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Abstract Basic results in the rigorous theory of weighted dynamical zeta functions
or dynamically defined generalized Fredholm determinants are presented. Analytic
properties of the zeta functions or determinants are related to statistical properties of
the dynamics via spectral properties of dynamical transfer operators, acting on Banach
spaces of observables.

1. Introduction
Thirty years ago, Smale (1967, 1.4) conjectured that the Artin—Mazur (Artin and Mazur
1965) dynamical zeta function

(@) =exp)_ x| f'x = x) (1)
n=1

of an Anosov diffeomorphisny was rational. In the same paper, Smale (1967, 11.4)
asked whether a Selberg dynamical zeta func#@sn) associated to some flows always
possessed a meromorphic continuation to the whole complex plane when the flow satisfied
Axiom A (admitting that ‘a positive answer would be a little shocking’). The first
guestion was settled positively by Guckenheimer (1970), and by Manning (1971) for all
Axiom A diffeomorphisms (see Theorem 2.4 later). The second question proved to be
more delicate (the reason, in a nutshell, being that it involved working wilghted

zeta functions for maps): Ruelle (1976b) introduced a dynamical zeta fungtion

(see (2.14)) for flows (witly (s) = Z(s+1)/Z(s) in the constant negative curvature case).
Gallavotti (1976) then found a differentiable Axiom A flow whose Ruelle dynamical zeta
function ¢ (s) had a non-polar singularity. Much more recently Fried (1995b) proved,
combining Grothendieck techniques from the pioneering article of Ruelle (1976b) with
novel ideas of Rugh (1994), that the dynamical zeta function of a real analytic Axiom A
flow (without assuming smoothness of the stable and unstable bundles) could indeed be
extended meromorphically t6 (see Theorem 4.1 later).

1 On leave from CNRS, UMR 128, ENS Lyon, France.
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In this period of over 30 years, the rigorous theory of dynamical zeta functions (in
particular,weighteddynamical zeta functions, introduced by Ruelle by analogy with the
thermodynamic formalism of statistical mechanics) has expanded in many directions.
One could argue that this theory still lacks a unifying framework: this is perhaps a
motivation to gather some of the ‘fundamental’ results in order to make them more
accessible to mathematicians and also physicists (see the remarks on quantum chaos
later). Several surveys have already appeared (Parry and Pollicott 1990, Ruelle 1995,
Baladi 1995a). We recommend particularly Ruelle’s (1994, ch. I) short, very readable,
and broadviewed introduction, which evokes also historical and mathematical connections
with the Riemann zeta function, Dirichlet L-functions, and other arithmetic zeta functions,
not to be covered here. Although we have tried to include some of the more recent
developments, this text is not intended for specialists: we have striven to give the
simplest possible version of the statements, referring to the original papers for the full
power of the technical results. We have included sketches of some proofs, hoping to
communicate the elegant simplicity of certain arguments.

We shall relate the weighted dynamical zeta functions, or the various dynamical
determinants, to generalized Fredholm determinants

o n
‘det’ (1—z£) = exp— Y S pn (1.2
n=1 n
for dynamically defined weighted transfer operat@rée.g. (2.3)), which are often non-
compact and in particular aret trace-class. The game consists thudefininga ‘trace’
for the operatorsC” (usually a weighted sum over periaderbits), and then proving
a connection between zeros of (1.2) and inverse eigenvalugsaafing on a suitable
Banach space. 182.1 we shall consider a trivial occurrence of this phenomenon (2.5),
moving then to more interesting situations. Many different techniques and ideas appear
in the proofs. However, we would like to emphasize that, since the building blocks of
transfer operators are maps
o> (g @)oft (1.3)

whereg is a smooth weight functionf~* is (an inverse branch of) a dynamical system,
and the observables (or test functiogspelong to a vector space of smooth functions,
the operations involved are essentiadlympositionby a (‘smoothness improving’) map
andmultiplication by a function. Therefore, the basic toolkit which will be used over and
over again (together with combinatorics now well understood in the uniformly hyperbolic
case) contains two instruments: tbieain rule (or the change of variable in an integral)
and theLeibniz formula(or integration by parts). Certainly, this caricatural description

is so vague that it would apply to many fields of mathematics. We nevertheless believe
that keeping it in mind can be a guide to the intuition.

In many cases, thdynamical spectrai.e. poles and/or zeros of suitably weighted
dynamical zeta functions or dynamical determinants, contain essential information on
the statistical behaviour of the dynamical system: the leading pole (or zero) is often the
topological pressure (for example, topological entropy) and the first gap, if it exists, may
correspond to the exponential rate of decay of correlation functions for the equilibrium
state associated to the weight and smooth test functions. The dynamical spectrum beyond
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the first gap can sometimes be interpreted as (Ruelle) resonances of the dynamical
system (Eckmann (1989), sg2.1), connected to geometric or topological properties of a
manifold (se€4), or have some more unexpected meaning §8ekeon connections with

the Feigenbaum spectrum). This interpretation of the dynamical spectrum follows from
connecting the poles and/or zeros of the zeta function or dynamical determinant with the
spectrum of suitable transfer operators. We would like to point out that, although many
proofs of such connections involve non-canonical constructions and choices (Markov
partitions, tower extensions, local transfer operators, ‘artificial’ Banach spaces, etc.)
which may cause an important loss of information (such as creation of spurious poles
and zeros), the dynamical zeta function is ‘just there’. Indeed, it is given by the periodic
orbits of the mapf, and the often canonical choice of a weight (such BstDf|?, or

| DetDf|g, | with B a parameter). A specific example is the situation of Theorem 5.2
on Collet-Eckmann-type unimodal interval maps The statement and proof regarding

the transfer operator involves a complicated construction, but the result on the zeta
function itself is quite simple: the zeta function associated to the(gatt/| f'|) admits

a meromorphic extension to a larger disc than its disc of convergence, where its only
singularity is a simple pole at= 1. (Of course, one uses the transfer operators to prove
that these properties of the zeta function mirror the uniqueness of the SRB measure and
exponential decay of correlations.) §5.2, partial results indicate that the branch cut
type of zeta function may describe the non-exponential decay of correlations for some
intermittent maps. There are few rigorous results in such ‘gapless’ situations, where one
can expect to discover phase transitions, as in statistical physics.

We know by now that it is not possible to hear the shape of a drum (Kac (1966),
Gordonet al (1992)). It would be naive to expect to hear the statistical properties of a
dynamical system. We should also keep in mind that some dynamical systems do not
admit any periodic orbit. However, we do believe that weighted dynamical zeta functions
are ‘interesting invariants’ (Smale (1967, p. 764)!) and that a good understanding of
their qualitative analytic properties should play a significant part in the classification of
differentiable dynamics.

1.1. Applications of dynamical determinants in physics and mathematicsthese
notes we have limited ourselves to rigorous mathematical statements. However, the (long,
but incomplete) bibliography includes some references to the rich physical literature,
which we believe to be a potential source of interesting mathematical conjectures. We
mention, in particular, the book in preparation by Cvitaitoii997) and co-workers (see
also Artusoet al (1990)), which contains a wealth of results and insightful definitions, as
well as pointers to computer programs that are able to effectively compute zeta functions
of non-trivial systems.

We refer to Fried (1986b, 1995b) and references therein for the mathematical
connection between Selberg and (Ruelle) dynamical zeta functions (seé4lsoVe
shall not discuss physical applications of Selberg or dynamical zeta functions to quantum
chaos (see the reviews of Eckhardt (1988) and Hurt (1993), the monographs of Gutzwiller
(1990) and Knauf and Sinai (1997), and references therein, e.g. Bogoetadihy1995),
\Voros (1988, 1993), Cartier and Voros (1988)). Recrgorous results on Selberg
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functions connected with quantum chaos, starting from Mayer’'s (1991b) important
study of the Selberg zeta functiafi(s) of the modular surface, via a thermodynamic
formalism for the Gauss map (using a method due to Series, respectively Adler—Flatto,
and expressing the Selberg function as a produgt) = Det(1 — £,) Det(1 + L;)

of Fredholm determinants), include Efrat (1993) (with later developments by Eisele
and Mayer), Lewis (1997), and Chang and Mayer (1996). Some of these results have
connections with the study of the Riemann zeta function (see also Knauf's (1993, 1994)
statistical mechanics approach of the Riemann zeta function). See Pollicott (1991a, 1994)
for extensions of the Bowen—Series approach. The background for this is discussed in
663.1 and 4.

We shall not present Patterson’s (1990) dynamical approach to understand the
connection of the divisor (zeros and poles) of the Selberg zeta function associated to
certain Kleinian groups with the cohomology of the group (see Deitmar (1996), Juhl
(1995), and Patterson and Perry (1996) for recent results). A significant breakthrough in
Patterson’s program has recently been accomplished by Bunke and Olbrich (1996).

Besides the Selberg zeta function, other counting functions may be connected to,
or expressed as, dynamical zeta functions. Llibre and co-workers have used various
Lefschetz zeta functions to obtain Sharkovskii-type (Bletkl (1980)) ‘forcing’ results,
see e.g. Casasayasal (1994), Guillamonret al (1995). For Reidemeister and Nielsen
zeta functions see Fel'shtyn and Hill (1995). Sometimes counting functions (such as
Poincaé series appearing in hyperbolic groups, see Pollicott and Sharp (1994, 1995))
may be studied with tools from the thermodynamic formalism, such as the transfer
operator techniques described in these notes. A very rich line of research is centered
around the theme of zeta functions and closed orbits associated to homology classes
(Parry and Pollicott 1986, Phillips and Sarnak 1987, Lalley 1989, Katsuda and Sunada
1990, Pollicott 1991b, Sharp 1993, Babillot and Ledrappier 1996).

A more unexpected application of dynamical Fredholm determinants appears in a study
of the smoothness of scaling functions in the construction of multiresolution analysis and
wavelets (Cohen and Daubechies 1996). Other applications are mentioned throughout
the text.

2. Symbolic dynamics and counting traces

With the notable exception of some recent results for uniformly hyperbolic flows (see

§2.2), most of the material in this section has been reviewed elsewhere, for example in
the monograph of Parry and Pollicott (1990) and in the survey Baladi (1995a). For the
convenience of the reader we nevertheless recall the most salient facts.

2.1. Axiom A maps. Consider a two-sided subshift of finite type dn> 2 symbols
given by ad x d transition matrixA (with 4;; € {0,1}), i.e. letS = {1, ..., d} and set

Ta={Giez | xi €S, Ayny =1, Vi € Z}. 21

The invertible dynamical system : ¥, — X, is defined by(o(x)); = x;y1. We
also consider the (non-invertible) one-sided shift defined on the space of one-sided
sequence<t with Z replaced byZ, in (2.1). Letg be a bounded complex-valued
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function on, or £}, setf = o, and define theveighted dynamical zeta functicof
the pair(f, g) to be the formal power series

00 n n—1

_ 2 k

Le(2) = epo DO || E{OAC) 22)

n=1 xeFix f7 k=0

where FiXf) ={x € X | f(x) = x} forany mapf : Y — X with Y C X. In the case
g =1, one recovers the Artin—Mazumweighted dynamical zeta functigh.1). Define
the transfer operatorassociated to the paip*, g) acting on (say, bounded) functions
¢:Zi—> Chy

Lep@) = D M) 23

yest
ot (y)=x

The sum .
> J]ete™ e
xeFix (o )" k=0
is called thecounting traceof the operatorCy.

