The Margulis Invariant of Isometric Actions on Minkowski (2+1)-Space

William M. Goldman

University of Maryland, College Park MD 20742 USA

Abstract. Let \mathbb{E} denote an affine space modelled on Minkowski (2+1)-space \mathbb{E} and let Γ be a group of isometries whose linear part $\mathbb{L}(\Gamma)$ is a purely hyperbolic subgroup of SO⁰(2, 1). Margulis has defined an invariant $\alpha : \Gamma \to \mathbb{R}$ closely related to dynamical properties of the action of Γ . This paper surveys various properties of this invariant. It is interpreted in terms of deformations of hyperbolic structures on surfaces. Proper affine actions determine deformations of hyperbolic surfaces in which *all* the closed geodesics lengthen (or shorten). Formulas are derived showing that α grows linearly on along a coset of a hyperbolic one-parameter subgroup. An example of a deformation of hyperbolic surfaces is given along with the corresponding Margulis space-time.

1 Introduction

In 1983, Margulis found the first examples of properly discontinuous actions of nonamenable groups by affine transformations. He used an invariant of affine actions similar to the *marked length spectrum* of a Riemannian manifold. However, this invariant comes with a well-defined *sign* which reflects the dynamics of the action. In this paper we discuss this invariant and its relationship with the deformation theory of hyperbolic Riemann surfaces.

In his 1990 doctoral thesis [8], Drumm found an explicit geometric construction of such groups using polyhedra called *crooked planes*. He showed that the classical construction of Schottky groups can be implemented for isometries of Minkowski space. We give a simple example of *Drumm-Schottky* groups corresponding to the deformations of hyperbolic structures Σ_l on a triply-punctured sphere where all three boundary components have equal length l > 0.

By combining Drumm's construction with properties of the Margulis invariant, we deduce as a corollary that as l increases, *every* closed geodesic on Σ_l lengthens.

We begin with a general discussion of affine spaces and their automorphisms. Next we specialize to orientation-preserving future-preserving isometric actions on (2+1)-dimensional Minkowski space, to define the Margulis invariant for affine deformations of purely hyperbolic subgroups of SO⁰(2, 1). Then we interpret this invariant in terms of deformation theory of Fuchsian groups, with a simple example of a deformation of hyperbolic structures on a triply-punctured sphere with equal boundary lengths.

I thank Herbert Abels, Virginie Charette, Todd Drumm, François Labourie, Grisha Margulis, and Scott Wolpert for helpful conversations. This work has been supported by grant DMS-9803518 from the National Science Foundation.

2 Affine representations

Recall that an *affine space* is a space \mathbb{E} equipped with a simply transitive action of a *vector group*, that is, the additive group of a real vector space V. For $v \in V$, let

$$\tau_v : \mathbb{E} \longrightarrow \mathbb{E}$$
$$x \longmapsto x + v$$

denote translation by v. If $x \in \mathbb{E}$ and $v \in V$, the image of translating x by v will be denoted x + v. As such an affine space inherits the structure of a smooth manifold with a flat torsionfree affine connection. This structure is invariant under the action of V, and the action of V canonically identifies each tangent space $T_x \mathbb{E}$ with the vector space V. Furthermore the connection is geodesically complete, and an affine space can be alternatively defined as a 1-connected smooth manifold with a geodesically complete flat torsionfree affine connection.

Let \mathbb{E}, \mathbb{E}' be affine spaces with underlying vector spaces V, V' and actions τ, τ' respectively. A mapping $h : \mathbb{E} \longrightarrow \mathbb{E}'$ is *affine* if and only if for each $v \in V$, there exists $v' \in V'$ such that the diagram

Clearly v' is uniquely determined by v, and the correspondence

$$V \longrightarrow V'$$
$$v \longmapsto v'$$

is a linear map

$$\mathbb{L}(h): V \longrightarrow V'$$

called the *linear part* of h. Under the identification of V with the tangent spaces $T_x(\mathbb{E})$, the linear part $\mathbb{L}(h)$ identifies with the differential (dh): $T_x\mathbb{E} \longrightarrow T_{h(x)}\mathbb{E}$. The group of affine automorphisms $\mathbb{E} \longrightarrow \mathbb{E}$ will be denoted Aff (\mathbb{E}) and the linear part defines a homomorphism

$$\mathbb{L}: \mathrm{Aff}(\mathbb{E}) \longrightarrow \mathrm{GL}(V)$$

with kernel the translation group V. In particular $\operatorname{Aff}(\mathbb{E})$ is the semidirect product $\operatorname{GL}(V) \ltimes V$

Let Γ be a group and $\phi : \Gamma \longrightarrow \operatorname{Aff}(\mathbb{E})$ a homomorphism. Then the composition $\Phi = \mathbb{L} \circ \phi : \Gamma \longrightarrow \operatorname{GL}(V)$ is a linear representation, defining a Γ -module structure on V, which we denote V_{Φ} . We call Φ the *linear part* of ϕ . The *translational part* $u : \Gamma \longrightarrow V$ of ϕ is defined by

$$\phi(\gamma)(x) = \Phi(\gamma)(x) + u(\gamma)$$

and is a 1-cocycle of Γ with values in V_{Φ} , that is,

$$u(\gamma_1\gamma_2) = u(\gamma_1) + \Phi(\gamma_1)u(\gamma_2).$$

Using the semidirect product decomposition $\operatorname{Aff}(\mathbb{E}) = \operatorname{GL}(V) \ltimes V$, we write $\phi = (\Phi, u)$. We call ϕ an *affine deformation* of Φ .

