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Abstract. Dispersing billiards with cusps are deterministic dy-
namical systems with a mild degree of chaos, exhibiting “intermit-
tent” behavior that alternates between regular and chaotic pat-
terns. They are characterized by decay of correlations of order 1/n
and a central limit theorem with a non-classical scaling factor of√
n logn. As for the growth of the pth moments of the appropri-

ately normalized Birkhoff sums, it follows from the results of [28]
that these converge to the moments of the limit normal distribu-
tion only for p < 2 and diverge for p > 2. Here we focus on the
critical case p = 2 and prove a doubling effect: the second moments
converge, but their limit is twice the second moment of the limit
normal distribution.
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liards, dispersing billiards, cusps.

1. Introduction

Limit theorems (and the related issue of convergence of moments)
play an important role in the studies of dynamical systems.
By a dynamical system we mean a transformation F : M → M

of a measure space M with an invariant probability measure µ. Let
A : M → R be a function (observable). Then the sequence of observed
values A(F n(X)), where X ∈ M , makes a stationary process with re-
spect to the invariant measure µ. The main object of studies is the
behavior of its partial sums

(1.1) SnA : = A + A ◦ F + · · ·+ A ◦ F n−1.

If µ is ergodic and A ∈ L1
µ(M), then SnA = nµ(A) + o(n) for a.e.

X ∈ M , according to the Birkhoff ergodic theorem; we use standard
notation µ(A) =

∫

M
Adµ. It is common to consider centered sums

SnA−nµ(A) = Sn(A−µ(A)), so we will always assume that µ(A) = 0;
otherwise we just replace A with A− µ(A). Now we have SnA = o(n).
Limit theorems describe asymptotic distribution of (SnA)/bn, where

bn > 0 is an appropriate scaling factor. The latter is selected so that
(SnA)/bn = O(1) for typical points X ∈ M . Then a limit theorem
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usually states that (SnA)/bn converges in distribution, i.e.,

(1.2) lim
n→∞

µ
{

X : (SnA)/bn < x
}

= G(x)

where G(x) is a probability distribution function, and (1.2) holds for
every x at which G(x) is continuous. If bn =

√
n and G(x) is a normal

(Gaussian) distribution function, then we refer to (1.2) as a classical
Central Limit Theorem (CLT).
While (1.2) describes the limit distribution of (SnA)/bn it is also

important to describe the asymptotics of its moments. We will say
that the pth (absolute) moment of (SnA)/bn properly converges if

(1.3) lim
n→∞

µ
(

|(SnA)/bn|p
)

=

∫

|x|p dG(x).

The pth moment of (SnA)/bn may also converge to a value different
from the right hand side of (1.3) or diverge altogether. The follow-
ing standard fact (e.g., [24, Exercise 3.2.5, p. 87]) helps to clarify the
picture:

Theorem 1. Suppose (1.2) holds and supn µ
(

|(SnA)/bn|p
)

< ∞. Then
the qth moment of (SnA)/bn properly converges for every q < p.

Corollary 1.1. There is a critical moment p∗ ∈ [0,∞] such that
(a) the qth moment of (SnA)/bn properly converges for all q < p∗
(b) the qth moment of (SnA)/bn diverges for all q > p∗.

In case p∗ = ∞ we have proper convergence of all moments. In case
p∗ = 0 we have divergence of all moments. The p∗th moment itself may
converge (properly or improperly) or diverge. We note, however, that
convergence in distribution implies that

lim inf
n→∞

µ
(

|(SnA)/bn|p
)

≥
∫

|x|p dG(x)

therefore the limit of the p∗ moment can only be greater than the p∗th
moment of the limit distribution.
While the limit theorems (mostly, versions of the classical CLT) have

been proven for many types of dynamical systems, the convergence of
moments has received less attention until recently. On the other hand,
physicists prefer to use moments, see e.g., [19], because those can be
easily estimated in numerical experiments.
Recently, in part due to connections to large deviation estimates

([32]) and concentration inequalities ([10]), there has been substantial
progress related to the convergence of moments in the mathematical
literature ([34], [28], [21]). Of special significance is the paper [28],
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which, following up on [34], investigates the problem for the important
class of dynamical systems modeled by a Young tower.

Theorem 2 ([34], [28]). Let an ergodic system (M,F, µ) be modeled by
a Young tower and A be a Hölder continuous function on M . Then
(a) If the tower has an exponential tail bound, then we have proper
convergence of all moments, i.e., p∗ = ∞.
(b) If the tower has polynomial tails of order β > 0, then we have
proper convergence of moments of order p < 2β.
(c) Assume again that the tower has polynomial tails of order β > 0.
Then there is a nonempty subset U in the space of Hölder functions on
the tower, such that for A ∈ U and p > 2β the moments of order p
diverge. Hence, for A ∈ U , we have p∗ = 2β.

Remark 1.2. The class U is reasonably large, and for many important
situations can be described rather explicitly. For details we refer to the
literature, eg. [28, 27, 3, 2]; see also Remark 1.3 below.

The tail of a Young tower refers to the rates of convergence of the
respective return times. Precisely, let ∆ denote the tower, µ∆ the
invariant measure on it, ∆0 ⊂ ∆ the base of the tower, and R : ∆ →
N

+ (defined on all ∆) the first return time to ∆0. Then the rate of
convergence of µ∆(R > n) to zero, as n → ∞, is the key characteristic
of the tower.
We say that the tower has exponential tail bound if µ∆(R > n) =

O(λn) for some λ < 1. This implies exponential decay of correlations,
i.e., µ

(

(A◦F n)A
)

= O(λn
A) for some λA < 1 ([39]). All Axiom A diffeo-

morphisms, uniformly expanding interval maps, Hénon-like attractors
[5], dispersing billiards (without cusps), etc., belong to this category.
We say that the tower has polynomial tails of order β > 0 if µ∆(R >

n) ∼ Cn−β for some C > 0. This implies polynomial decay of corre-
lations of order β, i.e., µ

(

(A ◦ F n)A
)

= O(n−β). If β > 1, then the

correlations are summable, i.e.,
∑

n |µ
(

(A ◦F n)A
)

| < ∞, and the clas-
sical CLT holds [40]. Many so called intermittent systems [35] belong
to this category, including interval maps with neutral fixed point [29],
Bunimovich flowers [7, 16], dispersing billiards with vanishing curva-
ture [17], etc. On the other hand, nonstandard limit theorems hold if
β ≤ 1 ([27]).
In fact, the authors of [28] do not only prove divergence in case (c)

of Theorem 2, they also provide bounds on the growth of moments
µ(|SnA|p), which are in accordance with observations in the physics
literature, in particular [1]. For instance if β = 1 (which is the case of
special interest to us, see below), µ(|SnA|p) ≍ np−1 for p > 2 as opposed
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to µ(|SnA|p) ≍ (n log n)p/2 for p < 2. The notation f ≍ g means that
f = O(g) and g = O(f). On the other hand what precisely happens
at the critical moment p∗(= 2β) (i.e., whether we have a proper or
improper convergence or divergence) remains unclear; perhaps it is
system-dependent.
We study here a system modeled by a Young tower with polynomial

tail bound of order β = 1. In this case the correlations decay as n−1,
i.e.,

(1.4) ζn(A) : = µ
(

A · (A ◦ F n)
)

= O(1/|n|)
The rate of growth of the second moment is then

(1.5) µ
(

[SnA]
2
)

=
n−1
∑

k=−n+1

(n− |k|)ζk(A) = O(n log n),

so the proper normalization factor for the limit theorem (1.2) must be
bn =

√
n log n, rather than the classical bn =

√
n.

The corresponding non-classical limit theorems were proved for sev-
eral systems of that type, most notably for Bunimovich stadium [3]
and for dispersing billiards with cusps [2].

Theorem 3 ([2, 3]). Let F : M → M be the collision map for a Buni-
movich stadium or for a planar dispersing billiard table with cusps.
Let A be a Hölder continuous function on the collision space M with
µ(A) = 0. Then we have a nonclassical limit theorem

(1.6) lim
n→∞

µ
{

X : (SnA)/
√

n logn < x
}

= G(x)

where G(x) is the distribution function of a normal law with mean zero
and variance σ2

A ≥ 0.