Clearly,when the weighg is positive the logarithm of the spectral radius 6§ acting
on the Banach space of bounded functions (with the supremum norm) is just

n—1
P = lim * log sup(£:1) = lim 1 logsup > [N (24
"TONR xexy PT xen) (o)(y)=x k=0
If the positive weightg is continuous, one can prove that the real numBedefined
by (2.4) coincides with théopological pressureP (log g) of the function log. (See e.g.
Ruelle (1978), or Walters (1982) for the notion of pressure.) For a general continuous,
complex, but non-vanishing, one shows that the spectral radiusigfacting on bounded
functions is not larger than the spectral radius Xfwg|g|) of L, acting on bounded
functions.
We now turn to a trivial but very enlightening example. In the special case when the
weight g is locally constanti.e. if there isM > 1 so thatg(x) depends only on; for
0 <i < M, the zeta functiort,(z) can be expressed in terms of the determinant of a
finite matrix (see e.g. Bowen and Lanford (1970), Parry and Williams (1977)): indeed,
after reducing to the case wheix) = g,, .,, One introduces thé x d matrix A(g) by
settingA(g);; = A;;gji. Itis then easy to check that Fi(g) = ) g(x), and more
generally

xeFixo

n—1

Tra"e)= > []e@ )

x€eFixo" k=0
(where A"(g) is the nth power of the matrixA). Therefore, using the formula
Trlog B = log DetB (for a finite matrix B) we find

1

Det(1 — zA(g))’ @5

¢(2) = exp)_ = Tr A"(g) =
n=1

In particular, the zeta function is rational, and its poles are exactly the inverses of the
non-zero eigenvalues of the matrik(g) (the order of the poles coinciding with the
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multiplicity of the eigenvalues). Sinca(g) is the matrix of the operataf, acting on

the d-dimensional vector space of functiopgéx) depending only onxg (in the canonical
basis), the interpretation of the zeta function as an inverse Fredholm determinant is
trivially true for locally constant weights. Finally, when the locally constant wejght

is positive, the classical Perron—Frobenius theorem for finite matrices (see e.g. Walters
(1982) for a statement) says thatg) admits a real positive eigenvaleé equal to its
spectral radius, that whenever the matfixs irreducible (i.e. for any, j there is am

so that(A");; > 0) this eigenvalue has algebraic multiplicity equal to one, and that if

is additionally irreducible and aperiodic (i.e. thereNs> 0 such thatA{}’. > 0 for all

i, j) thene® is the only eigenvalue of maximal modulus. To relate the conditiond on
with topological properties of the dynamical system, recall (see e.g Walters (1982)) that
a subshift of finite type is one-sided topologically transitive if and only if the transition
matrix A is irreducible, and topologically mixing if and only if the transition matrix

is irreducible and aperiodic.

The observations in the previous paragraph do not apply directly to more general,
non-locally constant, weightg. One of the first successes of the theory of dynamical
zeta functions was the proof of an analogue of (2.5) for weightghich areLipschitz
with respect to a metrid (x, y) = Y, 0'%1(1 — 8 (xx, yx)), for some fixed O< 6 < 1,
whered denotes the Kronecker delta. (Note that each inverse branch of the one-sided
shift ot is a §-contraction for the metriely.) To state precisely this result, we need
more notation. WriteF," for the Banach space of Lipschitz functiops =} — C (for
d;, the one-sided version af), endowed with the normig| = sup|g| + Lip(¢), where
Lip(p) is the smallest Lipschitz constant for We first consider the spectral properties
of the transfer operatof,, recalling that theessential spectral radiu®f a bounded
linear operator acting on a Banach space is the smailestO so that the spectrum of
the operator outside of the disc of radjpgonsists in a finite or countable set of isolated
eigenvalues of finite multiplicity.

THEOREM 2.1. (Quasicompactnesalsume thag = expG whereG € F,.

(1) (Ruelle 1968, 1976a, 1978he spectral radius of, : F,” — F, is bounded above
by e”1°91s) and coincides withe?(°92) if ¢ > 0. If ot is topologically mixing on
T 1 andL, has an eigenvalue of modulu§°9/sh then this eigenvalue is simple and
the rest of the spectrum lies in a disc of strictly smaller radius.

(2) (Pollicott 1986)The essential spectral radiysessof £, : F,” — F, is equal to
6 - ePlogleh - Every point in the open disc of radids e”°91¢D is an eigenvalue of
infinite multiplicity of Z,.

To prove the upper bound on the essential spectral radius in Theorem 2.1(2), one shows
that the iterate<”; can be exponentially well approximated by a sequence of finite rank
operators. The key ingredient used to obtain the required bounds is the existence of a
constantC > 0 such that for allp € 7, and alln € Z*

Lip(Lye) < 6" Lip(p) + C suple|. (2.6)

(See lonescu Tulcea and Marinescu (1950) for early occurrences of similar bounds.) The
proof of the bound (2.6) in the normalized caSg|1 = 1 is by induction. It is based
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on the fact that whenevery = yo (writing (jx) for the concatenation of the one-sided
sequence € X with the single symboli € S) we have

(Lep) (@) — Ly ) 0G) — 9 (i)
dy (x. ) : jZS BN e

n Z lg(jx) — gyl

e dg(x,y)
Ajxg=1

< 6OLip(p)(L1) + db Lip(g) suple]
= 6 Lip(p) + Csup|g|. 2.7)

=1

lo(jx)l

The two terms on the right-hand side of (2.7) can be viewed as coming from an application
of the Lipschitz version of the Leibniz upper bound for the differentiation of a product.
The factoré in front of the Lipschitz constant ap is due to the composition @f with
the contracting inverse branchesaof.

Note that ‘smoothness’ in the function space is essential in order to prove
guasicompactness. Replacing Lipschitz functionsbyolder functions one gets a factor
0* instead of6 in Theorem 2.1(2). One can prove that each point in the the disk of
radius e”(°91¢) s an eigenvalue of, acting on continuous functions. In particular,
L, will not have a gap when acting on the Hilbert spdcédu), for any probability
measureuw such thatZ, is defined onL?(du). This is basically the reason why one is
often forced to do spectral theory on Banach spaces.

THEOREM 2.2. (Zeta function) (Pollicott 1986, Haydn 1990&$sume thag = expG,
whereG e F,; . The zeta functio,(z) (2.2) is analytic in the disc of radiug"°91sh,

and admits a meromorphic and zero-free extension to the disc of radhes 7(°91sD . |ts
poles in this disc are exactly the inverses of the eigenvalugy, of 7 — F," in the
corresponding annulus (the order of each pole coinciding with the algebraic multiplicity
of the eigenvalue).

We refer to Parry and Pollicott (1990, ch. 10) for a proof of Theorem 2.1 and
Theorem 2.2 (see also Baladi (1995a, 1.2) for a short sketchy3.tiwe shall briefly
describe the slightly more sophisticated proof of similar but more powerful results in a
differentiable setting.

The introduction of the one-sided spadgs was useful to work with transfer operators
associated to one-sided shifts with contracting inverse branches. When the wesght
two-sided, one can study the zeta function (2.2) with the help of the following lemma.

LEMMA 2.3. (Two-sided to one-sided) (Sinai 1972, Bowen 19/&) G € F,. There
existG* andy in F j; such thatG = G* +¢ — ¢ oo, andG*(x) = G*(y), whenever
x; = y; for all i > 0 (abusing notation.G* € F*, )

Indeed, whenever two functions differ by a coboundaty= ¢, + v — ¥ o o, the
sumszz;é v (c*(x)) coincide wheneves"(x) = x. If the functions are additionally
real valued, one checks that the pressurég;) and P(¢) coincide.
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We now briefly recall how the above results are applied @ Anosov
diffeomorphisms, or more generally Axiom A diffeomorphisms, on compact manifolds.
We refer to Bowen (1975) and Parry and Pollicott (1990) for details and references. A
diffeomorphismf is called Axiom A if:

(1) the non-wandering set of f coincides with the closure of the set of periodic
points;

(2) there exist a decompositicRA = E* @ E* of the tangent bundle ovet, and
constantsC > 0, 0 < 6 < 1 so that for allx € A and alln € Zt,

IDf{vll = CO™|lvll, Vv € Ey, IDf, vl < CO"|lvll, Vv € EY.

By Smale’s (1967) spectral decomposition, we may restfidb a basic se2 ¢ A

on which it is topologically transitive. Such a map can be modelled by a topologically
transitive subshift of finite type via the use of Markov partitions. More precisely, there
exist a subshift(o, A) (with metric dy, for 6 the contraction constant of), and a
Lipschitz surjective mapr : X4 — €, such thatf o m = 7 o 4. The non-injectivity

of 7 is due to the fact that the rectangles of the Markov partition can meet on their
boundaries. To cancel the overcounting of periodic points on these boundaries, Manning
(1971) associated tg finitely many auxiliary subshifts of finite typ&;}i—o.. x (with

oo = o, the other shifts semi-conjugated with restrictionsfoby projectionsr;), and
signse; € {—1, 1} such that we have the counting formula

K
#Fix " = Zei - #Fixo}'
i=0
for eachn. Therefore, writings; for the zeta function ob;, Smale’'s (1967) spectral
decomposition together with the remark (2.5) of Bowen and Lanford (1970) give
¢(z) = [15, ¢ (z)%. This proves the following.

THEOREM 2.4. (Manning 1971)The unweighted zeta function (1.1) ofCd Axiom A
diffeomorphism is rational.

For zeta functions weighted by amHolder functiong : @ — C, first lift g to
functionsg; € Fy- via the projectionsr;. Then, using Theorem 2.2, one can prove the
following.

THEOREM 2.5. (Axiom A: weighted case) (Pollicott 1986, Haydn 1990k} f be aC*
Axiom A diffeomorphism on a transitive basic Setwith contraction coefficiemt < 1,

and letg : @ — C be «a-Holder. Then the weighted zeta functigp(z) is analytic

and non-zero in the disz| < e~ 791sD and admits a meromorphic extension to the
disc |z] < #~%/? . ¢~Plogleh where its poles and zeros are a subset of the inverses of
eigenvalues of eachi; on 7, outside of the disc of radiug*/2 . ¢7(09lsh

To end this subsection on applications of symbolic dynamics to uniformly hyperbolic
diffeomorphisms, we briefly discuss the important relationship between the poles of
weighted zeta functions and the decaycofrelation functionsof the equilibrium state
associated to the corresponding weight. Recall (Ruelle 1978, Walters 1982) that the set
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of equilibrium states associated to a péft v), wheref : X — X is a continuous map
on a metric space angt : X — R is a continuous function, is the (possibly empty) set
of f-invariant Borel probability measures dn realizing the supremum

P(Y) = Sup{hu(f) + / wdu} 28

where ,(f) denotes the Kolmogorov-Sinai (measure-theoretical) entropy of the pair
(f, ). The variational principle of Walters asserts that the supremum in (2.8) coincides
with the topological pressur® (y) of (f, ¥).

Let f be aC' Axiom A diffeomorphism on a transitive basic s@, and letg be
a lift to £, of a positivea-Holder continuous weighg : @ — R}. The maximal
eigenfunctiongg for £;, and the maximal eigenmeasurgfor the dual of; determine
a o-invariant ergodic probability measuge which is the unique equilibrium state for
logg ando (Ruelle 1976a). The projectign of i to 2 is the equilibrium state for log
and f. If f|q is topologically mixing,A is irreducible and aperiodic and the measure
is mixing.

