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Abstract. Basic results in the rigorous theory of weighted dynamical zeta functions
or dynamically defined generalized Fredholm determinants are presented. Analytic
properties of the zeta functions or determinants are related to statistical properties of
the dynamics via spectral properties of dynamical transfer operators, acting on Banach
spaces of observables.

1. Introduction
Thirty years ago, Smale (1967, I.4) conjectured that the Artin–Mazur (Artin and Mazur
1965) dynamical zeta function

ζ(z) = exp
∞∑
n=1

zn

n
#{x | f nx = x} (1.1)

of an Anosov diffeomorphismf was rational. In the same paper, Smale (1967, II.4)
asked whether a Selberg dynamical zeta functionZ(s) associated to some flows always
possessed a meromorphic continuation to the whole complex plane when the flow satisfied
Axiom A (admitting that ‘a positive answer would be a little shocking’). The first
question was settled positively by Guckenheimer (1970), and by Manning (1971) for all
Axiom A diffeomorphisms (see Theorem 2.4 later). The second question proved to be
more delicate (the reason, in a nutshell, being that it involved working withweighted
zeta functions for maps): Ruelle (1976b) introduced a dynamical zeta functionζ(s)

(see (2.14)) for flows (withζ(s) = Z(s+1)/Z(s) in the constant negative curvature case).
Gallavotti (1976) then found a differentiable Axiom A flow whose Ruelle dynamical zeta
function ζ(s) had a non-polar singularity. Much more recently Fried (1995b) proved,
combining Grothendieck techniques from the pioneering article of Ruelle (1976b) with
novel ideas of Rugh (1994), that the dynamical zeta function of a real analytic Axiom A
flow (without assuming smoothness of the stable and unstable bundles) could indeed be
extended meromorphically toC (see Theorem 4.1 later).
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In this period of over 30 years, the rigorous theory of dynamical zeta functions (in
particular,weighteddynamical zeta functions, introduced by Ruelle by analogy with the
thermodynamic formalism of statistical mechanics) has expanded in many directions.
One could argue that this theory still lacks a unifying framework: this is perhaps a
motivation to gather some of the ‘fundamental’ results in order to make them more
accessible to mathematicians and also physicists (see the remarks on quantum chaos
later). Several surveys have already appeared (Parry and Pollicott 1990, Ruelle 1995,
Baladi 1995a). We recommend particularly Ruelle’s (1994, ch. I) short, very readable,
and broadviewed introduction, which evokes also historical and mathematical connections
with the Riemann zeta function, Dirichlet L-functions, and other arithmetic zeta functions,
not to be covered here. Although we have tried to include some of the more recent
developments, this text is not intended for specialists: we have striven to give the
simplest possible version of the statements, referring to the original papers for the full
power of the technical results. We have included sketches of some proofs, hoping to
communicate the elegant simplicity of certain arguments.

We shall relate the weighted dynamical zeta functions, or the various dynamical
determinants, to generalized Fredholm determinants

‘det’ (1 − zL) = exp−
∞∑
n=1

zn

n
‘tr’ Ln (1.2)

for dynamically defined weighted transfer operatorsL (e.g. (2.3)), which are often non-
compact and in particular arenot trace-class. The game consists thus indefininga ‘trace’
for the operatorsLn (usually a weighted sum over period-n orbits), and then proving
a connection between zeros of (1.2) and inverse eigenvalues ofL acting on a suitable
Banach space. In§2.1 we shall consider a trivial occurrence of this phenomenon (2.5),
moving then to more interesting situations. Many different techniques and ideas appear
in the proofs. However, we would like to emphasize that, since the building blocks of
transfer operators are maps

ϕ 7→ (g · ϕ) ◦ f −1 (1.3)

whereg is a smooth weight function,f −1 is (an inverse branch of) a dynamical system,
and the observables (or test functions)ϕ belong to a vector space of smooth functions,
the operations involved are essentiallycompositionby a (‘smoothness improving’) map
andmultiplication by a function. Therefore, the basic toolkit which will be used over and
over again (together with combinatorics now well understood in the uniformly hyperbolic
case) contains two instruments: thechain rule (or the change of variable in an integral)
and theLeibniz formula(or integration by parts). Certainly, this caricatural description
is so vague that it would apply to many fields of mathematics. We nevertheless believe
that keeping it in mind can be a guide to the intuition.

In many cases, thedynamical spectra, i.e. poles and/or zeros of suitably weighted
dynamical zeta functions or dynamical determinants, contain essential information on
the statistical behaviour of the dynamical system: the leading pole (or zero) is often the
topological pressure (for example, topological entropy) and the first gap, if it exists, may
correspond to the exponential rate of decay of correlation functions for the equilibrium
state associated to the weight and smooth test functions. The dynamical spectrum beyond
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the first gap can sometimes be interpreted as (Ruelle) resonances of the dynamical
system (Eckmann (1989), see§2.1), connected to geometric or topological properties of a
manifold (see§4), or have some more unexpected meaning (see§3.1 on connections with
the Feigenbaum spectrum). This interpretation of the dynamical spectrum follows from
connecting the poles and/or zeros of the zeta function or dynamical determinant with the
spectrum of suitable transfer operators. We would like to point out that, although many
proofs of such connections involve non-canonical constructions and choices (Markov
partitions, tower extensions, local transfer operators, ‘artificial’ Banach spaces, etc.)
which may cause an important loss of information (such as creation of spurious poles
and zeros), the dynamical zeta function is ‘just there’. Indeed, it is given by the periodic
orbits of the mapf , and the often canonical choice of a weight (such as| DetDf |β , or
| DetDf |Eu |β with β a parameter). A specific example is the situation of Theorem 5.2
on Collet–Eckmann-type unimodal interval mapsf . The statement and proof regarding
the transfer operator involves a complicated construction, but the result on the zeta
function itself is quite simple: the zeta function associated to the pair(f,1/|f ′|) admits
a meromorphic extension to a larger disc than its disc of convergence, where its only
singularity is a simple pole atz = 1. (Of course, one uses the transfer operators to prove
that these properties of the zeta function mirror the uniqueness of the SRB measure and
exponential decay of correlations.) In§5.2, partial results indicate that the branch cut
type of zeta function may describe the non-exponential decay of correlations for some
intermittent maps. There are few rigorous results in such ‘gapless’ situations, where one
can expect to discover phase transitions, as in statistical physics.

We know by now that it is not possible to hear the shape of a drum (Kac (1966),
Gordonet al (1992)). It would be naive to expect to hear the statistical properties of a
dynamical system. We should also keep in mind that some dynamical systems do not
admit any periodic orbit. However, we do believe that weighted dynamical zeta functions
are ‘interesting invariants’ (Smale (1967, p. 764)!) and that a good understanding of
their qualitative analytic properties should play a significant part in the classification of
differentiable dynamics.

1.1. Applications of dynamical determinants in physics and mathematics.In these
notes we have limited ourselves to rigorous mathematical statements. However, the (long,
but incomplete) bibliography includes some references to the rich physical literature,
which we believe to be a potential source of interesting mathematical conjectures. We
mention, in particular, the book in preparation by Cvitanović (1997) and co-workers (see
also Artusoet al (1990)), which contains a wealth of results and insightful definitions, as
well as pointers to computer programs that are able to effectively compute zeta functions
of non-trivial systems.

We refer to Fried (1986b, 1995b) and references therein for the mathematical
connection between Selberg and (Ruelle) dynamical zeta functions (see also§4). We
shall not discuss physical applications of Selberg or dynamical zeta functions to quantum
chaos (see the reviews of Eckhardt (1988) and Hurt (1993), the monographs of Gutzwiller
(1990) and Knauf and Sinai (1997), and references therein, e.g. Bogomolnyet al (1995),
Voros (1988, 1993), Cartier and Voros (1988)). Recentrigorous results on Selberg
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functions connected with quantum chaos, starting from Mayer’s (1991b) important
study of the Selberg zeta functionZ(s) of the modular surface, via a thermodynamic
formalism for the Gauss map (using a method due to Series, respectively Adler–Flatto,
and expressing the Selberg function as a productZ(s) = Det(1 − Ls)Det(1 + Ls)
of Fredholm determinants), include Efrat (1993) (with later developments by Eisele
and Mayer), Lewis (1997), and Chang and Mayer (1996). Some of these results have
connections with the study of the Riemann zeta function (see also Knauf’s (1993, 1994)
statistical mechanics approach of the Riemann zeta function). See Pollicott (1991a, 1994)
for extensions of the Bowen–Series approach. The background for this is discussed in
§§3.1 and 4.

We shall not present Patterson’s (1990) dynamical approach to understand the
connection of the divisor (zeros and poles) of the Selberg zeta function associated to
certain Kleinian groups with the cohomology of the group (see Deitmar (1996), Juhl
(1995), and Patterson and Perry (1996) for recent results). A significant breakthrough in
Patterson’s program has recently been accomplished by Bunke and Olbrich (1996).

Besides the Selberg zeta function, other counting functions may be connected to,
or expressed as, dynamical zeta functions. Llibre and co-workers have used various
Lefschetz zeta functions to obtain Sharkovskii-type (Blocket al (1980)) ‘forcing’ results,
see e.g. Casasayaset al (1994), Guillamonet al (1995). For Reidemeister and Nielsen
zeta functions see Fel’shtyn and Hill (1995). Sometimes counting functions (such as
Poincaŕe series appearing in hyperbolic groups, see Pollicott and Sharp (1994, 1995))
may be studied with tools from the thermodynamic formalism, such as the transfer
operator techniques described in these notes. A very rich line of research is centered
around the theme of zeta functions and closed orbits associated to homology classes
(Parry and Pollicott 1986, Phillips and Sarnak 1987, Lalley 1989, Katsuda and Sunada
1990, Pollicott 1991b, Sharp 1993, Babillot and Ledrappier 1996).

A more unexpected application of dynamical Fredholm determinants appears in a study
of the smoothness of scaling functions in the construction of multiresolution analysis and
wavelets (Cohen and Daubechies 1996). Other applications are mentioned throughout
the text.

2. Symbolic dynamics and counting traces
With the notable exception of some recent results for uniformly hyperbolic flows (see
§2.2), most of the material in this section has been reviewed elsewhere, for example in
the monograph of Parry and Pollicott (1990) and in the survey Baladi (1995a). For the
convenience of the reader we nevertheless recall the most salient facts.

2.1. Axiom A maps. Consider a two-sided subshift of finite type ond ≥ 2 symbols
given by ad × d transition matrixA (with Aij ∈ {0,1}), i.e. letS = {1, . . . , d} and set

6A = {(xi)i∈Z | xi ∈ S, Axixi+1 = 1, ∀i ∈ Z}. (2.1)

The invertible dynamical systemσ : 6A → 6A is defined by(σ (x))i = xi+1. We
also consider the (non-invertible) one-sided shiftσ+ defined on the space of one-sided
sequences6+

A with Z replaced byZ+ in (2.1). Let g be a bounded complex-valued
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function on6A or 6+
A , setf = σ , and define theweighted dynamical zeta functionof

the pair(f, g) to be the formal power series

ζg(z) = exp
∞∑
n=1

zn

n

∑
x∈Fix f n

n−1∏
k=0

g(f k(x)) (2.2)

where Fix(f ) = {x ∈ X | f (x) = x} for any mapf : Y → X with Y ⊂ X. In the case
g ≡ 1, one recovers the Artin–Mazurunweighted dynamical zeta function(1.1). Define
the transfer operatorassociated to the pair(σ+, g) acting on (say, bounded) functions
ϕ : 6+

A → C by
Lgϕ(x) =

∑
y∈6+

A

σ+(y)=x

g(y)ϕ(y). (2.3)

The sum ∑
x∈Fix (σ+)n

n−1∏
k=0

g((σ+)k(x))

is called thecounting traceof the operatorLng.
Clearly,when the weightg is positive, the logarithm of the spectral radius ofLg acting

on the Banach space of bounded functions (with the supremum norm) is just

P := lim
n→∞

1

n
log sup

x∈6+
A

(Lng1) = lim
n→∞

1

n
log sup

x∈6+
A

∑
(σ+)n(y)=x

n−1∏
k=0

g((σ+)k(y)). (2.4)

If the positive weightg is continuous, one can prove that the real numberP defined
by (2.4) coincides with thetopological pressureP(logg) of the function logg. (See e.g.
Ruelle (1978), or Walters (1982) for the notion of pressure.) For a general continuous,
complex, but non-vanishingg, one shows that the spectral radius ofLg acting on bounded
functions is not larger than the spectral radius expP(log |g|) of L|g| acting on bounded
functions.

