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Abstract. We prove that a recurrent random walk (RW) in i.i.d. random
environment (RE) on a strip which does not obey the Sinai law exhibits the
Central Limit asymptotic behaviour.

We also show that there exists a collection of proper subvarieties in the space
of transition probabilities such that
• If RE is stationary and ergodic and the transition probabilities are con-

centrated on one of subvarieties from our collection then the CLT holds;
• If the environment is i.i.d then the above condition is also necessary for

the CLT.
As an application of our techniques we prove the CLT for the quasiperiodic

environments with Diophantine frequencies in the recurrent case and comple-
ment this result by proving that in the transient case the CLT holds for all
strictly ergodic environments.

All these results are valid for one-dimensional RWRE with bounded jumps
as a particular case of the strip model.
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1. Introduction: brief history of the problem, motivations,
informal description of results.

It is well known that one dimensional RWRE exhibit features which are very
different from those of classical random walks. This fact was first discovered in
1975 by Solomon ([27]) and by Kesten, Kozlov, and Spitzer ([17]) for transient
random walks on Z with jumps to nearest neighbours. In 1982, Sinai ([25]) found
one of the most striking manifestations of that: he proved that for recurrent nearest
neighbour RWRE the correct scaling is ln2 n.

Transient RWRE were then studied in a number of papers. The overview of this
development can be found in [12, 13] and more recent papers [8, 9]. However, here
we shall mainly discuss the recurrent case as the main subject of this paper.

Methods used in [25] (as well as in [27, 17]) rely heavily on the fact that the
random walk is on Z and is allowed to jump only to the nearest sites. Hence the
natural question asked by Sinai in his paper: would it be possible to extend his
(and other) results to more general models such as RW on Z with bounded jumps.
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In 1984, Key [20] found a recurrence criterion for RWRE on Z for the so called
[−l, r] model, where r and l are the maximal lengthes of possible jumps of the
walk to the right and to the left respectively. Key’s criterion was stated in terms
of properties of the ”middle” Lyapunov exponents of products of random matrices
constructed from the parameters of the environment. This approach was devel-
oped by Letchikov [21] who in 1998 obtained a partial answer to Sinai’s question.
He proved that recurrent RWs on Z with bounded jumps in i.i.d. environment
exhibit the Sinai behaviour if the probabilities of jumps of length 1 dominate the
probabilities of other jumps.

A comprehensive review of further results obtained by means of these techniques
can be found in papers [5], [6], and [7] by Brémont. Comments on the relation
between the relevant Brémont’s results and the results of this work will be provided
later. Here, we mention only that these papers analyze the [−l, r] model ([−l, 1]
model in [5]) and that this model reduces to the study of the walks on the strip.

In 2000, Bolthausen and Goldsheid ([2]) introduced RWRE on a strip. They
also reduced the study of the RWRE with bounded jumps on Z to that of RW
on a strip and proved the recurrence and transience criterion for the strip model.
The technique used in [2] is completely different from that of [20] and [21].

The approach of [2] was developed in [13] where conditions for the Law of Large
Numbers and the CLT for transient RWs were provided.

A complete answer to Sinai’s question was obtained in [3] where further devel-
opment of methods from [2] and [13] allowed authors to prove that, unless the
parameters of the environment belong to a certain algebraic subvariety, recurrent
random walks in i.i.d. environments obey the Sinai behaviour. The description of
this subvariety is quite explicit. In particular, this description was used in [3] to
show that recurrent finite range RWs in i.i.d. environments on Z exhibit either
the Sinai behaviour or the CLT behaviour. Moreover, the CLT alternative takes
place if and only if the walk is a martingale (and hence non-martingale recurrent
walks obey the Sinai behaviour).

Until now, it was unclear whether a similar alternative holds for the walks on a
strip. One of the goals of this work is to complete the picture by proving that

• in recurrent i.i.d. environments on a strip there is an alternative: either the walk
exhibits the Sinai behaviour or it satisfies the classical Central Limit Theorem.

This statement completes the classification of possible limiting distributions
of the RWRE on the strip (the limiting distributions in the transient case were
obtained in [9]).

The above result is a corollary of a theorem which provides

• a criterion for the CLT for recurrent RWs in ergodic random environments.

In fact

• the method we use allows us to establish the CLT for a wide class of recurrent
RWs in stationary ergodic environments on a strip.
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In particular we show that

• recurrent RWs in Diophantine quasi-periodic random environments generated by
sufficiently smooth functions satisfy the CLT.

Finally, we complement this statement by extending to the strip model the result
which was proved in [12] for walks on Z with nearest neighbour jumps by proving
that

• transient RWs on a strip in environments generated by continuous uniquely er-
godic transformations of a compact metric space always satisfy the CLT with pos-
itive drift.

Note that the last two statements provide complete classification of the walks in
Diophantine quasi-periodic environments. We would like to emphasize that in the
transient case no smoothness of the uniquely ergodic transformation is required
(in contrast to the recurrent case).

2. Definition of the model and some preparatory facts.

2.1. The Model. We recall the definition of the RWRE on a strip from [2]. Con-
sider a strip S = Z× {1, . . . ,m} and a random walk on S. Let Ln = {(n, i) : 1 ≤
i ≤ m} be layer n of the strip. In our model, the walk is allowed to jump from any
point (n, i) ∈ Ln only to points in Ln−1, or Ln, or Ln+1. To define the correspond-
ing transition kernel consider a sequence of triples (Pn, Qn, Rn), −∞ < n <∞, of
m ×m non-negative matrices such that for all n ∈ Z the sum Pn + Qn + Rn is a
stochastic matrix. That is,

(2.1) (Pn +Qn +Rn)1 = 1,

where 1 is a column vector whose components are all equal to 1. The matrix
elements of Pn are denoted Pn(i, j), 1 ≤ i, j ≤ m, and similar notations are used
for Qn and Rn. We now set

(2.2) Q(z, z1)
def
=


Pn(i, j) if z = (n, i), z1 = (n+ 1, j),
Rn(i, j) if z = (n, i), z1 = (n, j),
Qn(i, j) if z = (n, i), z1 = (n− 1, j),
0 otherwise,

From now on we suppose that each such sequence is a realization of a strictly sta-
tionary ergodic process and let (Ω,F ,P, T ) be the corresponding dynamical system
with Ω denoting the space of all sequences ω = (ωn)∞n=−∞ = ((Pn, Qn, Rn))∞n=−∞ of
triples described above, F being the corresponding natural σ-algebra, P denoting
the probability measure on (Ω,F), and T being a shift operator on Ω defined by
(Tω)n = ωn+1.

For a fixed ω we define a random walk ξ(t) = (X(t), Y (t)), t ≥ 0, on S in the
usual way: for any starting point z = (n, i) ∈ S and fixed ω the law Pω,z for the
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Markov chain ξ(·) is given by

(2.3) Pω,z (ξ(1) = z1, . . . , ξ(t) = zt)
def
= Qω(z, z1)Qω(z1, z2) · · · Qω(zt−1, zt).

We call ω the environment or the random environment on the strip S. Denote
by Ξz the set of trajectories ξ(·) starting at z. Pω,z is the so called quenched
probability measure on Ξz. The semi-direct product P(dω)Pω,z(dξ) of P and Pω,z
is defined on the direct product Ω × Ξz and is called the annealed measure. The
corresponding mathematical expectations are denoted by E and Eω,z.