Assume for a moment th& is an attractor forf (i.e. there is an open neighbourhood
U of Q with f(U) C U), that f is C1*¢, and consider the special weightx) =
1/|DetDf|g«(x)|, where E* is the unstable bundle of (recall that E* is Holder
continuous, but usually nat?, so thatg(x) is usually onlya-Holder for somew, see
e.g. Katok and Hasselblatt (1995, ch. 19) and references therein). Atiegg) = O,
and the projectionu of i to Q is the Sinai-Ruelle-Bowen (SRB) meastoe f, i.e. the
unique probability measure whose conditionals on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure (see Bowen (1975, ch. 4) for proofs and
references). This measure is thleysical measurdecause for Lebesgue almost alln
a neighbourhood of the attracting basic Sgtthe time average% Zj.’;ol 8fi (Wheres,
is the Dirac mass at) weakly converge tgx whenn — oo.

For an equilibrium statee associated to a general positiveHolder g, define for any
fixed pair of @-Holder continuous observablegs ¢ : Q@ — C the correlation function
Coy:Z— C:

Cos® = [ o sy wdn— [ pdu- [ wan. 2.9)

In view of studying the decay rate 6f,  (k), it is natural to consider the formal Fourier
transformC,, (@) = Y, €*C,,, (k). If we can show thaC,,, is meromorphic in a
strip for all e-Holder ¢, v, it makes sense to define therrelation spectrum(or Ruelle
resonances) of to be the union of the poles of ti&, .

Consider the liftsy and v of ¢, ¥ to =, andassume that they only depend gnfor
i > 0 (we call such observableme-sided. Using the notation above and assuming for
simplicity that the spectral radius df, is 1, we have

@o@) T omdi = [ L@ @G o) dvo
5t 5t

/ @ - LEO - o) dvo. (2.10)
s
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Therefore, there is a constafit> 0 so that for alle-Holder ¢ andy

/ l@ldvo
D

C/y [$1dvo - (Suply| + ¥ l) - . (211)

IA

|Coy (k)] sup

Ly - go) —<P0/ ¥ - godvo
i

IA

wherex = sup{|z| | z € spectrum(L;), z # 1}. Sincex < 1 by Theorem 2.1, we have
proved that the correlation functiadi, , (k) goes to zero exponentially fast with a rate
independent of thene-sideda-Holder observableg and .

This property of exponential decay of correlations (or the exponential cluster property)
of Holder equilibrium states of Axiom A diffeomorphisms, with uniform rate, was proved
20 years ago for generalo-sidedHolder test functions (Ruelle (1976a), see also Bowen
(1975,§1.E)), but the relationship between the rate of decay and the spectral ggp of
(a fortiori a ‘polar gap’ for a zeta function) was not established at that time. A new
proof of exponential decay of correlations of two-sidedldi€r observables for the SRB
measure of Axiom A attractors has been obtained recently using very elegant Birkhoff
cone techniques (Liverani (1995) introduced the method in the Anosov area-preserving
case, and Viana (1997) later extended his strategy), bypassing Markov partitions and
symbolic dynamics. However, the exact value of the rate of decayadodiori the
rest of the correlation spectrum, do not seem to be accessible by these methods.

Before we state the most precise result available in the symbolic dynamics setting,
we go back to the one-sided observahpeand s, and observe that formally evaluating
a geometric series gives

Coy(@) = vo(@L—ep, Le)  (gov))
+o(¥ (L — € p L) (9op)) — volpod ), (2.12)

wherep, = ¢"(°9%) denotes the spectral radius®f on 7. Using the results mentioned
above and handling carefully the transition from two-sided to one-sided observables, one
obtains the following theorem.

THEOREM 2.6. (Axiom A: correlation spectrum) (Pollicott 1985, Ruelle 1987a, Haydn
1990a)Let f be aC* Axiom A diffeomorphism on a transitive basic @ewith contraction
coefficien®, and letu be an equilibrium state for am-Holder weightg > 0on Q2. For «-
Holder observables, ¢ on 2, the Fourier transforn@w,w(w) of the correlation function
for u extends to a meromorphic function in the stfw| < logé~©/?, regular atw = 0.

The position of the poles is independentpof)s (although residues can vanish). More
precisely there is a holomorphic functidv, , on the strip|Sw| < log6~©/? such that

Cpyp (@) = Ny ()5 (1771099 1 N (e77@) g (e 07 P1008)) (2.13

with ¢; the weighted zeta function of a subshift of finite type modefinga a Markov
partition, and the corresponding liff of g. If the basic sef2 is mixing, then@,l,,(w)
admits an analytic extension to a stripw| < log(1/x) with « = max(x;) < 1 the
smallest spectral gap of the;, .
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The poles of@,,w(w) are called theesonancedor correlation spectrurp of f for
w. In the mixing case, the poles with smallest possible imaginary part in absolute value
correspond to the rate of decay of correlations for genetiddlder observables. The
real part of these first resonances indicates how the decay is modulated (see Eckmann
(1989)). The next resonances correspond to the decay rate of observables in subspaces
of finite codimension.

Although Theorem 2.6 represents the optimal result for subshifts of finite type, the
boundaries of the Markov partitions are a source of problems when translating back
the results toQ2. In particular, the quotien;g/;“g could in principle have ‘spurious’
zeros and poles in the disc of radi@is@/?¢~0092) - A more serious drawback of this
approach is the fact that higher differentiability (e.g. analyticity: &&) of the original
dynamics-weight pair is lost via symbolic dynamics, where only a metric space structure
is available. Seg4 for techniques which go a long way in overcoming this limitation.

2.2. Axiom A flows. Let X be a metric space. Thenweighted zeta function of a flow
®' : X — X with at most countably many closed orbits is defined by

() = [1 (L—e ), (2.14)
7 primitive periodic orbit
wherel() is the primitive lengthof the closed orbit, i.e. the smallesty > 0 such that
®(xg) = xo for any pointxg on the orbit. We use the terminology primitive periodic
orbit to emphasize that each closed orbit is counted once in the Euler product expression
(2.14) (in (2.2), a fixed point of " also appears as a fixed point ¥ for all m > 1).
In order to study the analytic properties of the zeta function (2.14), or more generally

its weighted analogug’; (s), whereG : X — C is bounded, say, ands-£(t) is replaced
in (2.14) by

o)
/(; (G(P'(xg)) — 5) dt. (2.15)

we shall use the Bowen and Ruelle (1975) approach to the ergodic theory of Axiom A
flows. Just like Ratner's (1969) original approach in dimension three, it uses Markov
sections and is based on the following symbolic model. ®étbe a flow obtained

by suspending the subshift of §2.1 under a positive return time € F,", i.e. set
Lo={(x,1) | x € 4,0 <t < r(x)}/ ~ with (x,r(x)) ~ (6(x),0), and define
Y'Y, - X by d'(x,u) = (x,u+1),if0<u+t <r(x), extending to other values

of ¢t with the equivalence-. Formally the unweighted zeta function (2.14)®f can be
rewritten (using the notation (2.2) for the one-parameter wejgghj = e="™)

00 n—1
() = epo% > exp( —s Zr(okx)> = lop-sn(D.  (216)
n=1"" xeFixo" k=0

(The function¢.-(z) which appears here is one of the many examples of two-variable

zeta functions. See (5.10) later, and e.g. Parry and Pollicott (1990) for more details.)
In the case of the suspension @f under the constant return time= 1, we get

c*(s) = 1/Det(1 — e~* - A), so that the zeta function is not rational, but meromorphic

in the whole complex plane; its poles are the countably many peifds which 1 is an
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eigenvalue of the finite matrix* - A. In particular, ifs is a pole then + 2kiw is a pole
for any integelk, so that there are countably many poles on the boundary of the half-plane
of convergence. Note that this suspended flow is clearlyjtaymilogically weak-mixing
i.e. there exist a non-constant continuous functioand 8 € R with ¢ o ®' = ¢’y for
all . (See later in this subsection for more on the relationship between mixing properties
of the flow and poles of the zeta function.)

For a generat € F,, we consider the map — ¢, (1) as a complex-valued function
on the Banach spacg,”. Using the notion of meromorphic functions between Banach
spaces (see e.g. Dunford and Schwartz (1957)), Theorem 2.2 and (2.16) imply that
£*(s) is analytic and non-zero in the set ofsuch thatP(—Ms - r) < 0, and admits
a meromorphic extension to the sBi(—Ns - r) < logé~t. Sincer > 0, the map
t = P(—t-r) is monotone decreasing and these sets are half-planes. Using Abramov’'s
theorem on the entropy of a suspension, Bowen and Ruelle (1975) have shown that the
topological pressure of satisfiesP(—hg,,-r) = 0, wherehg,, is the topological entropy
of the suspension af underr.

THEOREM 2.7. (Symbolic suspended flow zeta function) (Pollicott 1986, Ruelle 1987b,
Haydn 1990b)rhe unweighted zeta functigri(s) of the suspension of a subshift of finite
type underr € F, is analytic and non-zero in the half-plargs > hiop @nd admits

a meromorphic extension to the skt > §, with poles whenevefe, s hasl as an
eigenvalue, wheré < hy,, is the unique real number such thB(—¢ - r) = logo—1.

See Parry and Pollicott (1990, ch. 6, 7, 9, 10) for other formulations, and for statements
on weighted zeta functions of suspensions of shifts. The zeta fungtien may have
a non-polar singularity (Gallavotti 1976, Pollicott 1986) arbitrarily close to the bdund
in Theorem 2.7 (the constructions are inspired from the Fisher (1967) droplet model, see
also§5.2). Theorem 2.7 may be reformulated for Axiom A flows using an appropriate
counting procedure (see Parry and Pollicott (1990, ch. 9 and Appendix Ill) for details).

THEOREM 2.8. (Axiom A flow zeta function).et ® be aC! Axiom A flow on a transitive
basic set, with topological entropyj,,, and contraction coefficiert = ¢™” < 1. The
zeta functions*(s) is analytic and non-zero in the half-plaries > hg,,, and has a
meromorphic extension to the half-plame > hg,, — (y/2), with poles only when some
Lexp—sr;) acting on a suitable space hdsas an eigenvalue, wherg: X4, — R, is the
return time arising from a Markov section. df is topologically weak-mixing, there exists
an open neighbourhood of the half-plasie > &5, in which the only singularity of *(s)

is a simple pole at = A,
The following result is a consequence of Theorem 2.8 and Tauberian theorems.

THEOREM 2.9. (Prime orbit theorem) (Parry and Pollicott 19833t ® be a C?!
topologically weak-mixing Axiom A flow with topological entrofgy,. Then, ifI1(z)
denotes the number of primitive periodic orbitsuch thatexp(hg,, - £(7)) <, we have

t .
I1(t) ~ —— whent — oo, i.e. lim

logt t—00

(2.17

I1(r) ‘ _1
t/logt))|
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Another application of Theorem 2.8 is the proof of the regularity of the metric entropy
of an Anosov flow when the flow is varied (Katek al (1989); see Contreras (1992) for
a more precise result, using a thermodynamic formalism but no zeta functions).

