai

√
1 − c/ai for i = 1, 2. Then

B(a1, r1) ⊂ B(a2, r2).
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δ x0

B(x0, r0)

B(0, 1)

1 δ x0

B(0, 1)

11 − δ1 − x0

B(1 − x0, r0)

B(0, 1 − δ)

Fig. 5.1. Location of the spectrum of (I + T )−1(I + S)−1(I + ST ) (left) and Richardson
iteration operator (right).

Proof. Observe first that for i = 1, 2

(x, y) ∈ B(ai, ri) ⇐⇒ (x− ai)
2 + y2 ≤ a2

i − cai ⇐⇒ x2 + y2 ≤ (2x− c)ai.

This readily implies 2x ≥ c, whence

(x, y) ∈ B(a1, r1) ⇒ x2 + y2 ≤ (2x− c)a1 ≤ (2x− c)a2 ⇒ (x, y) ∈ B(a2, r2),

and the proof is complete.
Theorem 5.4 enables us to bound uniformly the spectrum of (I+T )−1(I+S)−1(I+

ST ).
Theorem 5.6 (Uniform Spectral Bound). Let S, T be s.p.d. and Assumptions 1,

2 hold. Let

δ0 := min
( 2

√
α

1 +K + 2
√
α
,

min(1, α)

1 + α+ min(1, α)
,
1

2

)
,

and 0 < x0 := (1 + δ0)/2 and r0 := (1 − δ0)/2 (see Figure 5.1). Then

σ
(
(I + T )−1(I + S)−1(I + ST )

)
⊆ B(x0, r0) ⊂ C+.

Proof. According to Lemma 5.1 and Theorem 5.4 the spectrum of (I + T )−1(I +
S)−1(I + ST ) satisfies

σ
(
(I + T )−1(I + S)−1(I + ST )

)
= M

(
(σ((S + T )−1(I + ST ))

)

⊆ M
(
B(a, r) ∪ {x ∈ R | x ≥ b} ∪ {1}

)
,

where M(z) = z
1+z is a Möbius transformation. We first observe that M(1) = 1/2

and M({x | x ≥ b}) ⊆ [ b
1+b , 1], whence

M
(
{x ∈ R | x ≥ b} ∪ {1}

)
⊂
[
min

{ b

1 + b
,
1

2

}
, 1
]
, with b =

2
√
α

1 +K
. (5.10)

It remains to find a ballB(x0, r0) containing M
(
B(a, r)

)
. We notice that M maps

B(a, r) onto a ball in the complex plane with center in the real axis, the latter due
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to symmetry. Thus M(B(a, r)) is determined by the extremal points ζ := M(a− r)
and η := M(a+ r). Since a− r ≥ infa≥c

(
a−a

√
1 − c/a

)
= c/2 we deduce ζ ≥ M( c

2 )
whereas η ≤ 1. Therefore,

M
(
B(a, r)

)
⊂ B

(1 + M( c
2 )

2
,
1 −M( c

2 )

2

)
with c =

2 min{α, 1}
1 + α

. (5.11)

Choosing δ0, x0 and r0 as in the statement of the theorem, the assertion follows
from (5.10) and (5.11).

By Lemma 3.1 the assertion of Theorem 5.6 for the preconditioned operator (I +
T )−1(I + S)−1(I + ST ) also holds for the other two non-symmetric preconditioned
systems (I + S)−1(I + ST )(I + T )−1 and (I + ST )(I + T )−1(I + S)−1. In what
follows we comment on two popular iterative methods for linear systems that greatly
benefit from these preconditioners, focusing on the Left-Right preconditioned system
(I+S)−1(I+ST )(I+T )−1, but emphasizing that the same results hold for the other
two options that we have mentioned.

5.2. Richardson’s Method. One of the simplest iterative methods to solve
equation

(I + ST )u = f

is Richardson’s method, which in our case takes the following form: given an initial
guess u0, define v0 = PRu0 and compute the iterates by the recurrence

vk+1 = vk − P−1
L

(
(I + ST )P−1

R vk − f
)
, uk+1 = P−1

R vk+1, (5.12)

where PL = (I + T ) and PR = (I + S) are the left and right preconditioners, respec-
tively. Notice that the computation uk+1 = P−1

R vk+1 should only be performed upon
convergence, and not in every iteration.