Explicit formulas for the variance σ2
A exist for both the stadium (see

[3]) and billiards with cusps (see [2] and (2.2) below). It may happen
that σ2

A = 0, and in that case a version of the classical CLT applies,
i.e., (SnA)/

√
n converges to a normal law [3, 2], but this is a degenerate

case not covered by our present work.
We deal here with dispersing billiards with cusps, continuing our

work [2]. Our main result is

Theorem 4. Let F : M → M be the collision map for a planar dis-
persing billiard table with cusps. Let A be a Hölder continuous function
on the collision space M with µ(A) = 0. Then

(1.7) lim
n→∞

µ
(

[SnA]
2
)

n logn
= 2σ2

A.
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More precisely,

(1.8) µ
(

[SnA]
2
)

= 2σ2
An logn+O(n).

Note that the limit of the second moment is not equal to the second
moment of the limit distribution, the former is twice the latter. This
doubling effect will be explained in the end of Section 3.

Remark 1.3. Let σ2
A > 0. Then the critical moment is p∗ = 2, for

which we have improper convergence. In particular, if σ2
A > 0, A ∈ U

(cf. Remark 1.2): all moments of order q < 2 properly converge, while
all moments of order q > 2 diverge.

Remark. The limit law (1.6) holds true if we replace µ with any measure
µ′ that is absolutely continuous with respect to µ; see [2]. Similarly,
our limit (1.7) remains valid if we replace µ with any µ′ ≪ µ, because
the images F nµ′ weakly converge to µ.

We do not handle the Bunimovich stadium here. Despite its similar-
ity to our billiards with cusps (in terms of the same rates of the decay
of correlations and the same scaling factor in the non-classical limit
theorem), the mechanism of nonuniform hyperbolicity is very different
(see [18]), so our arguments will not apply to the stadium.
Finally it is worth mentioning another important model, the infinite

horizon Lorentz gas, where the billiard flow is characterized by slow
(polynomial) mixing rates [31]. The position of the moving particle q(t)
at time t satisfies a non-classical limit theorem with a

√
t log t scaling

factor (this is proved in [13]; see also [38]). Regarding the convergence
of the second moment, a doubling effect analogous to our Theorem 4 has
been observed and studied in [22]; for further discussion and numerical
evidence see also [19, 23, 20]. However, this model is quite different
from dispersing billiards with cusps and requires a different approach.
Hence we plan to address the issue of the second moment in the infinite
horizon Lorentz gas in a separate paper.

2. Billiards with cusps

Billiards are dynamical systems where a point particle moves in a
planar domain D (the billiard table) and bounces off its boundary ∂D
according to the classical rule “the angle of incidence is equal to the
angle of reflection”. The boundary ∂D is assumed to be a finite union
of C3 smooth compact curves that may have common endpoints.
Between collisions at ∂D, the particle moves with a unit speed and

its velocity vector remains constant. At every collision, the velocity
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vector changes by

(2.1) v+ = v− − 2〈v−,n〉n
where v− and v+ denote the velocities before and after collision, re-
spectively, n stands for the inward unit normal vector to ∂D, and 〈·, ·〉
designates the scalar product.
If the boundary ∂D is concave inward and the curvature of ∂D does

not vanish, the billiard is said to be dispersing. Such billiards were
studied by Sinai [37] and Bunimovich [6] under the assumptions that
the boundary components are smooth closed curves.
Sinai proved that the resulting billiard dynamics is strongly (uni-

formly) hyperbolic, ergodic, and K-mixing. Gallavotti and Ornstein
[26] proved that dispersing billiards are Bernoulli. Young [39] proved
that correlations decay exponentially fast; see also [11] for an infinite
horizon situation. The classical CLT was derived in [8, 9].
All these results have been extended to dispersing billiards with

piecewise smooth boundaries, i.e., to tables with corners, provided the
boundary components intersect each other transversally, i.e., the angles
made by the walls at corner points are positive; see [9, 11].
We deal with dispersing billiards where some boundary components

converge tangentially at a corner, i.e., make a cusp. Such billiards were
first studied by Machta [30] who found (based on heuristic arguments)
that correlations for the collision map decay as 1/n. The reason for such
a slow decay is weak (non-uniform) hyperbolicity of the collision map.
Whenever the moving particle gets deep into a cusp, it experiences a
large number of rapid collisions that do not contribute much to the
expansion or contraction of tangent vectors.
Reháček [36] proved that dispersing billiards with cusps are ergodic,

K-mixing and Bernoulli. The rates of the decay of correlations (as
predicted by Machta) were rigorously derived in [15, 18], and the non-
classical limit theorem was proved in [2].
We note that correlations decay slowly only in discrete time, when

each collision counts as a unit of time. In real (continuous) time, colli-
sions inside a cusp occur in rapid succession and their effect is much less
pronounced. As a result, the corresponding billiard flow is rapid mixing
in the sense that correlations for smooth observables decay faster than
any polynomial rate, and a classical CLT holds [4].
Our interest in billiards with cusps is motivated by [12] where the

authors consider an interaction of a heavy particle of positive size with
a light point particle moving in a dispersive domain. The case when the
heavy particle is near the boundary reduces to a study of billiards with
almost cusp which in turn requires a good understanding of billiards
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with cusps. We observe that in the model of [12] the particles exchange
energy only at the moment of collisions, so the observable studied in
[12] can not be represented as a integral along the flow orbit and the
discrete time CLT of [2] is relevant.
Next we introduce some notation. Just as in the previous work [2],

we assume for simplicity that the table D has exactly one cusp; the
generalization to several cusps is straightforward.
There are natural coordinates r and ϕ in the collision spaceM , where

r denotes the arc length parameter on ∂D and ϕ the angle of reflection,
i.e., the angle between v+ and n in the notation of (2.1). Note that
−π/2 ≤ ϕ ≤ π/2. The billiard map F preserves the measure µ on
M given by dµ = cµ cosϕdr, dϕ, where cµ = [2 length(∂D)]−1 is the
normalizing factor. In these coordinates, M is a union of rectangles
[r′i, r

′′
i ]× [−π/2, π/2], where the intervals [r′i, r

′′
i ] correspond to smooth

components (arcs) of ∂D.
The cusp is a common terminal point of two arcs, ii and i2, of ∂D;

thus the coordinate r takes two values at the cusp, r′ = r′i1 and r′′ = r′′i2.
Now the variance σ2

A in Theorem 3 is given by

(2.2) σ2
A =

cµ
8ā

[
∫ π/2

−π/2

[A(r′, ϕ) + A(r′′, ϕ)]
√
cosϕdϕ

]2

where ā = (a1 + a2)/2 and a1, a2 denote the curvatures of the two arcs
making the cusp measured at the vertex of the cusp.
If the table D has more than one cusp, then σ2

A is the sum of expres-
sions (2.2) corresponding to individual cusps.
It is common in the studies of nonuniformly hyperbolic maps, like

our F : M → M , to reduce the dynamics onto a subset M ⊂ M so
that the induced map F : M → M will be strongly hyperbolic and
have exponential decay of correlations.
In the present case the hyperbolicity is slow only because of the

cusp. So we cut out a small vicinity of the cusp. That is, we remove
from M two rectangles, R1 = [r′i1 , r

′
i1
+ ε0] × [−π/2, π/2] and R2 =

[r′′i2 − ε0, r
′′
i2
] × [−π/2, π/2], with some small ε0 > 0 and consider the

induced map F on the remaining collision space M = M \(R1∪R2). It
preserves the conditional measure ν on M, where ν(B) = µ(B)/µ(M)
for any B ⊂ M. The map F : M → M is strongly hyperbolic and has
exponential decay of correlations [2, 15].
Now let R(x) = min{m ≥ 1: Fmx ∈ M} denote the return time

function on M. The domains

Mm = {x ∈ M : R(x) = m}
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for m ≥ 1 are called cells ; note that M = ∪m≥1Mm. It is known [15]
that ν(Mm) = O(m−3).
For m ≥ 1 and i = 0, 1, . . . , m− 1 we denote

Mm,i = F i(Mm) and Mm = ∪m−1
i=0 Mm,i.

Then the sets {Mm,i} constitute a partition of M . See Figure 1 for an
illustration. Note that

µ(Mm,i) = µ(Mm) = O(m−3) and µ(Mm) = O(m−2).

M1,0M2,0M3,0Mm,0

M2,1M3,1Mm,1

M3,2Mm,2

Mm,m−1

F Π

Figure 1. The structure of cells Mm,i in the space M .
The “bottom level” ofM is the induced phase spaceM =
∪∞
m=0Mm = ∪∞

m=0Mm,0. The map F moves each cell one
level up, but the top cell in each column is mapped back
down to M. The projection Π (Section 6) collapses each
column ∪m−1

i=0 Mm,i onto its bottom element Mm,0 = Mm.