We now turn to a trivial but very enlightening example. In the special case when the
weight g is locally constant, i.e. if there isM ≥ 1 so thatg(x) depends only onxi for
0 ≤ i < M, the zeta functionζg(z) can be expressed in terms of the determinant of a
finite matrix (see e.g. Bowen and Lanford (1970), Parry and Williams (1977)): indeed,
after reducing to the case wheng(x) = gx0,x1, one introduces thed × d matrix A(g) by
settingA(g)ij = Aijgji . It is then easy to check that TrA(g) = ∑

x∈Fix σ g(x), and more
generally

TrAn(g) =
∑

x∈Fix σn

n−1∏
k=0

g(σ k(x))

(where An(g) is the nth power of the matrixA). Therefore, using the formula
Tr logB = log DetB (for a finite matrixB) we find

ζg(z) = exp
∞∑
n=1

zn

n
TrAn(g) = 1

Det(1 − zA(g))
. (2.5)

In particular, the zeta function is rational, and its poles are exactly the inverses of the
non-zero eigenvalues of the matrixA(g) (the order of the poles coinciding with the
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multiplicity of the eigenvalues). SinceA(g) is the matrix of the operatorLg acting on
thed-dimensional vector space of functionsϕ(x) depending only onx0 (in the canonical
basis), the interpretation of the zeta function as an inverse Fredholm determinant is
trivially true for locally constant weights. Finally, when the locally constant weightg

is positive, the classical Perron–Frobenius theorem for finite matrices (see e.g. Walters
(1982) for a statement) says thatA(g) admits a real positive eigenvalueeP equal to its
spectral radius, that whenever the matrixA is irreducible (i.e. for anyi, j there is ann
so that(An)ij > 0) this eigenvalue has algebraic multiplicity equal to one, and that ifA

is additionally irreducible and aperiodic (i.e. there isN > 0 such thatANij > 0 for all
i, j ) theneP is the only eigenvalue of maximal modulus. To relate the conditions onA

with topological properties of the dynamical system, recall (see e.g Walters (1982)) that
a subshift of finite type is one-sided topologically transitive if and only if the transition
matrix A is irreducible, and topologically mixing if and only if the transition matrixA
is irreducible and aperiodic.

The observations in the previous paragraph do not apply directly to more general,
non-locally constant, weightsg. One of the first successes of the theory of dynamical
zeta functions was the proof of an analogue of (2.5) for weightsg which areLipschitz
with respect to a metricdθ (x, y) = ∑

k∈Z
θ |k|(1 − δ(xk, yk)), for some fixed 0< θ < 1,

whereδ denotes the Kronecker delta. (Note that each inverse branch of the one-sided
shift σ+ is a θ -contraction for the metricdθ .) To state precisely this result, we need
more notation. WriteF+

θ for the Banach space of Lipschitz functionsϕ : 6+
A → C (for

d+
θ , the one-sided version ofdθ ), endowed with the norm‖ϕ‖ = sup|ϕ|+Lip(ϕ), where

Lip(ϕ) is the smallest Lipschitz constant forϕ. We first consider the spectral properties
of the transfer operatorLg, recalling that theessential spectral radiusof a bounded
linear operator acting on a Banach space is the smallestρ > 0 so that the spectrum of
the operator outside of the disc of radiusρ consists in a finite or countable set of isolated
eigenvalues of finite multiplicity.

THEOREM 2.1. (Quasicompactness)Assume thatg = expG whereG ∈ F+
θ .

(1) (Ruelle 1968, 1976a, 1978)The spectral radius ofLg : F+
θ → F+

θ is bounded above
by eP(log |g|) and coincides witheP(logg) if g > 0. If σ+ is topologically mixing on
6+
A andLg has an eigenvalue of moduluseP(log |g|) then this eigenvalue is simple and

the rest of the spectrum lies in a disc of strictly smaller radius.
(2) (Pollicott 1986)The essential spectral radiusρessof Lg : F+

θ → F+
θ is equal to

θ · eP(log |g|). Every point in the open disc of radiusθ · eP(log |g|) is an eigenvalue of
infinite multiplicity ofLg.

To prove the upper bound on the essential spectral radius in Theorem 2.1(2), one shows
that the iteratesLng can be exponentially well approximated by a sequence of finite rank
operators. The key ingredient used to obtain the required bounds is the existence of a
constantC > 0 such that for allϕ ∈ F+

θ and alln ∈ Z
+

Lip(Lngϕ) ≤ θn Lip(ϕ)+ C sup|ϕ|. (2.6)

(See Ionescu Tulcea and Marinescu (1950) for early occurrences of similar bounds.) The
proof of the bound (2.6) in the normalized caseL|g|1 ≡ 1 is by induction. It is based



Periodic orbits and dynamical spectra 261

on the fact that wheneverx0 = y0 (writing (jx) for the concatenation of the one-sided
sequencex ∈ 6+

A with the single symbolj ∈ S) we have

|(Lgϕ)(x)− (Lgϕ)(y)|
dθ (x, y)

≤
∑
j∈S
Ajx0=1

|g(jy)| |ϕ(jx)− ϕ(jy)|
dθ (x, y)

+
∑
j∈S
Ajx0=1

|g(jx)− g(jy)|
dθ (x, y)

|ϕ(jx)|

≤ θ Lip(ϕ)(L|g|1)+ dθ Lip(g) sup|ϕ|
= θ Lip(ϕ)+ C sup|ϕ|. (2.7)

The two terms on the right-hand side of (2.7) can be viewed as coming from an application
of the Lipschitz version of the Leibniz upper bound for the differentiation of a product.
The factorθ in front of the Lipschitz constant ofϕ is due to the composition ofϕ with
the contracting inverse branches ofσ+.

Note that ‘smoothness’ in the function space is essential in order to prove
quasicompactness. Replacing Lipschitz functions byα-Hölder functions one gets a factor
θα instead ofθ in Theorem 2.1(2). One can prove that each point in the the disk of
radius eP(log |g|) is an eigenvalue ofLg acting on continuous functions. In particular,
Lg will not have a gap when acting on the Hilbert spaceL2(dµ), for any probability
measureµ such thatLg is defined onL2(dµ). This is basically the reason why one is
often forced to do spectral theory on Banach spaces.

THEOREM 2.2. (Zeta function) (Pollicott 1986, Haydn 1990b)Assume thatg = expG,
whereG ∈ F+

θ . The zeta functionζg(z) (2.2) is analytic in the disc of radiuse−P(log |g|),
and admits a meromorphic and zero-free extension to the disc of radiusθ−1e−P(log |g|). Its
poles in this disc are exactly the inverses of the eigenvalues ofLg : F+

θ → F+
θ in the

corresponding annulus (the order of each pole coinciding with the algebraic multiplicity
of the eigenvalue).

We refer to Parry and Pollicott (1990, ch. 10) for a proof of Theorem 2.1 and
Theorem 2.2 (see also Baladi (1995a, 1.2) for a short sketch). In§3.2 we shall briefly
describe the slightly more sophisticated proof of similar but more powerful results in a
differentiable setting.

The introduction of the one-sided spacesF+
θ was useful to work with transfer operators

associated to one-sided shifts with contracting inverse branches. When the weightg is
two-sided, one can study the zeta function (2.2) with the help of the following lemma.

LEMMA 2.3. (Two-sided to one-sided) (Sinai 1972, Bowen 1975)Let G ∈ Fθ . There
existG+ andψ in F√

θ such thatG = G+ +ψ −ψ ◦ σ , andG+(x) = G+(y), whenever
xi = yi for all i ≥ 0 (abusing notation:G+ ∈ F+√

θ
).

Indeed, whenever two functions differ by a coboundaryϕ1 = ϕ2 + ψ − ψ ◦ σ , the
sums

∑n−1
k=0 ϕi(σ

k(x)) coincide wheneverσn(x) = x. If the functions are additionally
real valued, one checks that the pressuresP(ϕ1) andP(ϕ2) coincide.
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We now briefly recall how the above results are applied toC1 Anosov
diffeomorphisms, or more generally Axiom A diffeomorphisms, on compact manifolds.
We refer to Bowen (1975) and Parry and Pollicott (1990) for details and references. A
diffeomorphismf is called Axiom A if:
(1) the non-wandering set3 of f coincides with the closure of the set of periodic

points;
(2) there exist a decompositionT3 = Eu ⊕ Es of the tangent bundle over3, and

constantsC > 0, 0< θ < 1 so that for allx ∈ 3 and alln ∈ Z
+,

‖Df nx v‖ ≤ Cθn‖v‖, ∀v ∈ Esx, ‖Df −n
x v‖ ≤ Cθn‖v‖, ∀v ∈ Eux .

By Smale’s (1967) spectral decomposition, we may restrictf to a basic set� ⊂ 3

on which it is topologically transitive. Such a map can be modelled by a topologically
transitive subshift of finite type via the use of Markov partitions. More precisely, there
exist a subshift(σ,A) (with metric dθ , for θ the contraction constant off ), and a
Lipschitz surjective mapπ : 6A → �, such thatf ◦ π = π ◦ σA. The non-injectivity
of π is due to the fact that the rectangles of the Markov partition can meet on their
boundaries. To cancel the overcounting of periodic points on these boundaries, Manning
(1971) associated tof finitely many auxiliary subshifts of finite type{σi}i=0,...,K (with
σ0 = σ , the other shifts semi-conjugated with restrictions off by projectionsπi), and
signsεi ∈ {−1,1} such that we have the counting formula

# Fixf n =
K∑
i=0

εi · # Fixσni

for eachn. Therefore, writingζi for the zeta function ofσi , Smale’s (1967) spectral
decomposition together with the remark (2.5) of Bowen and Lanford (1970) give
ζ(z) = ∏K

i=0 ζi(z)
εi . This proves the following.

THEOREM 2.4. (Manning 1971)The unweighted zeta function (1.1) of aC1 Axiom A
diffeomorphism is rational.

For zeta functions weighted by anα-Hölder functiong : � → C, first lift g to
functionsḡi ∈ Fθα via the projectionsπi . Then, using Theorem 2.2, one can prove the
following.

THEOREM 2.5. (Axiom A: weighted case) (Pollicott 1986, Haydn 1990b)Let f be aC1

Axiom A diffeomorphism on a transitive basic set�, with contraction coefficientθ < 1,
and let g : � → C be α-Hölder. Then the weighted zeta functionζg(z) is analytic
and non-zero in the disc|z| < e−P(log |g|), and admits a meromorphic extension to the
disc |z| < θ−α/2 · e−P(log |g|), where its poles and zeros are a subset of the inverses of
eigenvalues of eachLḡi onF+

θα/2
outside of the disc of radiusθα/2 · eP(log |g|).

To end this subsection on applications of symbolic dynamics to uniformly hyperbolic
diffeomorphisms, we briefly discuss the important relationship between the poles of
weighted zeta functions and the decay ofcorrelation functionsof the equilibrium state
associated to the corresponding weight. Recall (Ruelle 1978, Walters 1982) that the set
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of equilibrium states associated to a pair(f, ψ), wheref : X → X is a continuous map
on a metric space andψ : X → R is a continuous function, is the (possibly empty) set
of f -invariant Borel probability measures onX realizing the supremum

P(ψ) = sup

{
hµ(f )+

∫
ψ dµ

}
(2.8)

wherehµ(f ) denotes the Kolmogorov–Sinai (measure-theoretical) entropy of the pair
(f, µ). The variational principle of Walters asserts that the supremum in (2.8) coincides
with the topological pressureP(ψ) of (f, ψ).

Let f be aC1 Axiom A diffeomorphism on a transitive basic set�, and let ḡ be
a lift to 6A of a positiveα-Hölder continuous weightg : � → R

+
∗ . The maximal

eigenfunctionϕ0 for Lḡ, and the maximal eigenmeasureν0 for the dual ofLḡ determine
a σ -invariant ergodic probability measurēµ which is the unique equilibrium state for
log ḡ andσ (Ruelle 1976a). The projectionµ of µ̄ to� is the equilibrium state for logg
andf . If f |� is topologically mixing,A is irreducible and aperiodic and the measureµ

is mixing.
Assume for a moment that� is an attractor forf (i.e. there is an open neighbourhood

U of � with f (U) ⊂ U ), that f is C1+ε , and consider the special weightg(x) =
1/| DetDf |Eu(x)|, whereEu is the unstable bundle off (recall thatEu is Hölder
continuous, but usually notC1, so thatg(x) is usually onlyα-Hölder for someα, see
e.g. Katok and Hasselblatt (1995, ch. 19) and references therein). ThenP(logg) = 0,
and the projectionµ of µ̄ to � is theSinai–Ruelle–Bowen (SRB) measurefor f , i.e. the
unique probability measure whose conditionals on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure (see Bowen (1975, ch. 4) for proofs and
references). This measure is thephysical measurebecause for Lebesgue almost allx in
a neighbourhood of the attracting basic set�, the time averages1

n

∑n−1
i=0 δf i(x) (whereδy

is the Dirac mass aty) weakly converge toµ whenn → ∞.
For an equilibrium stateµ associated to a general positiveα-Hölderg, define for any

fixed pair ofα-Hölder continuous observablesϕ,ψ : � → C the correlation function
Cϕ,ψ : Z → C:

Cϕ,ψ(k) =
∫
�

(ϕ ◦ f k) · ψ dµ−
∫
�

ϕ dµ ·
∫
�

ψ dµ. (2.9)

In view of studying the decay rate ofCϕ,ψ(k), it is natural to consider the formal Fourier
transformĈϕ,ψ(ω) = ∑

k∈Z
eiωkCϕ,ψ(k). If we can show that̂Cϕ,ψ is meromorphic in a

strip for all α-Hölderϕ, ψ , it makes sense to define thecorrelation spectrum(or Ruelle
resonances) ofµ to be the union of the poles of thêCϕ,ψ .

