
HIGHER EULER CHARACTERISTICS:
VARIATIONS ON A THEME OF EULER
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ABSTRACT. We provide a natural interpretation of the secondary Euler characteristic and gener-
alize it to higher Euler characteristics. For a compact oriented manifold of odd dimension, the
secondary Euler characteristic recovers the Kervaire semi-characteristic. We prove basic properties
of the higher invariants and illustrate their use. We also introduce their motivic variants.

Being trivial is our most dreaded pitfall.
.
.
“Trivial” is relative. Anything grasped as long as two minutes ago seems trivial

to a working mathematician.
M. Gromov, A few recollections, 2011.

The characteristic introduced by L. Euler [7, 8, 9], (first mentioned in a letter to C. Goldbach dated
14 November 1750) via his celebrated formula

V − E + F = 2,

is a basic ubiquitous invariant of topological spaces; two extracts from the letter:
...Folgende Proposition aber kann ich nicht recht rigorose demonstriren

· · ·H + S = A+ 2.

...Es nimmt mich Wunder, dass diese allgemeinen proprietates in der Stereome-
trie noch von Niemand, so viel mir bekannt, sind angemerkt worden; doch viel
mehr aber, dass die fürnehmsten davon als theor. 6 et theor. 11 so schwer zu
beweisen sind, den ich kann dieselben noch nicht so beweisen, dass ich damit
zufrieden bin....

When the Euler characteristic vanishes, other invariants are necessary to study topological spaces.
For instance, an odd-dimensional compact oriented manifold has vanishing Euler characteristic;
the semi-characteristic of M. Kervaire [16] provides an important invariant of such manifolds.

In recent years, the ”secondary” or ”derived” Euler characteristic has made its appearance in
many disparate fields [2, 10, 14, 4, 5, 18, 3]; in fact, this secondary invariant dates back to 1848
when it was introduced by A. Cayley (in a paper ”A Theory of elimination”, see [12, Corollary
15 on p. 486 and p. 500, Appendix B]). In this short paper, we provide a natural interpretation
and generalizations of the ”secondary” Euler characteristic. Our initial aim was to understand the
appearance of the ”secondary” Euler characteristic in formulas for special values of zeta functions
[18] (see §2).

As motivation, consider the following questions:
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• Q1 Given a compact manifold M of the form

M = N × S1 × S1 · · ·S1︸ ︷︷ ︸
r factors

, r > 0

which topological invariant detects the integer r > 0? The Euler characteristic of M is
always zero: χ(M) = χ(N).χ(S1)r = 0 independent of r. A related question: given M ,
how to compute the Euler characteristic of N?
• Q2 For any ring A, write K0(A) for the Grothendieck group of the (exact) category ModA

of finitely generated projective A-modules. Any bounded complex C of finitely generated
projective A-modules defines a class [C] ∈ K0(A). As the class [C] of an acyclic complex
C is zero, one can ask: Are there natural non-trivial invariants of acyclic complexesC? Are
there enough to help distinguish an acyclic complex from a tensor product (itself acyclic)
of acyclic complexes?

The higher Euler characteristics answer these questions; these invariants are ”special values” of
the Poincaré polynomial; see Remark 1.8. We show (Lemma 1.2) that the secondary Euler charac-
teristic recovers the semi-characteristic of M. Kervaire [16]. The topological and the K-theoretic
versions of the higher Euler characteristics are in the first and third section. The last section indi-
cates certain generalizations in the context of motivic measures and raises related questions. The
second section is a gallery of secondary Euler characteristics.

Note the analogy between taking a product with a circle X 7→ X × S1 and taking the cone CN
of a self-map N → N (compare part (iii) of Theorems 1.4 and 3.2). J. Rosenberg alerted us to a
definition of ”higher Euler characteristics” due to R. Geoghegan and A. Nicas [13]; the relations
with this paper will be explored in future work.
Notations. A nice topological space is, or is homotopy equivalent to, a finite CW complex.

1. TOPOLOGICAL SETTING

Introduction. Recall that, for any nice topological space M , its Euler characteristic

χ(M) =
∑
i

(−1)ibi(M)

is the alternating sum of the Betti numbers bi = bi(M) = rankZ Hi(M,Z). The ”secondary” Euler
characteristic of M is defined as

χ′(M) =
∑
i

(−1)i−1ibi = b1 − 2b2 + 3b3 − · · · .