For the given function A on M we construct the “induced” function
on M as follows:

(2.3) A(x) =

R(x)−1
∑

m=0

A(Fmx).

Since we assume µ(A) = 0, we also have ν(A) = 0. Note that A is
of order m on Mm, hence in generic situation ν(A2) = ∞. In fact,
ν(A2) < ∞ if and only if σ2

A = 0, which is a degenerate case; cf. [2].
For any p ≥ 1 we introduce the following notations:

- M1,p = ∪m≤pMm, and
- A1,p the “truncated” version of A, defined by A1,p(X) = A(X)
for X ∈ M1,p and A1,p(X) = 0 elsewhere.

The following estimate is proved in [2] by direct calculation:
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Lemma 2.1 ([2]). We have µ(A2
1,p) = 2σ2

A log p+O(1).

The map F : M → M is uniformly hyperbolic, i.e., it expands un-
stable curves and contracts stable curves at an exponential rate. More
precisely, if u is an unstable tangent vector at any point x ∈ M, then
‖DxFn(u)‖ ≥ cΛn‖u‖ for some constants c > 0 and Λ > 1 and all
n ≥ 1. Similarly, if v is a stable tangent vector, then ‖DxF−n(v)‖ ≥
cΛn‖v‖ for all n ≥ 1.
The singularities of the original map F : M → M are made by trajec-

tories hitting corner points (other than cusps) or experiencing grazing
(tangential) collisions with ∂D. The singularities of F lie on finitely
many smooth compact curves. Those curves are stable in the sense that
their tangent vectors belong to stable cones. Likewise, the singularities
of F−1 are unstable curves.
The singularities of the induced map F are those of F plus the

boundaries of the cells Mm, m ≥ 1. Those boundaries form a count-
able union of smooth compact stable curves that accumulate near the
(unique) phase point whose trajectory runs directly into the cusp.
The structure of cells Mm and their boundaries are described in

[15]. Each cell has length ≍ m−7/3 in the unstable direction and length
≍ m−2/3 in the stable direction. Its measure is

µ(Mm) ≍ m−7/3 ×m−2/3 = m−3.

The map F = Fm expands the cell Mm in the unstable direction
by a factor ≍ m5/3 and contracts it in the stable direction by a factor
≍ m5/3, too. So the image F(Mm) has ‘unstable size’ ≍ m−2/3 and
‘stable size’ ≍ m−7/3. The images accumulate near the (unique) phase
point whose trajectory emerges directly from the cusp.
A characteristic feature of hyperbolic dynamics with singularities is

the competition between hyperbolicity and the cutting by singularities.
The former causes expansion of unstable curves, it makes them longer.
The latter breaks unstable curves into pieces and thus produces shorter
curves. One of the main results of [15] is a so called one-step expan-
sion estimate [15, Eq. (5.1)] for the induced map F , which guarantees
that the expansion prevails over the cutting by singularities, i.e., “on
average” the unstable curves grow fast, at an exponential rate.
The one-step expansion estimate implies the entire spectrum of sta-

tistical facts: the growth lemmas, the coupling lemma for standard
pairs and standard families, equidistribution estimates, exponential
decay of correlations for bounded Hölder continuous functions, limit
theorems for the same type of functions, etc. All these facts with de-
tailed proofs are presented in [14, Chapter 7] for general dispersing



10 P. BÁLINT, N. CHERNOV, D. DOLGOPYAT

billiards (without cusps), but those proofs work for our map F almost
verbatim (see [15, p. 749]).
The main tool in our analysis of the map F is standard pairs and

standard families; see [14, Section 7.4] for the definition and basic prop-
erties. Given a standard family G = {(W, νW )} of unstable curves {W}
with smooth probability measures {νW} on them, and a factor mea-
sure λG that defines a probability measure µG on ∪W , its Z-function
is defined by

Z(G) : = sup
ε>0

µG(rG < ε)

ε

where rG(x) denotes the distance from a point x ∈ W ∈ G to the
nearer endpoint of W , i.e., rG(x) = dist(x, ∂W ). If the curves W ∈ G
have lengths of ≍ L, then Z(G) ≍ 1/L (see [14, p. 171]). The images
Gn = Fn(G) are also standard families, and their Z-function satisfies

(2.4) Z(Gn) ≤ c1ϑ
nZ(G) + c2

where ϑ ∈ (0, 1) and c1, c2 > 0 are constants.
A standard family G is said to be proper if Z(G) ≤ Cp where Cp is

a suitable large constant; see [14, p. 172]. The condition Z(G) ≤ Cp

means that the family mostly consists of long unstable curves. If a
family G consists of small curves (of length of order ε), then its Z-
function is of order 1/ε, and due to (2.4) it takes C| log ε| iterations
of F (where C > 0 is a large constant) to transform G into a proper
standard family (of mostly long curves).

3. Proof of Theorem 4

In this section we prove (1.8) modulo two technical lemmas that will
be proved in subsequent sections. Expanding the square gives

µ
(

[SnA]
2
)

= nµ(A2) + 2
n−1
∑

k=1

(n− k)µ
(

A · (A ◦ F k)
)

= n
n

∑

k=−n

µ
(

A · (A ◦ F k)
)

+O(n)

in the last line we used the fact µ(A · (A ◦F k)) = O(1/k) according to
(1.4). Now (1.8) is equivalent to

(3.1)
n

∑

k=−n

µ
(

A · (A ◦ F k)
)

= 2σ2
A log n+O(1)
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or in a slightly different form

(3.2) µ

(

A ·
(

n
∑

k=−n

A ◦ F k
)

)

= 2σ2
A log n+O(1).

Next we estimate the contribution to (3.1) from “high” cellsMm with
m ≥ n/10. We easily see that the contribution from points X ∈ M
such that either X ∈ Mm or F n(X) ∈ Mm or F−n(X) ∈ Mm for some
m ≥ n/10 is bounded by

3‖A‖2∞n

∞
∑

m=n/10

µ(Mm) = O(1),

hence it can be neglected. Of course, 10 can be replaced here with any
other fixed constant. So we assume that X ∈ Mm,i for some m < n/10
and 0 ≤ i ≤ m− 1.
Our next step is to express the formula (3.2) in terms of the induced

map F : M → M.
Note that X either is in M (away from the cusp) or belongs to a

series of collisions in the cusp that includes all the points F j(X) with
−i < j < m−i. The corresponding values A◦F j(X) for −i < j < m−i
make a part of the longer sequence of values A◦F j(X) for |j| ≤ n that
appears in (3.2). We will see that it is this part that makes the crucial
contribution to (3.2) and determines its asymptotic behavior. Indeed,
if we only take into account the values A ◦ F j(X) for −i < j < m− i,
then after some obvious rearrangements

n/10
∑

m=1

∫

Mm

(m−1
∑

i=0

A ◦ F i

)2

dµ =

n/10
∑

m=1

µ
(

A2|Mm

)

= µ(A2
1,n/10)

= 2σ2
A logn +O(1)(3.3)

according to Lemma 2.1.
So it remains to show that the contribution from values A ◦ F j(X)

for j ≤ −i and j ≥ m − i does not exceed O(1). In other words, the
asymptotic of (3.2) is determined by series of collisions in the cusp that
contains the present point X ; the contribution from all future and past
collisions is negligible, as we will show.
We note that the entire sequence of values A ◦ F j(X) for |j| ≤ n

is naturally divided into subsequences corresponding to subsequent re-
turns to M. Between any two consecutive returns to M we have a
series of collisions in the cusp. Of course, the lengths of these subse-
quences and their number depend on X . The very last subsequence
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containing the point F n(X) and the very “first” one containing the
point F−n(X) may be incomplete, as the corresponding series of colli-
sions in the cusp may stretch beyond our time limits n and −n.
Our next step is to replace the sum in (3.2) involving the original

map F with another sum in terms of the induced map F : M → M.
More precisely, we will replace (3.2) with

(3.4) µ



A1, n
10
·





k+(X)
∑

k=k−(X)

A ◦ Fk







 .

This function takes non-zero values only on M1,n/10. The variable
summation limits k+(X) and k−(X) should be selected, roughly, so
that

k+(X)
∑

k=0

R(FkX) ≈ n,
−1
∑

k=k−(X)

R(FkX) ≈ n,

where R is the return function on M, so that the new summation
limits in (3.4) roughly correspond to the old ones in (3.2).
In order to construct the sum (3.4) we first replace (3.2) with

(3.5) µ

(

A ·
(

n+(X)
∑

k=−n−(X)

A ◦ F k
)

)

.