Conjugation of ϕ by translation τ_v gives a new representation $\tau_v \circ \phi \tau_v$ with linear part Φ as before, but with translational part $u + \delta_{\Phi} v$ where $\delta_{\Phi} v : \Gamma \longrightarrow V$ is the *coboundary*

$$\delta_{\varPhi} v : \gamma \longmapsto v - \varPhi(v).$$

In [18] this cohomology class is called the *radiance obstruction* and its properties are explored in [19,20]. In particular for a given linear representation $\Phi: \Gamma \longrightarrow \operatorname{GL}(V)$, the collection of *translational conjugacy classes* of its affine deformations identifies with the cohomology $H^1(\Gamma, V_{\Phi})$.

 $c_{\phi} = 0$ if and only if ϕ fixes a point. For $c_{\phi} = 0$ if and only if ϕ is conjugate by a translation τ_v to an affine deformation with zero translational part (a linear representation), and thus ϕ fixes v.

A complete affine manifold is a quotient of \mathbb{E} by a discrete group of affine transformations. The basic problem is to find criteria for the properness of an affine action; unlike in Riemannian geometry a discrete subgroup of Aff(\mathbb{E}) need not act properly on \mathbb{E} . This question is discussed in the influential survey article of Milnor [26]. For amenable groups, the question essentially reduces to difficult questions in representation theory of Lie algebras (see [17] for the three-dimensional case). In particular, Milnor raised the question whether a nonamenable group can act properly on \mathbb{E} , and Margulis [23,24] found the first examples in dimension 3. (Products with 3-dimensional examples provide examples in all dimensions ≥ 3 .) For further general information see the survey articles by Abels [1] as well as [6].

Three-dimensional compact complete affine manifolds were classified in Fried-Goldman [17], and shown to be finite quotients of solvmanifolds, nilmanifolds and tori. For this reason we assume that Γ is nonsolvable. In that case the linear holonomy of a proper affine action of Γ preserves an indefinite quadratic form on V ([17]) and we assume (by possibly passing to a finiteindex subgroup) that $\Phi(\Gamma)$ lies in the identity component $G = \mathrm{SO}^0(2, 1)$ of the orthogonal group of Minkowski (2+1)-space. The corresponding quotient $\mathbb{E}/\phi(\Gamma)$ has a *flat Lorentz metric*. Furthermore the holonomy homomorphism $\Phi: \Gamma \longrightarrow SO^0(2,1)$ is an isomorphism onto a discrete subgroup [17].

We henceforth assume that $\Phi: \Gamma \longrightarrow \operatorname{GL}(V)$ is a Fuchsian representation, that is an isomorphism onto a discrete subgroup of $\operatorname{SO}^0(2,1)$

3 Lorentzian geometry

Minkowski (2 + 1)-space is an affine space where the translation group V is given the structure of a nondegenerate symmetric bilinear form of index 1. To indicate this additional structure, we denote it by $\mathbb{E}^{2,1}$. Specifically we consider $V = \mathbb{R}^3$ with the bilinear form

$$\mathbb{B}(v,w) = v_1 w_1 + v_2 w_2 - v_3 w_3.$$

The bilinear form \mathbb{B} defines a Lorentz metric on \mathbb{E} , which is invariant under the translations of \mathbb{E} (or equivalently parallel with respect to the flat torsionfree connection defined by the affine structure of \mathbb{E}). Minkowski space $\mathbb{E}^{2,1}$ can be characterized (up to isometry) as a simply connected geodesically complete flat Lorentz 3-manifold. The isometry group $\operatorname{Iso}(\mathbb{E}^{2,1})$ is the subgroup $\mathbb{L}^{-1}(O(2,1)) = O(2,1) \ltimes V$ with identity component $\operatorname{Iso}^{0}(\mathbb{E}^{2,1}) =$ $\mathbb{L}^{-1}(\operatorname{SO}^{0}(2,1)) = \operatorname{SO}^{0}(2,1) \ltimes V$.

Choose a component \mathfrak{N}_+ of the complement of 0 in the nullcone

$$\mathfrak{N} = \{ v \in V \mid \mathbb{B}(v, v) = 0 \}.$$

The subset of O(2, 1) preserving orientation and the component \mathfrak{N}_+ is the identity component $G = \mathrm{SO}^0(2, 1)$ of O(2, 1). This group is isomorphic to $\mathrm{PSL}(2,\mathbb{R})$. An element $g \in \mathrm{SO}^0(2,1)$ is *hyperbolic* if it has three distinct eigenvalues; necessarily all eigenvalues are positive, exactly one equals 1 and the other two eigenvalues are reciprocal. Following Margulis [23], we order them as $\lambda(g) < 1 < \lambda(g)^{-1}$.