Remark 2.1. The study of one-dimensional RW with bounded jumps in RE on
Z can be reduced to the study of the above model. The explanation of this fact
was given in [2] and later in [13] and [3] and shall not be repeated here.

Denote by J the following set of triples of m×m matrices:

J def
= {(P,Q,R) : P ≥ 0, Q ≥ 0, R ≥ 0 and (P +Q+R)1 = 1} .

Let J0 = J0(P) ⊂ J be the support of the probability distribution of the random
triple (Pn, Qn, Rn) defined above (obviously, this support does not depend on n).

Since Ω = J Z, it can be endowed by a metric (in many ways). We shall make
use of the following metric. For ω′ = {(P ′n, Q′n, R′n)}, ω′′ = {(P ′′n , Q′′n, R′′n)} set

(2.4) d(ω′, ω′′) =
∑
n∈Z

‖P ′n − P ′′n‖+ ‖Q′n −Q′′n‖+ ‖R′n −R′′n‖
2|n|

.

Below, whenever we say that a function defined on Ω is continuous we mean
that it is continuous with respect to the topology induced by the metric d(·, ·).

Here and below for a vector x = (xi) and a matrix A = (a(i, j)) we set ‖x‖ def
=

maxi |xi| which implies ‖A‖ = sup‖x‖=1 ‖Ax‖ = maxi
∑

j |a(i, j)|. We say that A

is strictly positive (and write A > 0), if all its matrix elements satisfy a(i, j) > 0.
A is called non-negative (and we write A ≥ 0), if all a(i, j) are non negative. A
similar convention applies to vectors. Note that if A is a non-negative matrix then
‖A‖ = ‖A1‖.

The following two assumptions C1 and C2 listed below will be referred to as
Condition C which is supposed to be satisfied throughout the paper.

Condition C:
C1: (Pn, Qn, Rn), −∞ < n < ∞, is an ergodic sequence (equivalently, T is

an ergodic transformation of Ω).
C2: There is an ε > 0 and a positive integer number k0 < ∞ such that for

any (P,Q,R) ∈ J0 and all i, j ∈ [1,m]

(2.5) ||Rk0|| ≤ 1− ε, ((I −R)−1P )(i, j) ≥ ε, ((I −R)−1Q)(i, j) ≥ ε.

Observe that ((I −Rn)−1Pn)(i, j) is the probability that the walker starting from
(n, i) arrives to (n + 1, j) at her fist exit from the layer Ln. The meaning of
((I −Rn)−1Qn)(i, j) is similar.
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We note that condition (2.5) is trivially satisfied if for all (i, j) we have

(2.6) P (i, j) ≥ ε, Q(i, j) ≥ ε, R(i, j) ≥ ε.

However (2.6) never holds for the environments coming from one dimensional walks
with bounded jumps while (2.5) holds in that case under mild non-degeneracy
conditions. We refer to [3] for more discussion.

2.2. Matrices ζn, An, αn and some related quantities. We are now in a posi-
tion to recall the definitions of several objects most of which were first introduced
and studied in [2], [3] and which will play a crucial role in this work.

For a given ω ∈ Ω, define a sequence of m×m stochastic matrices ζn as follows.
Fix an integer a and a stochastic matrix ψ. For n ≥ a define matrices ψn as follows.
Put ψa = ψ and for n > a define recursively

(2.7) ψn = ψn(a, ψ) = (I −Rn −Qnψn−1)−1Pn, n = a+ 1, a+ 2, . . . .

It is easy to show (see [2]) that matrices ψn are stochastic. Next, for a fixed n
define

(2.8) ζn = lim
a→−∞

ψn.

As shown in [2, Theorem 1] the limit (2.8) exists and is independent of the choice
of the initial matrix ψ.

Next, we define probability row-vectors σn = σn(ω) = (σn(ω, 1), . . . , σn(ω,m))
which are associated with the matrices ζn. Let σ̃ be an arbitrary probability row-
vector (by which we mean that σ̃ ≥ 0 and

∑m
i=1 σ̃(i) = 1). Set

(2.9) σn
def
= lim

a→−∞
σ̃ζa . . . ζn−1.

By the standard contraction property of the product of stochastic matrices, this
limit exists and does not depend on the choice of the sequence σ̃a (see [13, Lemma
1]). Vectors σn could be equivalently defined as the unique sequence of probability
vectors satisfying the infinite system of equations

(2.10) σn = σn−1ζn−1, n ∈ Z.

Combining (2.9) with standard contracting properties of stochastic matrices ζ we
obtain for k > n that

(2.11) ζn . . . ζk−1 = (σk(1)1, . . . , σk(m)1) +O
(
θk−n

)
with

∣∣O (θk−n)∣∣ ≤ Cθk−n,

where 0 ≤ θ < 1 and C depend only on the ε from (2.5).
Define

(2.12) αn = Qn+1(I −Rn −Qnζn−1)−1, An = (I −Rn −Qnζn−1)−1Qn.

Note that αnPn = Qn+1ζn and hence

(2.13) αn = Qn+1(I −Rn − αnPn)−1.
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Matrices αn, An are positive and therefore we can set

(2.14) vn = lim
a→−∞

AnAn−1 . . . Aa+1ṽa
‖AnAn−1 . . . Aa+1ṽa‖

.

As explained in [3, Theorem 4] this limit exists and does not depend on the choice
of the sequence of vectors ṽa ≥ 0, ||ṽa|| = 1.

Similarly, for any sequence of row-vectors l̃a ≥ 0, ‖l̃a‖ = 1, define

(2.15) ln = lim
a→∞

l̃aαa−1 . . . αn∥∥∥l̃aαa−1 . . . αn

∥∥∥ .
Set

(2.16) λk = ‖Akvk−1‖ and λ̃k = ‖lk+1αk‖

then obviously

(2.17) lk+1αk = λ̃klk, Akvk−1 = λkvk

and for any n ≥ k we have

(2.18) ‖AnAn−1 . . . Akvk−1‖ = λn . . . λk, ‖ln+1αnαn−1 . . . αk‖ = λ̃n . . . λ̃k.

Remark 2.2. It should be emphasized that the proof provided in [2], [3] of the
existence of the limits (2.8) and (2.14) in fact works for all (and not just almost
all) sequences ω satisfying (2.5). If we define

(2.19)
ζ(ω) = ζ0(ω), A(ω) = A0(ω), α(ω) = α0(ω), σ(ω) = σ0(ω)

v(ω) = v0(ω), l(ω) = l0(ω) λ(ω) = λ0(ω), λ̃(ω) = λ̃0(ω)

then

(2.20)
ζn = ζ(T nω), An = A(T nω), αn = α(T nω), σn(ω) = σ(T nω),

vn = v(T nω), ln = l(T nω), λn = λ(T nω), λ̃n = λ̃(T nω).

Moreover, the functions ζ(·), v(·), l(·) are continuous in ω. The continuity of all
other functions is implied by the continuity of ζ, v, and l. In fact, we have a
stronger result, namely the above functions are Hölder with respect to the metric
d defined by (2.4), see Lemma A.2. This regularity plays important role in our
analysis.

Remark 2.3. Note that m = 1 corresponds to the random walks on Z with jumps
to the nearest neighbours. In this case pn = Pω(ξ(t + 1) = n + 1|ξ(t) = n) and
qn = 1 − pn. The above formulae now become very simple, namely ψn = ζn = 1,
vn = ln = 1, An = λn = qn

pn
, αn = λ̃n = qn+1

pn
.
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2.3. Recurrence and transience criteria. The following recurrence and tran-
sience criteria were proved in [2].