The topological invariant χ satisfies (and is characterized by) the following properties: it is invari-
ant under homotopy, χ(point) = 1, and, for nice spaces U and V ,

χ(U × V ) = χ(U).χ(V ),

χ(U ∪ V ) = χ(U) + χ(V )− χ(U ∩ V ).(1)

Clearly, χ′ cannot satisfy the same properties: χ′ is invariant under homotopy, χ′(point) = 0 but,
in general, χ′(U × V ) 6= χ′(U).χ′(V ) and χ′ does not satisfy (1). For a oriented compact closed
manifold M of odd dimension, Poincaré duality implies that χ(M) = 0. Thus, χ′(M) is the
simplest nontrivial natural topological invariant for such manifolds.
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Lemma 1.1. Let M and N be nice topological spaces.
(i) χ′(M × S1) = χ(M).
(ii) χ′(M ×N) = χ(M)χ′(N) + χ(N).χ′(M).

Proof. (i) This is just direct computation: Let bi be the Betti numbers of M × S1 and ci the Betti
numbers of M . By the Künneth theorem, one has bi+1 = ci+1 + ci. Therefore,

χ′(M × S1) = 0.b0 + b1 − 2b2 + 3b3 − · · ·
= (c1 + c0)− 2(c2 + c1) + 3(c3 + c2) · · ·
= c0 − c1 + c2 − · · ·
= χ(M). �

(ii) Direct computation. For a conceptual proof, see the proof of part (ii) of Theorem 1.4. �

Kervaire’s semi-characteristic. Let M be a compact oriented manifold of odd dimension 2n+1.
Since χ(M) = 0, Kervaire [16] introduced the invariant KM =

∑i=n
i=0 (−1)ibi(M) mod 2.

Lemma 1.2. χ′(M) ≡ KM mod 2.

Proof. Clearly χ′(M) =
∑i=n

i=0 b2i+1 mod 2. If n = 2k + 1, then using (bi = b4k+3−i) we have
χ′(M) = b1 + b3 + · · · bn + b2k + b2k−2 + · · · b0 mod 2 So χ′(M) = KM mod 2 in this case. If
n = 2k, then using bi = b4k+1−i, we have χ′(M) = b1+b3+ · · · b2k−1+b2k+b2k−2+ · · · b0 mod 2.
So χ′(M) = KM mod 2. �

Basic definitions and results.

Definition 1.3. (Higher Euler characteristics) For any nice topological spaceM and for any integer
j ≥ 0, we define the j’th Euler characteristic of M as

(2) χj(M) =
∑
i

(−1)i−j
(
i

j

)
bi.

Clearly, χ0(M) = χ(M) and χ1(M) = χ′(M). If M is a manifold of dimension N , then
χj(M) = 0 for j > N . Note that χj(S1) = 0 for j 6= 1 and χ1(S

1) = 1. The higher Euler
characteristics1 share many of the properties of χ and χ′.

Theorem 1.4. (i) χj is invariant under homotopy; for a disjoint union UqV , one has χj(UqV ) =
χj(U) + χj(V ) and χj(point) = 0 for j > 0.

(ii) If χr(M) and χr(N) vanish for 0 ≤ r < j, then

χk(M ×N) = 0, for 0 ≤ k < 2j

χ2j(M ×N) = χj(M).χj(N),

χ2j+1(M ×N) = χj(M).χj+1(N) + χj+1(M).χj(N).

(iii) Let M = N × (S1 × · · · × S1

j factors
). Then χj(M) = χ(N) and χk+j(M) = χk(N) for k ≥ 0,

χ0(M) = 0, · · · , χj−1(M) = 0.

1The ”secondary” Euler characteristic is the first higher characteristic.
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Remark 1.5. There are at least two natural choices for the definition of the higher Euler charac-
teristics; for χ2(M), one could take either

∑
i(−1)ii2bi or

∑
i(−1)ii(i− 1)bi. More generally, an

alternate definition is given by

χj(M) =
∑

(−1)i−jijbi(X).

One has χ0(X) = χ(X) and χ1(X) = χ′(X). �

Our proof of Theorem 1.4 is based on Lemma 1.6.