Consider the liftsϕ̄ andψ̄ of ϕ, ψ to 6A andassume that they only depend onxi for
i ≥ 0 (we call such observablesone-sided). Using the notation above and assuming for
simplicity that the spectral radius ofLg is 1, we have∫

6+
A

(ϕ̄ ◦ (σ+)k) · ψ̄ · ϕ0 dν0 =
∫
6+
A

Lkḡ((ϕ̄ ◦ (σ+)k) · ψ̄ · ϕ0) dν0

=
∫
6+
A

ϕ̄ · Lkḡ(ψ̄ · ϕ0) dν0. (2.10)
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Therefore, there is a constantC > 0 so that for allα-Hölderϕ andψ

|Cϕ,ψ(k)| ≤ sup

∣∣∣∣Lkg(ψ̄ · ϕ0)− ϕ0

∫
6+
A

ψ̄ · ϕ0 dν0

∣∣∣∣ ·
∫
6+
A

|ϕ̄| dν0

≤ C

∫
6+
A

|ϕ̄| dν0 · (sup|ψ̄ | + ‖ψ̄‖α) · κk, (2.11)

whereκ = sup{|z| | z ∈ spectrum(Lḡ), z 6= 1}. Sinceκ < 1 by Theorem 2.1, we have
proved that the correlation functionCϕ,ψ(k) goes to zero exponentially fast with a rate
independent of theone-sidedα-Hölder observablesϕ andψ .

This property of exponential decay of correlations (or the exponential cluster property)
of Hölder equilibrium states of Axiom A diffeomorphisms, with uniform rate, was proved
20 years ago for generaltwo-sidedHölder test functions (Ruelle (1976a), see also Bowen
(1975,§1.E)), but the relationship between the rate of decay and the spectral gap ofLḡ
(a fortiori a ‘polar gap’ for a zeta function) was not established at that time. A new
proof of exponential decay of correlations of two-sided Hölder observables for the SRB
measure of Axiom A attractors has been obtained recently using very elegant Birkhoff
cone techniques (Liverani (1995) introduced the method in the Anosov area-preserving
case, and Viana (1997) later extended his strategy), bypassing Markov partitions and
symbolic dynamics. However, the exact value of the rate of decay, anda fortiori the
rest of the correlation spectrum, do not seem to be accessible by these methods.

Before we state the most precise result available in the symbolic dynamics setting,
we go back to the one-sided observablesϕ andψ , and observe that formally evaluating
a geometric series gives

Ĉϕ,ψ(ω) = ν0(ϕ̄(1 − e−iωρ−1
g Lḡ)−1(ϕ0ψ̄))

+ν0(ψ̄(1 − eiωρ−1
g Lḡ)−1(ϕ0ϕ̄))− ν0(ϕ0ϕ̄ψ̄), (2.12)

whereρg = eP(logg) denotes the spectral radius ofLḡ onF+
θ . Using the results mentioned

above and handling carefully the transition from two-sided to one-sided observables, one
obtains the following theorem.

THEOREM 2.6. (Axiom A: correlation spectrum) (Pollicott 1985, Ruelle 1987a, Haydn
1990a)Letf be aC1 Axiom A diffeomorphism on a transitive basic set�, with contraction
coefficientθ , and letµ be an equilibrium state for anα-Hölder weightg > 0 on�. For α-
Hölder observablesϕ,ψ on�, the Fourier transformĈϕ,ψ(ω) of the correlation function
for µ extends to a meromorphic function in the strip|=ω| < logθ−(α/2), regular atω = 0.
The position of the poles is independent ofϕ,ψ (although residues can vanish). More
precisely there is a holomorphic functionNϕ,ψ on the strip|=ω| < logθ−(α/2) such that

Ĉϕ,ψ(ω) = Nϕψ(e
iω)ζḡ(e

iω−P(logg))+Nψϕ(e
−iω)ζḡ(e−iω−P(logg)), (2.13)

with ζḡ the weighted zeta function of a subshift of finite type modelingf via a Markov
partition, and the corresponding lift̄g of g. If the basic set� is mixing, thenĈϕ,ψ(ω)
admits an analytic extension to a strip|=ω| < log(1/κ) with κ = maxi (κi) < 1 the
smallest spectral gap of theLḡi .
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The poles ofĈϕ,ψ(ω) are called theresonances(or correlation spectrum) of f for
µ. In the mixing case, the poles with smallest possible imaginary part in absolute value
correspond to the rate of decay of correlations for genericα-Hölder observables. The
real part of these first resonances indicates how the decay is modulated (see Eckmann
(1989)). The next resonances correspond to the decay rate of observables in subspaces
of finite codimension.

Although Theorem 2.6 represents the optimal result for subshifts of finite type, the
boundaries of the Markov partitions are a source of problems when translating back
the results to�. In particular, the quotientζ fg /ζ σḡ could in principle have ‘spurious’
zeros and poles in the disc of radiusθ−(α/2)e−P(logg). A more serious drawback of this
approach is the fact that higher differentiability (e.g. analyticity: see§3.1) of the original
dynamics-weight pair is lost via symbolic dynamics, where only a metric space structure
is available. See§4 for techniques which go a long way in overcoming this limitation.

2.2. Axiom A flows. Let X be a metric space. Theunweighted zeta function of a flow
8t : X → X with at most countably many closed orbits is defined by

ζ ∗(s) =
∏

τ primitive periodic orbit

(1 − e−s·`(τ ))−1, (2.14)

where`(τ ) is theprimitive lengthof the closed orbitτ , i.e. the smallestt0 > 0 such that
8t0(x0) = x0 for any pointx0 on the orbit. We use the terminology primitive periodic
orbit to emphasize that each closed orbit is counted once in the Euler product expression
(2.14) (in (2.2), a fixed point off n also appears as a fixed point off m·n for all m ≥ 1).

In order to study the analytic properties of the zeta function (2.14), or more generally
its weighted analogueζ ∗

G(s), whereG : X → C is bounded, say, and−s ·`(τ ) is replaced
in (2.14) by ∫ `(τ )

0
(G(8t(x0))− s) dt. (2.15)

we shall use the Bowen and Ruelle (1975) approach to the ergodic theory of Axiom A
flows. Just like Ratner’s (1969) original approach in dimension three, it uses Markov
sections and is based on the following symbolic model. Let8t be a flow obtained
by suspending the subshiftσ of §2.1 under a positive return timer ∈ F+

θ , i.e. set
6r
A = {(x, t) | x ∈ 6A,0 ≤ t ≤ r(x)}/ ∼ with (x, r(x)) ∼ (σ (x),0), and define

8t : 6r
A → 6r

A by 8t(x, u) = (x, u+ t), if 0 ≤ u+ t < r(x), extending to other values
of t with the equivalence∼. Formally the unweighted zeta function (2.14) of8t can be
rewritten (using the notation (2.2) for the one-parameter weightg(x) = e−sr(x))

ζ ∗(s) = exp
∞∑
n=1

1

n

∑
x∈Fix σn

exp

(
− s

n−1∑
k=0

r(σ kx)

)
= ζexp(−sr)(1). (2.16)

(The functionζe−sr (z) which appears here is one of the many examples of two-variable
zeta functions. See (5.10) later, and e.g. Parry and Pollicott (1990) for more details.)

In the case of the suspension ofσ under the constant return timer ≡ 1, we get
ζ ∗(s) = 1/Det(1 − e−s · A), so that the zeta function is not rational, but meromorphic
in the whole complex plane; its poles are the countably many pointss for which 1 is an
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eigenvalue of the finite matrixe−s ·A. In particular, ifs is a pole thens+2kiπ is a pole
for any integerk, so that there are countably many poles on the boundary of the half-plane
of convergence. Note that this suspended flow is clearly nottopologically weak-mixing,
i.e. there exist a non-constant continuous functionϕ andβ ∈ R with ϕ ◦8t = eiβtϕ for
all t . (See later in this subsection for more on the relationship between mixing properties
of the flow and poles of the zeta function.)

For a generalr ∈ F+
θ , we consider the mapg 7→ ζg(1) as a complex-valued function

on the Banach spaceF+
θ . Using the notion of meromorphic functions between Banach

spaces (see e.g. Dunford and Schwartz (1957)), Theorem 2.2 and (2.16) imply that
ζ ∗(s) is analytic and non-zero in the set ofs such thatP(−<s · r) < 0, and admits
a meromorphic extension to the setP(−<s · r) < logθ−1. Since r > 0, the map
t 7→ P(−t · r) is monotone decreasing and these sets are half-planes. Using Abramov’s
theorem on the entropy of a suspension, Bowen and Ruelle (1975) have shown that the
topological pressure ofσ satisfiesP(−h∗

top · r) = 0, whereh∗
top is the topological entropy

of the suspension ofσ underr.

THEOREM 2.7. (Symbolic suspended flow zeta function) (Pollicott 1986, Ruelle 1987b,
Haydn 1990b)The unweighted zeta functionζ ∗(s) of the suspension of a subshift of finite
type underr ∈ F+

θ is analytic and non-zero in the half-plane<s > h∗
top, and admits

a meromorphic extension to the set<s > δ, with poles wheneverLexp(−sr) has 1 as an
eigenvalue, whereδ < h∗

top is the unique real number such thatP(−δ · r) = logθ−1.

See Parry and Pollicott (1990, ch. 6, 7, 9, 10) for other formulations, and for statements
on weighted zeta functions of suspensions of shifts. The zeta functionζ ∗(s) may have
a non-polar singularity (Gallavotti 1976, Pollicott 1986) arbitrarily close to the boundδ

in Theorem 2.7 (the constructions are inspired from the Fisher (1967) droplet model, see
also §5.2). Theorem 2.7 may be reformulated for Axiom A flows using an appropriate
counting procedure (see Parry and Pollicott (1990, ch. 9 and Appendix III) for details).

THEOREM 2.8. (Axiom A flow zeta function)Let8 be aC1 Axiom A flow on a transitive
basic set, with topological entropyh∗

top, and contraction coefficientθ = e−γ < 1. The
zeta functionζ ∗(s) is analytic and non-zero in the half-plane<s > h∗

top, and has a
meromorphic extension to the half-plane<s > h∗

top − (γ /2), with poles only when some
Lexp(−sri ) acting on a suitable space has1 as an eigenvalue, whereri : 6Ai → R+ is the
return time arising from a Markov section. If8 is topologically weak-mixing, there exists
an open neighbourhood of the half-plane<s ≥ h∗

top in which the only singularity ofζ ∗(s)
is a simple pole ats = h∗

top.

The following result is a consequence of Theorem 2.8 and Tauberian theorems.

THEOREM 2.9. (Prime orbit theorem) (Parry and Pollicott 1983)Let 8 be a C1

topologically weak-mixing Axiom A flow with topological entropyh∗
top. Then, if5(t)

denotes the number of primitive periodic orbitsτ such thatexp(h∗
top · `(τ )) ≤ t , we have

5(t) ∼ t

log t
whent → ∞, i.e. lim

t→∞

∣∣∣∣ 5(t)

(t/ log(t))

∣∣∣∣ = 1. (2.17)
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Another application of Theorem 2.8 is the proof of the regularity of the metric entropy
of an Anosov flow when the flow is varied (Katoket al (1989); see Contreras (1992) for
a more precise result, using a thermodynamic formalism but no zeta functions).