Theorem 2.4 ([2], Theorem 2.). Suppose that Condition C is satisfied. Then for
P-almost all ω the following holds:
RW is recurrent, that is Pω,z(lim inft→∞Xt = −∞ and lim supt→∞Xt = ∞) = 1,
iff E(lnλ) = 0
RW is transient to the right, that is Pω,z(Xt → +∞ as t→∞) = 1, iff E(lnλ) < 0,
RW is transient to the left, that is Pω,z(Xt → −∞ as t→∞) = 1, iff E(lnλ) > 0.

3. Statement of results

3.1. The Central Limit Theorem. We shall now state sufficient conditions
under which the asymptotic behaviour of a recurrent RW on a strip is described
by the CLT. As far as we are aware of, the only result of this kind was previously
established by Brémont in [5] for the [−l, 1] model which is a very particular case
of our model (as has already been mentioned in the Introduction).

In subsection 3.2 we show how to apply this result to independent and to
quasiperiodic environment.

Theorem 3.1. Consider an ergodic environment satisfying (2.5). Assume that

there exist functions β, β̃ such that

(3.1) λ =
β(Tω)

β(ω)
and E(β3 + β−3) <∞

and

(3.2) λ̃ =
β̃(Tω)

β̃(ω)
and E(β̃3 + β̃−3) <∞.

Then there is a constant D > 0 such that for P-almost all environments

Xn√
n
⇒ N (0, D).

Remark 3.2. If conditions (3.1), (3.2) are satisfied then it follows from (2.18)
that for any n ≥ k

(3.3)

‖AnAn−1 . . . Akvk−1‖ = λn . . . λk =
β(T n+1ω)

β(T kω)
,

‖ln+1αnαn−1 . . . αk‖ = λ̃n . . . λ̃k =
β̃(T n+1ω)

β̃(T kω)
.

The following definition of random potential was used in [3] and is analogous to
the one introduced in [26].
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Definition. A potential is a random function of n defined by

(3.4) Pn(ω) ≡ Pn
def
=

 ln ||An...A1|| if n ≥ 1
0 if n = 0
− ln ||A0...An+1|| if n ≤ −1

Condition (2.5) implies that all matrix elements of matrices An are uniformly
separated from 0. This implies that Pn is bounded if and only if ln ‖An . . . Akvk−1‖
is bounded which, in turn, is equivalent to (3.1) with bounded β. In one direction,
this statement is immediate due to (3.3). The other direction is implied by a well
known result stated in Lemma C.1 in Appendix C.

Conditions (3.1) and (3.2) may still appear artificial. In fact, as shown in [10],
they are necessary and sufficient for the existence of the invariant measure on the
space of environments which in turn is one of the basic ingredients of the proof of
Theorem 3.1. Moreover, as will be seen in the next subsection, these conditions
can be checked for some interesting classes of environments.

3.2. Applications. The following lemma describes one of the most important
classes of environments for which conditions (3.1) and (3.2) are satisfied.

Lemma 3.3. (a) For ergodic environments satisfying (2.5) conditions (3.1) and
(3.2) are equivalent. Moreover, there is a constant c > 0 such

(3.5) c−1β̃(ω) ≤ β(ω) ≤ cβ̃(ω).

(b) For i.i.d. environments satisfying (2.5) conditions (3.1) and (3.2) hold iff the
RW is recurrent but does not exhibit the Sinai behavior. In this case the functions
β, β̃ can be chosen to be continuous.

Corollary 3.4. A recurrent random walk on a strip in an i.i.d. environment either
exhibits the Sinai behavior, or satisfies the CLT.

To give more examples of environments satisfying conditions of Theorem 3.1
we need the following definition. Call a set Λ ⊂ J admissible if there exists an
i.i.d. environment P such that J0(P) = Λ and the corresponding random walk is

recurrent and satisfies the CLT. Note that due to the continuity of functions β, β̃
equations (3.1) and (3.2) hold for all (not merely almost all) environments in ΛZ.
Thus Theorem 3.1 implies the following corollary.

Corollary 3.5. If Λ is admissible and P̃ is a stationary ergodic measure on ΛZ

then Xn is recurrent and satisfies the CLT for P̃ almost every ω.

Lemma 3.6. Suppose that there is a vector f = {fk}mk=1 such that Mn = Xn+fYn
is a martingale. Then (3.1) and (3.2) hold.

Corollary 3.7. The CLT holds for ergodic one dimensional environments where
the position of the walker is a martingale.
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We have already mentioned above that the results of [3] show that the CLT
behavior of recurrent walks is exceptional for the i.i.d environments. The same
need not be the case in other settings. For example, consider quasiperiodic random
walks. Namely, we assume that ω ∈ Td and

(Pn, Qn, Rn)(ω) = (P̄ , Q̄, R̄)(ω + nγ),

where γ is a vector in Rd, and (P̄ , Q̄, R̄) are Cr matrix valued functions on Td. We
assume that γ is Diophantine, that is there are constants C, σ such that for each
k ∈ Zd, k̃ ∈ Z

(3.6) |〈γ, k〉 − k̃| ≥ C|k|−σ.

Theorem 3.8. Assume that the walk is recurrent and

(3.7) r > d+ σ.

Then (3.1) holds (and hence the random walk satisfies the CLT).

Extending a result from [12] to the strip we, in particular, obtain a complete
description of RW in Diophantine quasiperiodic environments.

To formulate this extension we consider the following setting. Suppose that

(3.8) (Pn, Qn, Rn)(ω) = (P̄ , Q̄, R̄)(fnω)

where f is a homeomorphism of a space Ω and (P̄ , Q̄, R̄) are continuous matrix
valued functions on Ω. Recall that a map f : Ω → Ω is called uniquely ergodic if
for any continuous real valued function Φ the following limit

(3.9) lim
N→∞

1

N

N−1∑
n=0

Φ(fnω)

exists for all ω ∈ Ω and does not depend on ω.We recall that if Ω is a compact space
then the unique ergodicity of f is equivalent to uniform in ω ∈ Ω convergence of
the averages (3.9). If f in (3.8) is uniquely ergodic we call (Pn, Qn, Rn) a uniquely
ergodic environment.

The next result was proven in [12] for the one-dimensional nearest neighbour
walk (the case m = 1). In the Appendix, we prove it for arbitrary strip.

Theorem 3.9. A transient RW on a strip in a uniquely ergodic environment
generated by a continuous (P̄ , Q̄, R̄) satisfies the CLT.

A more precise statement of this result including the normalization is given in
Theorem B.1.

Corollary 3.10. RW on a strip in a Diophantine quasiperiodic environment al-
ways satisfies the CLT.

Proof. If the RW is recurrent the result follows from Theorems 3.1 and 3.8 and if
it is transient then it follows from Theorem 3.9. �
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Remark 3.11. Alili in [1] proved the CLT for RW in smooth Diophantine quasiperi-
odic environments with jumps to nearest neighbours on Z. Brémont in [7] extended
this result to RW with bounded jumps (the [−l, r] model) in a quasiperiodic envi-
ronments generated by a smooth enough function on the torus. In the recurrent
regime, Brémont’s result is a particular case of Theorems 3.1 and 3.8. In the
transient regime, Theorem 3.9 gives a much more general result as it works for
all uniquely ergodic environments and requires only continuity of the generating
probabilities.