We define the function n+(X) as follows. Let X ∈ Mp,i for some
p = p(X) < n/10 and i = i(X) ∈ [0, p − 1]. Let F n−i(X) ∈ Mq′,j′ for
some q′ = q′(X) ≥ 1 and j′ = j′(X) ∈ [0, q′ − 1]. Then we define

(3.6) n+(X) = n− i+ q′ − j′ − 1.

The idea is that X is in the series of points F−i(X), . . . , F p−i−1(X)
(corresponding to a series of collisions in the cusp) that lie in the column
of cells Mp,0, . . . ,Mp,p−1 (which are the images of the cell Mp; see
Fig. 1). In this column the cell Mp,0 = Mp plays the role of a “base”,
and the point F−i(X) plays the role of a “base point” (it belongs to
Mp). Its image under F n (which is F n−i(X)) falls into another column
of cells Mq′,0, . . . ,Mq′,q′−1, i.e., it is a part of the sequence of points
F n−i−j′(X), . . . , F n−i+q′−j′−1(X) lying in those cells. Then we want
that whole sequence be included in (3.5) and nothing beyond it.
Now for all the points F−i(X), . . . , F p−i−1(X) the summation in (3.5)

will terminate at the end of the same column of cells. This will allow
us to collect all the values of A in each column of cells and replace it
with the corresponding value of the induced function A. After that
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(3.5) will be easily converted to (3.4). Precise formulas for k+(X) will
be derived in Section 6, where we will need them.
The lower summation limit n−(X) can be defined similarly, we omit

details.
In the case n+(X) > n we will need to add something to the sum

in (3.2), and in the case n+(X) < n we will need to remove something
from it, in order to convert it to the sum in (3.5). These adjustments
are usually small (of order 1), but occasionally they may be large, up
to order n.
In any case, these additions and removals will alter the value of (3.2),

i.e., the values of (3.2) and (3.5) will differ, and we will need to estimate
by how much. The following lemma will be proved in Section 5:

Lemma 3.1. We have

µ

(

A ·
(

n+(X)
∑

k=n

A ◦ F k
)

)

= O(1)

(if n+(X) < n, then the index k runs from n+(X) to n). A similar
estimate holds when k runs between −n and −n−(X).

From now on we deal with (3.5), in fact with its equivalent version
(3.4). The central term of (3.4), corresponding to k = 0, gives the
entire desired asymptotic 2σ2

A log n, according to (3.3), so it remains to
show that the rest of (3.4) is negligible, i.e.,

(3.7) Σ+
1 : = µ

(

A1, n
10
·
(

k+(X)
∑

k=1

A ◦ Fk
)

)

= O(1),

and a similar estimate for the sum over k = −1, . . . , k−(X). Due to
the time symmetry it is enough to prove (3.7).
It is known that the correlations for the map F and the function A

and all its truncated versions decay exponentially fast:

Lemma 3.2 ([2]). For each k ≥ 1 and any p ≥ 1 we have

(3.8)
∣

∣ν
(

A1,p · (A ◦ Fk)
)∣

∣ ≤ Cθk

for some C > 0 and θ ∈ (0, 1) that are determined by the function
A but do not depend on p or k. (The condition k ≥ 1 is crucial,
cf. Lemma 2.1.)

Thus extending the summation in (3.7) to, say, 2n, gives
(3.9)

Σ+
2 : = µ

(

A1, n
10
·
(

2n
∑

k=1

A ◦ Fk
)

)

=
2n
∑

k=1

µ
(

A1, n
10
· (A ◦ Fk)

)

= O(1).
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We see that the “longer” sum Σ+
2 isO(1), but this does not immediately

imply that the “shorter” sum Σ+
1 is of the same order. The limits k+(X)

in (3.7) are point-dependent, and they may “conspire” to increase Σ+
1

up to O(n). The following lemma will be proved in Section 6:

Lemma 3.3. We have Σ+
2 − Σ+

1 = O(1).

This implies that Σ+
1 = O(1) and completes our proof of Theorem 4.

Lastly we explain the bizarre doubling effect mentioned in the Intro-
duction, i.e., why the limit of the second moment of (SnA)/

√
n logn is

exactly twice the second moment of its limit distribution.
A closer look at (3.3) reveals that if we truncate the function A at

the level nb with b ≤ 1, instead of n/10, then we get

nb
∑

m=1

µ
(

A2|Mm

)

= µ(A2
1,nb) = 2bσ2

A log n+O(1).

Thus values of A in the range [0, nb] for 0 ≤ b ≤ 1 account for a
fraction of the total second moment proportional to b. However values
of A larger than n1/2 occur too rarely to affect the limit distribution
of (SnA)/

√
n log n, as it was shown in [2]. Thus it is exactly half the

range of relevant values of A that affect the limit distribution, while
the entire range of values affect the second moment.
In the Appendix we describe a simple probabilistic model that ex-

hibits a similar doubling effect in the second moment.

4. Young tower and equidistribution for F

The induced map F : M → M has exponential mixing rates and
can be modeled by a Young tower ∆F with exponential tail bounds
[15]. The hyperbolic set Λ0 ⊂ M used to define the base of that tower
may be constructed pretty much anywhere in M and we can assume
that Λ0 ⊂ M1.
Now one can use the set Λ0 to define the base for a Young tower ∆F

modeling the original map F ; see again [15]. The tail bound on return
times for the tower ∆F will be polynomial of order β = 1, in terms of
our Introduction.
Let us introduce some additional notation concerning the tower ∆ =

∆F . Unless otherwise stated, T : ∆ → ∆ will denote the tower map
that models the original dynamics F : M → M (that is, the subscript
F is typically omitted). Then ∆0(= Λ0) ⊂ ∆ is the base and ∆m ⊂ ∆
is the mth level of the tower. ∆m,m ⊂ ∆m denotes the part of ∆m that
is mapped down to the base, i.e., ∆m,m = ∆m ∩ T−1(∆0). For r > m,
let ∆m,r = ∆m ∩ Tm−r(∆r,r) be the part of ∆m that goes up another
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r −m steps before coming down to ∆0. We will call ∆(m) = ∪m
i=0∆i,m

the mth column of the tower. In our tower, µ∆(∆m) = O(1/m2),
µ∆(∆

(m)) = O(1/m2) and µ∆(∆0,m) = O(1/m3); see [18]. Altogether
we obtain a picture similar to the one displayed on Figure 1, however, it
is important to point out that these two towers describe the dynamics
in two different ways. In particular, it is only the base ∆0 of the Young
tower that is in one-to-one correspondence with a subset of the phase
space (notably with Λ0 ⊂ M1 ⊂ M ⊂ M); in general, there is a
projection π : ∆ → M that semi-conjugates the tower map T : ∆ → ∆
with the billiard map F : M → M . In our arguments (for example,
in the proof of Lemma 4.1 below) it will play an important role where
the π-preimages of different parts of the phase space M (that is, of the
picture on Figure 1) appear on the Young tower ∆.
We use the tower to derive useful estimates on the equidisrtibution of

the images of cells Mp,i under the iterations of the original map F . Our
first goal is to estimate the measure of the intersection µ

(

F n(Mp,i) ∩
Mq,j

)

. We will always assume p, q < n/10.
Suppose for a moment that the images of our cells were completely

independent (which is a highly idealized situation). Then we would get

µ
(

F n(Mp,i) ∩Mq,j

)

= µ(Mp,i)µ(Mq,j) = O(p−3q−3)

and summing over j and q would get

µ
(

F n(Mp,i) ∩ (∪q>m ∪q−1
j=0 Mq,j)

)

= O(p−3m−1)

In fact, we will derive only a slightly weaker bound:

Lemma 4.1. We have

(4.1) µ
(

F n(Mp,i) ∩ (∪q>m ∪q−1
j=0 Mq,j)

)

= O(p−3m−1) + χp

where χp = O(p−3−a) for some a > 0.

Proof. We foliate the cell Mp,i by unstable curves. Then the measure
µ conditioned on Mp,i becomes a standard family, G. As the images
of this family under the iterations of F moves between consecutive
returns to M (i.e., during a series of collisions inside the cusp), the
corresponding unstable curves grow slowly but they cannot be cut by
singularities. At the time of the very first exit from the cusp, their
lengths are of order p−2/3, thus their Z-function will be ≍ p2/3.
After exiting the cusp, our unstable curves may be cut into pieces

by singularities, those pieces enter other cells Mk and they continue
their motion under F . Our strategy will be based on the following two
principles. First, pieces that enter cells Mk whose index k is “high”
(see below) will be discarded, their union will have a negligibly small
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measure. Second, pieces that remain in cells Mk with “low” indices k
will return to M quite frequently and thus will grow sufficiently fast.
The first part of our strategy is based on a standard lemma:

Lemma 4.2 ([38, 18]). There are constants a1, a2 > 0 such that for
any large B > 0 and any p > 0 there is a subset M′

p ⊂ Mp such that

µ(Mp \M′
p) ≤ Cp−a1µ(Mp),

where C = C(B) > 0 is a constant, and for every X ∈ M′
p the images

F t(X) for t = 1, . . . , B log p never appear in cells Mr with r > p1−a2.