Choose an eigenvector $x^{-}(g) \in \mathfrak{N}_{+}$ for $\lambda(g)$ and an eigenvector $x^{+}(g) \in \mathfrak{N}_{+}$ for $\lambda(g)^{-1}$, respectively. Then there exists a unique eigenvector $x^{0}(g)$ for g with eigenvalue 1 such that:

- $\mathbb{B}(\mathsf{x}^{0}(g),\mathsf{x}^{0}(g)) = 1;$
- $(x^{-}(g), x^{+}(g), x^{0}(g))$ is a positively oriented basis.

Notice that $x^{0}(g^{-1}) = -x^{0}(g)$.

Let $\phi = (\Phi, u) : \Gamma \longrightarrow \operatorname{Aff}(\mathbb{E})$ be an affine deformation of a linear representation $\Phi : \Gamma \longrightarrow \operatorname{SO}^0(2, 1)$, such that for each $1 \neq \gamma \in \Gamma$, the image $\Phi(\gamma)$ is hyperbolic. The *Margulis invariant* is the function

$$\begin{aligned} \alpha_{\phi} : \Gamma &\longrightarrow \mathbb{R} \\ \gamma &\longmapsto \mathbb{B} \big(\mathsf{x}^{0}(\varPhi(\gamma)), u(\gamma) \big) \end{aligned}$$

 $\alpha_{\phi}(\gamma)$ depends only on the translational conjugacy class of ϕ and the conjugacy class of γ in Γ . Furthermore Todd Drumm and the author have proved [16]:

Theorem 31 Let Φ be as above. Then two affine deformations ϕ, ϕ' of Φ are conjugate if and only if $\alpha_{\phi} = \alpha_{\phi'}$.

The Margulis invariant relates to restrictions to cyclic subgroups. Consider momentarily the case when Γ is cyclic, generated by γ . Then the coefficient module V_{Φ} decomposes into the three invariant lines

$$V_{\varPhi} = \mathsf{x}^0(\varPhi(\gamma))\mathbb{R} \ \oplus \ \mathsf{x}^+(\varPhi(\gamma))\mathbb{R} \ \oplus \ \mathsf{x}^-(\varPhi(\gamma))\mathbb{R}$$

The projection $V_{\Phi} \longrightarrow x^0(\Phi(\gamma))\mathbb{R}$ induces a cohomology isomorphism

$$H^1(\Gamma, V_{\Phi}) \xrightarrow{\cong} H^1(\Gamma, \mathsf{x}^0(\Phi(\gamma))\mathbb{R}) \cong \mathbb{R}.$$

Then $\alpha_{\phi}(\gamma)$ is the image of the cohomology class $c_{\phi} = [u] \in H^1(\Gamma, V_{\Phi})$. (Equivalently it is the inverse image under the cohomology isomorphism induced by inclusion $x^0(\Phi(\gamma)) \hookrightarrow V_{\Phi}$.)

A key observation is that for cyclic groups, the sign of α is independent of the choice of generator since $\alpha(h^n) = |n|\alpha(h)$. Furthermore, when $\Gamma = \mathbb{R}$, so that $\Phi(t) = \exp(t\eta)$ for an element η of the Lie algebra of Iso⁰($\mathbb{E}^{2,1}$), there exists $\alpha_1 \in \mathbb{R}$ (the x⁰(g)-component of the translational part of η) such that

$$\alpha\big(\exp(t\eta)\big) = \alpha_1|t|.$$

We call α_1 the *infinitesimal Margulis invariant* of the hyperbolic one-parameter subgroup $\exp(t\eta)$. Thus α grows linearly on cyclic subgroups and one-parameter subgroups. We say that ϕ is *positive* (respectively *negative*) if and only if $\alpha_{\phi}(\gamma) > 0$ (respectively $\alpha_{\phi}(\gamma) < 0$) for every $\gamma \in \Gamma - \{1\}$.

If ϕ is a proper affine deformation, then $\mathbb{E}/\phi(\Gamma)$ is a complete flat Lorentz manifold M with fundamental group $\pi_1(M) \cong \Gamma$. Suppose $\gamma \in \Gamma$ is represented by a hyperbolic element. Then there exists a unique (necessarily spacelike) closed geodesic in M in the free homotopy class corresponding to γ , and $|\alpha_{\phi}(\gamma)|$ is its *Lorentzian length*.

In general the \mathbb{R} -valued class function α_{ϕ} on Γ expresses the maps

$$H^1(\Gamma, V_{\Phi}) \longrightarrow H^1(\langle \gamma \rangle, V_{\Phi}) \cong \mathbb{R}$$

induced on cohomology by restriction to cyclic subgroups $\langle \gamma \rangle \subset \Gamma$.