Lemma 3.3 and Corollaries 3.4 and 3.5 lead naturally to the question of char-
acterizing the admissible sets. By Corollary 3.5 a subset of an admissible set is
admissible. Recall that the Zariski closure Ā of a set A is the smallest algebraic
variety containing A. The next result shows that maximal admissible sets are
algebraic subvarieties.

Lemma 3.12. The Zariski closure Λ̄ of an admissible set Λ is admissible.

3.3. Organization of the paper. Our main result, Theorem 3.1, is proven
in Sections 4–7. Namely, Section 4 describes the main ingredients of the proof,
Section 5 presents, in the case of the nearest neighbour RWs on Z, the simplest
version of the formulae for the density of the invariant measure and the martingale
which play a major role in the proof of the main result. Section 6 constructs the
invariant measure for the environment viewed from the particle, and Section 7
proves the existence of a martingale which is asymptotically linear with respect to
the Z-coordinate of the walk (the latter is often called the harmonic coordinate
for the system). The uniqueness of the martingale is established in Section 8.
Section 9 contains the proof of Lemma 3.3. Lemma 3.12 is proven in Section 10.
Section 11 contains the proof of Lemma 3.6. Two sections deal with quasiperiodic
environments. Namely, Theorem 3.8 is proven in Section 12 and Theorem 3.9 is
established in Appendix B.

4. Main ingredients in the proof of the CLT.

The proof of Theorem 3.1 consists of the following ingredients.
The environment seen by the particle is the random sequence (ωn, Yn), n ≥ 0,

where ωn = TXnω and ξn = (Xn, Yn) is the position of the walk at time n.

Lemma 4.1. If (3.2) holds then the environment seen by the particle has an
invariant measure µ with bounded density ρ with respect to the original environment
measure.

Lemma 4.2. The process (ωn, Yn) is ergodic with respect to µ.

Lemma 4.2 is a well known result. Its proof can be found in [4, Theorem 1.2].

Lemma 4.3. If (3.1) holds then there is a function M(x, y) = Mω(x, y) such that

(1) For almost all ω Mn = Mω(Xn, Yn) is a martingale;
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(2) The increments of Mn are square integrable with respect the measure µ(dω)Pω;

(3) For a.e. ω, the ratio Mω(x,y)
x
→ c, c 6= 0, for all y ∈ {1 . . .m} as |x| → ∞.

Lemmas 4.1 and 4.3 imply Theorem 3.1 in a standard way which we now recall
for completeness.

Proof of Theorem 3.1. Observe that Lemma 4.3 implies that

(4.1)
Xn√
n

=
Mn

c
√
n

(1 + o(1)) + o(1) as n→∞.

Indeed, if |Xn| ≥ n1/4 then (4.1) holds due to Lemma 4.3(3) while if |Xn| ≤ n1/4

then (4.1) holds since both the RHS and the LHS are o(1). Due to (4.1) it suffices
to prove the CLT for Mn. By [15] it suffices to show that Dn

n
converges for P-almost

all ω to a non-random limit, where

Dn =
n−1∑
k=0

Eω
(
[M(Xk+1, Yk+1)−M(Xk, Yk)]

2 |(X0, Y0) . . . (Xk, Yk)
)

=
n−1∑
k=0

Eω
(
[M(Xk+1, Yk+1)−M(Xk, Yk)]

2 |(Xk, Yk)
)

but this convergence follows immediately from the ergodicity of the (ωn, Yn) pro-
cess. �

5. Nearest neighbour walks on Z.

Below we present proofs of Lemmas 4.1 and 4.3 in the case of the nearest neigh-
bour walks on Z where the formulae for ρn and Mn are simple. They may seem
to be a result of a guess rather than a derivation. In fact, we borrow the form
of ρn from [26] and the formula for Mn results from the analysis of a solution to
(5.1) considered, for example, in [11]. (Of course, they could also be obtained as
simplified versions of formulae for ρn and Mn we derive in Sections 6 and 7.)

Note that in the case of walks on Z (see Remark 2.3), condition (3.1) takes the
form

An =
qn
pn

= λn =
βn+1

βn
, where βn = β(T nω).

Proof of Lemma 4.1 for Z. Let ρ be the density of the invariant measure and
ρn(ω) = ρ(T nω). Then ρ satisfes

ρn = pn−1ρn−1 + qn+1ρn+1.

We claim that this equation has a solution of the form ρn = 1
βnqn

. Indeed

pn−1ρn−1+qn+1ρn+1 =
pn−1

qn−1βn−1

+
1

βn+1

=
1

βn
+

pn
qnβn

=
1

βn

(
1 +

pn
qn

)
=

1

qnβn
= ρn.

�
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Proof of Lemma 4.3 for Z. If Xt, t ≥ 0, is the nearest neighbor walk on Z in
random environment ω then Mω(Xt) is a martingale if the sequence {Mn =
Mω(n), n ∈ Z} satisfies the equation

(5.1) Mn = pnMn+1 + qnMn−1.

The space of solutions to (5.1) is two-dimensional and we claim that a solution
linearly independent of Mn ≡ 1 has the form

Mn =


∑n

j=1 βj if n ≥ 1,

0 if n = 0,

−
∑0

j=n+1 βj if n ≤ −1.

Let us check this claim, say for n ≥ 1. In this case

pnMn+1 + qnMn−1 = pn(Mn + βn+1) + qn(Mn − βn) = Mn + pnβn+1 − qnβn = Mn.

�

6. Environment seen by the particle.

Proof of Lemma 4.1. We will construct the density ρ : Ω × [1, . . . ,m] 7→ R as a
solution of (6.1) below. Denote by ρ = ρ(ω) the row-vector with components
ρ(ω, i) and let ρn = ρ(T nω) be a vector with components ρn(i) = ρ(T nω, i). For
ρ to be a density of the invariant measure of the Markov chain (TXtω, Yt), t ≥ 0,
the corresponding vectors ρn should satisfy the system of equations

(6.1) ρn = ρn+1Qn+1 + ρnRn + ρn−1Pn−1, −∞ < n <∞.

The restriction of this equation to a finite strip a ≤ n ≤ b was analyzed in
[2, section 3]. The solution found there satisfies certain (reflecting) boundary
conditions and has a meaning different from the one we are interested in here.

However, we borrow from [2] the following fact. For any m-dimensional vector
h set ρhb = h and define ρhn for n ≤ b − 1 by the recurrence relation ρhn = ρhn+1αn,
where the matrices αn are defined in (2.12). Then the vectors ρhn solve (6.1) for all
n ≤ b− 1. For the sake of completeness, we shall check this statement. Obviously,
if n ≤ b− 1 then

(6.2) ρhn = hαb−1 . . . αn

and hence

ρhn+1Qn+1 + ρhnRn + ρhn−1Pn−1 = hαb−1 . . . αn+1(Qn+1 + αnRn + αnαn−1Pn−1)

(∗)
= hαb−1 . . . αn+1αn = ρhn,

where (∗) follows from the relation αn = Qn+1 +αnRn+αnαn−1Pn−1 which in turn
is equivalent to (2.13).
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Next, note that for vectors ln defined in (2.15) it follows from (2.17) and condi-
tion (3.2) that

(6.3) ln+1αn = λ̃nln =
β̃(T n+1ω)

β̃(T nω)
ln and so

1

β̃(T n+1ω)
ln+1αn =

1

β̃(T nω)
ln.