This lemma can be applied to Mp = F−i(Mp,i) and it gives a subset
M ′

p,i ⊂ Mp,i of measure

µ(M ′
p,i) ≥

(

1−O(p−a1)
)

µ(Mp,i)

such that the images of points X ∈ M ′
p,i will move through cells Mp′,i′

for some p′ < p1−a2 until they make B log p returns to M. The set
Mp,i \M ′

p,i is then discarded and its measure is incorporated into χp =
O(p−3−a).
It is important to note that the returns of points X ∈ M ′

p,i to M
are separated by series of iterations of F , and each of these series
has length less than p1−a2 < n1−a2 . Hence, by the time when the
images of points X ∈ Mp,i \ M ′

p,i make B log p returns to M, only

< Bp1−a2 log p < Bn1−a2 log n iterations of the map F will have passed.
This number of iterations is o(n), so we will still have n−o(n) iterations
of F to go.
Now we consider those B log p returns to M assuming that B is

large enough. During the first half of that sequence of returns, i.e.,
during the first 1

2
B log p iterations of F , the images of our unstable

curves will grow exponentially (per number of returns to M), so that
the corresponding Z-function will decrease exponentially, and in the
end (i.e., after 1

2
B log p iterations of F) the Z-function will be of order

one, so we get a proper standard family at that time.
Then during the second half, i.e., during the next 1

2
B log p iterations

of F , images of unstable curves in our proper standard family will
start making “full returns” to the hyperbolic set Λ0 used to define the
base of the Young tower, i.e., they will stretch completely across Λ0.
When a curve W stretches across Λ0, we register a “return” for points
X ∈ W ∩ Λ0, take them out of circulation, and continue iterating
the rest of W , i.e., W \ Λ0, under F . The relative measure of the
remaining points (not yet stopped due to a “full return” to Λ0) will
decrease exponentially per number of returns to M (by a standard
argument used in the proof of the Coupling Lemma [14, Chapter 7]).
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Thus at the end of our series of 1
2
B log p iterations of F those remaining

points constitute a subset of measure O(p−3−A) for some large A > 0,
so they can be discarded and their measure can be incorporated into
χp = O(p−3−a).
We denote by M ′′

p,i ⊂ M ′
p,i the set of points whose images do make a

“full return” to Λ0 during the above series of iterations; then

µ(M ′′
p,i) ≥

(

1−O(p−a1)
)

µ(Mp,i).

We note that each point X ∈ M ′′
p,i makes a “full return” to ∆0 at a

certain time r(X), i.e., F r(X)(X) ∈ ∆0. Accordingly, M
′′
p,i = ∪rM

′′
p,i(r),

where M ′′
p,i(r) = {X : r(X) = r}.

The measure µ conditioned on F r
(

M ′′
p,i(r)

)

induces a probability
measure, we call it µp,i(r), on the base ∆0 of the Young tower ∆ = ∆F .
Due to the regularity properties dµp,i(r)/dµ∆ < C for some constant
C > 0, where µ∆ denotes the invariant measure on the tower ∆. Hence
further images of the measure µp,i(r) under the tower dynamics will
be absolutely continuous with respect to µ∆ with densities bounded
by the same constant C. Since r < n, the measure µ conditioned on
F n

(

M ′′
p,i(r)

)

induces a probability measure on the Young tower ∆ with
density ≤ C with respect to µ∆. Averaging over r implies that the
measure µ conditioned on F n

(

M ′′
p,i

)

induces a probability measure on
∆ with density ≤ C.
Now recall that Λ0 ⊂ M1, so the base of the tower corresponds to

points in M1. Points in Mq,j have to make at least j + 1 iterations
in the past to get to M1 and at least q − j iterations in the future
to get to M1, i.e., it will take at least q/2 > m/2 iterations to get to
M1 either in the past or in the future. Thus the set ∪q>m ∪q−1

j=0 Mq,j

corresponds to kth columns ∆(k) of the tower with k ≥ m/2, and the
combined µ∆-measure of those columns is O(1/m). Therefore

µ
(

F n(M ′′
p,i) ∩ (∪q>m ∪q−1

j=0 Mq,j)
)

= O
(

µ(Mp,i)/m
)

which completes the proof of Lemma 4.1. �

We note that in the above proof we only needed to transform the
images of M ′′

p,i to the set Λ0 corresponding to the base of the Young
tower ∆, it did not matter how long we iterated them further. Thus
we can replace F n with FK with K = Bn1−a2 logn.
In particular, the measure µ conditioned on FK

(

M ′′
p,i(r)

)

induces a
probability measure on the Young tower ∆ with density ≤ C with re-
spect to the invariant measure µ∆. Now further images of this measure
will converge to µ∆ at a polynomial rate, i.e., after N ≥ 1 iterations
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of F they will be O(1/N)-close to µ∆. This follows from Young’s cou-
pling argument [40] in a non-invertible setting, and can be extended to
the present (hyperbolic, invertible) case by an approximation argument
([33, Appendix B]). As a result, we obtain

Corollary 4.3. We have

(4.2)

∫

Mp,i

A ◦ FK+N dµ = µ(Mp,i)
[

µ(A) +O(1/N)
]

+ χp

where K = Bn1−a2 logn and χp = O(p−3−a), as before.

Lastly, all our estimates apply to the inverse map F−1, too.

5. Proof of Lemma 3.1

First, we derive a crude estimate by “brute force”, i.e., by using
the absolute values of the function A. That estimate will be a little
unsatisfactory, and we will then take extra steps to improve it.
Recall that in Lemma 3.1 we need to estimate additions and removals

in the course of replacing the constant time limits ±n in (3.2) with the
variable time limits n±(X) in (3.5).
Note that additions occur when n+(X) > n, i.e., when i+j′+1 < q′.

In that case we add products A(X)A
(

F n+k(X)
)

for k = 1, . . . , q′ −
(i + j′ + 1). Now suppose F n(X) ∈ Mq,j for some q = q(X) ≥ 1 and
j = j(X) ∈ [0, q−1]. We see that q = q′ and j = j′+i. Then the points
F n+k(X) from the above products are in the cells Mq,j+1, . . . ,Mq,q−1.
These are the last q − j − 1 cells in the series Mq,0, . . . ,Mq,q−1.
We can phrase it differently. Suppose, as before, X ∈ Mp,i and

F n(X) ∈ Mq,j (we do not use q′ and j′ anymore). Then we will need to
add terms if and only if j ≥ i, and precisely we will add the products

(5.1) A(X)A
(

F n+1(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

using the points F n+1(X), . . ., F n+q−j−1(X) from the cells Mq,j+1, . . .,
Mq,q−1, respectively, i.e., until the current column of cells ends. Thus
points from the “end” of every column of cells will be added more
frequently than those from its “beginning”; more precisely points from
Mq,j may need to be added j times. Hence we get the total upper
bound on the additions:

(5.2) ‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

jµ(Mq) ≤ ‖A‖2∞
n/10
∑

q=1

q2µ(Mq) = O(log n).

This is a little unsatisfactory, as we need O(1), and we will improve
our estimate (5.2) next.
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Note that we have not used any mixing properties of the map F
in deriving (5.2). Due to mixing we expect the average values of the
product (5.1) be much smaller than ‖A‖2∞.
Suppose for a moment that we will add the products (5.1) whenever

F n(X) falls into Mq,j (regardless of the condition j ≥ i). Thus we
will be adding a little more often than according to our actual rules
expressed by (3.6).
Then effectively for each q = 1, . . . , n/10 and j = 0, . . . , q−1 we will

add the terms

(5.3) µ
(

A|Mq,j
· (A ◦ F−n−s−1)

)

for s = 0, . . . , j

to the sum (3.2). These are correlations, which can be estimated by
Corollary 4.3 applied to the map F−1, and we get the desired bound

O
(n/10
∑

q=1

q−1
∑

j=0

j
∑

s=0

[µ(Mq,j)

n
+

1

q3+a

]

)

= O(1).