4 Deformation theory

Let T G denote the tangent bundle of G, regarded as a Lie group. Specifically, let $\mathbb{R}[\varepsilon]$ be the ring of *dual numbers*, that is the truncated polynomial

 \mathbb{R} -algebra with one generator ε subject to the relation $\varepsilon^2 = 0$. Then T *G* identifies with the group PSL(2, $\mathbb{R}[\varepsilon]$) of $\mathbb{R}[\varepsilon]$ -points of the algebraic group PSL(2). Explicitly, an element of PSL(2, $\mathbb{R}[\varepsilon]$) is given by

$$X = X_0 + \varepsilon X_1 = \pm \begin{bmatrix} a_0 + \varepsilon a_1 & b_0 + \varepsilon b_1 \\ c_0 + \varepsilon c_1 & d_0 + \varepsilon d_1 \end{bmatrix}$$

with $\det(X) = 1 + 0\varepsilon = (a_0d_0 - b_0c_0) + (d_0a_1 - c_0b_1 - b_0c_1 + a_0d_1)\varepsilon$. Thus $X_0 \in PSL(2, \mathbb{R})$ and $X_1(X_0)^{-1} \in \mathfrak{sl}(2, \mathbb{R})$.

The ring homomorphism $\Phi : \mathbb{R}[\varepsilon] \longrightarrow \mathbb{R}$ with kernel (ε) induces a group homomorphism $TG \longrightarrow G$ (corresponding to the fibration $\Pi : TG \longrightarrow G$) with kernel $T_eG \cong \mathfrak{g} \cong \mathfrak{sl}(2,\mathbb{R})$. The diagram

)

is commutative, with vertical maps isomorphisms. Furthermore the extension is split, so that TG equals the semidirect product $G \ltimes \mathfrak{g}$, where G acts on $\mathfrak{g} \cong \mathfrak{sl}(2, \mathbb{R})$ by its adjoint representation. (Here we identify \mathfrak{g} with the Lie algebra of *right-invariant vector fields* on G).

Let $\Phi: \Gamma \longrightarrow G$ be a homomorphism as above. A *deformation* of Φ is a path $\Phi_t: \Gamma \longrightarrow G$ of homomorphisms varying analytically in t such that $\Phi_{t_0} = \Phi$ for some parameter value t_0 . For each $\gamma \in \Gamma$, the velocity vector of the path $\Phi_t(\gamma)$ is a tangent vector

$$\frac{d}{dt}\Phi_t(\gamma) \in T_{\Phi_t(\gamma)}G$$

to G at $\Phi_t(\gamma)$. Apply (the differential of) right-multiplication by $\Phi_t(\gamma)^{-1}$ to obtain a tangent vector at the identity element $e \in G$:

$$\dot{\Phi}_t(\gamma) := \frac{d\Phi_t(\gamma)}{dt} \, \Phi_t(\gamma)^{-1} \in T_e G \cong \mathfrak{g}.$$

 $\dot{\Phi}_t$ defines a cocycle $\Gamma \longrightarrow \mathfrak{g}_{\mathrm{Ad} \circ \Phi_t}$ with values in the Γ -module $\mathfrak{g}_{\mathrm{Ad} \circ \Phi_t}$ defined by the adjoint representation $\mathrm{Ad} \circ \Phi_t : \Gamma \longrightarrow \mathrm{Aut}(\mathfrak{g})$:

$$\begin{split} \dot{\Phi}_t(\gamma_1\gamma_2) &= \left(\frac{d\left(\Phi_t(\gamma_1)\Phi_t(\gamma_2)\right)}{dt}\right) \left(\Phi_t(\gamma_1)\Phi_t(\gamma_2)\right)^{-1} \\ &= \left(\frac{d\Phi_t(\gamma_1)}{dt}\Phi_t(\gamma_2) + \Phi_t(\gamma_1) \frac{d\Phi_t(\gamma_2)}{dt}\right) \left(\Phi_t(\gamma_2)^{-1}\Phi_t(\gamma_1)^{-1}\right) \\ &= \frac{d\Phi_t(\gamma_1)}{dt} \Phi_t(\gamma_1)^{-1} + \Phi_t(\gamma_1) \left(\frac{d\Phi_t(\gamma_2)}{dt} \Phi_t(\gamma_2)^{-1}\right) \Phi_t(\gamma_1)^{-1} \\ &= \dot{\Phi}_t(\gamma_1) + \operatorname{Ad}\left(\Phi_t(\gamma_1)\right) \dot{\Phi}_t(\gamma_2) \end{split}$$

Furthermore the cocycle tangent to a path $\Phi_t : \gamma \longmapsto \eta_t \Phi(\gamma) \eta_t^{-1}$ induced by conjugation by a path η_t in G is the coboundary

$$\Phi_t = \delta_t v_t : \gamma \longmapsto v_t - \operatorname{Ad} \left(\Phi_t(\gamma) \right) (v_t)$$

where $v_t = \frac{d\eta_t}{dt} \eta_t^{-1}$.