Lemma 1.6. For any polynomial P (t) =
∑

i bit
i ∈ Z[t], consider the expansion of P (t) about

t = −1, namely, define Q(u) =
∑

i aiu
i ∈ Z[u] by

PM(t) = QM(1 + t),

P (t) = b0 + b1t+ b2t
2 + · · ·(3)

= a0 + a1(1 + t) + a2(1 + t)2 + · · · .

For any j ≥ 0, one has

aj =
∑
i

(−1)i−j
(
i

j

)
bi.

Proof. Evaluating both sides of (3) at t = −1 gives

a0 = b0 − b1 + · · · =
∑
i

(−1)ibi = P (−1).

Taking the formal derivative of (3) with respect to t gives

b1 + 2b2t+ 3b3t
2 + · · · =(4)

a1 + 2a2(1 + t) + 3a3(1 + t)2 + · · · .

Evaluating at t = −1 gives

a1 = b1 − 2b2 + 3b3 − · · · =
∑
i

(−1)i−1ibi.

Applying d
dt

to (4) gives

2b2 + 6b3t+ · · ·+ n(n− 1)bnt
n−2 + · · · =(5)

= 2a2 + 8a3(1 + t) + · · ·+ n(n− 1)an(1 + t)n−2 + · · · .

Plugging in t = −1 gives

2a2 = 2b2 − 6b3 + 12b4 + · · ·+ n(n− 1)bn(−1)n−2 + · · ·

and so

a2 =
∑
i

(−1)i−2
(
i

2

)
bi.

Iterating these steps (apply d
dt

and evaluate at t = −1) provides the required relation for any aj . �
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Corollary 1.7. For any nice topological spaceM , write the Poincaré polynomial PM(t) =
∑

i bi(M)ti

as a function of u = 1 + t, i.e., define QM(u) ∈ Z[u] by PM(t) = QM(1 + t). Then,

QM(u) =
∑
j

χj(M) uj.

This shows that the higher Euler characteristics form a natural generalization of the Euler char-
acteristic: χM = PM(−1) and χ1(M), χ2(M), · · · are the coefficients of the Taylor expansion of
PM(t) near t = −1.

Proof. of Theorem 1.4. (i) the first statement is clear as the Betti numbers are homotopy invariant.
For the second, use PUqV (t) = PU(t) + PV (t).

(ii) Since PM×N(t) = PM(t).PN(t) (Künneth), so QM×N(u) = QM(u).QN(u). Now apply
Lemma 1.6. We are given thatQM(u) andQN(u) are both divisible by uj . SoQM×N(u) is divisible
by u2j . As QM(u) = uj(χj(M) +χj+1(M)u+ · · · ) and QN(u) = uj(χj(N) +χj+1(N)u+ · · · ),
we have QM×N(u) = u2j(χj(M).χj(N) + (χj(M).χj+1(N) + χj+1(M).χj(N))u + · · · ). Now
apply Lemma 1.6.

(iii) By Künneth, one has PM(t) = PN(t)(1 + t)j and so QM(u) = QN(u)uj . Now apply
Lemma 1.6. �

Remark 1.8. The higher Euler characteristics are special values of the Poincaré polynomial, in
the following sense.

(a) For any scheme X of finite type over Spec Z, one introduces the analytic function ζX(s) (the
zeta function of X). Conjecturally, there is arithmetic information in the special values of ζX(s) at
s = n ∈ Z; if ζX(n) = 0, then one looks at the leading term in the Taylor expansion of ζX(s) about
s = n. This leading term is called a ”special value” of ζX(s) at s = n. In our context, Lemma 1.6
tells us that the Euler characteristic is the value of the Poincaré polynomial P (t) at t = −1 and the
”special values” of P (t) at t = −1 are the higher Euler characteristics.

(b) Part (iii) of Theorem 1.4 provides a partial answer to Q1 posed above. Namely, each factor
of S1 in M causes the vanishing of a higher Euler characteristic of M . Thus, the number of factors
r of S1 in M satisfies the inequality

r ≤ ord t=−1 PM(t) = ord u=0 QM(u)

with equality if and only if χ(N) 6= 0. So χ0(M) = 0, · · · , χr−1(M) = 0.
(c) The higher Euler characteristics do not satisfy (1) in general; PU∪V 6= PU(t) + PV (t) −

PU∩V (t).
(d) There is a straightforward generalization of higher Euler characteristics of local systems (or

sheaves) on nice topological spaces (or schemes).