Corollary 5.7. Let S, T be s.p.d. and Assumptions 1, 2 hold. If R is the ma-
trix representation of the preconditioned system P−1

L (I + ST )P−1
R , then Richardson’s

iteration (5.12) converges in any norm with an asymptotic linear convergence rate of
1 − δ0, where δ0 is given in Theorem 5.6.

Proof. If Q = I−R denotes the Richardson iteration matrix, its spectrum satisfies
σ(Q) = 1 − σ(R). Therefore, the spectral radius ρ(Q) satisfies

ρ(Q) = max
{
|λ| : λ ∈ σ(Q)

}
≤ 1 − δ0 < 1,

which follows immediately from Theorem 5.6 (see Figure 5.1). Given any vector norm
‖ · ‖, the corresponding subordinate matrix norm verifies ρ(Q) = limk→∞ ‖Qk‖1/k.
On the other hand, since v − vk = Qk(v − v0) with v = P−1

R u, we see that

lim
k→∞

‖v − vk‖
ρ(Q)k‖v − v0‖ ≤ lim

k→∞

‖Qk‖
ρ(Q)k

= 1.

This implies the asserted asymptotic behavior in any norm.

Remark 5.8. Since the iteration matrix Q is not symmetric (or normal), the
above asymptotic convergence rate does not necessarily yield an error reduction rate
between consecutive iterates.
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5.3. GMRes Method. A standard and widely used method for non-symmetric
systems is the Generalized Minimum Residual (GMRes) method [42]. Solving the
system (I + ST )u = f via left-right preconditioned GMRes consists of solving the
equivalent system

[
P−1

L (I + ST )P−1
R

]
v = P−1

L f and PRu = v, by performing the
following steps:

1. Modify the right-hand side: Let b = P−1
L f.

2. Solve with GMRes the system
[
P−1

L (I + ST )P−1
R

]
v = b.

3. Update the solution, solving PRu = v.
Throughout this section, ‖ · ‖ will denote the 2-norm for vectors as well as its

subordinate matrix norm.
To solve Rv = b, GMRes constructs the unique sequence {vk} with

vk ∈ v0 + span{r0, Rr0, R2r0, . . . , R
k−1r0}

and ‖rk‖ minimal, where rk := Rvk − b is the residual. As a consequence of this [39],
at each step of the iteration we have

rk = pk(R)r0,

with pk a polynomial of degree k with pk(0) = 1. This in turn implies that

‖rk‖
‖r0‖

= min
pk

‖pk(R)‖, (5.13)

where the minimum is taken over all polynomials pk of degree k that satisfy pk(0) = 1.
There are many ways to bound the right-hand side of (5.13), none of them is sharp,
and they depend on further properties of R such as R being diagonalizable or normal.
Since we do not know that those properties hold for our case, we resort to the general
concept of pseudospectrum [47]: Given ǫ > 0, the ǫ-pseudospectrum σǫ(R) of R is the
set of ǫ-eigenvalues of R, namely those z ∈ C that are eigenvalues of some matrix
R+ E with ‖E‖ ≤ ǫ. We will make use of the following result [47, Theorem 26.2].

Lemma 5.9 (Pseudospectrum estimate). Let Σǫ be a union of closed curves en-
closing the ǫ-pseudospectrum σǫ(R) of R. Then for any polynomial pk of degree k with
pk(0) = 1 we have

max
z∈σ(R)

|pk(z)| ≤ ‖pk(R)‖ ≤ Lǫ

2πǫ
max

z∈Σǫ(R)
|pk(z)|, (5.14)

where Lǫ is the arclength of Σǫ.
In order to apply this result we need to control the location of the ǫ-pseudospectrum

of R. A result in this direction is given by the following
Proposition 5.10 (Bound on the ǫ-pseudospectrum). If R is a square matrix of

order n and 0 < ǫ ≤ 1, then

σǫ(R) ⊂
⋃

λ∈σ(R)

B(λ,CR ǫ
1/m),

where CR := n(1 +
√
n− p)‖V −1‖‖V ‖, with V a nonsingular matrix transforming R

into its Jordan canonical form J , i.e. V −1RV = J , p is the number of Jordan blocks,
and m is the size of the largest Jordan block of R.