A lift of a homomorphism $\Phi: \Gamma \longrightarrow G$ is a homomorphism $\tilde{\Phi}: \Gamma \longrightarrow TG$ such that $\Pi \circ \tilde{\Phi} = \Phi$. A deformation Φ_t determines a lift $\tilde{\Phi}_t$ by:

$$\tilde{\Phi}_t: \gamma \longmapsto \Phi_t(\gamma) + \varepsilon \dot{\Phi}_t(\gamma).$$

Thus affine deformations of $\Phi: \Gamma \longrightarrow G$ correspond to lifts $\tilde{\Phi}: \Gamma \longrightarrow TG$, that is to *infinitesimal deformations* of Φ .

Following [21], define

$$\ell: G \longrightarrow \mathbb{R}$$
$$\gamma \longmapsto \inf_{x \in \mathbf{H}^2_{\mathbb{R}}} d\big(x, \gamma(x)\big).$$

If $\hat{\gamma}$ denotes a preimage in SL(2, \mathbb{R}), then $\ell(\gamma)$ admits the expression:

$$\ell(\gamma) = \begin{cases} 2\cosh^{-1}|\operatorname{trace}(\hat{\gamma})/2| & \text{if } |\operatorname{trace}(\hat{\gamma})| \ge 2\\ 0 & \text{if } |\operatorname{trace}(\hat{\gamma})| \le 2 \end{cases}$$

A Fuchsian representation $\Phi: \Gamma \longrightarrow G$ is determined up to conjugacy by its marked length spectrum, that is, the function $\ell \circ \Phi: \Gamma \longrightarrow \mathbb{R}$. For any hyperbolic surface S, and any homotopy class $\gamma \in \Gamma_1(S)$, either γ corresponds to cusp (a finite-area end of S) or is represented by a unique closed geodesic. $\ell(\gamma)$ measures the length of this geodesic, and is zero in the case of a cusp.

Let Φ_t be a deformation whose derivative $\dot{\Phi}_t$ at $t = t_0$ corresponds to an affine deformation ϕ . The Margulis invariant of ϕ is the derivative

$$\alpha_{\phi}(\gamma) = \frac{d}{dt} \Big|_{t=t_0} \ell \big(\Phi_t(\Gamma) \big).$$

See [21] for details.

5 Properness

Let ϕ be an affine deformation. α_{ϕ} can be used to detect nonproperness and properness of the affine action ϕ .

Theorem 51 (Margulis) Suppose that ϕ is an affine deformation such that $\Phi(\Gamma) \subset G$ is purely hyperbolic. If ϕ defines a proper action on \mathbb{E} , then ϕ is either positive or negative.

This theorem first appeared in Margulis [23]. Other proofs have been given by Drumm [10,11] and Abels [1]. We conjecture that the sign of α is the only obstruction for properness:

Conjecture 51 Suppose ϕ is a positive (respectively negative) affine deformation. Then ϕ defines a proper affine action of Γ on \mathbb{E} .

An element $\gamma \in \Gamma$ fixes a point if and only if $\alpha_{\phi}(\gamma) = 0$. An affine deformation ϕ is *free* if the corresponding action on \mathbb{E} is free. Let $\gamma \in \Gamma$. Let $c \in H^1(\Gamma, V_{\Phi})$ be the cohomology class corresponding to ϕ . Then $\phi(\gamma)$ fixes a point if and only if $\iota_{\gamma}^*(c_{\phi})$ is zero in $H^1(\langle \gamma \rangle, V_{\Phi})$, that is if $\alpha_{\phi}(\gamma) = 0$. This condition defines a hyperplane H_{γ} in $H^1(\Gamma, V_{\Phi})$. The free affine deformations correspond to points in the complement

$$H^1(\Gamma_0, V_{\Phi}) - \bigcup_{\gamma \in \Gamma} H_{\gamma}.$$

Thus Conjecture 51 asserts that the proper actions form two components (one positive, one negative) inside the moduli space of free actions.

In particular under a positive deformation corresponding cohomology class is positive, the closed geodesics on the corresponding hyperbolic surface are all lengthening. For a negative cohomology class, the closed geodesics are all shortening. For closed hyperbolic surfaces, no such deformations exist in which *all* the curves shorten (or lengthen). This idea is used in [21] to prove the following theorem of Mess [25]:

Theorem 52 (Mess) Let Γ be a closed surface group. Then no Fuchsian $\Phi: \Gamma \longrightarrow G$ admits a proper affine deformation.

An equivalent statement is that the linear holonomy group of a complete flat Lorentz 3-manifold cannot be a cocompact subgroup of $SO^{0}(2, 1)$.

Last year, Labourie [22] extended Mess's theorem to higher dimensions, using a higher-dimensional version of the Margulis invariant:

Theorem 53 (Labourie) Let $\Phi : \Gamma \longrightarrow G$ be a Fuchsian representation where Γ is the fundamental group of a closed surface. Let $\varrho : G \longrightarrow \operatorname{GL}(\mathbb{R}^n)$ be an irreducible representation. Then $\varrho|_{\Gamma}$ admits no proper affine deformation.