Now we need to estimate the total contribution of the extra additions
that were introduced above, contrary to the requirement j ≥ i. Those
extra additions correspond to the cases where j < i, i.e., where X ∈
Mp,i with some i > j. These extra additions will be estimated by
“brute force”, i.e., by the absolute values of A. Their total contribution
is bounded by

‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

n/10
∑

p=j+2

p−1
∑

i=j+1

(q − j)µ
(

F n(Mp,i) ∩Mq,j

)

≤ ‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

(q − j)µ
(

(

∪n/10
p=j+2 ∪p−1

i=0 Mp,i

)

∩ F−n(Mq,j)
)

Now the estimate (4.1) can be applied to the inverse map F−n; it gives
the bound

const ‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

(q − j)
(

q−3j−1 + q−3−a
)

= O(1)

which is small enough to be incorporated in the error term of (3.2).
This completes our estimation of the additions that we have to make

to convert (3.2) to (3.5).
The analysis of the removals is very similar, we only sketch it. Sup-

pose, as before, X ∈ Mp,i and F n(X) ∈ Mq,j. Then we will need to
remove terms if and only if i > j. More precisely, we will need to
remove at least j+1 terms, down to the bottom of the column of cells
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into which the point F n(X) falls. We may need to remove more, as
we need to go down to the bottom of the column into which the point
F n−i(X) falls. But in any case we will not remove more than i terms.
So we will remove

(5.4) A(X)A
(

F n−1(X)
)

, . . . , A(X)A
(

F n−i′(X)
)

for some i′ ∈ [j+1, i]. Note that the condition i > j implies p > i > 0,
i.e., p ≥ 2.
Again, suppose we remove a little more than our rules dictate, i.e.,

we will remove all the products

A(X)A
(

F n−1(X)
)

, . . . , A(X)A
(

F n−i(X)
)

whenever X ∈ Mp,i with p ≥ 2 (regardless of the condition i > j).
Then effectively, for each p = 2, . . . , n/10 and i = 1, . . . , p− 1 we will
subtract the terms

(5.5) µ
(

A|Mp,i
· (A ◦ F n−s)

)

for s = 1, . . . , i

from the sum (3.2). These are correlations that can be readily esti-
mated by Corollary 4.3, now applied to forward iterations of F .
It remains to estimate the extra removals that we had to make in

order to form complete correlations (5.5). Those extra removals are
made whenever F n(X) ∈ Mq,j with j ≥ i. We will estimate them by
“brute force”, i.e., by the absolute value of A Their total contribution
is bounded by

‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

n/10
∑

q=i+1

q−1
∑

j=i

iµ
(

Mp,i ∩ F−(n−1)(Mq,j)
)

≤ ‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

iµ
(

F n−1(Mp,i) ∩
(

∪n/10
q=i+1 ∪q−1

j=0 Mq,j

)

)

Now the estimate (4.1) gives the bound

const ‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

i
(

p−3i−1 + p−3−a
)

= O(1)

which is small enough to be incorporated in the error term of (3.2).
This completes our estimation of the removals that we have to make

to convert (3.2) to (3.5).
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6. Proof of Lemma 3.3

We need to compare the correlation sum (3.8) with a variable time
limit, k+(X), to the correlation sum (3.9) with a fixed time limit, 2n.
Since 2n > k+(X) for any point X ∈ M1,n/10, we need to show that

(6.1) µ

(

A1, n
10
·
(

2n
∑

k=k+(X)+1

A ◦ Fk
)

)

= O(1).

We can replace µ with ν, as these two measures are proportional on
M. Then we can rewrite the left hand side of (6.1) as follows:

(6.2) µ

(

A|M̃ ·
(

2n
∑

k=k+(X)+1

A ◦ Fk
)

)

,

where M̃ =
∑n/10

m=1Mm, and we assume that the map F and the function
k+ are naturally extended to M by the rules

(6.3) F(X) = F
(

Π(X)
)

and k+(X) = k+
(

Π(X)
)

where Π(X) = F−iX whenever X ∈ Mm,i is, in a sense, a natural
projection of M onto M; see Fig. 1.
We will describe the expression (6.2) differently. First, recall that

k+(X) for X ∈ M1,n/10 was defined in Section 3 so that

k+(X)
∑

k=0

R(FkX) = n+(X) = n + q′ − j′ − 1,

where we use the notation of Section 3, according to which X ∈ Mp,i

and T n(Π(X)) ∈ Mq′,j′. Therefore k+(X) can be defined by

(6.4)

k+(X)−1
∑

k=0

R(FkX) < n ≤
k+(X)
∑

k=0

R(FkX).

or, by using shorthand notation Sk =
∑k−1

i=0 A ◦ F i, we have

Sk+(X)R(X) < n ≤ Sk+(X)+1R(X).

With the extension (6.3), and a similar extension of R defined by

R(X) = R
(

Π(X)
)

, all the above formulas apply to every pointX ∈ M̃ .
By changing variable Y = F n(X) we can rewrite (6.2) as

(6.5) µ

(

(

A ◦ F−n(Y )
)

·
(

n∗(Y )
∑

k=0

A ◦ Fk
(

F r∗(Y )(Y )
)

)

)
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or equivalently

(6.6) µ

(

(

A ◦ F−n(Y )
)

·
(

K∗(Y )
∑

k=r∗(Y )

A ◦ F k(Y )
)

)

.

The number of summands in (6.2) and (6.5) must be the same, so
n∗(Y ) = 2n− k+(F−nY )− 1, though n∗(Y ) and K∗(Y ) will not be so
important to us. We will determine (and modify) r∗(Y ) next.
As in Section 3, let X ∈ Mp,i and F n(Π(X)) = F n−i(X) ∈ Mq′,j′.

Then r∗(Y ) = q′ − j′ − i, in accordance with (6.4). In other words,
the summation in (6.6) begins when the future trajectory of the point
F n−i(X) first returns to the base M. We want to modify r∗(Y ) so
that the summation will begin when the future trajectory of the point
F n(X) first returns to the base M. Let Y = F n(X) ∈ Mq,j , as in
Section 3. According to the above remarks, we define r∗new = q − j.
There are two cases:

Case 1: i ≤ j. Then F n−i(X) is in the same column of cells as F n(X),
hence q′ = q, j′ = j − i and r∗new = r∗, so no modification is needed.

Case 2: i > j. Then n− i < n− j and moreover n− i+ q′− j′ ≤ n− j.
Thus we need to remove from (6.6) the terms

(6.7) A(X)A
(

F n−i+q′−j′(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

which form (one or several) complete columns.

The procedure for addition and removal of similar terms was well
developed in Section 5; we only sketch our main steps here.
First, we remove all the terms

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n(X)
)

in both cases 1 and 2 (i.e., regardless of the condition i > j). The
averages of the above products are correlations whose contribution to
(6.6) is O(1) based on Corollary 4.3.
Second, in Case 2 (when i > j) we remove the products

A(X)A
(

F n+1(X)
)

, . . . , A(X)A
(

F n+q−j−1(X)
)

.

Their contribution is estimated by “brute force” as

‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

n/10
∑

p=j+2

p−1
∑

i=j+1

(q − j)µ
(

F n(Mp,i) ∩Mq,j

)

≤ ‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

(q − j)µ
(

(

∪n/10
p=j+2 ∪p−1

i=0 Mp,i

)

∩ F−n(Mq,j)
)
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which by (4.1) applied to the inverse map F−n gives

const ‖A‖2∞
n/10
∑

q=1

q−1
∑

j=0

(q − j)
(

q−3j−1 + q−3−a
)

= O(1).

Third, in Case 1 (when i ≤ j) we add back the products

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n(X)
)

Their contribution is estimated by “brute force” as

‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

n/10
∑

q=i+1

q−1
∑

j=i

iµ
(

F n(Mp,i) ∩Mq,j

)

≤ ‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

iµ
(

F n(Mp,i) ∩
(

∪n/10
q=i+1 ∪q−1

j=0 Mq,j

)

)

which by (4.1) gives an upper bound of

const ‖A‖2∞
n/10
∑

p=1

p−1
∑

i=0

i
(

p−3i−1 + p−3−a
)

= O(1).

Lastly, in Case 2 (when i > j and i ≥ q′−j′) we add back the products

A(X)A
(

F n−i+1(X)
)

, . . . , A(X)A
(

F n−i+q′−j′−1(X)
)

.