Remark 1.9. Let X → B be a fibration with fiber F . Then the well known identity χ(X) =
χ(F )χ(B) does not generalize to higher Euler characteristics. Lemma 1.1 does not generalize
(from products) to fibrations. For instance, consider the Hopf fibration S3 → S2 with fibers S1.
Lemma 1.1 (part (ii)) fails in this case: χ′(S3) = 3 6= 2 × 1 + (−2) × 0 = χ(S2)χ′(S1) +
χ′(S2)χ(S1).

Proposition 1.10. The higher Euler characteristics χj(SymnX) of any symmetric product Symn(X)
of X are determined by the Betti numbers of X .

Proof. By I.G. Macdonald’s formula [19], the Poincaré polynomial of Symn(X) is determined by
that of X . �
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Remark 1.11. Macdonald proved that χ(X) determines χ(SymnX); examples show that this does
not generalize to the higher Euler characteristics. Namely, for any j > 0, one cannot calculate
the integer χj(SymnX) for all n > 1 from just χj(X). There is no Macdonald formula for χj
alone. �

2. EXAMPLES OF SECONDARY EULER CHARACTERISTICS.

For any bounded complex C• of finitely generated abelian groups

· · · → 0→ C0
d−→ C1

d−→ · · ·Cn → 0→ · · · ,
one defines χ(C•) =

∑i=n
i=0 (−1)irank Ci; it is elementary that χ(C•) =

∑i=n
i=0 (−1)irank Hi(C

•).
We write χ′(C•) =

∑i=n
i=0 (−1)i−1i(rank Ci); this is of interest when χ(C•) = 0.

Similarly, given any abelian category A and any bounded complex C• of objects in A, one
defines

χ(C•) =
∑
i

(−1)i [Ci] and χ′(C•) =
∑
i

(−1)i−1i [Ci],

which are elements of K0(A). Here [X] denotes the class in K0(A) for any object X of A.
Some of the well known occurences of secondary Euler characteristics include
• (Ray-Singer) [22] Let M be a compact oriented manifold without boundary of dimension
N . The Franz-Reidemeister-Milner torsion (or simply R-torsion) τ(M,ρ) ∈ R is defined
for any acyclic orthogonal representation ρ of the fundamental group π1(M), Let K be a
smooth triangulation of M and ∆j be the combinatorial Laplacians associated with K and
ρ. Then [22, Proposition 1.7]

log τ(M,ρ) =
1

2

i=N∑
i=0

(−1)i+1i log det (−∆i).

Ray-Singer conjectured (and J. Cheeger-W. Müller proved) that this is equal to analytic
torsion (which they defined in terms of a Riemannian structure on M ).

(It is reasonable to introduce “the torsion Poincaré polynomial”

(6) R(M,ρ)(t) =
∑
i

log det (−∆i)t
i ∈ R[t];

as its Taylor expansion R(M,ρ) =
∑

j cj(M,ρ)(t − 1)j at t = −1 contains log τ(M,ρ)

as c1(M,ρ), the other coefficients cj can be considered as (logarithms of) higher analytic
torsion [5] of M and ρ.)
• (Lichtenbaum) [18] For any smooth projective variety X over a finite field Fq, the Weil-

étale cohomology groups H i
W (X,Z) give a bounded complex C• (of finitely generated

abelian groups)

C• : · · ·H i
W (X,Z)

∪θ−→ H i+1
W (X,Z) · · · ;

one has χ(C•) = 0 and χ′(C•) is the order of vanishing of the zeta function Z(X, t) at
t = 1.
• (Grayson) [14, §3, p. 103] Let R be a commutative ring and N a finitely generated projec-

tive R-module. If SkCN is the k’th symmetric product of the mapping cone CN of the
identity map on N, then Grayson’s formula for the k’th Adams operation ψk reads

ψk[N ] = χ′(SkCN).
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(This raises the question: Is there a natural interpretation of χj(SkCN) for j > 1?)
• (Fried) [11, Theorem 3] LetX be a closed oriented hyperbolic manifold of dimension 2n+

1 > 2 and let ρ be an orthogonal representation of π1(X). Write Vρ for the corresponding
local system on X . The order of vanishing of the Ruelle zeta function Rρ(s) at s = 0 is
given by

2
i=n∑
i=0

(−1)i (n+ 1− i) dim H i(X, Vρ).