Just as in Theorem 2.6 for the discrete-time case, it is possible to relate the
analytic properties of the Fourier transform of the (continuous-time) correlation functions
associated to equilibrium states for a suspension of a subshift of finite type and Hölder
continuous observables with the poles of the correspondingly weighted zeta function
(Pollicott 1985, Ruelle 1987b, Haydn 1990a). Again, the case when the weightG is
related to the unstable Jacobian of the flow is of special interest since it corresponds to the
physical SRB measure (Bowen and Ruelle (1975), Bowen (1975, ch. 4)). In particular,
a necessary condition to guarantee (via Paley–Wiener theorems) exponential decay of
correlations is the existence of a vertical pole-free stripP ∗(<G)− δ < <z ≤ P ∗(<G),
with the exception of the simple pole atz = P ∗(<G), whereP ∗(<G) is the topological
pressure of<G with respect to the flow (see Bowen and Ruelle (1975)). However,
Theorem 2.7, or its weighted analogues, donot exclude accumulation of poles along
the vertical<s = P ∗(<G) for a weak-mixing flow. In fact, it is possible to construct
examples of weak-mixing Axiom A flows with correlation functions (for equilibrium
states of Ḧolder potentials) decaying arbitrarily slowly (Ruelle 1983, Pollicott 1984).
It has been known for some time (Moore 1987, Ratner 1987, Colletet al 1984)
that the correlation function decays exponentially in the case of geodesic flows on
manifolds of constant negative curvature. The question of whether Anosov flows, or
just geodesic flows on surfaces of non-constant negative curvature, have exponentially
decaying correlation functions remained open for a long time. Recently, Chernov
(1995) obtained, by using Markov approximations, asubexponentialdecay property
(Cϕ,ψ(t) ≤ Kϕ,ψe

−β√
t with β > 0) for the correlation function associated with the

SRB measure of Anosov flows satisfying a uniform non-integrability condition (which
basically implies that the stable and unstable foliations are Lipschitz) on three-manifolds.
See Liverani (1996) for a conceptualized extension of Chernov’s approach to higher
dimensions, which explicitly uses stochastic perturbations of the flow. (The approaches
of Chernov and Liverani do not seem to have connections with dynamical zeta functions.)
More recently, Dolgopyat (1996a) provedexponential decay of correlationsfor the SRB
measure and Ḧolder observables, in the case ofC2+ε weak-mixing Anosov flows on
compact manifolds, withC1 stable and unstable foliations (this smoothness requirement,
which is satisfied in particular by geodesic flows in negative curvature, replaces in
some sense Chernov’s uniform non-integrability assumption). His result is based on
a refined study of the spectral radius of operatorsLge−sr from the above-mentioned
approach of Pollicott and Ruelle. The proof also shows that the corresponding weighted
zeta function is analytic in a half-plane<s > P ∗(<G) with the exception of the
simple pole ats = P ∗(<G). Dolgopyat (1996a, 1996b) also showed that correlation
functions associated to equilibrium states coming from Hölder weights, for Ḧolder
observables, decay rapidly in the sense of Schwartz forC∞ weak-mixing Anosov
flows on compact manifolds (without assuming smoothness of the stable and unstable
foliations), and for more general Axiom A flows under additional assumptions. In this
case, it follows from his proof that the relevant weighted zeta function is pole-free in a
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domain{|<z − P ∗(<G)| ≤ |=z|−ξ , z 6= P ∗(<G)} (for someξ > 0).

3. Smooth expanding dynamics and flat traces
We now turn our attention to the smooth, locally expanding situation: we fixγ > 1 and
r ≥ 2 or r = ω, and consider pairs(f, g), wheref : M → M is aCr andγ -expanding
transformation of a compact manifold, i.e. for anyx ∈ M and anyv ∈ TxM we have
‖Dfxv‖ ≥ γ ‖v‖ (such maps are automatically topologically mixing because they are
factors of full shifts), andg : M → C is aCr weight. We associate a transfer operator
to (f, g) via (2.3). (Again, one particularly interesting weight isg = 1/| DetDf |.) In
fact, many results in this section hold in the more general setting where the finitely many
contracting local inverse branches of a mapf are replaced by a finite, countable or even
uncountable (in this case the sum in (2.3) should be replaced by an integral) family of
contractionsfi defined onM, or subsets ofM (see Ruelle (1990) and Fried (1995a)),
paired with weightsgi (which can be replaced by vector bundle maps). For the sake of
simplicity, we restrict this study, however, to the dynamical situation(f, g) (see§6 for
a discussion where it is important to allow more flexibility).

We shall see that, although the zeta function (2.2) still describes part of the discrete
spectrum ofLg, a better generalized Fredholm determinant is obtained by replacing the
counting trace with aflat trace

Tr[ Lg =
∑
x∈Fix f

g(x)

| Det(1 −Df −1
x (x))| , (3.1)

(wheref −1
x is the local inverse branch off such thatf −1

x (x) = x) so that

Tr[ Lng =
∑

x∈Fix f n

∏n−1
k=0 g(f

kx)

| Det(1 −Df −n
x (x))| . (3.2)

For the reader’s convenience, we reproduce from the survey Baladi (1995a,§3.1) a
heuristic argument motivating the denominator in (3.1)–(3.2).

First, observe thatLg can be written as an operator with a (highly non-smooth) kernel:

Lgϕ(x) =
∫
M

δ(fy − x) · g(y) · | DetDf (y)| · ϕ(y) dy

=
∑
i

∫
M

δ(y − fi(x)) · g(y) · ϕ(y) dy, (3.3)

whereδ(·) is the Dirac delta, and thefi are the finitely many contracting inverse branches
of f (here, we neglect the problem of overcounting of periodic points on boundaries
discussed above Theorem 2.4). Forgetting that the Dirac delta is not a continuous
function, we apply classical Fredholm theory (Riesz and Sz.-Nagy 1955) to compute
formal traces, and find the same expression as in (3.1):

‘Tr’ Lg =
∑
i

∫
M

δ(x − fix) · g(x) dx =
∑
x∈Fix f

g(x)

| Det(1 −Df −1
x (x))| , (3.4)

where the determinant in the denominator of (3.4) follows from the change of variable
formula. We may regularize the kernel of our transfer operator by convolving the dirac
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with smooth functions, producing trace-class operators whose traces converge to the flat
trace (3.4). (Note, however, that this approach isnot the one which has been implemented
to obtain the results mentioned in this section, an exception being the strategy applied by
Tangerman (1986), who used heat operators.) The ‘damping’ or ‘flattening’ convolution
procedure just described explains the terminology ‘flat’, which also refers to the analogy
with the work of Atiyah and Bott (1964, 1967, 1968).

The flat traces can be used to construct ageneralized Fredholm determinant(flat
determinant)

d[g(z) = exp−
∞∑
n=1

zn

n
Tr[ Lng = exp−

∞∑
n=1

zn

n

∑
x∈Fix f n

∏n−1
k=0 g(f

kx)

| Det(I −Df −n
x (x))| . (3.5)

In the special case wheng = 1/| DetDf | < 1, we have another expression for the flat
determinant:

d
[

1/| DetDf | = exp−
∞∑
n=1

zn

n

∑
x∈Fix f n

1

| Det(Df n(x)− I )| . (3.6)

The weighted dynamical zeta function (2.2) can formally be expressed as a finite
product of auxiliary flat determinants: in dimension one, it is simple to check thatζg(z) =
d
[

(g/Df )/d
[
g(z) (by definition d[(g/Df ) is the determinant associated withL(1) = L(g/Df ),

which can be interpreted as the action of the pair(f, g) on 1-forms). In dimension
d ≥ 2 we may use the formula Det(1 − B) = ∑d

`=0(−1)` Tr(3`B) where3`B is the
`th exterior product of the finite matrixB. (The corresponding operatorsL(`)g describe
the action of(f, g) on `-forms, see Ruelle (1976b).)

We shall see in§3.1 that the transfer operator acting on holomorphic functions is
compact (even nuclear in the sense of Grothendieck (1955, 1956)) when the pair(f, g)

is analytic, so that the flat trace is the ‘true’ trace andd[(z) is the Grothendieck–Fredholm
determinant ofLg. In particular,d[(z) is an entire function whose zeros in the plane
are the inverses of (all) the eigenvalues ofLg, whereas the poles of the dynamical
zeta functionζg(z) coincide with the inverse eigenvalues only in a disc. (Particularly
enlightening examples are those of the mapsw 7→ w2 andx 7→ 2x(mod 1), on the unit
circle and interval, respectively, with weightg = 1/2.) In §3.2 we consider the case of
finite differentiability, where the operator is only quasicompact (as in§2), but where the
flat determinant again ‘sees’ more of the discrete spectrum than the zeta function.

3.1. Analytic expanding systems.Let γ > 1,M be a compact, connected, real analytic
manifold andf : M → M be a real analytic,γ -expanding map. We consider a complex
neighbourhoodU of M, and we setA to be the Banach space of holomorphic functions
on U with a continuous extension to the boundary. IfU is not too big,f and g can
be extended analytically toU , preserving theγ -expanding property off . We refer to
Baladi (1995a, 4.1) for a heuristical explanation (in dimension one) of whyLg is a nuclear
operator of order 0 in the sense of Grothendieck (1955) (see Mayer (1991a) for a very
readable account of the mathematical argument). Before mentioning the main result, we
present the idea of the proof of Mayer (1976) that the trace (3.1) is the sum of eigenvalues
of Lg whenM = S1. For this, writingFk, k = 1, . . . , d, for the finitely many inverse
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branches off (in particular,Lg = ∑
k Lg,k with Lg,kϕ = (g · ϕ) ◦ Fk), and noting the

unique fixed point ofFk by zk, it suffices to show that the spectrum of eachLg,k acting
on A coincides with the set of simple eigenvaluesEk = {0, g(zk) · (DFk(zk))`, ` ≥ 0}.
Indeed, this would imply that

TrLg =
d∑
k=1

TrLg,k =
d∑
k=1

∑
`≥0

g(zk)(DFk(zk))
` =

∑
zk∈Fix f

g(zk)

|1 −Df −1
zk (zk)|

. (3.7)

We now show that the spectrum of eachLg,k is a subset ofEk: the eigenvalue property
means thatLg,kϕ(z) = λϕ(z) = (g · ϕ)(Fk(z)) for all z. Specializing toz = zk gives
λ = g(zk) if ϕ(zk) 6= 0. If ϕ(zk) = 0 butDϕ(zk) 6= 0, we findλ = g(zk)DFk(zk). The
general case isDjϕ(zk) = 0, 0≤ j < `, D`ϕ(zk) 6= 0.

THEOREM 3.1. (Flat determinant for analytic expanding maps) (Ruelle 1976b, 1990,
Fried 1986a)Let γ > 1, M be a compact, connected, real analytic manifold, and let
f : M → M be a real analytic,γ -expanding map. Letg : M → C be real analytic.
Then the functiond[g defined in (3.5) is entire of finite order, and its zeros are the inverses
of the non-zero eigenvalues of the compact (in fact nuclear) operatorLg acting on the
Banach spaceA. The dynamical zeta functionζg(z) (2.2) can be written as a quotient of
entire functions of finite orderζg(z) = d̄(z)/d̃(z).

A more general statement can be found in Fried (1995a). The convergence to zero of
the kth eigenvalue ofLg is exponential in dimension one and subexponential otherwise
(see Fried 1986a). One of the key ingredients of the proof of Theorem 3.1 is the Cauchy
integral formula which allows one to write the transfer operator in (smooth) kernel
form. Analogous results hold for analytic Anosov diffeomorphisms or flows, under a
very strong assumption ofanalyticity of the stable/unstable foliations(Ruelle 1976b,
Fried 1986a). This assumption is satisfied for geodesic flows on compact surfaces of
constantnegative curvature, and gives a dynamical proof that the Selberg zeta function
is meromorphic in the whole complex plane. Besides applications to quantum chaos and
the cohomology of Kleinian groups mentioned in the introduction, the analytic expanding
flat determinants were used to study the spectrum of the Feigenbaum period-doubling
operator (Vulet al 1984, Christiansenet al 1990, Eckmann and Epstein 1990, Jianget al
1992). Mayer’s (1990, 1991b) beautiful analysis of the thermodynamic formalism for
the Gauss map (useful in studying the Selberg zeta function) contains a rare occurrence
of a transfer operator which is not only trace class when acting on a Hilbert space, but
is also self-adjoint.

For rational mapsf of the Riemann sphere, much stronger properties can be proved.
Rationality was obtained by Hinkkanen (1994) for unweighted zeta functions of rational
maps, and by Hatjispyros (1997) and Hatjispyros and Vivaldi (1995) for the zeta functions
of Chebyshev polynomials weighted by(f ′)k . Waddington (1997) studied zeta functions
associated with preperiodic points of hyperbolic rational maps. The striking results of
Eremenkoet al (1994) and Levin (1994), Levinet al (1991, 1994) on hyperbolic rational
maps, in particular for some quadratic polynomials, have been briefly presented in Baladi
(1995a, b).
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Keller (1989) combined the Grothendieck–Fredholm approach together with the
Hofbauer (1986) Markov extension presented in§5 to study piecewise invertible maps.