6 Linear Growth

Margulis's original proof [23,24] of the existence of proper affine actions estimates the growth of α on a coset of Γ . (For another proof of the existence of proper affine actions using this technique, see [13]). Let $\|\gamma\|$ denote the word-length of γ with respect to a finite set of generators. Recall that $\gamma \in H$ is ε -hyperbolic if $\mathbb{L}(\gamma)$ is hyperbolic and the two null eigenvectors $x^{\pm}(\mathbb{L}(\gamma))$ (normalized to lie on the Euclidean unit sphere) are separated by at least ε . **Theorem 61 (Margulis)** Let ϕ be an affine deformation of a Fuchsian representation $\Phi : \Gamma \longrightarrow G$. Suppose $\varepsilon > 0, C > 0, h_0 \in \text{Iso}^0(\mathbb{E}^{2,1})$ such that for each $\gamma \in \Gamma$,

- $h_0 \Phi(\gamma)$ is ε -hyperbolic,
- $|\alpha(h_0\phi(\gamma))| \ge C ||\gamma||.$

Then $\Phi(\Gamma)$ acts properly on \mathbb{E} .

Charette's thesis [4] contains a partial converse to this statement. Namely, let Γ be a *Drumm-Schottky group*, that is a proper affine deformation constructed by Drumm using a crooked fundamental polyhedron. Then there exist $\varepsilon > 0, C > 0, \gamma_0 \in \text{Iso}^0(\mathbb{E}^{2,1})$ satisfying the above conditions.

In general, $\alpha(\gamma)$ seems to grow roughly linearly with $\|\gamma\|$. By using the $PSL(2, \mathbb{R}[\varepsilon])$ model, we have computed α on cosets of a hyperbolic oneparameter subgroup of $Iso^0(\mathbb{E}^{2,1})$. Recall that the *infinitesimal Margulis in*variant

$$\alpha_1 = \mathbb{B}(u(\eta), \mathsf{x}^0(\exp(\eta)))$$

of the one-parameter subgroup $\exp(t\eta)$ satisfies the exact formula

$$\alpha\big(\exp(t\eta)\big) = \alpha_1|t|.$$

Theorem 62 Let $h_0 = (g_0, u_0) \in \text{Iso}^0(\mathbb{E}^{2,1})$. Suppose η generate a hyperbolic one-parameter subgroup $\exp(t\eta)$ with infinitesimal Margulis invariant α_1 . Then

$$\alpha(h_0 \exp(t\eta)) \sim C_+ + t\alpha_1 \qquad as \ t \longrightarrow +\infty$$

$$\alpha(h_0 \exp(t\eta)) \sim C_- - t\alpha_1 \qquad as \ t \longrightarrow -\infty$$

where

$$C_{\pm} = \mathbb{B}\Big(u_0, g_0^{\pm 1} \mathsf{x}^{\pm}\big(\exp(\eta)\big) \boxtimes \mathsf{x}^{\pm}\big(\exp(\eta)\big)\Big).$$

For this calculation the $PSL(2, \mathbb{R}[\varepsilon])$ model is useful. Let

$$h_0 := \begin{bmatrix} a_0 & b_0 \\ c_0 & d_0 \end{bmatrix} + \varepsilon \begin{bmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{bmatrix}, \eta := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \varepsilon \begin{bmatrix} \alpha_1 & 0 \\ 0 & -\alpha_1 \end{bmatrix}$$

Then we have the exact formula

$$\alpha (h_0 \exp(t\eta)) = \frac{(a_0 a_1 + c_0 b_1 + a_0 \alpha_1 t)e^t + (-d_0 a_1 + b_0 c_1 - d_0 \alpha_1 t)e^{-t}}{\sqrt{(a_0 e^t - d_0 e^{-t})^2 + 4b_0 c_0}}$$

which has asymptotics

$$\alpha(h_0 \exp(t\eta)) \sim (a_1 + b_1 c_0 / a_0) + \alpha_1 t \qquad \text{as } t \longrightarrow +\infty$$

$$\alpha(h_0 \exp(t\eta)) \sim (-a_1 + c_1 b_0 / d_0) - \alpha_1 t \qquad \text{as } t \longrightarrow -\infty.$$

The theorem follows by expressing these quantities in terms of h_0 and η .