• (Bunke-Olbrich) [4] Given a locally symmetric space of rank one Y = Γ\G/K and a
homogeneous vector bundle V (this depends on a pair σ, λ and the associated distribution
globalization V−∞ (a complex representation of Γ), the order of vanishing of the Selberg
zeta function ZS(s, σ) at s = λ is given by χ′(Γ, V∞) (Patterson’s conjecture)∑

i

(−1)i+1i dim H i(Γ, V∞).

3. K-THEORETIC VARIANTS

K-theory provides another general context to develop higher Euler characteristics.
As in [14], let P be an exact category with a suitable notion of tensor product (bi-exact), sym-

metric power and exterior power. Examples include the category P(X) of vector bundles over a
scheme X , the category P(R) of finitely generated projective modules over a commutative ring R
and for a fixed group Γ, the category P(Γ, R) of representations of Γ on finitely generated projec-
tive R-modules. For any object N in P, let us write [N ] for the class of N in the Grothendieck ring
K0(P). For any bounded complex M over P, we write χ(M) =

∑
i(−1)i[Mi] ∈ K0(P).

Definition 3.1. (i) The higher Euler classes χj(M) of M are defined by

χj(M) =
∑
i

(−1)i−j
(
i

j

)
[Mi] ∈ K0(P), j ≥ 0.

(ii) The Poincaré function PM(t) is defined as

PM(t) =
∑
i

[Mi]t
i ∈ K0(P)[t, t−1].

Clearly, χ0(M) = χ(M) and χ1(M) = χ′(M). If M is concentrated in non-negative degrees,
then PM(t) is the Poincaré polynomial of M . If M [n] is the shifted complex (so that M [n]i =
Mi+n), then tnPM [n](t) = PM(t). Defining QM(u) ∈ K0(P)[u, u−1] by QM(1 + t) = PM(t), we
have (u− 1)nQM [n](u) = QM(u).

Theorem 3.2. Let M and N be bounded complexes in P concentrated in non-negative degrees.
(i) If χr(M) and χr(N) vanish for 0 ≤ r < j, then

χk(M ⊗N) = 0, for 0 ≤ k < 2j

χ2j(M ⊗N) = χj(M).χj(N),

χ2j+1(M ⊗N) = χj(M).χj+1(N)+χj+1(M).χj(N).

(ii) If M = CN is the cone of a self-map N → N , then χj+1(M) = χj(N)
7



(iii) LetM = Cj(N) = C(· · ·C(N) · · · ) be an j-fold iterated cone onN . Then χj(M) = χ(N)
and χk+j(M) = χk(N) for k ≥ 0,

χ0(M) = 0, · · · , χj−1(M) = 0.

Proof. Defining QM(u), QN(u) ∈ K0(P)[u] by QM(1 + t) = PM(t) and QN(1 + t) = PN(t), the
same arguments show that QM(u) =

∑
j χj(M)uj . This proves (i) as in Theorem 1.4.

(ii) As M is the total complex associated with CN , we have M0 = N0 and, for i > 0, that
Mi = Ni ⊕ Ni−1. Thus PM(t) = PN(t)(1 + t) which gives QM(u) = uQN(u). This proves (ii).
Part (iii) follows from (ii) by induction or one can observe that QM(u) = ujQN(u). �

Corollary 3.3. Let M be a complex of P concentrated in non-negative degrees. If χ0(M) 6= 0,
then M 6= CN . If χ1(M) 6= 0, then M is not the tensor product of two acyclic complexes.

Remark 3.4. Theorem 3.2 is compatible with the intuition expressed in [14, p. 104]:
...we regard acyclic complexes as being infinitesimal in size when compared to
arbitrary complexes. ....that we regard doubly acyclic complexes as being doubly
infinitesimal in size when compared to arbitrary complexes. It also suggests that we
regard the Adams operation ψk as being the differential of the functor N 7→ SkN
from the category of finitely generated projective modules to itself;....