Remember that ln = l(T nω). Set

(6.4) ρ(ω) =
1

Zβ̃(ω)
l(ω), where Z = E[

1

β̃(ω)

m∑
i=1

l(ω, i)].

Then the second equation in (6.3) has the form ρn = ρn+1αn, where ρn = ρ(T nω)
for all n ∈ Z. Hence, the ρn, n ∈ Z, solve (6.1) which means that ρ defined by
(6.4) is the density of the invariant measure of our Markov chain. �

7. Construction of the martingale.

Proof of Lemma 4.3. Let mn denote a vector with components mn(i) = M(n, i).
For the process M(Xt, Yt), t ≥ 0, to be a martingale with respect to the measure
Pω,z, the vectors mn should satisfy the equation

(7.1) mn = Pnmn+1 +Rnmn +Qnmn−1.

Solution to this equation on a finite part of the strip, a ≤ n ≤ b, was analyzed in
[2]. In order to make our proof more self-contained, we reproduce some calculations
from [2]. Namely, define a sequence of m ×m matrices ϕn, n ≥ a + 1 by setting
ϕa = 0 and computing ϕn recursively

(7.2) ϕn = (I −Rn −Qnϕn−1)−1Pn, if n ≥ a.

The solutions to (7.1) with boundary conditions ma = 0, mb = f can be presented
in the following form:

(7.3) mn = ϕnϕn+1 . . . ϕb−1f, a ≤ n ≤ b.

For n = a or n = b this statement is obvious and for a < n < b it can be verified
by substituting the right hand side of (7.3) into (7.1).

Next set ∆n = ζn − ϕn, where ζn are matrices defined in (2.7), (2.8). Following
[2], we present this difference as

(7.4)
∆n = (I −Rn −Qnζn−1)−1Pn − (I −Rn −Qnϕn−1)−1Pn

= (I −Rn −Qnζn−1)−1Qn∆n−1(I −Rn −Qnϕn−1)−1Pn = An∆n−1ϕn.

Iterating the last relation gives, (cf. [2, equation (2.13)]) that if |n| < b then

(7.5) ∆n = An . . . A−b+1∆−bϕ−b+1 . . . ϕn.

In order to construct a linearly growing solution of (7.1) we consider the solution
mn corresponding to f = 1 and study some related limits of this solution as a →
−∞, b→∞ so that |a| � b.
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It follows from (3.1) that E(lnλ) = 0 and hence by Theorem 2.4 the walk is
recurrent. Recall (see [2, formula (2.3)]) that ϕn(i, j) is the Pω,(n,i)-probability
that a RW starting from (n, i) reaches layer n + 1 before layer a and that it hits
layer n+ 1 at (n+ 1, j). So, due to recurrence, we have that for any i

Pω,(n,i){reach layer n+ 1 before a} =
m∑
j=1

ϕn(i, j)→ 1 as a→ −∞.

Since ∆a = ζa, (7.4) implies that ∆n ≥ 0. Therefore

‖∆n‖ = ‖∆n1‖ = ‖(ζn − ϕn)1‖ = 1−min
i

m∑
j=1

ϕn(i, j)→ 0 as a→ −∞.

Hence given ε, b there exists L such that if |a| ≥ L and |n| ≤ b then ||∆n|| ≤ ε.
Let εb = ||∆−b||.

Condition (3.1) implies that ‖An . . . A−b‖ is uniformly bounded and hence ||∆n|| ≤
Cεb. Next, (7.4) also gives

(7.6) ∆n = An∆n−1(ζn −∆n) = An∆n−1ζn − An∆n−1∆n.

Substituting ∆n−1 = An−1∆n−2ζn−1 −An−1∆n−2∆n−1 only in the term An∆n−1ζn
we obtain

∆n = AnAn−1∆n−2ζn−1ζn − AnAn−1∆n−2∆n−1ζn − An∆n−1∆n.

Continuing this process we obtain

(7.7) ∆n = An . . . A−b+1∆−bζ−b+1 . . . ζn −
n−1∑
k=−b

An . . . Ak+1∆k∆k+1ζk+2 . . . ζn,

where by convention An . . . Ak+1 = I if k + 1 < n and ζk+2 . . . ζn = I if k + 2 > n.
Equality (7.7) implies

(7.8) ∆n = An . . . A−b+1∆−bζ−b+1 . . . ζn +O(ε2
bb).

Applying similar reasoning to (7.3) with f = 1 and ϕj = ζj −∆j gives

mn = 1−
∑

n≤k≤b−1

ζn . . . ζk−1∆kζk+1 . . . ζb−11 +O(ε2
bb

2)

= 1−
∑

n≤k≤b−1

ζn . . . ζk−1∆k1 +O(ε2
bb

2).

Substituting (7.8) into the last equation gives

mn = 1−
∑

n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1w−b +O(ε2
bb

2)
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where w−b = ∆−b1. Now m̄a,b
n = 1−mn

||w−b||
satisfies (7.1) since it is a linear combination

of two solutions. Note that

(7.9) m̄a,b
n =

∑
n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1u−b +O(εb2),

where u−b = w−b/||w−b|| and we have used that εb ≤ ε.
We shall now compute the limit of m̄a,b

n as a→ −∞. To this end note that

(7.10) lim
a→−∞

u−b = lim
a→−∞

A−b . . . Aa+1ζaϕa+1 . . . ϕ−b1

‖A−b . . . Aa+1ζaϕa+1 . . . ϕ−b1‖
= v−b,

where we first use (7.5) and then proceed as in (2.14) with ṽa = ζaϕa+1···ϕ−b1

‖ζaϕa+1···ϕ−b1‖
.

Passing to the limit a→ −∞ in (7.9) we obtain the following solution on (−b, b)

m̄b
n =

∑
n≤k≤b−1

ζn . . . ζk−1Ak . . . A−b+1v−b.

By (2.18) and (3.3) we have

(7.11) Ak . . . A−b+1v−b = λk . . . λ−b+1vk =
β(T k+1ω)

β(T−b+1ω)
vk

and by (2.11)

(7.12) ζn . . . ζk−1vk = (σk(1)1, . . . , σk(m)1)vk +O
(
θk−n

)
= (σkvk)1 +O

(
θk−n

)
,

where here and below we denote (σkvk)
def
=
∑m

i=1 σk(i)vk(i). We thus see that

β(T−b+1ω)m̄b
n =

b−1∑
k=n

β(T k+1ω)(σkvk)1 +
b−1∑
k=n

β(T k+1ω)O
(
θk−n

)
is also a solution to (7.1) on (−b, b) and so is

m̂b
n

def
= β(T−b+1ω)m̄b

n −
b−1∑
k=0

β(T k+1ω)(σkvk)1

= −
n−1∑
k=0

β(T k+1ω)(σkvk)1 +
b−1∑
k=n

β(T k+1ω)O
(
θk−n

)
The series

∑∞
k=n β(T k+1ω)O

(
θk−n

)
converges absolutely because of (2.11) (note

that the terms of the last sum do not depend on b). Hence setting M(x, ·) =
limb→∞ m̂b

x we obtain a solution

(7.13) M(x, ·) =
x−1∑
k=0

β(T k+1ω)(σkvk)1 + B(T xω),
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where

B(ω) =
∞∑
k=0

β(T k+1ω)(ζ0 . . . ζk−1vk − (σkvk)1).