Proof. Let 0 < ǫ ≤ 1 be given, and let z ∈ σǫ(R). By definition there exists a
matrix E with ‖E‖ ≤ ǫ such that z ∈ σ(R +E). Corollary 2.2 in [46] states a bound

17



for the distance between the eigenvalues of two matrices in terms of the norm of the
matrix difference. Applied to our case it reads

min
λ∈σ(R)

|λ− z| ≤
√
n(1 +

√
n− p)max

{√
n
∥∥V −1EV

∥∥, m

√√
n‖V −1EV ‖

}
, (5.15)

where V , p, m are as in the statement of the proposition. Since ‖E‖ ≤ ǫ ≤ 1, (5.15)
implies the existence of an eigenvalue λ of R such that

|z − λ| ≤ n(1 +
√
n− p)‖V −1‖‖V ‖ǫ1/m,

and the claim follows.
Corollary 5.11. Let S, T be s.p.d. and Assumptions 1, 2 hold. If R is the

matrix representation of the preconditioned system P−1
L (I + ST )P−1

R , then GMRes’
iteration converges with an asymptotic linear convergence rate bounded by

ρ :=
1 − 1

2δ0

1 + δ0
,

where δ0 is given in Theorem 5.6. Moreover,

‖rk‖
‖r0‖

≤ C0ρ
k,

with C0 := Cm
R 22m−1 dim H/δm−1

0 and CR as in Proposition 5.10.
Proof. Let ǫ0 = 1

2δ0 > 0 and let CR and m denote the constants from Proposi-

tion 5.10. Then choosing ǫ =
(

ǫ0
2CR

)m
so that CRǫ

1/m = ǫ0/2 we have

σǫ(R) ⊂
⋃

λ∈σ(R)

B
(
λ,
ǫ0
2

)
⊂ B

(
x0,

1 − δ0
2

+
ǫ0
2

)

by Theorem 5.6, with x0 = 1
2 (1+δ0). If we consider pk(z) = x−k

0 (x0−z)k and observe
that

|pk(z)| =
|z − x0|k

xk
0

≤
(

1−δ0

2 + ǫ0
2

1+δ0

2

)k

≤
(

1 − 1
2δ0

1 + δ0

)k

, ∀z ∈ σǫ(R),

then equality (5.13) and bound (5.14) with Lǫ the arclength of Σǫ =
⋃

λ∈σ(R) ∂B(λ, ǫ0)
imply the assertion.

Remark 5.12. Corollary 5.11 is not fully satisfactory because the constant C0

still depends on the matrix R, which in turn depends on space and time discretiza-
tion parameters. A finer analysis leading to uniform bounds would be desirable but
requires tools from matrix theory for non-normal matrices to characterize the pseu-
dospectrum of R, that do not seem to be available.

5.4. Application to Finite Element Discretizations. We now discuss As-
sumptions 1 and 2 within the finite element context and restate Corollaries 5.7
and 5.11. Let T be a shape regular triangulation of Ω, let H = VT be the C0

Lagrange finite element space of fixed degree (not necessarily one), with inner prod-

uct (v, w) =
∫
Ω
vw and norm ‖v‖ =

( ∫
Ω
|v|2
)1/2

, which are well defined for all
v, w ∈ L2(Ω). Recall that S = τAT and T = τBT with AT and BT as in (1.17).
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Assumption 1 is a direct consequence of the ellipticity condition (1.2) and is
fulfilled with

α = inf
x∈Ω

λb(x)

Λa(x)
.

To verify Assumption 2 we adopt the procedure in [33], and so compare the operators
AT and BT . To this end, we need the following compatibility condition between the
matrices a and b: there exists a scalar function η, piecewise C1 over the mesh T of Ω
such that

b(x) = η(x)a(x) a.e. x ∈ Ω. (5.16)

It is worth observing that in the case of the coefficients a and b being scalar valued
and piecewise smooth, the compatibility condition holds.

For any u, v ∈ VT , if I = IT denotes the Lagrange interpolation operator in VT ,
by definition (1.17) we have

(Bu, v) = (b∇u,∇v) = (a∇I(ηu),∇v) + d(u, v) = (AI(ηu), v) + d(u, v),

where

d(u, v) := (a
{
η∇u −∇I(η u)

}
,∇v).