Just as in Theorem 2.6 for the discrete-time case, it is possible to relate the
analytic properties of the Fourier transform of the (continuous-time) correlation functions
associated to equilibrium states for a suspension of a subshift of finite type @&ddrH
continuous observables with the poles of the correspondingly weighted zeta function
(Pollicott 1985, Ruelle 1987b, Haydn 1990a). Again, the case when the weight
related to the unstable Jacobian of the flow is of special interest since it corresponds to the
physical SRB measure (Bowen and Ruelle (1975), Bowen (1975, ch. 4)). In patrticular,
a necessary condition to guarantee (via Paley—Wiener theorems) exponential decay of
correlations is the existence of a vertical pole-free sBIgRG) — § < Nz < P*(NRG),
with the exception of the simple pole at= P*(RG), where P*(RG) is the topological
pressure ofiG with respect to the flow (see Bowen and Ruelle (1975)). However,
Theorem 2.7, or its weighted analogues, it exclude accumulation of poles along
the verticalfis = P*(NG) for a weak-mixing flow. In fact, it is possible to construct
examples of weak-mixing Axiom A flows with correlation functions (for equilibrium
states of Hlder potentials) decaying arbitrarily slowly (Ruelle 1983, Pollicott 1984).

It has been known for some time (Moore 1987, Ratner 1987, Celieal 1984)

that the correlation function decays exponentially in the case of geodesic flows on
manifolds of constant negative curvatureThe question of whether Anosov flows, or
just geodesic flows on surfaces of non-constant negative curvature, have exponentially
decaying correlation functions remained open for a long time. Recently, Chernov
(1995) obtained, by using Markov approximationssw@bexponentialdecay property
(Cyy(t) < K,ye PV with g > 0) for the correlation function associated with the
SRB measure of Anosov flows satisfying a uniform non-integrability condition (which
basically implies that the stable and unstable foliations are Lipschitz) on three-manifolds.
See Liverani (1996) for a conceptualized extension of Chernov’'s approach to higher
dimensions, which explicitly uses stochastic perturbations of the flow. (The approaches
of Chernov and Liverani do not seem to have connections with dynamical zeta functions.)
More recently, Dolgopyat (1996a) proveaponential decay of correlatiorfer the SRB
measure and #lder observables, in the case 6f+ weak-mixing Anosov flows on
compact manifolds, witlC? stable and unstable foliations (this smoothness requirement,
which is satisfied in particular by geodesic flows in negative curvature, replaces in
some sense Chernov’s uniform non-integrability assumption). His result is based on
a refined study of the spectral radius of operatggs-+ from the above-mentioned
approach of Pollicott and Ruelle. The proof also shows that the corresponding weighted
zeta function is analytic in a half-plans > P*(NG) with the exception of the
simple pole ats = P*()G). Dolgopyat (1996a, 1996b) also showed that correlation
functions associated to equilibrium states coming frordlddr weights, for Hlder
observables, decay rapidly in the sense of Schwartz(®r weak-mixing Anosov
flows on compact manifolds (without assuming smoothness of the stable and unstable
foliations), and for more general Axiom A flows under additional assumptions. In this
case, it follows from his proof that the relevant weighted zeta function is pole-free in a
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domain{|fz — P*(NG)| < |Sz] 7%,z # P*(RG)} (for somet > 0).

3. Smooth expanding dynamics and flat traces
We now turn our attention to the smooth, locally expanding situation: we fix1 and
r > 2 orr = w, and consider pairgf, g), wheref : M — M is aC” andy-expanding
transformation of a compact manifold, i.e. for anye M and anyv € T,M we have
IDfv| > yllv|l (such maps are automatically topologically mixing because they are
factors of full shifts), andz : M — C is aC" weight. We associate a transfer operator
to (f, g) via (2.3). (Again, one particularly interesting weightgs= 1/| DetDf|.) In
fact, many results in this section hold in the more general setting where the finitely many
contracting local inverse branches of a mapre replaced by a finite, countable or even
uncountable (in this case the sum in (2.3) should be replaced by an integral) family of
contractionsf; defined onM, or subsets off (see Ruelle (1990) and Fried (1995a)),
paired with weightsg; (which can be replaced by vector bundle maps). For the sake of
simplicity, we restrict this study, however, to the dynamical situatifrg) (seet6 for
a discussion where it is important to allow more flexibility).

We shall see that, although the zeta function (2.2) still describes part of the discrete
spectrum ofZ,, a better generalized Fredholm determinant is obtained by replacing the
counting trace with dlat trace

P L, = s) , 3.1
" x;;leeM—Df;%x)n D

(where £ ! is the local inverse branch of such thatf(x) = x) so that

| Det(1 — Df"(x))]

xeFix fr

(3.2)

For the reader’s convenience, we reproduce from the survey Baladi (193933, a
heuristic argument motivating the denominator in (3.1)—(3.2).
First, observe thaf, can be written as an operator with a (highly non-smooth) kernel:

Lop(x) = /Mﬁ(fy—X)-g(y)-IDeth(y)I~¢(y)dy

> [ 56— it 50991 dy, (3.3)

whereé(-) is the Dirac delta, and thg are the finitely many contracting inverse branches

of f (here, we neglect the problem of overcounting of periodic points on boundaries
discussed above Theorem 2.4). Forgetting that the Dirac delta is not a continuous
function, we apply classical Fredholm theory (Riesz and Sz.-Nagy 1955) to compute
formal traces, and find the same expression as in (3.1):

T L= Y [ st gt = > oei 8 (;;)ﬁl(x))', (3.4

where the determinant in the denominator of (3.4) follows from the change of variable
formula. We may regularize the kernel of our transfer operator by convolving the dirac
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with smooth functions, producing trace-class operators whose traces converge to the flat
trace (3.4). (Note, however, that this approachdsthe one which has been implemented
to obtain the results mentioned in this section, an exception being the strategy applied by
Tangerman (1986), who used heat operators.) The ‘damping’ or ‘flattening’ convolution
procedure just described explains the terminology ‘flat’, which also refers to the analogy
with the work of Atiyah and Bott (1964, 1967, 1968).

The flat traces can be used to construajemeralized Fredholm determinarttiat
determinant)

X 0 X _n n—1 k
4 (z) = _ < TP £ = _ z [Tezo g(f*x) . 35
*(z) = exp ”2:; T L = exp ; . XEFZX:f" Dot —proay | G

In the special case when= 1/|DetDf| < 1, we have another expression for the flat
determinant:

b _ _ > i 1
dy/ petnr| = EXP Z Z DetDf ) — 1| (3.6)

n=1 "' xéFix fo

The weighted dynamical zeta function (2.2) can formally be expressed as a finite
product of auxiliary flat determinants: in dimension one, it is simple to check tla) =
d s pp/de(2) (by definiiond, . is the determinant associated With? = L/py),
which can be interpreted as the action of the gdirg) on 1-forms). In dimension
d > 2 we may use the formula D@t— B) = Y¢9_,(—1)* Tr(A*B) where A‘B is the
¢th exterior product of the finite matriB. (The corresponding operatot%‘f) describe
the action of(f, g) on ¢-forms, see Ruelle (1976b).)

We shall see in§3.1 that the transfer operator acting on holomorphic functions is
compact (even nuclear in the sense of Grothendieck (1955, 1956)) when the',pir
is analytic, so that the flat trace is the ‘true’ trace df) is the Grothendieck—Fredholm
determinant ofL,. In particular,d’(z) is an entire function whose zeros in the plane
are the inverses of (all) the eigenvalues ©&f, whereas the poles of the dynamical
zeta functiong, (z) coincide with the inverse eigenvalues only in a disc. (Particularly
enlightening examples are those of the maps> w? andx — 2x(mod 1), on the unit
circle and interval, respectively, with weight= 1/2.) In §3.2 we consider the case of
finite differentiability, where the operator is only quasicompact (a2 but where the
flat determinant again ‘sees’ more of the discrete spectrum than the zeta function.

3.1. Analytic expanding systemsLet y > 1, M be a compact, connected, real analytic
manifold andf : M — M be a real analyticy-expanding map. We consider a complex
neighbourhood/ of M, and we set4 to be the Banach space of holomorphic functions

on U with a continuous extension to the boundary.Ufis not too big, f and g can

be extended analytically @&, preserving they-expanding property off. We refer to
Baladi (1995a, 4.1) for a heuristical explanation (in dimension one) ofgyhig a nuclear
operator of order 0 in the sense of Grothendieck (1955) (see Mayer (1991a) for a very
readable account of the mathematical argument). Before mentioning the main result, we
present the idea of the proof of Mayer (1976) that the trace (3.1) is the sum of eigenvalues
of £, whenM = S. For this, writing F¢, k = 1, ..., d, for the finitely many inverse
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branches off (in particular,L, = Y, L, With L, r¢ = (g - ¢) o F¢), and noting the
unique fixed point ofFy by zy, it suffices to show that the spectrum of eat}y acting
on A coincides with the set of simple eigenvalu@s= {0, g(z;) - (DFi(zx))¢, £ > 0O}.

Indeed, this would imply that

d d
T, =Y TrLw =Y Y ec0Re) = Y —5% @

-1 *
k=1 k=1 (>0 2 €FiX f 11— Dfz~ (2ol

We now show that the spectrum of eafl, is a subset of;: the eigenvalue property
means thatl, ;¢(z) = re(z) = (g - ¢)(Fi(z)) for all z. Specializing toz = z; gives
A= g(z) if o(zi) # 0. If p(zx) = 0 but Dp(z;) # 0, we findA = g(zx) DFi(z). The
general case i®/¢(z;) =0, 0< j < ¢, Dp(z;) # 0.

THEOREM 3.1. (Flat determinant for analytic expanding maps) (Ruelle 1976b, 1990,
Fried 1986a)Let y > 1, M be a compact, connected, real analytic manifold, and let
f i M — M be a real analytic,y-expanding map. Let : M — C be real analytic.
Then the functioudﬁ, defined in (3.5) is entire of finite order, and its zeros are the inverses
of the non-zero eigenvalues of the compact (in fact nuclear) opeg&tacting on the
Banach spaced. The dynamical zeta functiaf(z) (2.2) can be written as a quotient of
entire functions of finite ordeg, (z) = d(z)/d(z).

A more general statement can be found in Fried (1995a). The convergence to zero of
the kth eigenvalue of, is exponential in dimension one and subexponential otherwise
(see Fried 1986a). One of the key ingredients of the proof of Theorem 3.1 is the Cauchy
integral formula which allows one to write the transfer operator in (smooth) kernel
form. Analogous results hold for analytic Anosov diffeomorphisms or flows, under a
very strong assumption adnalyticity of the stable/unstable foliation®Ruelle 1976b,

Fried 1986a). This assumption is satisfied for geodesic flows on compact surfaces of
constantnegative curvature, and gives a dynamical proof that the Selberg zeta function
is meromorphic in the whole complex plane. Besides applications to quantum chaos and
the cohomology of Kleinian groups mentioned in the introduction, the analytic expanding
flat determinants were used to study the spectrum of the Feigenbaum period-doubling
operator (Vulet al 1984, Christiansest al 1990, Eckmann and Epstein 1990, Jiatal

1992). Mayer’'s (1990, 1991b) beautiful analysis of the thermodynamic formalism for
the Gauss map (useful in studying the Selberg zeta function) contains a rare occurrence
of a transfer operator which is not only trace class when acting on a Hilbert space, but
is also self-adjoint.

For rational maps of the Riemann sphere, much stronger properties can be proved.
Rationality was obtained by Hinkkanen (1994) for unweighted zeta functions of rational
maps, and by Hatjispyros (1997) and Hatjispyros and Vivaldi (1995) for the zeta functions
of Chebyshev polynomials weighted by’)* . Waddington (1997) studied zeta functions
associated with preperiodic points of hyperbolic rational maps. The striking results of
Eremenkaet al (1994) and Levin (1994), Leviat al (1991, 1994) on hyperbolic rational
maps, in particular for some quadratic polynomials, have been briefly presented in Baladi
(1995a, b).
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Keller (1989) combined the Grothendieck—Fredholm approach together with the
Hofbauer (1986) Markov extension presentedinto study piecewise invertible maps.