It remains to check statements (2) and (3) of Lemma 4.3.
Denote by Eµ the expectation with respect to the measure µ. To check that (2)

holds, we have to show that

D def
= Eµ

(
Eω (Mω(Xt+1, Yt+1)−Mω(Xt, Yt))

2)(7.14)

= Eµ
(
Eω (Mω(X1, Y1)−Mω(X0, Y0))2) <∞.(7.15)

Note that equality (7.15) holds since µ is an invariant measure of the Markov chain
(TXtω, Yt), t ≥ 0. Now D can be presented as

D = E

(
m∑
i=1

ρ(ω, i)
∑

s=0,±1;1≤j≤m

Q((0, i), (s, j))(M(0, i)−M(s, j))2

)
,

where Q((0, i), (s, j)) is defined by (2.2). Equation (7.13) implies that

|M(0, i)−M(s, j)| ≤ C
∞∑
k=0

θkβ(T kω),

where, as before, C and θ depend only on the ε from (3.1). This inequality,
together with (6.4) and (3.5), implies

D ≤ CE

( ∑
k≥0,j≥0

θk+jβ−1(ω)β(T kω)β(T jω)

)
.

But E(β−1(ω)β(T kω)β(T jω)) ≤ 1
3
E(β−3(ω) +β3(T kω) +β3(T jω)) = 1

3
E(β−3(ω) +

2β3(ω)) and this finishes the proof of Property (2).

Remark 7.1. Note that in the case of a RWRE on Z with nearest neighbour
jumps condition (3.1) can be replaced by E(β(ω) + β−1(ω)) <∞. On a strip, we
need the stronger requirement (3.1) because of the term B in (7.13).

Finally, Property (3) follows from the ergodic theorem. �

8. The Liouville Theorem.

The construction of the martingale in the previous section was based on a choice
of two particular solutions of the martingale equation on finite intervals. The fol-
lowing lemma shows that the final result is essentially unique. And even though
this lemma is not used in the rest of the paper, it provides an important contribu-
tion to the understanding of the whole picture.
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Let M denote the space of martingales satisfying conditions (1)–(2) of Lemma
4.3 and such that if M(·, ·) ∈M then

lim
x→±∞

M(x, y)

x
= 1.

(Clearly, we can scale the martingale from Lemma 4.3 to achieve this condition.)

Lemma 8.1. If M1,M2 ∈M then M1 −M2 = Const.

Proof. Let M̄(x, y) = M1(x, y)−M2(x, y). Then M̄(x, y) grows sublinearly. Hence

by Theorem 3.1, for almost all ω, M̄(Xn,Yn)√
n
→ 0 in probability with respect to the

Pω,z measure on the space of trajectories. On the other hand the proof of Theorem

3.1 shows that M̄(Xn,Yn)√
n
→ 0 iff

D̄n =
n−1∑
k=0

E
(
Eω

([
M̄(Xk+1, Yk+1)− M̄(Xk, Yk)

]2 |Xk

))
≡ 0,

which in turn implies that M̄ is a constant. �

9. Equivalent conditions for boundedness of the potential.

Proof of Lemma 3.3. (a) Define an = I − Rn − Qnζn−1. In these notations, we
have An = a−1

n Qn and αn−1 = Qna
−1
n−1 and hence anAn = αn−1an−1. Multiplying

both parts of the last equality by vectors ln and vn−1 we obtain

lnanAnvn−1 = lnαn−1an−1vn−1

and this, by (2.16) and (2.17), gives

(lnanvn)λn = (ln−1an−1vn−1)λ̃n.

This implies the following relation between β(ω) in (3.1) and β̃(ω) in (3.2):

(9.1) β̃(ω) = β(ω)(l(T−1ω)a(T−1ω)v(T−1ω)).

(We use hear the fact that, due to ergodicity, the existence of β (or β̃) implies that
it is unique up to a multiplication by a constant.)

(b) Suppose that the walk is recurrent but does not exhibit the Sinai behavior.
Note that

λi+1 . . . λk = exp

(
k∑

j=i+1

lnλj

)
= exp

(
k−1∑
j=i

ln ‖Aj+1vj‖

)
Applying [3, Theorem 6] to the additive functional

k−1∑
j=i

ln ‖Aj+1vj‖

we obtain (3.1) with continuous β. The argument for (3.2) follows from (9.1).
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Conversely if (3.1) and (3.2) hold then the RW does not exhibit the Sinai be-
havior by Theorem 3.1. �

10. Periodic boundary conditions.

Here we describe a criterion for recurrence and the CLT in terms of periodic
approximations to our random environment. The results are analogous to the
Livsic theory for hyperbolic dynamical systems (cf. [23, 24]). Given N let πN(n, y)
denote the invariant measure for the random walk on [0, N − 1] × [1 . . .m] with
periodic boundary conditions. Let πNn denote the vector with components πNn (y) =
πN(n, y).

Proposition 10.1. Condition (3.1) holds if and only if for each N and for each
((Pn, Qn, Rn))N−1

n=0 ∈ J N
0 the following identity holds

(10.1) πN0 Q01 = πNN−1PN1.

The proof consists of two steps.

Lemma 10.2. (3.1) holds if and only if for each N and for each environment ω
such that TNω = ω we have

(10.2) λ0λ1 . . . λN−1 = 1.

Proof. By Lemma C.1 we need to show that (10.2) is equivalent to

(10.3)
n−1∑
j=0

lnλ(T jω)

being uniformly bounded in ω ∈ Ω and n ∈ N
(a) If (10.3) is bounded for each ω it is in particular bounded for periodic ω and

hence
kN−1∑
j=0

lnλ(T jω) = k

[
N−1∑
j=0

lnλj

]
is uniformly bounded in k which is only possible if (10.2) holds.

(b) Suppose that (10.2) holds. Given ω, N let ω̃ be the environment such that
ω̃j = ω0 for j ∈ {0, . . . N − 1} and such that ω̃ is periodic with period N. Then
due to Lemma A.2∣∣∣∣∣
N−1∑
j=0

lnλ(T jω)

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
j=0

lnλ(T jω)−
N−1∑
j=0

lnλ(T jω̃)

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
j=0

[
lnλ(T jω)− lnλ(T jω̃)

]∣∣∣∣∣ ≤
Const

N−1∑
j=0

dα(T jω, T jω̃) ≤ Const
N−1∑
j=0

2−α(min(j,N−j)) ≤ Const

giving that (10.3) is bounded. �

Lemma 10.3. For each periodic environment (10.1) and (10.2) are equivalent.
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Proof. Applying [2, Theorem 2] to the periodic environment we see that the re-
currence is equivalent to (10.2). On the other hand considering our walker only at
times when her position is divisible by N we obtain a random walk in a constant
environment. In this case the recurrence is equivalent to the vanishing of drift
which is what condition (10.1) says. �

Proof of Lemma 3.12. For given matrices

(P0, Q0, R0), (P1, Q1, R1), . . . , (PN−1, QN−1, RN−1)

the entries πN(n, y) are rational functions of the coefficients. Accoridngly equation
(10.1) can be written as

FN((P0, Q0, R0), (P1, Q1, R1) . . . (PN−1, QN−1, RN−1)) = 0

where FN is a certain polinomial. In other words (3.1) holds if and only iff FN
vanishes on ΛN . But then it also vanishes on Λ̄N and hence Λ̄ is also admissible.
�

11. Stationary case.

Proof of Lemma 3.6. The condition that Mn = Xn + fYn is a martingale is equiv-
alent to

(11.1) f = (P +R +Q)f + (P −Q)1

Let Jε,f be the set of all triples (P,Q,R) ∈ J satisfying (2.5) and (11.1). Consider
the random environment where (Pn, Rn, Qn) are iid and are uniformly distributed
on Jε,f . Then by [15, Theorem 4.1] given ε̄ there exists δ such that

P(|Xn| > δ
√
n) > 1− ε̄

for large n. Accordingly Xn does not exhibit the Sinai behavior. Therefore by
Lemma 3.3, (3.1) and (3.2) are satisfied for all environments in (Jε,f )Z. �

12. Quasiperiodic case: proof of Theorem 3.8

Note that by stationarity there exist functions ζ̄ , Ā, ᾱ, v̄, l̄, λ̄, ¯̃λ on Td such that

ζn(ω) = ζ̄(ω + nγ), An(ω) = Ā(ω + nγ), αn(ω) = ᾱ(ω + nγ),

vn(ω) = v̄(ω+nγ), ln(ω) = l̄(ω+nγ), λn(ω) = λ̄(ω+nγ), λ̃n(ω) = ¯̃λ(ω+nγ).

Lemma 12.1. The functions ζ̄ , Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr smooth.

This lemma is proven in Appendix A.
Next, by Theorem 2.4 ([2, Theorem 2]) recurrence is equivalent to

(12.1)

∫
Td

ln λ̄(ω)dω = 0
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Now [18] tells us that if Φ ∈ Cr(Td) has zero mean and (3.6) and (3.7) are satisfied
then there is Φ̃ ∈ C0(Td) such that

(12.2) Φ(ω) = Φ̃(ω + γ)− Φ̃(ω) and hence
n−1∑
k=0

Φ(ω + kγ) = Φ̃(ω + nγ)− Φ̃(ω).

Applying (12.2) with Φ = ln λ̄ we obtain (3.1).

Appendix A. The Invariant Section Theorem

The following result is useful for ascertaining the regularity of auxiliary se-
quences of matrices considered in this paper.

Let X and Y be metric spaces.
Consider a skew product transformation F : X×Y 7→ X×Y given by F (x, y) =

(f(x), g(x, y)) and such that

(1) F is a continuous transformation;
(2) f(x) is a homeomorphism;
(3) g(x, ·) : Y → Y is a fiber contraction, that is, there exists θ < 1 such that

d(g(x, y′), g(x, y′′) ≤ θd(y′, y′′).

Proposition A.1. ([16, Theorem 3.5]) (a) F admits an invariant section. That
is, there exists a map Γ : X → Y such that g(x,Γ(x)) = Γ(f(x)).

(b) If F is Cα, f and f−1 are Lipshitz, and θ[Lip(f−1)]α < 1 then Γ belongs to
a Hölder space Cα.

(c) If X is a manifold and Y is a manifold with boundary and g(x, ·) : Y →
Int(Y ) for each x ∈ X and if F is a Cr diffeomorphism such that

(A.1) θ[Lip(f−1)]r < 1

then Γ is Cr smooth.

Lemma A.2. The maps

ω → ζ(ω), ω → A(ω), ω → α(ω), ω → v(ω), ω → l(ω), ω → λ(ω), ω → λ̃(ω)

defined by (2.19) are Hölder continuous with respect to the metric d defined by
(2.4).

Proof. We start with the smoothness of ζ. To this end we apply Proposition A.1
to the map F1 defined on the product of Ω×Z, where Z is the space of stochastic
matrices by the formula

F1(ω, ζ) = (Tω, (I −Q(ω)ζ −R(ω))−1P (ω)).

Thus f is a shift T and so Lip(T−1) = 2. On the other hand due to [9, Proposition
D.1], there are constants K̄ > 0, θ̄ < 1 which depend only on the width of the strip
m and on ε in (2.5) such that

d(F n
1 (ω, ζ ′), F n

1 (ω, ζ ′′)) ≤ K̄θ̄nd(ζ ′, ζ ′′).
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Applying Proposition A.1 to F n0
1 where n0 is such that K̄θ̄n0 < 1 we get that ζ is

Cα where α is such that

2αn0K̄θ̄n0 < 1.

(Since n0 can be arbitrarily large we can optimize with respect to n0 and conclude
that ω → ζ(ω) is Cα provided that 2αθ̄ < 1.)

Since ω → ζ(ω) is Cα, (2.12) shows that ω → A(ω) and ω → α(ω) is Cα as well.
Next, A(ω) are positive matrices and therefore preserve the positive cone in Rm.

Moreover they act as contractions in the so called Hilbert metric (see e.g [22]).
Consider now the map F2 acting on Ω× Sm−1

+ by the formula

F2(ω, v) =

(
Tω,

A(ω)v

||A(ω)v||

)
,

where Sm−1
+ is the set of unit vectors with positive coordinates. This map is a

fiber contraction in the metric induced on Sm−1
+ in a natural way by the Hilbert

metric. Thus Proposition A.1 implies that ω → v(ω) is Cα. The Hölder property
of ω → l(ω) is established similarly by looking at the projective action of α.

Finally the Hölder property of λ(ω) follows from the Hölder property of A and

v, and the Hölder property of λ̃(ω) follows from the Hölder property of α and l. �

Proof of Lemma 12.1. The proof of Lemma 12.1 is similar to the proof of Lemma
A.2 except that now we apply Proposition A.1 to skew products with the base map
being toral translation f(ω) = ω+γ rather than the shift of Ω. Thus f−1(ω) = ω−γ
is an isometry and thus Lip(f−1) = 1. Accordingly (A.1) holds for all r implying

that ζ̄ , Ā, ᾱ, v̄, l̄, λ̄ and ¯̃λ are Cr smooth. �

Appendix B. CLT for transient uniquely ergodic environments.

In this section we consider uniquely ergodic environments defined by (3.8).
Then by stationarity there exist functions ζ̄ , Ā, v̄, λ̄(ω) = ln ||Ā(ω)v̄(f−1(ω)|| on

Ω such that

ζn(ω) = ζ̄(fnω), An(ω) = Ā(fnω), vn(ω) = v̄(fnω), λn(ω) = λ̄(fnω).

Applying C0 Invariant Section Theorem (Proposition A.1(a) and Lemma A.2)
we conclude similarly to Section 12 that the above functions ζ̄ , Ā, v̄ and hence
also λ̄ are continuous.

Without loss of generality we assume that Xt → +∞ as t→∞ and hence λ =
E(ln λ̄) < 0. We recall the general results proven in [13] for ergodic environments
such that

(B.1) E
(
||An(ω) . . . A2(ω)A1(ω)v0(ω)||2

)
= E

([
λ̄(fn−1ω) . . . λ̄(fω)λ̄(ω)

]2)
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decays exponentially as n → ∞. In our case this assumption is satisfied. Indeed,
due to the unique ergodicity

(B.2)

∑n−1
i=0 ln λ̄(f jω)

n
→ λ as n→∞ uniformly in ω.