3.2. Differentiable expanding systems.Assume now thatM is a compact connected
C∞ manifold, thatf : M → M is Cr for some 1≤ r ≤ ∞ andγ -expanding for some
γ > 1, and thatg : M → C is Cr . We consider the Banach spaceCr (M) of Cr functions
ϕ : M → C endowed with a norm‖ · ‖r = ∑r

j=0 ‖Dj · ‖∞. The transfer operator (2.3) is
again only quasicompact, but higher differentiability gives a better upper bound for the
essential spectral radius.

THEOREM 3.2. (Quasicompactness) (Ruelle 1989)Let r ≥ 1, γ > 1, and letM be a
differentiable compact connected manifold. Letf : M → M beCr and γ -expanding,
and letg : M → C beCr .
(1) The spectral radius ofLg : Cr (M) → Cr (M) is bounded above byeP (where

P = P(log |g|) ∈ R ∪ {−∞}, defined in (2.4), is the spectral radius ofL|g| acting
on bounded functions). Ifg is non-negative, the spectral radius coincides witheP .
If g is positive,eP is a simple eigenvalue with a positive eigenfunctionψ0 and the
rest of the spectrum lies in a subset of a disc of radius strictly smaller thaneP .

(2) The essential spectral radius ofLg acting onCr (M) is bounded above byeP /γ r .

The first result in a differentiable, non-analytic setting was obtained by Tangerman
(1986) who considered theC∞ case and used a ‘heat kernel’ approach. The key bound
used to obtain Theorem 3.2(2) is the following ‘differentiable’ version of (2.6) (which
also appears in Tangerman’s work): there existsC > 0 so that

‖Lngϕ‖r ≤ C

r∑
j=0

‖Djϕ‖∞
γ nj

, ∀ϕ ∈ Cr (M),∀n ∈ Z
+. (3.8)

The bound (3.8) is again proved by a combination of the chain rule and the (classical)
Leibniz formula (the caser = 1 is essentially the same as (2.6), the reader is invited
to check the caser = 2 as an exercise), see e.g. Fried (1995a, Lemma 1). To bound
the essential spectral radius one then considers the sequence of operatorsLng5n, where
5n is a finite rank projection constructed from local Taylor approximations of functions
in Cr (M). (Contrary to the claim in Baladi (1995a, Proposition 3.1(2)), it is not known
whether all complex numbers with modulus smaller than the essential spectral radius of
Lg are eigenvalues.)

Exact formulas(as opposed to upper bounds) exist for the essential spectral radius
in various settings: Collet and Isola (1991) obtained a formula for the one-dimensional
case (see also Baladiet al (1996) for Ḧolder and Zygmund functions), Campbell and
Latushkin (1997) have an expression of the essential spectral radius as a Lyapunov
exponent, and Holschneider (1996) applied wavelet techniques to obtain the value of the
essential spectral radius for transfer operators acting on a variety of functional Banach
spaces (Besov, Triebel, Zygmund).
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THEOREM 3.3. (Flat determinant) (Ruelle 1990)Let r ≥ 1. Let f : M → M beCr and
γ -expanding, and letg beCr . The generalized Fredholm determinantd[g(z) associated
to (f, g) by (3.5) is analytic in the disc of radiuse−P γ r (with P = P(log |g|) defined
by (2.4)), where its zeros are exactly the inverses of the eigenvalues ofLg : Cr (M) →
Cr (M) of modulus strictly larger thaneP /γ r .

Fried proved more general versions of Theorems 3.2 and 3.3, using in particular (Fried
(1995a,§5)) a partition of unity to bypass the Manning-type overcounting argument used
by Ruelle (1989). Fried (1995a,§4) also obtained control of the asymptotics of the
eigenvalues.

We end this section with a very brief sketch of the proof of Theorem 3.3, when
M = S1, and for a strictly positive weightg. Assume (without restricting further
generality) thatP = 0 and that the operatorLg is normalized, i.e. preserves the
constant function 1. Fixing some2 > γ−r , Theorem 3.2(2) says that the spectrum
of Lg : Cr (M) → Cr (M) outside of the disc of radius2 consists ofK(2) < ∞
eigenvaluesλi , of finite algebraic multiplicitymi , and we have the followingspectral
decomposition

Lngϕ =
K(2)∑
i=1

λni (ψiL
n
i ψ

∗
i ϕ)+ RLngϕ, ∀ϕ ∈ Cr (M), ∀n ∈ Z

+, (3.9)

where eachLi is ami-dimensional matrix in Jordan form, eachψi is a row vector of
elements of a basis of a generalized eigenspace inCr (M) for λi , and eachψ∗

i is a column
of vectors forming a basis of the generalized eigenspace forL∗

g andλi . Finally, there
existsC > 0 so that‖LngR‖ ≤ C2n for all n ∈ Z

+. In (3.9) we have decomposedLng
into a finite rank operatorMn(2) (the sum overi), the trace of which is trivially equal
to

∑K(2)

i=1 miλ
n
i , and an exponentially decaying correctionRLng.

Consider now a Markov partition for the circle mapf , fix somen ∈ Z
+, and write

Zn for the nth refinement of the partition under the dynamics (we neglect the boundary
problems which are in fact quite troublesome, especially in higher dimensions). Write
χη for the characteristic function ofη ∈ Zn, and choose a pointxη in eachη, taking it
to be a fixed point off n if it is possible. A crucial consequence of the Markov property
is the dichotomy

(Lngχη)(xη) =
{
g(n)(xη) if f nxη = xη,
0 otherwise,

(3.10)

where we introduced the notationg(n)(x) = ∏n−1
k=0 g(f

k(x)). For 0 ≤ q ≤ r − 1 we
seteq,η(x) = (x − xη)

q · χη, ande∗q,η(ϕ) = (1/q!)Dq(ϕ)(xη). We may then rewrite the
left-hand side of (3.10) ase∗0,η(Lnge0,η), and yet another application of the chain rule and
the Leibniz formula (most terms cancel in the process) shows that for all 0≤ q ≤ r − 1

e∗q,η(Lngeq,η) = 1

q!
Dq(Lngeq,η)(xη) =

{
(Df −n

xη
(xη))

q · g(n)(xη) if f nxη = xη,
0 otherwise.

(3.11)

Observe now that by using (3.11), we may rewrite the flat trace (3.2) as
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Tr[ Lng =
∑

x∈Fix f n

g(n)(x)

1 −D(f −n
x (x))

=
∑

x∈Fix f n

r−1∑
q=0

g(n)(x)(D(f −n
x (x))q + En

=
∑
η∈Zn

r−1∑
q=0

1

q!
Dq(Lngeq,η)(xη)+ En, (3.12)

where |En| ≤ C/γ rn is the remainder from a geometric series. Using the spectral
decomposition (3.9) to expand the terms in the double sum in (3.12), we find by adding
and subtracting the trace ofMn(2) (which can also be written

∑K(2)

i=1 λni (L
n
i ψ

∗
i )

∗ψi)
that

∑
η∈Zn

r−1∑
q=0

1

q!
Dq(Lngeq,η)(xη)

= TrMn(2)+
[ ∑
η∈Zn

r−1∑
q=0

1

q!
Dq(Mn(2)eq,η)(xη)− TrMn(2)

]

+
∑
η∈Zn

r−1∑
q=0

1

q!
DqRLng(2)eq,η(xη)

=
K(2)∑
i=1

miλ
n
i + d(1)n + d(2)n , (3.13)

with

d(1)n =
K(2)∑
i=1

λni (L
n
i ψ

∗
i )

∗
( ∑
η∈Zn

r−1∑
q=0

1

q!
Dq(ψi)(xη) · eq,η − ψi

)
,

and

d(2)n =
∑
η∈Zn

r−1∑
q=0

1

q!
DqRLng(2)eq,η(xη).

Since
∑

η∈Zn
∑r−1

q=0(1/q!)Dq(ψi)(xη) · eq,η is just the sum of the local-order-r Taylor
approximations ofψi (on intervalsη of lengths of the orderγ−n), it is relatively
straightforward to prove that|d(n)1 | ≤ Cγ−rn. The bound|d(n)2 | ≤ C2n is more involved,
and uses the information we have on the decay ofRLng together with a telescoping
argument due to Haydn (1990b).

Combining theorems from Ruelle (1990) and techniques developed in Baladi
and Young (1993), the results in this section (and§5.1) have been extended to
random settings, especially in the small noise situation. In Baladi (1997), annealed
transfer operators andannealed random dynamical zeta functionsζ (a)(z) (or Fredholm
determinants) are defined by averaging over all possible closed random orbitsf

(n)

Eω (x) =
fωn−1 ◦ · · · ◦ fω1 ◦ fω0(x)

ζ (a)(z) = exp
∞∑
n=1

zn

n

∫ ∑
f
(n)

Eω (x)=x

n−1∏
k=0

gωk (f
(k)

Eω (x))p(dω0) . . . p(dωn−1). (3.14)



274 V. Baladi

It seems an interesting and non-trivial question to determine conditions ensuring that the
quenched random dynamical zeta function

ζ
(q)

Eω (z) = exp
∞∑
n=1

zn

n

∑
f
(n)

Eω (x)=x

n−1∏
k=0

gωk (f
(k)

Eω (x)) (3.15)

(or determinant) has poles (respectively zeros) which (for almost allEω) describe the
Lyapunov spectrum of the corresponding ergodic product of random transfer operators
Lωi onCr(M). See Bogenscḧutz (1997) for recent results on the Lyapunov spectrum of
such random operator cocycles.

4. Smooth hyperbolic dynamics and flat traces
The fact that the stable and unstable foliations of Axiom A or Anosov dynamical systems
are usually only Ḧolder continuous, even for analytic diffeomorphisms or flows, is a
major obstruction to the proof that the corresponding zeta functions admit meromorphic
extensions to large domains: an alternative to the (at most Lipschitz) symbolic approach
described in§2 is to construct an expanding system by projecting along stable manifolds,
but this system will only be as smooth as the foliation. A dual description of this difficulty
is the observation that it is not obvious to construct a space of functions (or distributions)
on the manifold for which a transfer operator associated to the full hyperbolic dynamics
f (as in (1.3)) is ‘smoothness improving’, i.e. reduces the higher-order part of the norm
in the sense of (2.6) or (3.8). (See Liverani (1995) for such a construction.) In very
vague terms, the distributions should be smooth along unstable manifolds but ‘dual to
smooth’ along stable ones. A major breakthrough was obtained in the early 1990s by
Rugh (1992, 1995, 1996a) who proved that the flat determinant is an entire function for
analytic hyperbolic diffeomorphisms on surfaces (with an analogous statement for flows
on three-dimensional manifolds). Fried (1995b) then gave a more conceptual and more
general analysis, extending the results to higher dimensions. (Both Rugh and Fried’s
approaches involve an application of the Grothendieck theory as in Ruelle (1976b), and
a combinatorial part based on Markov partitions using versions of Manning’s (1971)
counting argument.) Kitaev (1995a) then considered the technically much more difficult
case of finite differentiability.

We now state the simplest possible version of the main results of Rugh, Fried, and
Kitaev. We first define a continuous-time version of theflat generalized Fredholm
determinant: for 8t : M → M a flow with at most countably many periodic orbits
andg : M → C bounded, let

d[∗g (s) = exp−
∞∑
n=1

1

n

∑
τ primitive periodic orbit

exp(
∫ n`(τ)

0 g(8t(x0(τ ))− s dt))

| Det(I − (DP−1
τ )n(τ ))| , (4.1)

where`(τ ) is the primitive length ofτ , x0(τ ) is an arbitrary point ofτ , andDPτ is
the linearized Poincaré map of8 for τ . The determinant (4.1) is neither a (Ruelle)
dynamical zeta function like (2.14) nor exactly a Selberg zeta function, but something
‘in between’ (Fried (1995b, p. 179) uses the terminology ‘correlation zeta function’).



Periodic orbits and dynamical spectra 275

THEOREM 4.1. (Hyperbolic analytic determinant)LetM be a compact connected analytic
manifold, g : M → C an analytic function, andf : M → M an analytic Axiom A
diffeomorphism or8t : M → M an analytic Axiom A flow.
(1) (Rugh 1992, 1996a)The flat generalized Fredholm determinantd[g(z) associated to

(f, g) by (3.5) is an entire function ifM is two-dimensional. The flat generalized
Fredholm determinantd[∗g (s) associated to(8, g) by (4.1) is an entire function ifM
is three-dimensional.

(2) (Fried 1995b)The flat generalized Fredholm determinantsd[g(z) andd[∗g (s) defined
by (3.5) and (4.1) extend to meromorphic functions inC (in any dimension).