3.2. Differentiable expanding systemsAssume now thatV/ is a compact connected
C* manifold, thatf : M — M is C" for some 1< r < oo andy-expanding for some

y > 1,and thatg : M — Cis C". We consider the Banach spa@& M) of C" functions

¢ : M — C endowed with a nornfj - ||, = Z;:O | D/ - |ls. The transfer operator (2.3) is
again only quasicompact, but higher differentiability gives a better upper bound for the
essential spectral radius.

THEOREM 3.2. (Quasicompactness) (Ruelle 1988t r > 1, y > 1, and letM be a
differentiable compact connected manifold. Lfet M — M be C" and y-expanding,
and letg : M — C be(C”.

(1) The spectral radius ofZ, : C"(M) — C"(M) is bounded above by” (where
P = P(loglg|) € RU {—o0}, defined in (2.4), is the spectral radius Bf, acting
on bounded functions). § is non-negative, the spectral radius coincides with
If g is positive,e” is a simple eigenvalue with a positive eigenfunctignand the
rest of the spectrum lies in a subset of a disc of radius strictly smaller éian

(2) The essential spectral radius 6f, acting onC" (M) is bounded above by’ /y".

The first result in a differentiable, non-analytic setting was obtained by Tangerman
(1986) who considered thé* case and used a ‘heat kernel’ approach. The key bound
used to obtain Theorem 3.2(2) is the following ‘differentiable’ version of (2.6) (which
also appears in Tangerman’s work): there ex@ts 0 so that

Il < C Y . Vg eC'(M),Vn eZ*. (38)

~ 1D/ ¢lloo
j=0 Y
The bound (3.8) is again proved by a combination of the chain rule and the (classical)
Leibniz formula (the case = 1 is essentially the same as (2.6), the reader is invited
to check the case = 2 as an exercise), see e.g. Fried (1995a, Lemma 1). To bound
the essential spectral radius one then considers the sequence of opéfaigrsvhere

I, is a finite rank projection constructed from local Taylor approximations of functions
in C"(M). (Contrary to the claim in Baladi (1995a, Proposition 3.1(2)), it is not known
whether all complex numbers with modulus smaller than the essential spectral radius of
L, are eigenvalues.)

Exact formulas(as opposed to upper bounds) exist for the essential spectral radius
in various settings: Collet and Isola (1991) obtained a formula for the one-dimensional
case (see also Balaét al (1996) for Holder and Zygmund functions), Campbell and
Latushkin (1997) have an expression of the essential spectral radius as a Lyapunov
exponent, and Holschneider (1996) applied wavelet techniques to obtain the value of the
essential spectral radius for transfer operators acting on a variety of functional Banach
spaces (Besov, Triebel, Zygmund).
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THEOREM 3.3. (Flat determinant) (Ruelle 199D¢tr > 1. Letf : M — M beC" and
y-expanding, and leg be C". The generalized Fredholm determinafi(z) associated
to (f, g) by (3.5) is analytic in the disc of radius ©y" (with P = P(log|g|) defined
by (2.4)), where its zeros are exactly the inverses of the eigenvalués ot (M) —

C"(M) of modulus strictly larger tham” /y".

Fried proved more general versions of Theorems 3.2 and 3.3, using in particular (Fried
(1995a,55)) a partition of unity to bypass the Manning-type overcounting argument used
by Ruelle (1989). Fried (1995&4) also obtained control of the asymptotics of the
eigenvalues.

We end this section with a very brief sketch of the proof of Theorem 3.3, when
M = S, and for a strictly positive weighg. Assume (without restricting further
generality) thatP = 0 and that the operatof, is normalized, i.e. preserves the
constant function 1. Fixing som® > y ", Theorem 3.2(2) says that the spectrum
of L, : C"(M) — C"(M) outside of the disc of radiu® consists ofK(®) < oo
eigenvalues\;, of finite algebraic multiplicitym;, and we have the followingpectral
decomposition

K(®)
Lip= > NWL'Yie) +RLp., Vo eC' (M), ¥n e L, (3.9
i=1

where eachl; is am;-dimensional matrix in Jordan form, eagh is a row vector of
elements of a basis of a generalized eigenspac&() for A;, and eachy;* is a column
of vectors forming a basis of the generalized eigenspacefoand ;. Finally, there
existsC > 0 so that| Ly R| < CO" for all n € Z*. In (3.9) we have decomposetf,
into a finite rank operatoM,, (®) (the sum ovet), the trace of which is trivially equal
to Y m; 1!, and an exponentially decaying correcti@”.

Consider now a Markov partition for the circle map fix somen € Z*, and write
Z, for the nth refinement of the partition under the dynamics (we neglect the boundary
problems which are in fact quite troublesome, especially in higher dimensions). Write
x» for the characteristic function of € Z,, and choose a poini, in eachn, taking it
to be a fixed point off” if it is possible. A crucial consequence of the Markov property
is the dichotomy

M (x) i [, = x
o _ (g™, b =X, 3.10
(L xn) (xy) {O otherwise, 510

where we introduced the notatiqri” (x) = [[i—g&(f*(x)). For0< g <r—1 we
setey ,(x) = (x — x)7 - Xy, ande;,i((p) = (1/q")D?(¢p)(x,). We may then rewrite the
left-hand side of (3.10) ag;, (Lseo,;), and yet another application of the chain rule and
the Leibniz formula (most terms cancel in the process) shows that foralyG< r — 1

1 (Df" ey - g (xy) i frxy =x
et (Lle, ) = —D1(Lle, ) (x,) = Ky 7 7 ”o@1L
anLeean) g (Lgeq.n)(xy) {0 otherwise. G40

Observe now that by using (3.11), we may rewrite the flat trace (3.2) as
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(n)
L = _gTw
xeFix fn 1- D(fx ()C))

r—1
> Z g™ @) (D(f7" () + E,

xeFix f7 g=0

> Z D"(E"eq () + En, (3.12)

neZ, q=

where |E,| < C/y™ is the remainder from a geometric series. Using the spectral
decomposition (3.9) to expand the terms in the double sum in (3.12), we find by adding
and subtracting the trace o%1,(©) (which can also be writtey "~ A7 (L y)*y;)

that

> Z (D7 (Lyeq ) (xy)

neZ, q=

Tr M, (@)+[Z Z | D (M, (@)eg) (xy) — TrMn(®)]

neZ, q=

+> Z D"Rﬂ"(@)eq 2 ()

neZ, q=
K(®)
= Y m\+dP +d?, (3.13)

with

K(®)

d\P = Z ML ( > Z DY) () - €. w,-),
neZ, q=

and

d? =" Z DqRE”(®)eq o ().
neZ, q=
Since Znezn Z;;%,(l/q!)Dq(wi)(x,,) - 4.y 1S just the sum of the local-order-Taylor
approximations ofy; (on intervalsn of lengths of the orden/™), it is relatively
straightforward to prove thatl\”’| < Cy~"". The bounddy"”| < C©" is more involved,
and uses the information we have on the decayRdf; together with a telescoping
argument due to Haydn (1990b).

Combining theorems from Ruelle (1990) and techniques developed in Baladi
and Young (1993), the results in this section (agll) have been extended to
random settings, especially in the small noise situation. In Baladi (1997), annealed
transfer operators ana@nnealed random dynamical zeta functiofi€’ (z) (or Fredholm
determinants) are defined by averaging over all possible closed random ﬁi?b(bs) =
Jon 100 fuy © fup(X)

n—1
{“() = epo / 3 []sa(fP)pWwo) ... pdwn-y). (314

1 (x)=x k=0
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It seems an interesting and non-trivial question to determine conditions ensuring that the
guenched random dynamical zeta function

0 _n n=1
@' @=exp) o 3 [Lsatr 0 (315

n=1 f(;()”)(x):x k=0

(or determinant) has poles (respectively zeros) which (for almosbliiescribe the
Lyapunov spectrum of the corresponding ergodic product of random transfer operators
L, onC"(M). See Bogensctiz (1997) for recent results on the Lyapunov spectrum of
such random operator cocycles.

4. Smooth hyperbolic dynamics and flat traces

The fact that the stable and unstable foliations of Axiom A or Anosov dynamical systems
are usually only Klder continuous, even for analytic diffeomorphisms or flows, is a
major obstruction to the proof that the corresponding zeta functions admit meromorphic
extensions to large domains: an alternative to the (at most Lipschitz) symbolic approach
described ir§2 is to construct an expanding system by projecting along stable manifolds,
but this system will only be as smooth as the foliation. A dual description of this difficulty
is the observation that it is not obvious to construct a space of functions (or distributions)
on the manifold for which a transfer operator associated to the full hyperbolic dynamics
f (as in (1.3)) is ‘'smoothness improving’, i.e. reduces the higher-order part of the norm
in the sense of (2.6) or (3.8). (See Liverani (1995) for such a construction.) In very
vague terms, the distributions should be smooth along unstable manifolds but ‘dual to
smooth’ along stable ones. A major breakthrough was obtained in the early 1990s by
Rugh (1992, 1995, 1996a) who proved that the flat determinant is an entire function for
analytic hyperbolic diffeomorphisms on surfaces (with an analogous statement for flows
on three-dimensional manifolds). Fried (1995b) then gave a more conceptual and more
general analysis, extending the results to higher dimensions. (Both Rugh and Fried’s
approaches involve an application of the Grothendieck theory as in Ruelle (1976b), and
a combinatorial part based on Markov partitions using versions of Manning’'s (1971)
counting argument.) Kitaev (1995a) then considered the technically much more difficult
case of finite differentiability.

We now state the simplest possible version of the main results of Rugh, Fried, and
Kitaev. We first define a continuous-time version of i@ generalized Fredholm
determinant for ® : M — M a flow with at most countably many periodic orbits
andg : M — C bounded, let

1 3 Xy " g(@ Go(0) —sdn)

dg*(s) = exp— Z |Det(/ — (DP Y ()|

n=1"" t primitive periodic orbit

where £(t) is the primitive length oft, xo(t) is an arbitrary point oft, and DP; is

the linearized Poincarmap of® for r. The determinant (4.1) is neither a (Ruelle)
dynamical zeta function like (2.14) nor exactly a Selberg zeta function, but something
‘in between’ (Fried (1995hb, p. 179) uses the terminology ‘correlation zeta function’).
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THEOREM 4.1. (Hyperbolic analytic determinaritt M be a compact connected analytic
manifold, g : M — C an analytic function, andf : M — M an analytic Axiom A
diffeomorphism o’ : M — M an analytic Axiom A flow.

(1) (Rugh 1992, 1996a)he flat generalized Fredholm determinaﬂﬁ(z) associated to
(f, g) by (3.5) is an entire function iM is two-dimensional. The flat generalized
Fredholm determinard;* (s) associated t@®, g) by (4.1) is an entire function i#/
is three-dimensional.

(2) (Fried 1995b)The flat generalized Fredholm determinadﬁz) and dg*(s) defined
by (3.5) and (4.1) extend to meromorphic function€ifin any dimension).