Namely, for an acyclic complex C, one has χ0(C) = 0 but not always χ1(C) = 0; for the tensor
product C × D of acyclic complexes, one has χ0(C ⊗ D) = 0 = χ1(C ⊗ D) but not always
χ2(C ⊗ D) = 0. So C is like ε and C ⊗ D is like ε2. The above text also suggests that for
any functor F : P → P, we regard χ1(F (CN)) as the differential of F and that χj(F (−)) as
a higher differential of F (when evaluated on acyclic complexes or their tensor products). Thus,
the vanishing of χ0(M), χ1(M), · · ·χn(M) means M is like εn; the set of complexes which are
infinitesimal of order n (like εn) gives a filtration on the acyclic complexes in P. This provides an
answer to Q2 above. �

Homological Poincaré polynomials. Suppose for simplicity that P is an abelian category. For
any short exact sequence of complexes

0→ A→ B → C → 0

in P, one has PB(t) = PA(t) + PC(t). This implies that

χj(B) = χj(A) + χj(C).

However, a quasi-isomorphism A→ B does not imply PA(t) = PB(t). In order to get an invariant
on the bounded derived category, it is convenient to define the homological Poincaré function of a
bounded complex M as

P h
M(t) =

∑
i

[H i(M)]ti ∈ K0(P)[t, t−1].

Any quasi-isomorphism A → B implies P h
A(t) = P h

B(t). However, for a short exact sequence as
above, one does not have P h

B(t) = P h
A(t) + P h

C(t) in general. Using P h, one can define χhj (M) =
homological higher Euler characteristics of M via the coefficients of Qh

M(t). By Euler’s identity,
χ0(M) = χh0(M), but, in general, for j > 0, χj(M) 6= χhj (M) as PM(t) and P h

M(t) are not
necessarily equal. For any short exact sequence as above, we have

χh1(B) = χh1(A) + χh1(C)
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only for acyclic complexes A, B and C. Theorems 1.4 and 3.2 remain valid with χj replaced with
χhj .

Remark 3.5. Suppose that the category P has a Z-grading; an important example is the conjectural
category of motives over a given field (the theory of weights give the Z-grading).

For any object M = ⊕iMi, its component of weight i ∈ Z is Mi. We can define a Poincaré
polynomial (in t, t−1) as PM(t) ∈ K0P[t, t−1] by PM(t) =

∑
i[Mi]t

i. We can define the higher
Euler characteristics χj(M) using QM(u) ∈ K0P[u, u−1] with QM(1 + t) = PM(t). Namely,
QM(u) =

∑
j χj(M)uj . �

4. FINAL REMARKS

Motivic variants. Higher Euler characteristics can be defined in a motivic context.
(i) 2 For any subfield k ↪→ C, one has the category MAH

k of absolute Hodge motives [6, p. 5]
which has a natural Z-grading coming from weights. Any smooth proper variety X over k defines
an object h(X) of MAH

k ; using the weight decomposition of h(X), one gets the motivic Poincaré
polynomial of X and the motivic higher Euler characteristics χmotj (X) ∈ K0M

AH
k of X The Betti

realization gives a homomorphism r : K0M
AH
k [t, t−1] → Z[t, t−1] of graded rings; the element

r(h(X)) gives the usual Poincaré polynomial of X(C) and thus the motivic higher Euler charac-
teristics of X refine those of the topological space X(C).

(ii) [21, 20] As motivic measures provide a refinement of the Euler characteristic in algebraic
geometry, they provide many variants of higher Euler characteristics.

Consider the category VarF of varieties (reduced separated schemes of finite type) over a field
F . The Grothendieck ring K0VarF of varieties over F is defined as the quotient of the free abelian
group on the set of isomorphism classes [X] of varieties by the relations [X] = [Y ] + [X\Y ]
where Y is a closed subvariety of X . The multiplication is induced by the product of varieties.
When F is of positive characteristic, one needs also to impose the relation [X] = [Y ] for every
surjective radicial morphism X → Y . A motivic measure is a ring homomorphism K0VarF → R
to a ring R. The Euler characteristic χc with compact support is the prototypical motivic measure:
χc : K0VarC → Z is a ring homomorphism. Another motivic measure is the Poincaré characteristic
µP : K0VarC → Z[u], determined by the following property: for any smooth proper variety X ,
one has µP (X) ∈ Z[u] is the Poincaré polynomial of the topological space X(C).