Assumption 2 holds as a consequence of the following simple lemmas.
Lemma 5.13. Let the ellipticity conditions (1.2) and the compatibility condi-

tion (5.16) hold. Then there exists a constant C > 0 depending on the shape regularity
of T and the polynomial degree of the finite element space VT such that

|d(u, v)| ≤ CΛa||∇η||L∞(Ω,T )||u|| ||∇v|| ∀u, v ∈ VT ,

where ||∇η||L∞(Ω,T ) denotes the broken norm

||∇η||L∞(Ω,T ) := max
T∈T

||∇η||L∞(T ).

Proof. Let E : Ω → R be defined as

E(x) := η(x)∇u(x) −∇I(ηu)(x) =
∑

i

(
η(x) − η(xi)

)
u(xi)∇φi(x).

Recall that {φi}i denotes the nodal basis of the C0 Lagrange finite element space VT
(see Section 2). Since

|d(u, v)| = |(aE,∇v)| ≤ Λa||∇v|| ||E||,

it remains to bound ||E||. For any T ∈ T , denoting with hT the diameter of T ,
standard scaling arguments lead to

||E||2L2(T ) ≤ sup
x,y∈T

|η(x) − η(y)|2C1

∫

T

∑

i

∣∣u(xi)∇φi(x)
∣∣2

≤ h2
T ||∇η||2L∞(T ) C1C2||∇u‖2

L2(T )

≤ h2
T ||∇η||2L∞(T )

C1C2C3

h2
T

||u‖2
L2(T ),= C1C2C3||∇η||2L∞(T )||u‖2

L2(T ),
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where C1, C2, C3 are constants depending only on shape regularity and the polynomial
degree of the finite element space VT . Adding over all T ∈ T we obtain the claim of
the lemma.

Lemma 5.14. There exists a constant C > 0, depending only on the shape regu-
larity of T and the polynomial degree of the finite element space VT such that

||I(η u)|| ≤ C||η||L∞(Ω)||u||, ∀u ∈ VT .

Proof. Standard scaling arguments allow us to conclude that for each element
T ∈ T

‖I(ηu)‖2
L2(T ) ≤ C2‖η‖2

L∞(T )‖u‖2
L2(T ),

with C depending only on shape regularity of T and the polynomial degree of the
finite element space VT . The claim follows by adding over T ∈ T .

We are now in a position to prove Assumption 2. Let ΛP = ΛP (Ω) be the Poincaré
constant of Ω, namely

‖v‖L2(Ω) ≤ ΛP ‖∇v‖L2(Ω), ∀v ∈ V, (5.17)

where V is the subset of H1(Ω) that incorporates the essential boundary conditions
(1.13)–(1.14) provided Hd−1(ΓD) > 0, or imposes a vanishing meanvalue (1.12) oth-
erwise.

Proposition 5.15. Under the conditions of ellipticity (1.2) and compatibil-
ity (5.16) Assumption 2 holds, i.e.,

||S−1T || = ‖A−1
T BT ‖ ≤ K := C0 max

{
‖η‖L∞(Ω), ‖ gradη‖L∞(Ω,T )

}(
1 +

Λa

λa
ΛP

)
.

with a constant C0 > 0 depending on the shape regularity of T and the polynomial
degree of the finite element space VT , and ΛP defined in (5.17).

Proof. By definition S−1T = A−1
T BT and

||A−1
T BT u|| = sup

06=v∈VT

(A−1
T BT u, v)

||v|| = sup
06=v∈VT

(BT u,A
−1
T v)

||v|| .

Let w = A−1
T v and use Lemma 5.13 to obtain

(BT u,A
−1
T v) = (BT u,w) = (b∇u,∇w) = (a∇I(ηu),∇w) + d(u,w).