The flat determinants (3.5) and (4.1) are expected (Rugh 1995) to describe the
correlation spectra, in particular to have zeros in bijection with the SRB correlation
spectrum for the weighg = 1/| DetDf| (in the discrete time case), but this still requires
some investigation. Our normalization of the flat determinants is consistent with that in
862 and 3, but differs from the one used by Fried and Rugh, whBe(D " (x) — I)|
instead of| Det( — Df~"(x))| (and analogously for flows) appears in the denominator,
and where the correlation spectrum of the SRB measure should correspgrsd 1o

We now comment briefly on Theorem 4.1, limiting our discussion to the case of
discrete-time dynamics. In both approaches, the transfer opgratorgy) o f 1 is not
analyzed globally. In order to obtain tractable (local) nuclear operators, the manifold and
dynamics are broken down into local pieces using Markov sections. A Manning-type
argument is used to put the pieces together again: this is the reason why one only gets
a meromorphic and not an entire function in Theorem 4.1(2). Rugh (1996a) conjectured
that both flat determinants are actually entire functions in any dimension, i.e. that all
‘poles’ are artefacts from the trick to suppress boundary overcounting. (Rugh obtains
the analyticity of the determinants i@ in low dimension, by showing that all possible
‘poles’ are removable singularities.) Theorem 4.2 below proves Rugh's conjecture for
C* Anosov maps and’ > weights.

Rugh’s (1992, 1996a) key idea was to write a two-dimensional (complexified, local)
hyperbolic analytic diffeomorphisnt;, z5) = f(z1, z2) on D1 x D, as

f (21, Y21, 25) = (W (21, 25), 25), (4.2)

where bothpinning coordinatesy,, ¥, are analytic contractions); and D, are close
to the stable, respectively unstable, direction). The transfer opefai@betps) (¢) =
(¢ - g/| DetDf|) o f~1 can then be written using a Cauchy integral

r o2 2y = / / dzy dzp €701y (21, 25)8(z1, 22)  @(21, 22)
DetD ) = a5 ; ,
(s/IPetbrTReL: =2 oDy Jop, 2m 2w 2o — (21, 25) 2y — Y21, 75)

(4.3)
wherees € {—1, 1} is a well-chosen sign. The operatgy, can then be proved to be
nuclear (Grothendieck 1955) when acting on the tensor product of functions holomorphic
in Dy with functions analytioutsideof D5, and its trace (in the ordinary sense) can be
evaluated by Cauchy integration

_ g(Z*)
¢ |Det — Df1(z.))

TrL =Tr L,, (4.9
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wherez, is the unique fixed point of in D; x D,. Fried (1995b) extended the above
procedure to a much more general setting. He introduced the notion afdbs map

C = (c1, ¢2) : D1 x D, — Dj x D, of a (local) hyperbolic mayf : D1 x D, — D] x D,

(or more generally, of a hyperbolic correspondence), which in the two-dimensional
analytic setting is given by’ (z1, z5) = (Y. (21, 25), ¥s(z1, 25)), and in general satisfies

f(z1, €2(z21, 25)) = (c1(21, 25), 25). (4.5

(The order of the stable and unstable directions is not the same in the papers of Rugh
and Fried; we have adopted Rugh’s choice.) The cross @dp in some sense a
(contracting)partial inverseof f. Under suitable assumptions, Fried then associates a
transfer operator to a complexified (local) hyperbolic map defined by its cross map by
considering thepartial adjoint of C, the action of the complexification @ on volume
forms in the second variable (which involves the partial Jacobiad’ @f the second
variable). (We skip completely Fried’s beautiful analysis of the Banach function spaces.)
A functoriality property analogous to the naturality of Rugh’s kernel is proved, and the
trace of the transfer operator is shown to satisfy a formula similar to (4.4). For this,
Fried uses a fixed-point formula due to Atiyah and Bott (1964) instead of the Cauchy
formula applied by Rugh.

Theorem 4.1 can be used to study the dynamical zeta function (2.2), respectively (2.14)
and (2.15), as explained after (3.5). As shown by Fried (1986a, b, 1988, 1995b) (see also
Moscovici and Stanton (1991),a8chez-Morgado (1996)), inspired by observations of
Milnor, and Ray and Singer, one can sometimes expresRéalyeSinger or Reidemeister
torsion of an orthogonal (acyclic) representation I1y(M) — Gl(m, C) of a manifold
M in terms of a special value of the dynamical zeta function (for the geodesic flow)

R(z) = [ [ Det( — e+ @a(x))

TeP

or thetorsion dynamical zeta function

=1
Z4(2) = exp— Ze e Tra(r
(z) = exp ZP ; - : Tra(r)
(where®P is the set of primitive closed orbits arg € {£1}). The possible availability
of this topological information gives a motivation for extending the domain of analyticity
of these zeta functions.

We mention here the Fredholm determinant for semiclassical quantization introduced
by Cvitanovt et al (1993), the rigorous foundation of which is expected to be found in
Theorem 4.1 and its extensions.

We now move to finitely differentiable systems.

THEOREM 4.2. (Differentiable hyperbolic determinant) (Kitaev 199929t M be a
compact, connected* manifold,» > 1, f : M — M a C" Anosov diffeomorphism
with contraction constard < 1, andg : M — C a C” function. Define

1/n
R, = lim sup (4.6)
n—>ocx€M

1
g(f*(x))
0

n
k=
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Then the flat generalized Fredholm determindﬁnz) associated tq f, g) by (3.5) is an
analytic function in the disc of radiu@"/ZRg‘l. In particular, if f and g are C* then
the flat determinant is an entire function.

Note the analogy between the exponeff in Theorem 4.2 (where comparison with
Theorem 3.3 indicates a loss of one-half of the regularity ‘because’ of the co-existence
of contraction and expansion) and the exponefi? in the two sidedx-Holder case
of Theorems 2.5 and 2.6 (see Lemma 2.3). The results announced in Kitaev (1995a)
actually apply tomixed transfer operatorgonstructed by summing over a family of
transfer operators associated to differentiable systems, all hyperbolic with respect to the
same cone field; also, the lower bound given there for the radius of convergence of
the flat determinant is more precise than the rough one given in Theorem 4.2. The
argument involves replacing the global operator byegular operator i.e. a sum of
local operators (analogous to Rugh’s (1992) rectangle maps and Fried's (1995a) system
of hyperbolic correspondences), showing, however, that the determinant is unchanged in
the process. This uses a partition of unity, a tool not available in the analytic setting of
Theorem 4.1. Kitaev then analyses the local transfer operators by replacing them with
e-perturbativeoperators which are-close to operators associated with linear dynamics
and constant weights, controlling the errors. Iterates of edperturbative operators,
restricted to suitable finite-dimensional subspaces of generalized functions, give rise to
finite-dimensional matrices, whose traces approximate the flat traces of these iterates.
(No pre-built machinery is used here.)

5. Countable state dynamics in dimension one

In this section and the next we restrict our study to one-dimensional maps and weights,
but consider situations which allow for (countable) ‘grammars’, as opposed to the finite
Markov symbolic dynamics which were used more or less explicitly in the expanding or
hyperbolic cases df§2 to 4. It will often be convenient to work with Banach spaces of
functions admitting discontinuities, in general functions of bounded variation; allowing
singularities, one also gives up the flat determinants, and reverts to the counting zeta
function (2.2). The one-dimensional setting has also been a testing ground for extending
the theory of§§2 to 4 to a non-uniformly hyperbolic situation (s€6.1, where the
phenomenology does not change essentially, in particular operators still have gaps and
correlation functions still decay exponentially), or even allowing neutral periodic orbits
(§5.2), where the situation changes drastically.

5.1. Uniformly and non-uniformly hyperbolic mapsLet I be a compact interval, say

[0, 1], and consider a continuous mgp : I — I for which there exists a finite

(the extension to countable is possible under some technical assumptions) partition
0=ag < a1 <--- <ay = 1 into intervals such thaf|i,, 4., iS strictly monotone.
Recall that the variation of a function: I — C is defined to be

var, ¢ = sup{ Z lo(x;) —@(x;i_1)| | {x;} finite ordered subset df}. (5.1
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The variation enjoys a rather nice change of variable formula singepualt = var, ) ¢
(for J c I an interval andk : J — h(J) a homeomorphism). It satisfies a Leibniz
inequality

var(py) < vare sup|y| + suple|variy. (5.2

A more annoying bound is

var;(x;¥) < vary ¢ + 2suply|, (5.3
J

(wherey is the characteristic function of the intervalc I). The space3 of functions
¢ : I — C of bounded variation is endowed with the Banach nduth = sup|¢|+vare.

Forg : I — C of bounded variation, one defines the transfer opetétassociated to
(f, &) by (2.3). AlthoughZ, usually does not preserve the Banach space of continuous
functions (an exception is when the partitighof I into intervals of monotonicity of
f satisfies a Markov property), it is not difficult to check that is a bounded operator
when acting on3. Following results of Hofbauer and Keller (1982, 1984), an analogue
of Theorems 2.1 and 2.2 was proved.

THEOREM 5.1. (Quasicompactness and zeta functions) (Baladi and Keller 19x0)

f : I — I be a piecewise monotone map and get / — C be a continuous map

of bounded variation.

(1) The spectral radius of, : B — B is not larger thane” 91D and coincides with
ePloglsh if ¢ > 0. The essential spectral radius 6f, is equal to

n—1

[Te(r e
k=0

1/n
R, := lim supsup (5.9

n—oo xel

(2) Assume that the partitiof into intervals of monotonicity of is generating (i.e. the
maximal length of the intervals of monotonicity ff tends to zero when — o).
Then the dynamical zeta functigp(z) defined by (2.2) is analytic in the disc of
radius e~ 70°912D and admits a meromorphic extension to the disc of rad?gé,
where its poles are exactly the inverses of the eigenvalu€s outside of the disc
of radius I?g (the order of the pole coincides with the algebraic multiplicity of the
eigenvalue).

Theorem 5.1 is mainly interesting whel, < ¢”(091sh. If f is piecewiseC?, we
get a strict inequality for the natural weight= 1/|f’| (for which a fixed point of the
transfer operator corresponds to an absolutely continuous invariant measuftesfoce
the dualL; preserves the Lebesgue measure) if gup 1, i.e. if the map ispiecewise
expanding

To prove the upper bound for the essential spectral radius one considers the sequence
of finite-rank operatorigl‘[”, whereTIl, is a projection to functions constant on the
intervals of monotonicity off”, using the basic properties of the variation semi-norm
mentioned above. The lower bound had been obtained by Keller (1984). The proof
of the result concerning zeta functions is very similar to the proof of Theorem 2.2 if
the partition into intervals of monotonicity is Markov. In the general case, a Markov
extension due to Hofbauer (1986) is used: the tower rﬁa;f—> f(with 11,
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such thatr o f = f o) is a piecewise monotone map defined on a countable family of
intervals, possessing a countable Markov partition with good combinatorics at infinity.
One proves the desired result for the lifted obje@;&andfg and then pushes them back
downstairs.

An elegant alternative proof of Theorem 5.1 was obtained by Ruelle (1994) who
viewed f : I — I as embedded in the full shift with symbols (the weight function
in the extended space still has bounded variation). The continuity assumptigrinof
Theorem 5.1 can be suppressed (Ruelle 1994, Baladi 1995b).

We mention now results of Keller and Nowicki (1992), Young (1992), and Ruelle
(1993), which apply in particular to some smooth unimodal interval mapwith
g = 1/|f'|, where the function 4 f’| is unbounded (in particular not i) so that
Theorem 5.1 does not apply.