The flat determinants (3.5) and (4.1) are expected (Rugh 1995) to describe the
correlation spectra, in particular to have zeros in bijection with the SRB correlation
spectrum for the weightg = 1/| DetDf | (in the discrete time case), but this still requires
some investigation. Our normalization of the flat determinants is consistent with that in
§§2 and 3, but differs from the one used by Fried and Rugh, where| Det(Df n(x)− I )|
instead of| Det(I −Df −n(x))| (and analogously for flows) appears in the denominator,
and where the correlation spectrum of the SRB measure should correspond tog ≡ 1.

We now comment briefly on Theorem 4.1, limiting our discussion to the case of
discrete-time dynamics. In both approaches, the transfer operatorϕ 7→ (gϕ) ◦f −1 is not
analyzed globally. In order to obtain tractable (local) nuclear operators, the manifold and
dynamics are broken down into local pieces using Markov sections. A Manning-type
argument is used to put the pieces together again: this is the reason why one only gets
a meromorphic and not an entire function in Theorem 4.1(2). Rugh (1996a) conjectured
that both flat determinants are actually entire functions in any dimension, i.e. that all
‘poles’ are artefacts from the trick to suppress boundary overcounting. (Rugh obtains
the analyticity of the determinants inC in low dimension, by showing that all possible
‘poles’ are removable singularities.) Theorem 4.2 below proves Rugh’s conjecture for
C∞ Anosov maps andC∞ weights.

Rugh’s (1992, 1996a) key idea was to write a two-dimensional (complexified, local)
hyperbolic analytic diffeomorphism(z′

1, z
′
2) = f (z1, z2) onD1 ×D2 as

f (z1, ψs(z1, z
′
2)) = (ψu(z1, z

′
2), z

′
2), (4.2)

where bothpinning coordinatesψu, ψs are analytic contractions (D1 andD2 are close
to the stable, respectively unstable, direction). The transfer operatorL(g/| DetDf |)(ϕ) =
(ϕ · g/| DetDf |) ◦ f −1 can then be written using a Cauchy integral

L(g/| DetDf |)ϕ(z′
1, z

′
2) =

∫
∂D1

∫
∂D2

dz1

2iπ

dz2

2iπ

εf ∂1ψu(z1, z
′
2)g(z1, z2)

z2 − ψs(z1, z
′
2)

ϕ(z1, z2)

z′
1 − ψu(z1, z

′
2)
,

(4.3)
whereεf ∈ {−1,1} is a well-chosen sign. The operatorLg can then be proved to be
nuclear (Grothendieck 1955) when acting on the tensor product of functions holomorphic
in D1 with functions analyticoutsideof D2, and its trace (in the ordinary sense) can be
evaluated by Cauchy integration

TrLg = g(z∗)
| Det(I −Df −1(z∗))| = Tr[ Lg, (4.4)
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wherez∗ is the unique fixed point off in D1 ×D2. Fried (1995b) extended the above
procedure to a much more general setting. He introduced the notion of thecross map
C = (c1, c2) : D1 ×D′

2 → D′
1 ×D2 of a (local) hyperbolic mapf : D1 ×D2 → D′

1 ×D′
2

(or more generally, of a hyperbolic correspondence), which in the two-dimensional
analytic setting is given byC(z1, z

′
2) = (ψu(z1, z

′
2), ψs(z1, z

′
2)), and in general satisfies

f (z1, c2(z1, z
′
2)) = (c1(z1, z

′
2), z

′
2). (4.5)

(The order of the stable and unstable directions is not the same in the papers of Rugh
and Fried; we have adopted Rugh’s choice.) The cross mapC is in some sense a
(contracting)partial inverseof f . Under suitable assumptions, Fried then associates a
transfer operator to a complexified (local) hyperbolic map defined by its cross map by
considering thepartial adjoint of C̃, the action of the complexification ofC on volume
forms in the second variable (which involves the partial Jacobian ofC in the second
variable). (We skip completely Fried’s beautiful analysis of the Banach function spaces.)
A functoriality property analogous to the naturality of Rugh’s kernel is proved, and the
trace of the transfer operator is shown to satisfy a formula similar to (4.4). For this,
Fried uses a fixed-point formula due to Atiyah and Bott (1964) instead of the Cauchy
formula applied by Rugh.

Theorem 4.1 can be used to study the dynamical zeta function (2.2), respectively (2.14)
and (2.15), as explained after (3.5). As shown by Fried (1986a, b, 1988, 1995b) (see also
Moscovici and Stanton (1991), Sánchez-Morgado (1996)), inspired by observations of
Milnor, and Ray and Singer, one can sometimes express theRay–Singer or Reidemeister
torsion of an orthogonal (acyclic) representationα : 51(M) → Gl(m,C) of a manifold
M in terms of a special value of the dynamical zeta function (for the geodesic flow)

R(z) =
∏
τ∈P

Det(I − e−z`(τ )α(τ ))

or the torsion dynamical zeta function

Zα(z) = exp−
∑
τ∈P

∞∑
n=1

1

n
e−zn`(τ)ετ Trα(τ)

(whereP is the set of primitive closed orbits andεγ ∈ {±1}). The possible availability
of this topological information gives a motivation for extending the domain of analyticity
of these zeta functions.

We mention here the Fredholm determinant for semiclassical quantization introduced
by Cvitanovíc et al (1993), the rigorous foundation of which is expected to be found in
Theorem 4.1 and its extensions.
We now move to finitely differentiable systems.

THEOREM 4.2. (Differentiable hyperbolic determinant) (Kitaev 1995a)Let M be a
compact, connectedC∞ manifold, r ≥ 1, f : M → M a Cr Anosov diffeomorphism
with contraction constantθ < 1, andg : M → C a Cr function. Define

R̂g = lim
n→∞ sup

x∈M

∣∣∣∣ n−1∏
k=0

g(f k(x))

∣∣∣∣1/n

. (4.6)
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Then the flat generalized Fredholm determinantd
[
g(z) associated to(f, g) by (3.5) is an

analytic function in the disc of radiusθ−r/2R̂−1
g . In particular, if f and g are C∞ then

the flat determinant is an entire function.

Note the analogy between the exponentr/2 in Theorem 4.2 (where comparison with
Theorem 3.3 indicates a loss of one-half of the regularity ‘because’ of the co-existence
of contraction and expansion) and the exponentα/2 in the two sidedα-Hölder case
of Theorems 2.5 and 2.6 (see Lemma 2.3). The results announced in Kitaev (1995a)
actually apply tomixed transfer operatorsconstructed by summing over a family of
transfer operators associated to differentiable systems, all hyperbolic with respect to the
same cone field; also, the lower bound given there for the radius of convergence of
the flat determinant is more precise than the rough one given in Theorem 4.2. The
argument involves replacing the global operator by aregular operator, i.e. a sum of
local operators (analogous to Rugh’s (1992) rectangle maps and Fried’s (1995a) system
of hyperbolic correspondences), showing, however, that the determinant is unchanged in
the process. This uses a partition of unity, a tool not available in the analytic setting of
Theorem 4.1. Kitaev then analyses the local transfer operators by replacing them with
ε-perturbativeoperators which areε-close to operators associated with linear dynamics
and constant weights, controlling the errors. Iterates of theε-perturbative operators,
restricted to suitable finite-dimensional subspaces of generalized functions, give rise to
finite-dimensional matrices, whose traces approximate the flat traces of these iterates.
(No pre-built machinery is used here.)

5. Countable state dynamics in dimension one
In this section and the next we restrict our study to one-dimensional maps and weights,
but consider situations which allow for (countable) ‘grammars’, as opposed to the finite
Markov symbolic dynamics which were used more or less explicitly in the expanding or
hyperbolic cases of§§2 to 4. It will often be convenient to work with Banach spaces of
functions admitting discontinuities, in general functions of bounded variation; allowing
singularities, one also gives up the flat determinants, and reverts to the counting zeta
function (2.2). The one-dimensional setting has also been a testing ground for extending
the theory of§§2 to 4 to a non-uniformly hyperbolic situation (see§5.1, where the
phenomenology does not change essentially, in particular operators still have gaps and
correlation functions still decay exponentially), or even allowing neutral periodic orbits
(§5.2), where the situation changes drastically.

5.1. Uniformly and non-uniformly hyperbolic maps.Let I be a compact interval, say
[0,1], and consider a continuous mapf : I → I for which there exists a finite
(the extension to countable is possible under some technical assumptions) partition
0 = a0 < a1 < · · · < aN = 1 into intervals such thatf |[ai ,ai+1] is strictly monotone.
Recall that the variation of a functionϕ : I → C is defined to be

varI ϕ = sup

{ ∑
i

|ϕ(xi)− ϕ(xi−1)| | {xi} finite ordered subset ofI

}
. (5.1)
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The variation enjoys a rather nice change of variable formula since varJ ϕ ◦h = varh(J ) ϕ
(for J ⊂ I an interval andh : J → h(J ) a homeomorphism). It satisfies a Leibniz
inequality

var(ϕψ) ≤ varϕ sup|ψ | + sup|ϕ| varψ. (5.2)

A more annoying bound is

varI (χJψ) ≤ varJ ψ + 2 sup
J

|ψ |, (5.3)

(whereχJ is the characteristic function of the intervalJ ⊂ I ). The spaceB of functions
ϕ : I → C of bounded variation is endowed with the Banach norm‖ϕ‖ = sup|ϕ|+varϕ.

Forg : I → C of bounded variation, one defines the transfer operatorLg associated to
(f, g) by (2.3). AlthoughLg usually does not preserve the Banach space of continuous
functions (an exception is when the partitionZ of I into intervals of monotonicity of
f satisfies a Markov property), it is not difficult to check thatLg is a bounded operator
when acting onB. Following results of Hofbauer and Keller (1982, 1984), an analogue
of Theorems 2.1 and 2.2 was proved.

THEOREM 5.1. (Quasicompactness and zeta functions) (Baladi and Keller 1990)Let
f : I → I be a piecewise monotone map and letg : I → C be a continuous map
of bounded variation.
(1) The spectral radius ofLg : B → B is not larger thaneP(log |g|) and coincides with

eP(log |g|) if g > 0. The essential spectral radius ofLg is equal to

R̂g := lim sup
n→∞

sup
x∈I

∣∣∣∣ n−1∏
k=0

g(f k(x))

∣∣∣∣1/n

. (5.4)

(2) Assume that the partitionZ into intervals of monotonicity off is generating (i.e. the
maximal length of the intervals of monotonicity off n tends to zero whenn → ∞).
Then the dynamical zeta functionζg(z) defined by (2.2) is analytic in the disc of
radius e−P(log |g|) and admits a meromorphic extension to the disc of radiusR̂−1

g ,
where its poles are exactly the inverses of the eigenvalues ofLg outside of the disc
of radius R̂g (the order of the pole coincides with the algebraic multiplicity of the
eigenvalue).

Theorem 5.1 is mainly interesting when̂Rg < eP(log |g|). If f is piecewiseC1, we
get a strict inequality for the natural weightg = 1/|f ′| (for which a fixed point of the
transfer operator corresponds to an absolutely continuous invariant measure forf , since
the dualL∗

g preserves the Lebesgue measure) if supg < 1, i.e. if the map ispiecewise
expanding.

To prove the upper bound for the essential spectral radius one considers the sequence
of finite-rank operatorsLng5n, where5n is a projection to functions constant on the
intervals of monotonicity off n, using the basic properties of the variation semi-norm
mentioned above. The lower bound had been obtained by Keller (1984). The proof
of the result concerning zeta functions is very similar to the proof of Theorem 2.2 if
the partition into intervals of monotonicity is Markov. In the general case, a Markov
extension due to Hofbauer (1986) is used: the tower mapf̂ : Î → Î (with π : Î → I ,
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such thatπ ◦ f̂ = f ◦π ) is a piecewise monotone map defined on a countable family of
intervals, possessing a countable Markov partition with good combinatorics at infinity.
One proves the desired result for the lifted objectsL̂ĝ and ζ̂ĝ and then pushes them back
downstairs.

An elegant alternative proof of Theorem 5.1 was obtained by Ruelle (1994) who
viewed f : I → I as embedded in the full shift withd symbols (the weight function
in the extended space still has bounded variation). The continuity assumption ofg in
Theorem 5.1 can be suppressed (Ruelle 1994, Baladi 1995b).

We mention now results of Keller and Nowicki (1992), Young (1992), and Ruelle
(1993), which apply in particular to some smooth unimodal interval mapsf with
g = 1/|f ′|, where the function 1/|f ′| is unbounded (in particular not inB) so that
Theorem 5.1 does not apply.