Hence for any ε > 0 there is Nε such that for all n > Nε and all ω ∈ Ω there is
ε(n, ω) satisfying |ε(n, ω)| ≤ ε and such that

(B.3)

||An(ω) . . . A2(ω)A1(ω)v0(ω)|| = λ̄(ω)λ̄(fω) . . . λ̄(fn−1ω) =

exp

(
n−1∑
i=0

ln λ̄(f jω)

)
= exp(n(λ + ε(n, ω)))

which implies the exponential decay of (B.1).
It is clear that the asymptotic properties of the walk do not depend on its starting

point. However, some formulae simplify significantly if the initial distribution is
chosen as follows. We define the initial distribution of ξ by setting

Pω,(0,·){ξω(0) = (0, i)} = σ0(i), 1 ≤ i ≤ m,

where σ0 is defined by (2.9). Let us list some properties of the vectors σn which
will be used below. It follows directly from the above definition of σn that
σn = σkζk . . . ζn−1 for any k < n (here we also use the relation ζn(ω) = ζ(fnω)).
Next, σ0(ω) is a continuous function of ω. This fact follows form Proposition A.1
applied to Ω × U , where U is the set of probability vectors of dimension m. The
related skew product transformation is given by (ω, y) 7→ (fω, yζ(ω)). The related
fiber contraction property is the standard property of stochastic matrices ζ with
ζ(i, j) ≥ ε, where ε > 0 and depends only on the ε from (2.5) (see [13, equations
(1.9) and (1.17)]).

So, from now on ξ(t) = ξω(t) = (X(t), Y (t)) is the walk in RE ω starting from
a random point in layer 0. More precise notations, such as e. g. ξω,(0,·)(t) will also
be used where appropriate. The same convention applies to Pω and Eω.

Let tn be the hitting time, by the RW, of layer n, tn = min{t : Xt = n}. Recall
that if a RW is recurrent or transient to the right then the entries of the matrix
ζn have the following probabilistic meaning:

ζn(i, j) = Pω,(n,i) (RW starting from (n, i) hits Ln+1 at (n+ 1, j)) .

Since ξ is a Markov chain, it follows for n ≥ 1 that

Pω,(0,·){ξ(tn) = (n, i)} = σn(i), 1 ≤ i ≤ m.

It is proven in [13] that if (B.1) holds then there are positive constants v and σ
such that with probability 1

(B.4)
Eω(tn)

n
→ 1

v
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and

(B.5)
tn − Eω(tn)

σ
√
n

converges to a standard normal distribution.

Define bn by the condition

Eω(tbn−1) ≤ n ≤ Eω(tbn).

We are now in a position to prove the precise version of Theorem 3.9.

Theorem B.1. σXn−bn√
n

converges to a standard normal distribution almost surely.

Proof. We need two strengthenings of (B.4) for uniquely ergodic environments.
First, as k →∞

(B.6)
Eω(tk)

k
→ 1

v
uniformly in ω

and hence

(B.7)
Eω(ti+k − ti)

k
=

Ef iω(tk)

k
→ 1

v
uniformly in i and ω.

Second

(B.8) Eω(t1) is bounded

and hence

(B.9) Eω(tbn) = n+O(1).

The proofs of (B.6) and (B.8) will be given later. Let us first see how those facts
imply the theorem. Fix a large K. Given x we have

Pω(tbn+
√
nx+K lnn ≤ n)− Pω(An,K) ≤ Pω

(
Xn − bn ≥

√
nx
)
≤ Pω(tbn+

√
nx ≤ n)

where An,K is the event that X returns to level n after visiting level n+K lnn. By
[9, Lemma 3.2] if K is large enough then there is ε > 0 such that with probability 1

Pω(An,K) ≤ C(ω)e−εK lnn =
C(ω)

nεK
.

Therefore to complete the proof of the CLT for X it suffices to obtain the as-
ymptotic behaviour of Pω(tbn+kn ≤ n) under the assumption that kn/

√
n → x.

Next,

Pω(tbn+kn ≤ n) = Pω
(
tbn+kn − Eω(tbn+kn)√

n
≤ n− Eω(tbn+kn)√

n

)
Equations (B.7) and (B.9) show that

lim
n→∞

n− Eω(tbn+kn)√
n

= −x
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so (B.5) gives

lim
n→∞

Pω(tbn+kn ≤ n) =

∫ −x/σ
−∞

e−s
2/2

√
2π

ds

proving the CLT for X.
It remains to establish (B.6) and (B.8).
Denote by en the column vector whose ith coordinate en(i) is Eω,(0,i)(tn) (the

expectation of tn conditioned on ξ(0) = (0, i)). By [13, equation (4.27)] for n ≥ 1

en =
n−1∑
j=0

ζ0 . . . ζj

−∞∑
i=0

Aj . . . Aj−i+1(I −Qj−iζj−i−1 −Rj−i)
−11,

where we use the following conventions: for any k ζk . . . ζk = I, Aj . . . Aj+i−1 = I
if i = 0, and Aj . . . Aj−i+1 = Aj if i = 1. Since Eω(tn) =

∑m
i=1 σ0(i)en(i), we have

Eω(tn) = σ0en =
n−1∑
j=0

σj

∞∑
i=0

Aj . . . Aj−i+1(I −Qj−iζj−i−1 −Rj−i)
−11

and in particular

Eω(t1) = σ0

∞∑
i=0

A0 . . . A−i+1(I −Q−iζ−i−1 −R−i)−11.

Hence

Eω(t1) ≤ Const
∞∑
i=0

||A0 . . . A−i+1||.

Due to (B.2) and (B.3)

(B.10) ||Ai . . . A0|| ≤ Const
i−1∏
k=0

λ̄(fkω)

proving (B.8). Next, denote u(ω) = Eω(t1). Obviously Eω(tn) =
∑n−1

j=0 u(f jω) and

since u is continuous the unique ergodicity implies that 1
n

∑n−1
j=0 u(f jω) converges

uniformly uniformly in ω which proves (B.6). �

Note that Theorem B.1 requires a random centering by bn(ω). On the other
hand if f is a translation on Td, (P̄ , Q̄, R̄) are Cr, and (3.6) and (3.7) hold then σ0

and hence u are Cr. We now set ū =
∫
Td u(ω)dω and apply (12.2) to u − ū. This

gives u(ω) = ū + Φ̂(ω + γ)− Φ̂(ω), where Φ̂ is continuous and hence

Eω(tn) = nū + Φ̂(ω + nγ)− Φ̂(ω) =
n

v
+O(1), where

1

v
= ū

Accordingly bn = vn+O(1) and we obtain
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Corollary B.2. In the quasiperiodic environment satisfying (3.6), (3.7) and v 6= 0

σ(Xn − nv)√
n

converges to a standard normal distribution where σ is the constant from (B.5).

Appendix C. Bounded ergodic sums.

The following lemma is a variation of the Gottschalk-Hedlund Theorem [14,
Theorem 14.11]. We include the proof of this lemma for the sake of completeness
and because it is very short.

Lemma C.1. Let T be an ergodic transformation and Φ be a measurable function.
Then there exists a constant K such that for almost all ω

(C.1)

∣∣∣∣∣
n−1∑
j=0

Φ(T jω)

∣∣∣∣∣ ≤ K

iff there exists a bounded function Φ̃ such that

(C.2) Φ(ω) = Φ̃(Tω)− Φ̃(ω)

Proof. (C.2) implies (C.1) since in that case
∑n−1

j=0 Φ(T jω) = Φ̃(T nω) − Φ̃(ω).

Conversely, if (C.1) holds then one can set Φ̃(ω) = − lim inf
n→∞

n−1∑
j=0

Φ(T jω). �
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