We first introduce some exponents measuring the hyperbolicity of a piecewise
monotone interval may : I — I. Thecylinder decay exponers defined by

Ay = inf inf |p|~¥" (5.5)

n nez,
Assuming thatf is C*, we introduce théiyperbolicity exponent of periodic orbits

e H ny/ 1/n
Aper '= 'Qfxe'pri‘ffn IGADRCHI (5.6)
Assuming further that zero is the only critical point, ti@ollet—-Eckmann exponent
(exponential of the Lyapunov exponent of the critical value) is given by

hce = liminf | (") (f O, (5.7)

If f has negative Schwarzian derivative thign> 1 if and only if Aper > 1 if and only

if Ace > 1 (Nowicki and Sands (1996)). Once more we restrict our study to the simplest
cases (more generdtunimodal maps can be considered, as well as different versions of
the weightg).

THEOREM 5.2. Let f : [—1, 1] — [—1, 1] be a quadratic mapf (x) = a — x?, and set

g=1/1f"l

(1) (Keller and Nowicki 1992)Assume thab.ce > 1. The weighted dynamical zeta
function ¢,(z) defined by (2.2) is meromorphic and non-zero in the disc of radius
® = max{+/Ace Aper, Ay}, Where its poles coincide with the inverses of the
eigenvalues of a transfer operator associated with a tower extengionl — 1
of f. In particular, £, (z) is analytic in the open unit disc, and ff is topologically
mixing its only singularity on the closed disc is a simple pole at 1.

(2) (Ruelle 1993)n fact, {,(z) extends to a meromorphic, non-vanishing function in the
disc of radiusiper > ©.

The Collet-Eckmanns conditiohcg > 1 was proved to imply exponential decay
of correlations (for the unique absolutely continuous invariant measure and observables
of bounded variation) for non-flat topologically mixing unimodal maps with negative
Schwarzian derivative by Keller and Nowicki (1992), under some weak technical
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assumptions, using the spectral properties of the (Markov tower extension) transfer
operator mentioned in Theorem 5.2(1). Young (1992) independently proved exponential
decay of correlations, using a Benedicks—Carleson-type approach to construct a slightly
different (non-Markov) tower extension. A much more general tower construction has
been recently developed by Young (1996): this new tower (which has been used, in
particular, to show exponential decay of correlations for the SRB measure of ‘good’
Hénon maps, Benedicks and Young (1998)gssatisfy a Markov property, so it could
therefore perhaps be indicated that we study zeta functions of more complicated, higher-
dimensional, non-uniformly hyperbolic systems. Séefor alternatives.

Nowicki and Sands (1996) recently proved in the context of topologically mixing
S-unimodal maps that the Collet-Eckmann conditiaf > 1 is in factequivalentto
the property of exponential decay of correlations for a unique absolutely continuous
invariant measure and observables of bounded variation. It is tempting to conjecture in
the same context that the zeta function ;(z) admits a meromorphic extension to a
disc of radius greater than 1, with a simple pole;at 1 as the only singularityif and
only if Ace > 1 (the ‘if’ direction follows from the results we stated). The modulus of
the first singularity not equal to 1 df,»(z) seems to be a rather natural hyperbolicity
exponent of the map. When this exponent is equal to 1, one could try to study the
nature of the singularity on the unit circle. (Sg&.2 for branch cuts.) The question
of equivalence between the presence of a gap in the singularities of a weighted zeta
function or weighted determinant, and the existence of a unique SRB measure satisfying
exponential decay of correlations fodlder observables, in the setting oEhrbn maps
is much more challenging, since zeta functions @nln maps are basically unexplored
mathematically (se€6 for more comments).

We end with a few words about Ruelle’s (1993) elegant proof of Theorem 5.2(2),
based on an application of thgochner tube theorenfsee e.g. Bochner and Martin
(1948)) which says that any functiaf(u, s) which is holomorphic in two ‘tubes’

T, = {(u,s) € C2| (Mu,Ms) e K; CRE), i=12 (5.8)

(where K1, K, are two open domains d&? with K; N K, # ), admits a holomorphic
extension to the tube
T ={(u,s) e C? | (Ru, Rs) € K}, 5.9

where K C R? is the convex hull ofK; U K,. To apply the tube theorem, set
he(x) = h(x,s) = |f'(x)]* for Rs > 0, and continuez(x, s) analytically. Introduce
an auxiliary zeta function

o) n n—1

diz ) =exp-> = 3 []h( o, (5.10)

n=1 " xeFix 7 k=0

noting that¢y s (z) = 1/d(z, —1). Since the cardinality of Fix" is at most 2, the
functiond(z, s) is holomorphic in the tube

Ty = {(u,s) = (Iogz. 5) | 2/z|Ape, = 2¢" A5, < 1). (5.12)

Applying Theorem 5.1 to(f, k,), and noting thatR; = (R,)", we find that
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d(z,s) = 1/¢,,(z) is holomorphic in a second tube:
Tp = {(u,5) = (logz, s) | z|(R )™ =™, (Ripp™ < 1. (5.12

The reader is invited to find and draw the ba&gs K, of the tubesr;, T, and (using
the inequalityR, ;| > Aper) to verify that the convex hull oKy U K, contains the set
{(u, s) | RNu + Ns logrper < 0}. The Bochner theorem vyields théiz, s) is holomorphic

9

for |z|Ape < 1, which for9is = —1 gives the announced conditidfi < Aper.
Ruelle (1993) obtained a meromorphic extension of the zeta function, with no relation

to spectral properties of a transfer operator or exponential decay of correlations. Pollicott

(1995) was later able to extract information on decay of correlations from this analytic

completion approach, under additional conditions.

5.2. Parabolic maps and intermittency.All the discrete-time results mentioned so
far were for systems admitting enough hyperbolicity to guarantee exponential decay
of correlations, proved by showing that an appropriate transfer operator acting on a
well-chosen Banach space had a spectral gap (and the zeta function or generalized
determinant a corresponding meromorphic extension). Situations where the spectral
radius and essential spectral radius of the transfer operator coincide, with ‘abnormal’
(e.g. power-law) decay of correlations have been studied in statistical mechanics (see,
in particular, Fisher (1967), and the rich literature on phase transitions). In dynamics,
numerical experiments indicate (see e.g. Cvitabevial (1997), Dahlqvist (1995, 1996))
that branch cuts in the zeta functions and ‘phase transitions’ should be expected when
neutral periodic orbits are present in an otherwise hyperbolic system, but there are still
few mathematical results. In fact the presence of a single fixed point with a zero Lyapunov
exponent suffices to destroy the usual hyperbolic picture, in particular it may happen that
there is no SBR measure, see e.g. the two-dimensional ‘almost Anosov’ model of Hu
and Young (1995).

The term ‘intermittency’ was used by Pomeau and Manneville (1980) to describe
a general class of dissipative dynamical systems at the boundary of the transition to
turbulence. Here, we only mention two recent studies in dimension one (for systems with
strong Markov properties). The first one, due to Isola, who applies inducing techniques,
is concerned with differentiable maps, while the second, due to Rugh, requires analyticity
in order to use the Grothendieck—Fredholm theory. Before discussing the two studies,
we mention an example, studied by Gaspard and Wang (see Wang (1989)), where the
zeta function of a linearized map can be computed explicitly:

fx)y=4{ 1-x *=l2 (5.13)
2x—1 x>1/2.

Indeed, one can associate foa piecewise linear mag (with countably many pieces)
with an explicitly computable zeta function:

Z
(1—2)2log(1/1—z)’
having a logarithmic branch point at= 1.

Cuy (@) =
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The first set-up is as follows. Lef : [0,1] — [0, 1] be such that there exists
q €10, [ with fl04[, fl[4.1 Strictly monotone increasing ar@f with Holder derivative,
and £ ([0, ¢[) = [0,1], f(g,1]) = [0, 1] (in particular, f(0) = 0), and both inverse
branches Lipschitz continuous. Assume that there exists1 such thatf’(x) > y for
x € [gq,1]. Assume also thaf’(0) = 1 and f'(x) > 1 for x €]0, ¢[, and that there are
constants: > 0, s > 0 so that

f(x) =x 4+ ax™ A+ ux)) for x — 0, (5.19

with x(0) = 0, andu/(x) = O(x'~1) for x — 0, for somet > 0. It is known (Thaler
1980) that such a map admits a unique invariamt-finite absolutely continuous measure

v (which is finite if and only ifs < 1). Setco =1, ¢, = fl‘l(c,l_l). The countably
many intervals on which the piecewise expanding (and piecewise surjective) induced
map A, = [c,—1, ¢,] IS monotonic have finite--measure. We may thus introduce

1
(1—2) Y 2o v(Anr)z"
(It is intuitively clear that the lengths of the intervals, on which the time to return to
the good region is, should play a key role in the properties of the zeta function, and

more generally the statistical properties 6f) Isola (1996) proves that the coefficients
a, in the power expansio®(z) = Z;"’:O a,z" satisfy

D(z) = (5.19

1+ 0@n*Y5/v(0,1]) if0<s <1,
Ay ~nooo § O(1)/logn if s =1, (5.16)
O(Ln— /s if s > 1.

He then uses the asymptotics (5.16) to study the analytic properti€g20f A main
result announced in Isola (1996) is that the zeta functign) defined by (2.2) for the
weightg = 1/| f’| has a non-polar singularity at= 1 and can be written

D(z)L(z)

1—z °
where L(z) is analytic in|z| < 1 and extends to a continuous function jah < 1, with
L(1) #0.

Isola’s argument is based on a study of a family of transfer operators (more precisely,
an operator-valued power series), associated to the induced piecewise expanding map
which can be modelled by a countable full shift, and uses, in particular, results from
Prellberg (1991). Isola has also studied the decay of correlations for the unique absolutely
continuous measure when<0s < 1, and other statistical properties (such as the scaling
rate of test functions with finite average) wher> 1. We refer the reader to Lopes
(1993) and Yuri (1995, 1996) for related works.

We introduce the analytic setting of the second result. Aet C \ {0} be a simply
connected open domain containing an open seiqy = {re’*, —¢ <& <¢,0<r <
R} of anglegp > /2. Let f; : A —> A, i =1, 2, be two injective analytic maps with
continuous extensions tA. Assume thatf,A C A (i.e. f» is a contraction). Assume
also thatfiA C A U {0} and that there are constants> 0, ¢ > 0 so that forz € A

f1(z) = z — az® + O(z)**). (5.18)

L (2) = (5.17)



Periodic orbits and dynamical spectra 283

Setg; = f/ and define a transfer operator acting on analytic functipng\ — C by

Mo (2) = ¢(f12)81(z) + ¢ (f22)82(2). (5.19

Write E7 = {1,2}" \ (4,...,1), and for anyn-tuple (i, ...,i,) € B}, letz, ; be the
(necessarily unique) fixed point of the compositiino --- o f; in A. (Note that the
indifferent fixed pointz = 0 does not appear.) Writg", (z;,..;,) for the derivative of

fiyo---0 f; atz, ;. Finally, define the generalized Fredholm determinan¢©f g;)
by

X AT fi(n),- (ziy...i,)
d(n) =exp— Y > W (5.20)
n=1 (i1...in)€E" i1min Ziy...iy)

*

THEOREM 5.3. (Fatou coordinates) (Rugh 199@&leY f;, g; (i = 1, 2) and M be as above.
Then there exists a Banach spdgef functions defined on an open domaircontaining
the compact maximal invariant set of the péjfi, f2) (except for0), such that:

(1) the spectral radius ofM is equal tol; the spectrum decomposes i@ 1] U o,,;

(2) the points ino, are eigenvalues of finite multiplicity that can only accumulatd at
andO0;

(3) the determinant (i) (5.20) is holomorphic irtC — [0, 1], where its zeros are exactly
the eigenvalues o¥1 acting on (the order of the zero coincides with the multiplicity
of the eigenvalue). The functiat{r) can be analytically extended from each side of
[0, 1] to an open neighbourhood 3, 1].