We first introduce some exponents measuring the hyperbolicity of a piecewise
monotone interval mapf : I → I . The cylinder decay exponentis defined by

λη := inf
n

inf
η∈Zn

|η|−1/n. (5.5)

Assuming thatf is C1, we introduce thehyperbolicity exponent of periodic orbits

λper := inf
n

inf
x∈Fix f n

|(f n)′(x)|1/n. (5.6)

Assuming further that zero is the only critical point, theCollet–Eckmann exponent
(exponential of the Lyapunov exponent of the critical value) is given by

λCE := lim inf
n→∞ |(f n)′(f (0))|1/n. (5.7)

If f has negative Schwarzian derivative thenλη > 1 if and only if λper> 1 if and only
if λCE > 1 (Nowicki and Sands (1996)). Once more we restrict our study to the simplest
cases (more generalS-unimodal maps can be considered, as well as different versions of
the weightg).

THEOREM 5.2. Let f : [−1,1] → [−1,1] be a quadratic mapf (x) = a − x2, and set
g = 1/|f ′|.
(1) (Keller and Nowicki 1992)Assume thatλCE > 1. The weighted dynamical zeta

function ζg(z) defined by (2.2) is meromorphic and non-zero in the disc of radius
2 := max{√λCE,

√
λper, λη}, where its poles coincide with the inverses of the

eigenvalues of a transfer operator associated with a tower extensionf̂ : Î → Î

of f . In particular, ζg(z) is analytic in the open unit disc, and iff is topologically
mixing its only singularity on the closed disc is a simple pole atz = 1.

(2) (Ruelle 1993)In fact,ζg(z) extends to a meromorphic, non-vanishing function in the
disc of radiusλper ≥ 2.

The Collet–Eckmanns conditionλCE > 1 was proved to imply exponential decay
of correlations (for the unique absolutely continuous invariant measure and observables
of bounded variation) for non-flat topologically mixing unimodal maps with negative
Schwarzian derivative by Keller and Nowicki (1992), under some weak technical
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assumptions, using the spectral properties of the (Markov tower extension) transfer
operator mentioned in Theorem 5.2(1). Young (1992) independently proved exponential
decay of correlations, using a Benedicks–Carleson-type approach to construct a slightly
different (non-Markov) tower extension. A much more general tower construction has
been recently developed by Young (1996): this new tower (which has been used, in
particular, to show exponential decay of correlations for the SRB measure of ‘good’
Hénon maps, Benedicks and Young (1996))doessatisfy a Markov property, so it could
therefore perhaps be indicated that we study zeta functions of more complicated, higher-
dimensional, non-uniformly hyperbolic systems. See§6 for alternatives.

Nowicki and Sands (1996) recently proved in the context of topologically mixing
S-unimodal maps that the Collet–Eckmann conditionλCE > 1 is in fact equivalent to
the property of exponential decay of correlations for a unique absolutely continuous
invariant measure and observables of bounded variation. It is tempting to conjecture in
the same context that the zeta functionζ1/|f ′|(z) admits a meromorphic extension to a
disc of radius greater than 1, with a simple pole atz = 1 as the only singularity,if and
only if λCE > 1 (the ‘if’ direction follows from the results we stated). The modulus of
the first singularity not equal to 1 ofζ1/|f ′|(z) seems to be a rather natural hyperbolicity
exponent of the map. When this exponent is equal to 1, one could try to study the
nature of the singularity on the unit circle. (See§5.2 for branch cuts.) The question
of equivalence between the presence of a gap in the singularities of a weighted zeta
function or weighted determinant, and the existence of a unique SRB measure satisfying
exponential decay of correlations for Hölder observables, in the setting of Hénon maps
is much more challenging, since zeta functions of Hénon maps are basically unexplored
mathematically (see§6 for more comments).

We end with a few words about Ruelle’s (1993) elegant proof of Theorem 5.2(2),
based on an application of theBochner tube theorem(see e.g. Bochner and Martin
(1948)) which says that any functionF(u, s) which is holomorphic in two ‘tubes’

Ti = {(u, s) ∈ C
2 | (<u,<s) ∈ Ki ⊂ R

2}, i = 1,2 (5.8)

(whereK1, K2 are two open domains ofR2 with K1 ∩K2 6= ∅), admits a holomorphic
extension to the tube

T = {(u, s) ∈ C
2 | (<u,<s) ∈ K}, (5.9)

where K ⊂ R
2 is the convex hull ofK1 ∪ K2. To apply the tube theorem, set

hs(x) = h(x, s) = |f ′(x)|s for <s > 0, and continueh(x, s) analytically. Introduce
an auxiliary zeta function

d(z, s) = exp−
∞∑
n=1

zn

n

∑
x∈Fix f n

n−1∏
k=0

hs(f
kx), (5.10)

noting thatζ1/|f ′|(z) = 1/d(z,−1). Since the cardinality of Fixf n is at most 2n, the
function d(z, s) is holomorphic in the tube

T1 := {(u, s) = (logz, s) | 2|z|λ<s
per = 2e<uλ<s

per< 1}. (5.11)

Applying Theorem 5.1 to(f, hs), and noting thatR̂|f ′|s = (R̂|f ′|)<s , we find that
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d(z, s) = 1/ζhs (z) is holomorphic in a second tube:

T2 := {(u, s) = (logz, s) | |z|(R̂|f ′|)<s = e<u, (R̂|f ′|)<s < 1}. (5.12)

The reader is invited to find and draw the basesK1, K2 of the tubesT1, T2, and (using
the inequalityR̂|f ′| ≥ λper) to verify that the convex hull ofK1 ∪ K2 contains the set
{(u, s) | <u+ <s logλper< 0}. The Bochner theorem yields thatd(z, s) is holomorphic
for |z|λ<s

per< 1, which for<s = −1 gives the announced condition|z| < λper.
Ruelle (1993) obtained a meromorphic extension of the zeta function, with no relation

to spectral properties of a transfer operator or exponential decay of correlations. Pollicott
(1995) was later able to extract information on decay of correlations from this analytic
completion approach, under additional conditions.

5.2. Parabolic maps and intermittency.All the discrete-time results mentioned so
far were for systems admitting enough hyperbolicity to guarantee exponential decay
of correlations, proved by showing that an appropriate transfer operator acting on a
well-chosen Banach space had a spectral gap (and the zeta function or generalized
determinant a corresponding meromorphic extension). Situations where the spectral
radius and essential spectral radius of the transfer operator coincide, with ‘abnormal’
(e.g. power-law) decay of correlations have been studied in statistical mechanics (see,
in particular, Fisher (1967), and the rich literature on phase transitions). In dynamics,
numerical experiments indicate (see e.g. Cvitanović et al (1997), Dahlqvist (1995, 1996))
that branch cuts in the zeta functions and ‘phase transitions’ should be expected when
neutral periodic orbits are present in an otherwise hyperbolic system, but there are still
few mathematical results. In fact the presence of a single fixed point with a zero Lyapunov
exponent suffices to destroy the usual hyperbolic picture, in particular it may happen that
there is no SBR measure, see e.g. the two-dimensional ‘almost Anosov’ model of Hu
and Young (1995).

The term ‘intermittency’ was used by Pomeau and Manneville (1980) to describe
a general class of dissipative dynamical systems at the boundary of the transition to
turbulence. Here, we only mention two recent studies in dimension one (for systems with
strong Markov properties). The first one, due to Isola, who applies inducing techniques,
is concerned with differentiable maps, while the second, due to Rugh, requires analyticity
in order to use the Grothendieck–Fredholm theory. Before discussing the two studies,
we mention an example, studied by Gaspard and Wang (see Wang (1989)), where the
zeta function of a linearized map can be computed explicitly:

f (x) =



x

1 − x
x ≤ 1/2,

2x − 1 x > 1/2.
(5.13)

Indeed, one can associate tof a piecewise linear map̂f (with countably many pieces)
with an explicitly computable zeta function:

ζ̂1/|f̂ ′|(z) = z

(1 − z)2 log(1/1 − z)
,

having a logarithmic branch point atz = 1.
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The first set-up is as follows. Letf : [0,1] → [0,1] be such that there exists
q ∈]0,1[ with f |[0,q[ , f |[q,1] strictly monotone increasing andC1 with Hölder derivative,
and f ([0, q[) = [0,1[, f ([q,1]) = [0,1] (in particular,f (0) = 0), and both inverse
branches Lipschitz continuous. Assume that there existsγ > 1 such thatf ′(x) > γ for
x ∈ [q,1]. Assume also thatf ′(0) = 1 andf ′(x) > 1 for x ∈]0, q[, and that there are
constantsa > 0, s > 0 so that

f (x) = x + ax1+s(1 + u(x)) for x 7→ 0+, (5.14)

with u(0) = 0, andu′(x) = O(xt−1) for x 7→ 0+ for somet > 0. It is known (Thaler
1980) that such a mapf admits a unique invariantσ -finite absolutely continuous measure
ν (which is finite if and only ifs < 1). Setc0 = 1, cn = f −1

1 (cn−1). The countably
many intervals on which the piecewise expanding (and piecewise surjective) induced
mapAn = [cn−1, cn] is monotonic have finiteν-measure. We may thus introduce

D(z) = 1

(1 − z)
∑∞

n=0 ν(An+1)zn
. (5.15)

(It is intuitively clear that the lengths of the intervalsAn, on which the time to return to
the good region isn, should play a key role in the properties of the zeta function, and
more generally the statistical properties off .) Isola (1996) proves that the coefficients
an in the power expansionD(z) = ∑∞

n=0 anz
n satisfy

an ∼n→∞



(1 + O(1)n1−1/s)/ν([0,1]) if 0 < s < 1,
O(1)/ logn if s = 1,
O(1)n−1+1/s if s > 1.

(5.16)

He then uses the asymptotics (5.16) to study the analytic properties ofD(z). A main
result announced in Isola (1996) is that the zeta functionζg(z) defined by (2.2) for the
weight g = 1/|f ′| has a non-polar singularity atz = 1 and can be written

ζg(z) = D(z)L(z)

1 − z
, (5.17)

whereL(z) is analytic in|z| < 1 and extends to a continuous function on|z| ≤ 1, with
L(1) 6= 0.

Isola’s argument is based on a study of a family of transfer operators (more precisely,
an operator-valued power series), associated to the induced piecewise expanding map
which can be modelled by a countable full shift, and uses, in particular, results from
Prellberg (1991). Isola has also studied the decay of correlations for the unique absolutely
continuous measure when 0< s < 1, and other statistical properties (such as the scaling
rate of test functions with finite average) whens ≥ 1. We refer the reader to Lopes
(1993) and Yuri (1995, 1996) for related works.

We introduce the analytic setting of the second result. Let1 ⊂ C \ {0} be a simply
connected open domain containing an open sectorSR,φ = {reiξ ,−φ ≤ ξ ≤ φ,0 < r <

R} of angleφ > π/2. Let fi : 1 → 1, i = 1,2, be two injective analytic maps with
continuous extensions to1. Assume thatf21 ⊂ 1 (i.e. f2 is a contraction). Assume
also thatf11 ⊂ 1 ∪ {0} and that there are constantsa > 0, ε > 0 so that forz ∈ 1

f1(z) = z − az2 + O(|z|2+ε). (5.18)
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Setgi = f ′
i and define a transfer operator acting on analytic functionsϕ : 1 → C by

Mϕ(z) = ϕ(f1z)g1(z)+ ϕ(f2z)g2(z). (5.19)

Write 4n∗ = {1,2}n \ (1, . . . ,1), and for anyn-tuple (i1, . . . , in) ∈ 4n∗, let zi1...in be the
(necessarily unique) fixed point of the compositionfi1 ◦ · · · ◦ fin in 1. (Note that the
indifferent fixed pointz = 0 does not appear.) Writef (n)i1...in

(zi1...in ) for the derivative of
fi1 ◦ · · · ◦ fin at zi1...in . Finally, define the generalized Fredholm determinant of(fi, gi)

by

d(λ) = exp−
∞∑
n=1

λ−n

n

∑
(i1...in)∈4n∗

f
(n)
i1...in

(zi1...in )

1 − f
(n)
i1...in

(zi1...in )
. (5.20)

THEOREM 5.3. (Fatou coordinates) (Rugh 1996b)Letfi , gi (i = 1,2) andM be as above.
Then there exists a Banach spaceH of functions defined on an open domainU containing
the compact maximal invariant set of the pair(f1, f2) (except for0), such that:
(1) the spectral radius ofM is equal to1; the spectrum decomposes into[0,1] ∪ σp;
(2) the points inσp are eigenvalues of finite multiplicity that can only accumulate at1

and 0;
(3) the determinantd(λ) (5.20) is holomorphic inC − [0,1], where its zeros are exactly

the eigenvalues ofM acting onH (the order of the zero coincides with the multiplicity
of the eigenvalue). The functiond(λ) can be analytically extended from each side of
[0,1] to an open neighbourhood of]0,1[.