7 Triangle Group Deformations

Let v_1, v_2, v_3 be unit-spacelike vectors which are symmetric with respect to an order three automorphism $\sigma \in SO^0(2, 1)$:

$$v_1 \xrightarrow{\sigma} v_2 \xrightarrow{\sigma} v_3 \xrightarrow{\sigma} v_1,$$

for example:

$$\sigma = \begin{bmatrix} -1/2 & \sqrt{3}/2 & 0\\ \sqrt{3}/2 & -1/2 & 0\\ 0 & 0 & 1 \end{bmatrix},$$

$$v_1 = \begin{bmatrix} 0\\ \sqrt{1+s^2}\\ s \end{bmatrix}, v_2 = \begin{bmatrix} \frac{\sqrt{3}}{2}\sqrt{1+s^2}\\ -\frac{1}{2}\sqrt{1+s^2}\\ s \end{bmatrix}, v_3 = \begin{bmatrix} \frac{\sqrt{3}}{2}\sqrt{1+s^2}\\ -\frac{1}{2}\sqrt{1+s^2}\\ s \end{bmatrix}$$

Then

$$\mathbb{B}(v_i, v_j) = \begin{cases} 1 & \text{if } i = j \\ -(1+3s^2)/2 & \text{if } i \neq j \end{cases}$$

and we assume that $s > 1/\sqrt{3}$ so that v_i, v_j correspond to *ultraideal* geodesics in $\mathbf{H}^2_{\mathbb{R}}$ for $i \neq j$. Define

$$p_1 = v_1 \boxtimes v_2$$
$$p_2 = v_2 \boxtimes v_3$$
$$p_3 = v_3 \boxtimes v_1$$

where $\boxtimes : V \times V \longrightarrow V$ is the Lorentzian cross-product (see [13–15] for example). Then the triple

$$(v_1, p_1), (v_2, p_2), (v_3, p_3)$$

satisfies the criterion given in Drumm-Goldman [14,15] (see also Charette [4]) for the crooked planes $C(v_i, p_i)$ to be pairwise mutually disjoint:

$$\begin{aligned} \mathbb{B}(p_j - p_i, v_i \boxtimes v_j) - |\mathbb{B}(p_j - p_i, v_i)| - |\mathbb{B}(p_j - p_i, v_j)| \\ = \frac{3}{2}(1 + s^2) \left(\sqrt{3}s^2 - |s|\right) > 0. \end{aligned}$$

Thus $\mathcal{C}(v_i, p_i)$ bound a crooked fundamental domain $\Delta \subset \mathbb{E}$ for the group Γ_s generated by inversions ι_j in the spacelike lines $l_j = p_j + \mathbb{R}v_j$ (Drumm [8,9,12], see also Charette-Goldman [7]). Hence Γ_s acts properly on \mathbb{E} for each $s > 1/\sqrt{3}$. (In fact, the disjointness criterion of [15] for asymptotic crooked planes, implies that Γ_s acts properly for $s = 1/\sqrt{3}$ as well.) Thus the corresponding

affine deformation acts properly. By Theorem 51, this affine deformation will be positive or negative for all $s > 1/\sqrt{3}$.

Figure 1 depicts the intersection with a given spacelike plane of the crooked polyhedra bounding a fundamental domain for the original group $\Phi(\Gamma)$ of linear transformations. This group acts properly on the interior of the nullcone, but nowhere else. Figure 2 depicts the *crooked tiling* arising from the proper affine deformation ϕ , in which the crooked polyhedra tile all of \mathbb{E} . Figure 3 depicts the crooked tiling arising from the parameter value s = 1; this group is contained in the (2, 4, 6) Schwarz triangle group and is commensurable with the group generated by reflections in the sides of a regular right hexagon.

This family of proper affine actions corresponds to a deformation Φ_t of Fuchsian groups as follows. Let $\hat{\Gamma}$ denote the free product $\mathbb{Z}/2*\mathbb{Z}/2*\mathbb{Z}/2$ freely generated by involutions $\iota_1, \iota_2, \iota_3$ and Γ its index-two subgroup generated by $\tau_1 = \iota_2\iota_3, \tau_2 = \iota_3\iota_1, \tau_3 = \iota_1\iota_2$ subject to the relation $\tau_1\tau_2\tau_3 = I$. We may concretely represent $\hat{\Gamma}$ in PGL(2, \mathbb{R}) by matrices

$$\Phi_1(\iota_1) = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}, \Phi_1(\iota_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \Phi_1(\iota_3) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

representing reflections in the geodesics in $\mathbf{H}_{\mathbb{R}}^2$ with endpoints (in the upperhalf plane model) (0, -1), $(-1, \infty)$, $(\infty, 0)$ respectively. The quotient $\Sigma_1 :=$ $\mathbf{H}_{\mathbb{R}}^2/\Gamma$ is a triply-punctured sphere with a complete hyperbolic structure of finite area. We define a deformation Σ_t of complete hyperbolic structures (no longer of finite area) in which every closed geodesic *lengthens*.