Invoking definition (1.17) of A implies

(a∇I(ηu),∇w) = (AT w, I(ηu)) = (I(ηu), v). (5.18)

In view of Lemmas 5.13 and 5.14 we infer that

|(BT u,A
−1
T v)| ≤ |(I(ηu), v)| + |d(u,w)|

≤ C0||u||
(
‖η‖L∞(Ω)||v|| + Λa‖ gradη‖L∞(Ω)||∇w||

)
,

(5.19)

with the constant C depending on the shape regularity of T and the polynomial degree
of the finite element space VT . We now claim that ‖∇w‖ ≤ ΛP

λa
‖v‖. To see this, note

that

λa‖∇w‖2 ≤ (a∇w,∇w) = (AT w,w) = (AT A
−1
T v, w)

= (v, w) ≤ ‖v‖‖w‖ ≤ ΛP ‖v‖‖ gradw‖,
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by Poincaré inequality (5.17) using that w ∈ V. Now (5.19) reads

|(BT u,A
−1
T v)| ≤ C0||u||‖v‖

(
‖η‖L∞(Ω) + Λa‖ gradη‖L∞(Ω)

ΛP

λa

)
,

and the claim of the proposition follows due to (5.18).
Corollary 5.16. Let the ellipticity and compatibility conditions (1.2) and (5.16)

be fulfilled, let AT and BT denote the discrete operators from (1.17) and S = τAT
and T = τBT , and let R = P−1

L (I+ST )P−1
R be the Left-Right preconditioned system.

Then both Richardson and GMRes iterations converge with an asymptotic linear con-
vergence rate. If δ0 is as in Theorem 5.6, the rate is 1−δ0 in any norm for the former

whereas it is
1− 1

2 δ0

1+δ0
in the 2-norm for the latter.

Proof. The result is now a simple consequence of Corollaries 5.7 and 5.11 and the
above considerations concerning Assumptions 1 and 2.

6. Application to Surface Diffusion. We now discuss the performance of the
proposed preconditioners when applied to the nonlinear system (1.4), first linearized
via semi-implicit time stepping. We consider the evolution by surface diffusion of the
graph plotted in Figure 6.1 (left), with periodic boundary conditions. We use linear
finite elements on three nested uniform meshes:

8192 DOFs (h = 2−5 ≈ 0.031),

32768 DOFs (h = 2−6 ≈ 0.016),

131072 DOFs (h = 2−7 ≈ 0.0078).

In Figure 6.1 we plot the evolving surface to illustrate that it is rough at the
beginning, and slowly regularizes, thereby leading to very high values of q(u) in (1.4),
which in turn imply very small values for the coefficient functions a and b in this
example. The situation depicted is very similar to the nasty example.

Fig. 6.1. Evolution of an initially rough graph by surface diffusion governed by the system
(1.4). Solution at t = 0 (left), t = 0.0005 (middle), t = 0.0010 (right)

In Figure 6.2 we display the number of iterations versus time (for three different
time step sizes, respectively) needed for each preconditioner. The performance of the
Left Preconditioner, at least in the initial phase of the evolution, where the surface
is still rough, is not great. This is caused by the rather big discrepancy of operators
S and T due to (locally) high values of q(u). Interestingly, the Right Preconditioner
behaves much better in this situation. The behavior of the Left-Right Preconditioner
is again striking. The number of iterations is always between 1 and 4, even in the
rough initial phase of the evolution.
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Fig. 6.2. Number of iterations versus time for the example of surface diffusion of Fig. 6.1:
Left Precondtioner (left), Right Preconditioner (center) and Left-Right Preconditioner (right).

7. Comparisons and Conclusions. The discussion in § 4 and § 5 about the
Left and the Left-Right preconditioners indicates that both work well but stops short
of displaying which method works best. This is not obvious in terms of condition
numbers and spectral radii.

Departure from normality prevents us from estimating theoretically the error
reduction rate

√
ρ(Q∗Q) in the L2-norm for Richardson’s iteration; see Remark 5.8.

Nonetheless, we investigate this issue computationally and find the results displayed
in Figure 7.1:

√
ρ(Q∗Q) is approximately the same as ρ(Q), an amazing fact that

deserves further research.
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Fig. 7.1. L2–error reduction rate
p

ρ(Q∗Q) for Richardson’s iteration versus τ for the
left/right non-symmetrically preconditioned system. The plots correspond to Examples 2.1–3
with uniform meshes (top) and adaptive meshes (bottom).