The higher Euler characteristics arise from the ring homomorphism Z[t] → Z sending t to −1,
or the associated map of motivic measures µP 7→ χc. Any pair of motivic measures related in
a similar manner give rise to a notion of higher Euler characteristics. Given a motivic measure
µ : K0VarF → A[t] and a homomorphism A[t] → A with associated motivic measure µ′ :
K0VarF → A[t] → A, we can consider the pair (µ, µ′) as analogous to (µp, χc). Let us indicate
an important example. For instance, the assignment X 7→ HX(u, v) :=

∑
p,q≥0 h

p,q(X)upvq, with
X smooth projective, gives rise to the Hodge characteristic measure µH : Var(k)→ Z[u, v]. Since
HX(u, u) equals the Poincaré characteristic µP (X) of X , viewing Z[u, v] = Z[u][v − u] provides
an expansion of µH(X) =

∑
j χ

H
j (X)(v − u)j . So we are dealing with the pair (µH, µP ), related

by the homomorphism Z[u, v] → Z[u] sending u 7→ u, v 7→ u. In this context, our higher Euler
characteristics are the coefficients χH

j (X) ∈ Z[u]. Note that χH
0 (X) ∈ Z[u] is µP (X).

2Motivic conjectures predict analogous results over arbitrary fields.
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Remark 4.1. Suppose P is a Z-graded neutral Q-linear Tannakian category. For any object M
of P, the higher Euler characteristics χj(SymnM) ∈ K0P are determined by the Poincaré poly-
nomial PM(t): in this context, one has an abstract Macdonald formula [6, p. 8]. This generalizes
Proposition 1.10.

Finite categories. C. Berger and T. Leinster [1, 17] have provided and studied various definitions
of the Euler characteristic of a finite category C. The series Euler characteristic [1, 2.3] χ(C) is
defined to be value at t = −1 of a formal power series fC(t) ∈ Q(t). Define g(u) ∈ Q(u) by
gC(t + 1) = fC(t); so g(0) = χ(C). Then the higher Euler characteristics χj(C) of C are the
coefficients of g(u):

g(u) =
∑
j

χj(C)uj.

Since g could have a pole at u = 0, this even gives a definition of lower Euler characteristics!
We end this paper with the

Question 4.2. (i) Given a ring homomorphism f : A → B between two commutative rings,
consider the ideal J of K0(A) defined as

J = Ker(f∗ : K0(A)→ K0(B)).

Given a bounded complexX of finitely generated projective A-modules whose class lies in J , how
to determine the integer r such that the class of X is in Jr − Jr+1?

(ii) Is there an analogue of Theorem 1.4 for higher analytic torsion [5]? Is the analytic Poincare
polynomial (6) of a product M ×N determined by that of M and N?

(iii) Is there an analogue of our results in the context of Kapranov’s N -complexes [15]?

Acknowledgements. I heartily thank C. Deninger, M. Flach, J. Huang, S. Lichtenbaum, J. Rosen-
berg, and L. Washington for useful conversations and inspiration. When I communicated my ideas
on the higher Euler characteristics to Deninger, he alerted me to a beautiful paper [5] of A. Deitmar.
Some of the ideas of §1 can also be found in [5]. While our motivations are similar, the approach
here is closer to [14, p 104].

Island where all becomes clear.
Solid ground beneath your feet.

The only roads are those that offer access.
Bushes bend beneath the weight of proofs.
The Tree of Valid Supposition grows here

with branches disentangled since time immemorial.
The Tree of Understanding, dazzlingly straight and simple,

sprouts by the spring called Now I Get It.
The thicker the woods, the vaster the vista:

the Valley of Obviously.
If any doubts arise, the wind dispels them instantly.

Echoes stir unsummoned
and eagerly explain all the secrets of the worlds.

On the right a cave where Meaning lies.
On the left the Lake of Deep Conviction.

Truth breaks from the bottom and bobs to the surface.
Unshakable Confidence towers over the valley.
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Its peak offers an excellent view of the Essence of Things.
For all its charms, the island is uninhabited,

and the faint footprints scattered on its beaches
turn without exception to the sea.
As if all you can do here is leave

and plunge, never to return, into the depths.
Into unfathomable life.

- W. Szymborska, Utopia (A large number, 1976)
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