Their contribution is estimated by “brute force” as

‖A‖2∞
n/10
∑

q′=1

q′−1
∑

j′=0

n/10
∑

p=q′−j′

p−1
∑

i=q′−j′

(q′ − j′)µ
(

F n(Mp,i) ∩Mq′,j′
)

≤ ‖A‖2∞
n/10
∑

q′=1

q′−1
∑

j′=0

(q′ − j′)µ
(

(

∪n/10
p=q′−j′ ∪

p−1
i=0 Mp,i

)

∩ F−n(Mq′,j′)
)

which by (4.1) applied to the inverse map F−n gives

const ‖A‖2∞
n/10
∑

q′=1

q′−1
∑

j′=0

(q′ − j′)
(

[q′]−3[q′ − j′]−1 + [q′]−3−a
)

= O(1).

As a result, we can replace r∗ with r∗new and rewrite (6.5) as

(6.8) µ

(

(

A ◦ F−n(Y )
)

·
(

n∗(Y )
∑

k=0

A ◦ Fk
(

F ◦ Π(Y )
)

)

)

+O(1).

We will denote Π+ = F ◦ Π. This is also a projection of M onto M,
but it takes every point X ∈ M to its first future image in M.
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One may wonder why we wanted to transform one sum of correlations
with a variable upper limit into another, i.e., (3.7) into (6.5). The
reason is that k+(X) in (3.7) was determined by the future of the point
X , so it was constant on stable manifolds. On the contrary, n∗(Y ) in
(6.8) is determined by the past of the point Y , so it is constant on
unstable manifolds; this will be essential for the next steps.
Let Wα ⊂ M̃ denote the family of all unstable manifolds for the map

F with conditional probability measures ρα on them; here α ∈ A is
some index set. Let λ denote the respective factor measure on A. We
denote by n∗(Wα) the common value of n∗(Y ) on Wα. Now (6.8) can
be written as

(6.9)

∫

A

[n∗(Wα)
∑

k=0

ρα
(

(A ◦ F−n)(A ◦ Fk ◦ Π+)
)

]

dλ+O(1).

Recall that we need to show that this expression is O(1).
The function A ◦ F−n is almost constant on each Wα, so its fluctua-

tions can be incorporated into the density of ρα. In other words, it is
enough to show that

(6.10)

∫

A

[n∗(Wα)
∑

k=0

Π+ρ′α
(

A ◦ Fk
)

]

dλ = O(1)

for any regular probability measures ρ′α on the unstable manifolds Wα

with the above factor measure λ. The rest of this section is devoted to
proving (6.10).
Note that Π+ρ′α is a smooth probability measure on the curve Π+Wα ⊂

M, which is an unstable manifold for the map F . Thus the sum within
the brackets in (6.10) is the sum of integrals of a fixed function, A, with
respect to the images, under the iterations of F , of a standard pair,
(Π+Wα,Π

+ρ′α). We consider proper standard pairs first.
We will need the following fact.

Lemma 6.1. (Coupling Lemma; see [14, Sect. 7]).
Let ν̃ be a measure on M corresponding to a proper standard family

and ν be the smooth invariant measure. Then there are constants C >
0, θ < 1, a measure ζ (coupling) on M×M and a measurable function
τ defined ζ almost everywhere such that
(a) Marginals of ζ are ν and ν̃;

(b)d(FnX,FnX̃) ≤ Cθn−τ(X,X̃);
(c) ζ(τ > n) ≤ Cθ2n.
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If τ(X, X̃) ≤ n we say that X and X̃ are coupled by time n. We refer
to second marginal of ζ restricted to {τ ≤ n} as ”the coupled part of
ν̃ at time n.”

Lemma 6.2. For any proper standard pair (W, ρ) in M we have

(6.11)
N
∑

k=0

ρ
(

A ◦ Fk
)

= O(1)

uniformly in (W, ρ) and N ≥ 0.

Proof. The Z-function of (W, ρ) is ≤ Cp (cf. Section 2), so ρ(Mm) ≤
Cm−7/3 for some absolute constant C > 0 because the width of Mm

in the unstable direction is O(m−7/3). This implies

ρ(|A|) ≤ C‖A‖∞
∑

m≥1

m/m7/3 ≤ CA,

where CA > 0 is independent of (W, ρ).
The images under forward iterations of F of a proper standard pair

(W, ρ) are proper standard families (whose Z-function is ≤ Cp), so the
above argument gives ρ(|A ◦ Fk|) ≤ CA for all k ≥ 0.
Next, after k iterations of F , most of the measure Fkρ will be cou-

pled with the F -invariant measure ν, due to the Coupling Lemma 6.1.
More precisely, the fraction of Fkρ which has not been coupled with
ν within the first k/2 iterations of F , has norm ≤ Cθk for some ab-
solute constants C > 0 and θ ∈ (0, 1). For brevity let us introduce
the notations ρk = Fkρ, and ρ̂k for the uncoupled part of ρk. Know-
ing that ρ̂k(M) ≤ Cθk, we would like to estimate ρ̂k(|A|), where A
is unbounded: its value is proportional to m on the cell Mm. The
worst case scenario is when ρk gives the largest possible weight to the
“highest” cells ∪m≥m0,k

Mm, and all this weight corresponds to the un-
coupled part ρ̂k. However, as ρk is a proper standard family, by the
above argument we have ρk(Mm) ≤ Cm−7/3 uniformly in k. Hence to
estimate ρ̂k(|A|) we set

Cθk = ρ̂k(M) = ρ̂k(∪m≥m0,k
Mm) =

∞
∑

m=m0,k

Cm−7/3 = Cm
−4/3
0,k

so that m0,k = Cθ−3k/4, and we have

ρ̂k(|A|) ≤ C

∞
∑

m=m0,k

m ·m−7/3 = Cm
−1/3
0,k = Cθk/4.



26 P. BÁLINT, N. CHERNOV, D. DOLGOPYAT

Now due to the coupling we have

(6.12)
∣

∣ρ(A ◦ Fk)− ν(A)
∣

∣ ≤ χ0 + χ1 + χ2,

where χ0 accounts for ρ̂k – the “uncoupled” part of ρk – which we have
estimated as |χ0| ≤ Cθk/4. Similarly, χ1 accounts for the “uncoupled”
part of ν, for which we have

|χ1| ≤ sup
B : ν(B)<Cθk

∫

B

|A| dν ≤ CAθ
k/2

by a similar argument, using that ν(Mm) = O(m−3). Finally, the
term χ2 in (6.12) accounts for the variation of A on stable manifolds
containing pairs of points that have been coupled together. If two
points have been coupled during the first k/2 iterations of F , then
during the next k/2 iterations of F their images get exponentially close,
i.e., at the kth iteration of F for any pair of coupled pointsX, Y we have
dist(X, Y ) ≤ Cθk for some absolute constants C > 0 and θ ∈ (0, 1). If
X, Y ∈ Mm, then

|A(X)−A(Y )| ≤
m−1
∑

i=0

|A(F i(X))−A(F i(Y ))| = O(mθγAk),

where γA > 0 is the Hölder exponent of A. Therefore

|χ2| = O
( ∞
∑

m=1

mθγAk

m3

)

= O(θγAk).

Thus all the terms in (6.12) are O(θk) for some θ ∈ (0, 1), uniformly in
(W, ρ). Summing up over k proves (6.11). �

If all the standard pairs (Π+Wα,Π
+ρ′α) were proper, then integration

with respect to λ would readily give us (6.10). But there are arbitrarily
short unstable manifolds in M, which cannot be proper; they will be
handled next.
For any point X ∈ Π+Wα let n†(X) denote the first iteration of F

such that F n†(X)(X) ∈ M and the unstable manifold W ′ of the map

F that contains the point F n†(X)(X) is long enough to make a proper
standard pair with any regular probability measure on it. The image
F n†(X) ◦Π+ρα restricted to W ′ and conditioned on W ′ will be a smooth
probability measure ρ′, and (W ′, ρ′) will make a proper standard pair.
It is known that n†(X) is finite ρα-a.e. (we will also see this in the

proof of Lemma 6.3). Note that n†(X) is constant on the subcurve

F−n†(X)(W ′) ⊂ Π+Wα. Thus Π+Wα is divided into subcurves, each
of which is transformed into a proper standard family in M under a
certain iteration of F .
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Now further images of the proper standard pair (W ′, ρ′) can be han-
dled by Lemma 6.2. It remains to account for the n†(X) iterations of
each point X ∈ Π+Wα before it falls into a proper standard pair. This
will be done by “brute force”, i.e., by the absolute value of A. It is clear
from (6.10) that the contribution from those iterations are bounded by
‖A‖∞n†(X). Thus it remains to show that

∫

A
Π+ρ′α(n

†) dλ = O(1).
Since the density of ρ′α with respect to ρα cannot exceed ‖A‖∞, this is
equivalent to

(6.13)

∫

A

Π+ρα(n
†) dλ = O(1).