For notational simplicity, we make an elementary change of parameter from s to t by:

$$t + t^{-1} = 1 + 3s^2 \ge 2.$$

The parameter interval for s is $[1/\sqrt{3}, \infty)$ whereas the interval for t is $[1, \infty)$. Define a deformation $\Phi_t : \hat{\Gamma} \longrightarrow \text{PGL}(2, \mathbb{R})$ of Φ_1 by:

$$\begin{split} \Phi_t(\iota_1) &= \begin{bmatrix} t & t-1 \\ -t-t^{-1} & -t \end{bmatrix}, \\ \Phi_t(\iota_2) &= \begin{bmatrix} t^{-1} & t+t^{-1} \\ 1-t^{-1} & -t^{-1} \end{bmatrix}, \\ \Phi_t(\iota_3) &= \begin{bmatrix} -1 & -1+t^{-1} \\ 1-t & 1 \end{bmatrix}, \end{split}$$

for every t > 0. Each of the generators τ_1, τ_2, τ_3 of Γ has trace $-(t + t^{-1})$. The quotient $\Sigma_t = \mathbf{H}_{\mathbb{R}}^2/\Gamma_t$ is a complete hyperbolic surface whose convex core is a triply punctured sphere (pair-of-pants) whose three geodesic boundary components have length $2 \log t$.

For any nontrivial $\gamma \in \Gamma$ the geodesic length function $\ell(\Phi_t(\gamma))$ which measures the length of γ in Σ_t is an *increasing function* of t > 1. In general

the length function (or equivalently the traces) depend on the length/trace functions of a finite generating set in a somewhat complicated manner. We summarize this application of Lorentz geometry to hyperbolic geometry:

Theorem 71 Let S be a compact surface-with-boundary whose interior is homeomorphic to a triply-punctured sphere. For each l > 0, let $S \longrightarrow M_l$ be the marked hyperbolic surface with geodesic boundary components each of which has length l. For any $\gamma \in \pi_1(S)$, let ℓ_{γ} be the geodesic length function. Then

$$l \longmapsto \ell_{\gamma}(M_l)$$

is an increasing function with positive derivative.

References

- 1. Abels, H., Properly discontinuous groups of affine transformations, A survey, Geometriae Dedicata (to appear).
- Abels, H., Margulis, G., and Soifer, G., Properly discontinuous groups of affine transformations with orthogonal linear part, C. R. Acad. Sci. Paris Sr. I Math. 324 (1997), no. 3, 253–258.
- 3. _____, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, SFB Bielefeld Preprint 97-083.
- 4. Charette, V., Proper actions of Discrete Groups on 2 + 1 Spacetime, Doctoral dissertation, University of Maryland (2000).
- _____and Drumm, T., Signed Lorentzian Displacement for Parabolic Transformations (in preparation).
- 6. _____, Goldman W. and Morrill, M., *Complete flat affine manifolds*, Proc. A. Besse Round Table on Global Pseudo-Riemannian Geometry (to appear).
- Charette, V. and Goldman, W., Affine Schottky groups and crooked tilings, in "Crystallographic Groups and their Generalizations," Contemp. Math. 262 (2000), 69–98, Amer. Math. Soc.
- 8. Drumm, T., Fundamental polyhedra for Margulis space-times, Doctoral Dissertation, University of Maryland (1990).
- 9. ____, Fundamental polyhedra for Margulis space-times, Topology **31** (4) (1992), 677-683.
- _____, Translations and the holonomy of complete affine flat manifolds, Math. Res. Letters, 1 (1994) 757–764.
- 11. _____, Examples of nonproper affine actions, Mich. Math. J. **39** (1992), 435–442
- Linear holonomy of Margulis space-times, J.Diff.Geo. 38 (1993), 679– 691.
- and Goldman, W. Complete flat Lorentz 3-manifolds with free fundamental group, Int. J. Math. bf 1 (1990), 149–161.
- 14. _____, Crooked planes, Electronic Research Announcements of the A.M.S. 1 (1), (1995), 10–17.
- 15. _____, The Geometry of Crooked Planes, Topology 38 (2) (1999), 323-351.

- 16. _____, Length-isospectrality of the Margulis invariant of affine actions, (in preparation).
- Fried, D. and Goldman, W., Three-dimensional affine crystallographic groups, Adv. Math. 47 (1983), 1–49.
- and Hirsch, M., Affine manifolds with nilpotent holonomy, Comm. Math. Helv. 56 (1981), 487–523.
- Goldman, W. and Hirsch, M., The radiance obstruction and parallel forms on affine manifolds, Trans. A.M.S. 286 (1984), 639–649.
- 20. _____, Affine manifolds and orbits of algebraic groups, Trans. A. M. S. 295 (1986), 175–198.
- Goldman, W. and Margulis, G., Flat Lorentz 3-manifolds and cocompact Fuchsian groups, in "Crystallographic Groups and their Generalizations," Contemp. Math. 262 (2000), 135—146, Amer. Math. Soc.
- 22. Labourie, F., Fuchsian affine actions of surface groups, J. Diff. Geo. (to appear)
- Margulis, G. A., Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983), 937–940
- <u>Complete</u> affine locally flat manifolds with a free fundamental group, J. Soviet Math. **134** (1987), 129–134
- 25. Mess, G., Lorentz spacetimes of constant curvature, (1990), IHES preprint.
- Milnor, J. W., On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), 178–187

Fig. 1. The linear action of the modular group

Fig. 2. A proper affine action of the modular group

Fig. 3. A proper affine action of an ultraideal triangle group $% \mathcal{F}(\mathcal{G})$