We refer to Rugh (1996b) for the general statement, and a description of the abstract
spaceH, which is obtained by pulling back a Banach space of holomorphic functions via
the Fatou coordinate conjugatingf1 to the translationT (w) = w+ 1. The key insight is
that the transfer operator in the Fatou coordinates is conjugated to the translation operator
T , which can be written, when acting on functions9 expressible as Laplace transforms∫ ∞

0 ψ(t)e−wt dt , as

T9(w) =
∫ ∞

0
e−tψ(t)e−wt dt. (5.21)

However, (5.21) is basically an explicit spectral decomposition ofT showing, in
particular, that its spectrum is [0,1]. (See Contucci and Knauf (1997) for analogous
results on the spectrum of the transfer operator of Farey type maps.)

Theorem 5.3 can be applied to an analytic two-branched interval mapf whenever
its local inverse branches satisfy the conditions onf1, f2. (In particular, suchf do
not admit finite absolutely continuous measures. One can nevertheless ask whether the
discrete spectrum ofM can be reinterpreted in terms of scaling rates.) The generalized
determinant (5.20) is then justd(λ) = d

[

1/f ′(λ
−1)/(1 − λ−1) with d[ as defined by (3.5).

For other results on complex maps, we refer in particular to the extensive study of
‘jump transformations’ (inducing) associated to parabolic maps of Aaronsonet al (1993),
and the article of Denkeret al (1996) on the transfer operators for rational transformations
(where the subexponential approach to equilibrium is proved, see Haydn (1996) for an
exponential control of the supremum norm of Hölder observables). See also Smirnov’s
(1996) spectral analysis of the transfer operator associated to polynomial Julia sets in the
Riemann sphere, acting on Sobolev spaces.
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6. Kneading operators and sharp traces
In addition to the approach described in§5, which was closely related to that used in
§§2 to 4, another strategy based on the powerfulkneading theoryof Milnor–Thurston is
available, for the moment in one real or complex dimension, and will be described next.

The dynamical zeta functions and generalized Fredholm determinants we have seen
up to now involved sums over periodic points, requiring in particular the set of
periodic points to be at most countable. In their pioneering paper on one-dimensional
dynamics, Milnor and Thurston (1988) associated to any piecewise monotone interval
map f : I → I (with finitely many, sayN , monotonicity intervals) anegative zeta
function

ζ−(z) = exp
∞∑
n=1

zn

n
2# Fix− f n, (6.1)

where the set ofnegative fixed pointsof f n is

Fix− f n = {x ∈ I | f nx = x, f n monotone decreasing in a neighbourhood ofx}.
The important fact, of course, is that Fix− f n, is a finite set. The principle ‘what goes
down must go up’ explains why it is natural to double the negative periodic points (if
f is piecewise expanding it is not very difficult to show thatζ−(z) is just the usual
unweighted dynamical zeta function (1.1) off , up to a simple polynomial factor).

Milnor and Thurston (1988) proved (using a homotopy argument) the surprising
equation

ζ−(z)Det(1 −D(z)) = 1, (6.2)

whereD(z) is thekneading matrix, a finite (N + 1)× (N + 1) matrix, with coefficients
power series associated to the itineraries of the turning points. These power series (the
kneading invariants) embody a rather complete description of the mapf , and the one-
dimensional kneading theory is by now extremely well developed (see e.g. de Melo and
van Strien (1993)). (Milnor and Thurston’s version of (6.2) involves a trivial polynomial
correction due to the fact that they worked with an(N − 1)× (N − 1) matrix, see Baladi
and Ruelle (1994).)

One can rewriteζ−(z) as aLefschetz zeta function, ζL(z) where all periodic pointsx
are counted, but with a weightL(x) ∈ {0,−1,1} (cancellations may occur, in particular,
in homtervals). This second formulation (Baladi and Ruelle 1994) makes it easier to
define a weighted negative (Lefschetz) dynamical zeta function, especially if the weight
is locally constant. Formula (6.2) was extended to weighted and ‘non-functional’ (where
the local inverse branches of a givenf are replaced by an arbitrary family of local
homeomorphisms) situations in a series of papers (Baladi and Ruelle 1994, Baladi 1995c,
Ruelle 1996a, Baladi and Ruelle 1996) where the ‘usual’ relationship between the poles
of the zeta function and the inverse eigenvalues of a transfer operator acting on functions
of bounded variation (orCr with rth derivative of bounded variation, Ruelle (1996b))
was established. (See also Mori (1990, 1992).) Again we limit ourselves to simplest
statements, referring also to the review in Baladi (1995b) for an outline.

Let I ⊂ R be a compact interval, and� be a finite set of indices. For eachω ∈ �,
let Iω ⊂ I be an open interval,fω : Iω → fω(Iω) a homeomorphism (setting alsoεω = 1
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if fω preserves orientation,εω = −1 otherwise). Finally, letgω : I → C be of bounded
variation (in particular,dgω is a complex measure), continuous, and supported inIω. We
define a transfer operator acting on the spaceB of functionsϕ : I → C of bounded
variation (or just on bounded functions) by

Lϕ =
∑
ω∈�

(ϕ ◦ fω)gω. (6.3)

We also introduce a formal dual ofL
L̂ϕ =

∑
ω∈�

εω(ϕ ◦ f −1
ω )(gω ◦ f −1

ω ). (6.4)

(Note that if thefω are the local inverse branches of a piecewise monotone interval map
f thenL̂ϕ = (ϕ◦f )(g◦f )εf , whereεf is the ‘sign of the slope off ’, ignoring boundary
problems.) Finally, writing‖ · ‖∞ for the operator norm ofL or L̂ acting on bounded
functions, we define

R := lim
n→∞(‖L

n‖∞)1/n, R̂ := lim
n→∞(‖L̂

n‖∞)1/n. (6.5)

Up to exchangingL and L̂, we can assume to fix ideas thatR̂ ≤ R.
To state the result we shall use the sign function

sgn(x) =



−1 if x < 0,
0 if x = 0,
1 if x > 0,

(6.6)

which has the property that12d(sgn) is δ0 the Dirac mass at zero. Define also thesharp
trace of the data(�, Iω, fω, gω) by

Tr# L :=
∑
ω∈�

∫
Iω

dgω(x)
1
2 sgn(fωx − x), (6.7)

(definition (6.7) clearly extends to the iteratesLn). The sharp trace has the trace property

Tr#(L1L2) = Tr#(L2L1) (6.8)

for any transfer operatorsL1, L2 of the form (6.3).

THEOREM 6.1. (Sharp traces and sharp determinants)Assume that̂R ≤ R.
(1) (Ruelle 1991, 1996a)The spectral radiusρ(L) ofL acting onB satisfieŝR ≤ ρ(L) ≤

R. If all functionsgω are real and non-negative, thenρ(L) = R, if, additionally,
R̂ < R thenR is an eigenvalue with non-negative eigenfunction.

(2) (Baladi and Ruelle 1996)The sharp determinant

Det#(1 − zL) = exp−
∞∑
m=1

zm

m
Tr# Lm. (6.9)

defines a holomorphic function in the disc of radiusR̂−1 where its zeros are exactly
the inverses of the eigenvalues ofL of modulus at least̂R. The order of the zero
coincides with the algebraic multiplicity of the eigenvalue.
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An application of integration by parts and change of variables rule in an integral yields
Tr# L̂ = − Tr# L. We thus have thefunctional equation

Det#(1 − zL̂) = 1

Det#(1 − zL). (6.10)

Note also that one can rewrite Det#(1 − zL) as a (weighted) Lefschetz zeta function
whenever the set of periodic orbits is countable (usingd(sgn) = δ0).

Theorem 6.1(1) improves and generalizes Theorem 5.1 above (we emphasize that
Theorem 6.1 holds without any transversality assumption on thefω, which could, for
example have uncountably many fixed points). We give a brief sketch of Ruelle’s (1996b)
elegant proof of the upper bound for the essential spectral radius, where the Leibniz
formula appears in a more explicit avatar than (2.7). We start from the fact that the
derivative gives a Banach space isomorphism between the space of functions of bounded
variation, quotiented by functions vanishing except on an at most countable set, and the
space of finite complex measures. We then consider the operatorL = dLd−1 acting on
finite measures and observe that the Leibniz rule produces a decompositionL = L1+L2,
whereL1 = ∑

ω gωεω(f
−1
ω )∗ obviously has spectral radius bounded bŷR, and where

L2 = ∑
ω dgωd

−1 is compact because the integration operatord−1 is compact.
The proof of Theorem 6.1(2) is by regularization. Specifically, it uses a family of

almost trace class operators, thekneading operatorsD(z) which are analogues of Milnor
and Thurston’s kneading matrix. These operators act onL2(dµ) where the auxiliary
measureµ is set to beµ = ∑

ω |dgω| + ∑
ω |d(gω ◦ f −1

ω )| (so as to guarantee the
existence of the Radon–Nikodym derivativesdgω/dµ). They are defined by

D(z) = zN (1 − zL)−1Sϕ, (6.11)

for any z not in the spectrum ofL, where the (smoothness improving, compact)
integration operatorS is defined by

Sϕ(x) =
∫
I

1
2 sgn(x − y)ϕ(y) dµ(y), (6.12)

and where the auxiliary operatorN is given by

Nϕ =
∑
ω∈�

(ϕ ◦ fω)dgω
dµ

. (6.13)

SinceD(z)ϕ(x) = ∫ Dxy(z)ϕ(y) dµ(y) has a bounded kernel, whenever 1/z is not in
the spectrum ofL, it is a Hilbert–Schmidt operator inL2(dµ) so that the regularized
determinant Det2(1+D(z)) of order two is well-defined (Simon 1979). We may thus set

Det∗(1 + D(z)) := exp

[ ∫
Dxx(z) dµ(x)

]
Det2(1 + D(z)). (6.14)

The key identity in the proof of Theorem 6.1(2) is the following analogue of (6.2):

Det#(1 − zL)Det∗(1 + D(z)) = 1. (6.15)

The first proof of (6.15) in Baladi and Ruelle (1996) was by a series resummation
argument (involving repeated use of integration by parts and change of variables). A more
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conceptual proof can be extracted from the method used in a one-dimensional complex
partial analogue of Theorem 6.1 (Baladiet al 1995). We do not state the complex
result for lack of space, mentioning only that sgn(x)/2 is replaced by the function
σ(z) = 1/(πz), and derivation is replaced bȳ∂ (using in particular∂̄σ = δ0), and that
in the simplest cases we have the formula

Tr# L =
∑
ω∈�

∑
x∈Fix fω(x)

gω(x)

1 − ∂fω(x)

(note the absence of absolute value).
We sketch the conceptual proof of (6.15) now: after unifying the sharp trace (6.7) of

transfer operators with the ‘trace’ of kernel operators Tr∗ D(z) := ∫ Dxx dµ(x), we check
that the unified trace, noted Tr∗, satisfies (6.8). Hence, the usual determinant formulas
hold for

Det∗(1 − M) = exp−
∑
n

1

n
Tr∗ Mn.

The argument is then quite literally a three-line proof:

Det∗(1 + D(z))Det#(1 − zL) = Det∗(1 + zN (1 − zL)−1S)Det∗(1 − zL)
= Det∗(1 + zSN (1 − zL)−1)Det∗(1 − zL)
= Det∗(1 + z(SN − L)) = 1, (6.16)

where we used Tr# L = Tr∗(SN ), and more generally Tr∗(SN − L)n = 0 for n ≥ 1, to
get the last equality.

A kneading approach to dynamical zeta functions in higher dimensions is still lacking.
For Hénon-like (or more generally once-folding) maps, it can be hoped that thepruning-
front approach of Cvitanović et al (1988), which is in the process of being made rigorous
(de Carvalho 1996), will lead to a two-dimensional kneading theory which could include
a kneading operator analysis of naturally weighted sharp zeta functions (see also Ishii
(1997) for a kneading theory of the Lozi map). The pruning front conjecture is supported
by many very interesting numerical studies (see e.g. Bäcker and Dullin (1997), Hansen
(1993), the book by Cvitanović et al (1997) and references therein). General ideas to
define sharp traces in higher dimensions have been advanced by Kitaev (1995b) and could
perhaps apply to differentiable dynamical systems without any topological assumptions
(in particular, admitting countably or uncountably many fixed points).
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Block, L., J. Guckenheimer, M. Misiurewicz and L.-S. Young. Periodic points and topological entropy of one-

dimensional maps.Global Theory of Dynamical Systems (Proc. Int. Conf., Northwestern Univ., Evanston,
IL, 1979) (Lecture Notes in Math. 819).Springer, Berlin, 1980, pp. 18–34.

Bochner, S. and W. T. Martin.Several Complex Variables. Princeton University Press, Princeton, NJ, 1948.
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