It may happen that n†(W ) > n∗(Wα) for some X ∈ Π+Wα, so (6.13)
might be an overestimation. But since the integrand in (6.13) is posi-
tive, it would not hurt. Also note that if X ∈ M already belongs to a
proper standard pair, then n†(X) = 0, so (6.13) includes such points,
too. The estimate (6.13) can be stated, equivalently, as follows:

Lemma 6.3. We have µ(n† ◦ Π+) = Π+µ(n†) < ∞.

In other words, the average number of iterations of F it takes for
points Y ∈ M to get into long unstable manifolds is finite. Note that
averaging is done with respect to the projected measure Π+µ, rather
than the invariant measure ν of the induced map F . These measures
are different: Π+µ(Mm) ≍ 1/m2 while ν(Mm) ≍ 1/m3.

Proof. Let ∆ = ∆F again denote the Young tower modeling the map
F : M → M . Throughout the proof, we will us the notations intro-
duced in Section 4 concerning the Young tower. That is, T : ∆F → ∆F

will denote the tower map, µ∆ the invariant measure on ∆, ∆0 the
base, ∆m the mth level, and ∆(m) the mth column of the tower. Let,
furthermore, ∆M ⊂ ∆ denote the part of the tower corresponding to
the subset M ⊂ M .
For each point Y ∈ ∆ denote

kM = min{k ≥ 1: T k(Y ) ∈ ∆M}
the first time the trajectory of Y visits ∆M and

k0 = min{k ≥ 1: T k(Y ) ∈ ∆0}
the first time the trajectory of Y returns to the base ∆0.
Suppose Y ∈ ∆ models a point X ∈ M . Then T kM(Y )(Y ) models

the point Π+(X). Next, whenever T n(Y ) ∈ ∆0, the corresponding
point F n(X) belongs to the basic hyperbolic rectangle (which Young
called a horseshoe with hyperbolic structure) on which the tower is
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constructed. In particular, F n(X) belongs to a long enough unstable
manifold which qualifies for a proper standard pair. As a result,

n†(Π(X)
)

≤ k0
(

T kM(Y )(Y )
)

= k0(Y )− kM(Y ).

By the way, note that k0(Y ) < ∞ for every Y ∈ ∆, hence n†(X ′) < ∞
for a.e. point X ′ ∈ M, as we mentioned earlier.
Now to prove Lemma 6.3 it will be enough to show that

(6.14) µ∆(k0 − kM) < ∞.

Next we prove (6.14) for our Young tower. Note that k0 = m − i + 1
on ∆i,m, hence

(6.15) µ∆(k0) ∼
∑

m

m2µ∆(∆0,m) = ∞,

therefore subtracting kM in (6.14) is essential.
Subtraction of kM requires a delicate procedure. We claim that each

set ∆0,m can be divided into a good part ∆g
0,m and a bad part ∆b

0,m with
the following properties. First, the relative measure of the bad part is
small, i.e., µ∆(∆

b
0,m) < Cm−3−a for some constants C, a > 0, thus its

contribution to (6.14) and (6.15) is finite, because
∑

mm2µ∆(∆
b
0,m) <

∞, hence it can be neglected.
Second, for each point Y ∈ ∆g

0,m in the good part there are 0 ≤
p < q ≤ m such that T p(Y ) models a phase point X ∈ Mq−p hence
F(X) = F q−p(X). In addition, we have max{p,m − q} < Cm1−a for
some constants C, a > 0. As a consequence, for each Y ∈ ∆g

0,m and

j ∈ [p, q] we have kM(T jY ) = q − j and hence k0(T
jY )− kM(T jY ) =

m− q < Cm1−a. Thus the contribution of the points Y, TY, ..., Tm−1Y
to (6.14) will be bounded by mp + Cm1−a(m− p) < 2Cm2−a. Hence

µ∆(k0 − kM) ≤ 2C
∑

m

m2−aµ∆(∆0,m) < ∞

as required. This completes the proof of (6.14).
It remains to construct the good and bad parts of ∆0,m. We follow

the argument in [18, Sect. 5]. For each Y ∈ ∆0,m denote by R(Y ) =
#{0 ≤ i ≤ m : T i(Y ) ∈ ∆M} the number of times the trajectory of
Y visits ∆M as it moves up the column. Points Y ∈ ∆0,m for which
R(Y ) > C̄ logm, where C̄ > 0 is a large constant, make a set of measure
< m−3−a, where a = a(C̄) > 0 (see [18, p. 309]), so they are included
into the bad part. For other points the largest interval [p, q] ⊂ [0, m]
between successive returns to ∆M has length r = q−p ≥ m/(C̄ logm).
Thus the point T p(Y ) models a phase point X ∈ Mr.
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Next apply Lemma 4.2 with B ≫ C̄. If X ∈ Mr \ M′
r, then we

include Y into the bad part, too. If X ∈ M′
r, then the first B log r

images of X under F can only visit cells Ms with s < r1−a2 . Hence
the next B log r ≫ C̄ logm intervals between successive returns to ∆M
within our column are shorter than r1−a2 . This implies m−q < Cm1−a

for some constant C, a > 0. Similarly, we apply Lemma 4.2 to F−1 and
handle the first C log r images of X under F−1, and this will ensure
p < Cm1−a. This completes the proof of (6.14) and Lemma 6.3. �

Now (6.10) is fully established and Lemma 3.3 is proved.
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Appendix

The dynamics in dispersing billiards with cusps is characterized by
intermittence: periods of chaotic bounces away from cusps intersperse
with long series of collisions deep in a cusp; during the latter the ob-
served values A◦F n change slowly. Here we describe a simple stochastic
process which exhibits similar features and show that the doubling ef-
fect takes place as well.
Our stochastic process ξ(t) has continuous time t > 0 and takes

values ±1. Switching from one value to the other occurs at random
moments 0 < T0 < T1 < · · · , and intervals between switching times,
Lk = Tk − Tk−1, are independent identically distributed random vari-
ables with a polynomial tail bound P(Lk > x) ∼ cx−2 for x → ∞. We
denote by E(Lk) = µ their common mean value.
We note that T0 can be chosen so that the sequence {Tk} will be

stationary in the following sense. For each t > 0, denote m(t) =
min{m ≥ 0: Tm > t} and H(t) = Tm(t) − t. Then the stationarity
means that

P(H(t) > u) = P(T0 > u)
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does not depend on t (for each u > 0). By [25], Chapter XI, Equation
(4.6) we have

P(T0 > t) =
1

µ

∫ ∞

t

P (Lk > x) dx ∼ c

µt
.

Now we define our process ξ(t). Let ξ0, ξ1, . . . be i.i.d. random vari-
ables taking values ±1, each with probability 1/2. We set ξ(t) = ξk if
t ∈ [Tk−1, Tk] and ξ(t) = ξ0 if t < T0.

Now consider S(T ) =
∫ T

0
ξ(t) dt. Denote Lk = Lkξk and Sm =

∑m
k=0Lk. Then obviously S(T ) ∼ Sm(T ) as T → ∞. By [25], Section

XVII.5, Theorem 2 the sequence Sm/
√
mVm converges in distribution

to the standard normal law N(0, 1), where

(A.1) Vm =

∫

√
cm

1

x2 dP(Lk < x) ∼ c lnm.

By the Law of Large Numbers, m(T ) ∼ T/µ, so that

S(T )√
T lnT

⇒ N

(

0,
c

µ

)

as T → ∞. On the other hand,

E
(

S2(T )
)

= 2

∫∫

0<s<t<T

E(ξ(s)ξ(t)) ds dt.

Since ξk’s are independent, we have

E(ξ(s)ξ(t)) = P
(

H(s) > t− s
)

= P(T0 > t− s).

Accordingly

(A.2) E
(

S2(T )
)

∼ 2

∫

0<s<T

c

µ
ln(T − s) ds ∼ 2c

µ
T lnT

hence we observe the doubling effect again. It can be traced to the
upper limit

√
cm in the integration (A.1). If we change it to cm,

then Vm would double and would match the asymptotics of the second
moment (A.2).
The fact that the variance of the limit distribution is only affected

by values of Lk ≤ √
cm is similar to the fact that values of our in-

duced function A larger than
√
n do not affect the limit distribution

of (SnA)/
√
n log n; see the end of Section 3.
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