We embark now on a more systematic comparison of the performance of the
two methods. We examine preconditioned CG (PCG) and GMRes (S-GMRes) for
the (symmetric) Left Preconditioner as well as Richardson and GMRes for the (non-
symmetric) Left-Right Preconditioner. Since the overall computational cost is by
far dominated by the evaluation of the preconditioned operator, we report on the
number of iterations as an indicator of performance. We hereby assume that the cost
per evaluation is comparable for both variants of the preconditioner.
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To this end we chose the forcing functions f = 1, g = 0 in (1.16) and started all
iterations with u0

T := 0. For a fair comparison we avoid dealing with the stopping
tests within MATLAB because they are based on different residual norms for different
methods. Instead, we devise an outer loop that terminates at iteration k provided

||uk
T − uT ||L2(Ω) ≤ 1e-7,

where uT is a discrete solution obtained by imposing a very sharp stopping criterion
to CG. The computational results for the finest partition are displayed in Figure 7.2
(uniform mesh) and Figure 7.3 (graded mesh). For completeness we point out that
for coarser meshes the results are essentially the same.
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Fig. 7.2. Number of iterations vs τ for the symmetric and non-symmetric preconditioners
on uniform meshes for Examples 2.1–3. Iterative methods: PCG (preconditioned CG) and
S-GMRes (GMRes) for the symmetrically preconditioned system; GMRes and Richardson for
the non-symmetrically preconditioned system.
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Fig. 7.3. Number of iterations vs τ for the symmetric and non-symmetric preconditioners
on graded meshes for Examples 2.1–3. Iterative methods: PCG (preconditioned CG) and S-
GMRes (GMRes) for the symmetrically preconditioned system; GMRes and Richardson for
the non-symmetrically preconditioned system.

The simulations refer to Examples 2.1-3 of § 2. Our findings are as follows:
• For the Left Preconditioner the agreement between computational results of Fig-

ure 2.1 and the theoretical upper bound (4.3) is excellent, even though the latter is
a bit pessimistic (by a factor 2 in the nasty example): according to (4.3) we have

(a) κ ≤ 4, (b) κ ≤ 8.4, (c) κ ≤ 86.666.

• Although the three non-symmetric preconditioned systems mentioned at the begin-
ning of § 5.1 possess the same spectra, their performance within, say, a Krylov space
method might be different. Our experiments indicate that it is generally better for
the Left-Right preconditioned matrix R = P−1

L DPR. The difference in performance
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increases as the coefficient matrices a and b are more dissimilar, as in Examples 2.3
(nasty) and 2.4 (degenerate).

• The simple Richardson method is worst in most cases, but only by a small factor
of 3–5 in terms of number of iterations.

• CG and GMRes for the Left Preconditioner behave very similarly.
• GMRes for the Left-Right preconditioned system achieves the best performance in

almost all cases. The comparison is most favorable for the most difficult Exam-
ples 2.3 (nasty) and 2.4 (degenerate).

• The performance of GMRes for the Left-Right preconditioned system is rather
robust with respect to the difficulty of the underlying problem.

• For degenerate operators, the behavior of conditions numbers, spectral radii and
thus iteration counts for most of the iterative methods deteriorate; see Figs. 7.4 and
7.5. This is an indication that our assumption on uniform ellipticity is somewhat
sharp. Amazingly, GMRes for the Left-Right preconditioned system performs still
reasonably well also in this case.
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Fig. 7.4. Example 2.4, degenerate case: condition numbers versus τ for the symmetri-
cally preconditioned systems (left); spectral radius ρ(Q) for Richardson’s iteration operator
Q for the left/right non-symmetrically preconditioned system (middle); L2–error reduction

rate
p

ρ(Q∗Q) (right); uniform grids.
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Fig. 7.5. Number of iterations vs τ for the symmetric and non-symmetric preconditioners
on two different uniform meshes for the degenerate Examples 2.4. Iterative methods: PCG
(preconditioned CG) and S-GMRes (GMRes) for the symmetrically preconditioned system;
GMRes and Richardson for the non-symmetrically preconditioned system.

• For surface diffusion of graphs, our motivating geometric PDE, the Left-Right pre-
conditioner outperforms the other two; see § 6.

On the basis of these experiments, we conclude that it is advisable to use the Left-
Right Preconditioner with GMRes, especially when both operators AT and BT differ
considerably. This makes use of both operators and exhibits the best performance
overall.
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