We refer to Rugh (1996b) for the general statement, and a description of the abstract
spaceH, which is obtained by pulling back a Banach space of holomorphic functions via
the Fatou coordinate conjugatinf to the translatior?” (w) = w + 1. The key insight is
that the transfer operator in the Fatou coordinates is conjugated to the translation operator
T, which can be written, when acting on functiowsexpressible as Laplace transforms
Jo W (e dt, as

TV (w) = /oo ey (e M dt. (5.21)
0

However, (5.21) is basically an explicit spectral decompositionTofshowing, in
particular, that its spectrum is [@]. (See Contucci and Knauf (1997) for analogous
results on the spectrum of the transfer operator of Farey type maps.)

Theorem 5.3 can be applied to an analytic two-branched interval fnafenever
its local inverse branches satisfy the conditions fan f>. (In particular, suchf do
not admit finite absolutely continuous measures. One can nevertheless ask whether the
discrete spectrum aM can be reinterpreted in terms of scaling rates.) The generalized
determinant (5.20) is then justy) = d;/f,(/\*l)/(l — 171 with @” as defined by (3.5).

For other results on complex maps, we refer in particular to the extensive study of
‘jump transformations’ (inducing) associated to parabolic maps of Aaroasain(1993),
and the article of Denkest al (1996) on the transfer operators for rational transformations
(where the subexponential approach to equilibrium is proved, see Haydn (1996) for an
exponential control of the supremum norm oblHer observables). See also Smirnov’s
(1996) spectral analysis of the transfer operator associated to polynomial Julia sets in the
Riemann sphere, acting on Sobolev spaces.
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6. Kneading operators and sharp traces

In addition to the approach described §8, which was closely related to that used in

882 to 4, another strategy based on the powethéading theoryof Milnor—Thurston is

available, for the moment in one real or complex dimension, and will be described next.
The dynamical zeta functions and generalized Fredholm determinants we have seen

up to now involved sums over periodic points, requiring in particular the set of

periodic points to be at most countable. In their pioneering paper on one-dimensional

dynamics, Milnor and Thurston (1988) associated to any piecewise monotone interval

map f : I — [ (with finitely many, sayN, monotonicity intervals) anegative zeta

function

>\ Z" .
() = —2#Fix_ f" Nl
£ @) eXp;n X f", (6.1)
where the set ohegative fixed pointsf f” is
Fix~ f" ={x eI | f"x = x, f" monotone decreasing in a neighbourhood pf

The important fact, of course, is that Fi¥™", is a finite set. The principle ‘what goes
down must go up’ explains why it is natural to double the negative periodic points (if
f is piecewise expanding it is not very difficult to show that(z) is just the usual
unweighted dynamical zeta function (1.1) 6f up to a simple polynomial factor).
Milnor and Thurston (1988) proved (using a homotopy argument) the surprising
equation
¢ (z)Det(1— D(z)) =1, (6.2)

where D(z) is thekneading matrixa finite (N + 1) x (N + 1) matrix, with coefficients
power series associated to the itineraries of the turning points. These power series (the
kneading invariants embody a rather complete description of the nygpand the one-
dimensional kneading theory is by now extremely well developed (see e.g. de Melo and
van Strien (1993)). (Milnor and Thurston’s version of (6.2) involves a trivial polynomial
correction due to the fact that they worked with@h— 1) x (N — 1) matrix, see Baladi
and Ruelle (1994).)

One can rewrite ~(z) as alLefschetz zeta functipa’ (z) where all periodic points
are counted, but with a weighit(x) € {0, —1, 1} (cancellations may occur, in particular,
in homtervals). This second formulation (Baladi and Ruelle 1994) makes it easier to
define a weighted negative (Lefschetz) dynamical zeta function, especially if the weight
is locally constant. Formula (6.2) was extended to weighted and ‘non-functional’ (where
the local inverse branches of a givghare replaced by an arbitrary family of local
homeomorphisms) situations in a series of papers (Baladi and Ruelle 1994, Baladi 1995c,
Ruelle 1996a, Baladi and Ruelle 1996) where the ‘usual’ relationship between the poles
of the zeta function and the inverse eigenvalues of a transfer operator acting on functions
of bounded variation (oC” with rth derivative of bounded variation, Ruelle (1996b))
was established. (See also Mori (1990, 1992).) Again we limit ourselves to simplest
statements, referring also to the review in Baladi (1995b) for an outline.

Let I ¢ R be a compact interval, an@ be a finite set of indices. For eaghe <,
let 1, C I be an open intervalf, : 1, — f,(I,) a homeomorphism (setting alsg = 1
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if f,, preserves orientatior,, = —1 otherwise). Finally, leg,, : I — C be of bounded
variation (in particulardg,, is a complex measure), continuous, and supportdd.iniVe
define a transfer operator acting on the sp8cef functionsg : I — C of bounded
variation (or just on bounded functions) by

Lo=> (90 fu)go- (6.3)
weR
We also introduce a formal dual af
Lo= €@ f, (800 1 (6.4)
weR
(Note that if thef,, are the local inverse branches of a piecewise monotone interval map
fthenly = (po f)(go f)er, wheree, is the 'sign of the slope of’, ignoring boundary

problems.) Finally, writing|| - |~ for the operator norm of or £ acting on bounded
functions, we define

R:= lim (£ )", R := lim (|I£"]s)¥". (6.5)

Up to exchangingC and L, we can assume to fix ideas that< R.
To state the result we shall use the sign function

-1 ifx<0O,
sgnx) =% 0 if x =0, (6.6)
1 if x >0,

which has the property th%U(sgrD is §p the Dirac mass at zero. Define also 8terp
trace of the data(®?, 1,,, f., g») DY

T L= Z/ dg.(x)3 sgn(f,x — x), (6.7)
1,

weR Vo

(definition (6.7) clearly extends to the iteraté%). The sharp trace has the trace property
T (L1L2) = Tr*(L2L1) (6.8)
for any transfer operator§,, £, of the form (6.3).

THEOREM 6.1. (Sharp traces and sharp determinaAtgume thak < R.

(1) (Ruelle 1991, 19964)he spectral radiug (L) of £ acting on3 satisfiesk < p(L) <
R. If all functionsg,, are real and non-negative, them(£) = R, if, additionally,
R < R thenR is an eigenvalue with non-negative eigenfunction.

(2) (Baladi and Ruelle 1996)he sharp determinant

o m
Det'(1 - zL) = exp— Y | — Tr* " (6.9)
m=1 m
defines a holomorphic function in the disc of rad®s! where its zeros are exactly
the inverses of the eigenvalues ®fof modulus at leasR. The order of the zero
coincides with the algebraic multiplicity of the eigenvalue.
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An application of integration by parts and change of variables rule in an integral yields
Tr* £ = — Tr* £. We thus have théunctional equation

1
Detf(1—zL)

Note also that one can rewrite Dét — z£) as a (weighted) Lefschetz zeta function
whenever the set of periodic orbits is countable (usitgsgn = &o).

Theorem 6.1(1) improves and generalizes Theorem 5.1 above (we emphasize that
Theorem 6.1 holds without any transversality assumption onfthewhich could, for
example have uncountably many fixed points). We give a brief sketch of Ruelle’s (1996b)
elegant proof of the upper bound for the essential spectral radius, where the Leibniz
formula appears in a more explicit avatar than (2.7). We start from the fact that the
derivative gives a Banach space isomorphism between the space of functions of bounded
variation, quotiented by functions vanishing except on an at most countable set, and the
space of finite complex measures. We then consider the opetatod £d~* acting on
finite measures and observe that the Leibniz rule produces a decompdsitiafy + L,
where £; = Y, gwcw(f, )" obviously has spectral radius bounded Ey and where
Lo = >, dg.d™! is compact because the integration operator is compact.

The proof of Theorem 6.1(2) is by regularization. Specifically, it uses a family of
almost trace class operators, threeading operator®(z) which are analogues of Milnor
and Thurston’s kneading matrix. These operators act.é@ ) where the auxiliary
measurey is set to bey = )" ldgol + >, 1d(gw © f£;b| (so as to guarantee the
existence of the Radon—Nikodym derivativés, /du). They are defined by

D(z) = zN(1 —zL)" 1Sy, (6.11)

Det'(1— zL) = (6.10)

for any z not in the spectrum off, where the (smoothness improving, compact)
integration operatos is defined by

Sptx) = [ Asarts = e duty). 612
1
and where the auxiliary operatds is given by
dgw
Ny =Y (o f)52. (613
weR d'u'

SinceD(z)¢(x) = [ Dxy(2)¢(y)du(y) has a bounded kernel, whenevefz lis not in
the spectrum ofZ, it is a Hilbert—-Schmidt operator if?(du) so that the regularized
determinant De(1+ D(z)) of order two is well-defined (Simon 1979). We may thus set

Det'(1+ D(z)) = exp[ / Dy (2) du(x)] Deb(1+ D(z)). (6.14)
The key identity in the proof of Theorem 6.1(2) is the following analogue of (6.2):
Det’(1 — z£) Det'(1+ D(z)) = 1. (6.15)

The first proof of (6.15) in Baladi and Ruelle (1996) was by a series resummation
argument (involving repeated use of integration by parts and change of variables). A more
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conceptual proof can be extracted from the method used in a one-dimensional complex
partial analogue of Theorem 6.1 (Balaghi al 1995). We do not state the complex
result for lack of space, mentioning only that §gyy2 is replaced by the function
o(z) = 1/(mz), and derivation is replaced by (using in particulardo = §y), and that
in the simplest cases we have the formula
Tr#ﬁ = g“’i(x)

wEZSZ xeFix f,(x) 1- afw(x)
(note the absence of absolute value).

We sketch the conceptual proof of (6.15) now: after unifying the sharp trace (6.7) of
transfer operators with the ‘trace’ of kernel operatorsI¥tz) := [ D,, du(x), we check
that the unified trace, noted Trsatisfies (6.8). Hence, the usual determinant formulas
hold for

1
Det*(1 — M) = exp— Z =T M.
n

The argument is then quite literally a three-line proof:

Det'(1+ D(z)) Det’(1—z£) = Det'(1+ zN(1—zL)"1S) Det'(1— zL)
= Det'(1+zSN1—zL) ) Det'(1—2zL)
= Det'(1+z(SN — L)) =1, (6.16)

where we used TiZ = Tr*(SN), and more generally T¢SN — £)* =0 forn > 1, to
get the last equality.

A kneading approach to dynamical zeta functions in higher dimensions is still lacking.
For Henon-like (or more generally once-folding) maps, it can be hoped thadrtheng-
front approach of Cvitanotiet al (1988), which is in the process of being made rigorous
(de Carvalho 1996), will lead to a two-dimensional kneading theory which could include
a kneading operator analysis of naturally weighted sharp zeta functions (see also Ishii
(1997) for a kneading theory of the Lozi map). The pruning front conjecture is supported
by many very interesting humerical studies (see ed@rk®r and Dullin (1997), Hansen
(1993), the book by Cvitanoiet al (1997) and references therein). General ideas to
define sharp traces in higher dimensions have been advanced by Kitaev (1995b) and could
perhaps apply to differentiable dynamical systems without any topological assumptions
(in particular, admitting countably or uncountably many fixed points).
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