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Abstract

We study deterministic and stochastic perturbations of incompressible flows on

a two-dimensional torus. Even in the case of purely deterministic perturbations,

the long-time behavior of such flows can be stochastic. The stochasticity is caused

by the instabilities near the saddle points as well as by the ergodic component of

the locally Hamiltonian system on the torus.
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1 Introduction

Consider a Hamiltonian system with one degree of freedom

ẋ(t) = v(x(t)), x(0) = x0 ∈ R
2, (1)

where v = ∇⊥H = (−H ′
x2
, H ′

x1
) and H(x), x ∈ R2, has bounded and continuous second

derivatives. Then H is a first integral of (1): H(x(t)) = H(x0) for all t. Assume, for now,
that lim|x|→∞H(x) = +∞. Consider a small deterministic perturbation of (1):

˙̃xε(t) = v(x̃ε(t)) + εβ(x̃ε(t)), x̃ε(0) = x0,

where the vector field β is assumed to be bounded and continuously differentiable. It is
clear that x̃ε(t) is uniformly close to x(t) on any finite time interval [0, T ] if ε is small
enough:

lim
ε↓0

max
t∈[0,T ]

|x̃ε(t) − x(t)| = 0.

Usually, however, one is interested in the behavior of x̃ε(t) on time intervals that grow
when ε ↓ 0. Then, in general, x̃ε(t) deviates significantly from x(t). In order to describe
such deviations, it is convenient to re-scale time by considering xε(t) = x̃ε(t/ε). Then
xε(t) satisfies

ẋε(t) =
1

ε
v(xε(t)) + β(xε(t)), xε(0) = x0. (2)

1



The dynamics described by (2) consists of the fast motion (with speed of order 1/ε) along
the unperturbed trajectories of (1) together with the slow motion (with speed of order 1)
in the direction transversal to the unperturbed trajectories.

Assume, for a moment, that the Hamiltonian H has just one well. Then the slow
component of the motion can be described completely by the evolution of H(xε(t)):

H(xε(t)) −H(x0) =

∫ t

0

〈β(xε(s)),∇H(xε(s))〉ds.

Before H(xε(t)) changes by δ (a small constant independent of ε), the fast component
makes a large number of rotations (of order δ/ε) along the unperturbed trajectory. The
classical averaging principle (Chapter 10 of [2]) gives that

lim
ε↓0

H(xε(t)) = y(t)

uniformly on each finite time interval, where y(t) is the solution of the averaged equation

ẏ(t) =
β(y(t))

T (y(t))
, y(0) = H(x0). (3)

Here

T (h) =

∫

γ(h)

dl

|∇H|
is the period of rotation along the level set γ(h) = {x ∈ R2 : H(x) = h} and

β(h) =

∫

γ(h)

〈β,H〉
|∇H| dl.

Thus the long-time behavior of the perturbed system can be described in terms of the
evolution of the slow component according to (3).

The situation becomes more complicated if the Hamiltonian has more than one well:
first, since the system (1) has an additional (discrete) first integral and so the slow motion
now has two components, and, second, since the limit limε↓0H(xε(t)) may not exist. In
order to describe the slow motion, let us identify all the points that belong to the same
connected component of a level set of H . Let h be the identification mapping. It is easy to
see that the set G = h(R2) equipped with the natural topology is a graph (see Figure 1).
Denote the edges of G by I1, ..., Im and let k(x) be the index of the edge such that
h(x) ∈ Ik(x). Thus we get the global coordinate system (k,H) on G (each interior vertex
belongs to several edges, so it can be described by different coordinates). In this coordinate
system h(x) = (k(x), H(x)), x ∈ R2. The integer-valued function k(x), as well as H(x)
are first integrals for the unperturbed system (1), and h(xε(t)) = (k(xε(t)), H(xε(t))) is
the slow component of system (2). Due to instability of system (1) near the saddle points,
the process h(xε(t)) is very sensitive to small changes of ε, and the limit limε↓0 h(x

ε(t))
may not exist for a large class of perturbations.
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Indeed, let γ be a separatrix loop of the Hamiltonian with a unique saddle point
O ∈ γ. Thus γ separates the plane into two bounded domains, U1 and U2 (wells of the
Hamiltonian), and one unbounded domain C. Suppose thatH does not have critical points
in C, and H(x) > H(O) for x ∈ C. Let divβ(x) < 0 for x ∈ R2, and Xε

0 = x ∈ C. Put
T ε = inf{t : Xε

t ∈ γ}. One can check that limε↓0 T
ε = T 0 < ∞, and Xε

T 0+t alternatingly
belongs to U1 or U2 as ε ↓ 0 for each t > 0. Since the limiting slow motions in different
wells are, in general, different, the limit limε↓0X

ε
T 0+t does not exist. The limit, in the

sense of convergence in distribution of random processes, will exist in certain cases if the
initial condition for the process is assumed to have a continuous density, although one can
give examples of H and β when the limit does not exist even for continuously distributed
initial conditions (see [4]).

Figure 1: The graph of H and the corresponding graph G.

On the other hand, one can consider perturbations of (1) that contain, besides the
vector field εβ(x), a diffusion term which is yet smaller than ε. More precisely, instead of
equation (2) let us consider

dXκ,ε
t =

1

ε
v(Xκ,ε

t )dt+ β(Xκ,ε
t )dt+ κu(Xκ,ε

t )dt+
√

κσ(Xκ,ε
t )dWt , Xκ,ε

t ∈ R
2, (4)

where u is a smooth bounded vector field, σ is a 2 × 2 smooth bounded matrix such
that α(x) = σ(x)σ∗(x) is positive definite for all x, Wt is a two-dimensional Brownian
motion and κ is a small parameter. The slow component h(Xκ,ε

t ) of the process (4) is a
stochastic process on the graph G. One can prove that for fixed κ the process h(Xκ,ε

t )
converges weakly, as ε ↓ 0, to a diffusion process Zκ

t on G. All the diffusion processes on
a graph were described in [10]. When κ ↓ 0, the processes Zκ

t in their turn converge to
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a stochastic process Zt on G. The process Zt is a deterministic motion inside each edge
governed by the averaged equation considered above for the one-well case. A trajectory
of Zt can reach an interior vertex O of G in a finite time and leaves O immediately, going
to one of the other two edges that have O as an end point, with probabilities p1(O) and
p2(O) which can be calculated explicitly. These probabilities as well as the deterministic
motion inside the edges are independent of the choice of the matrix σ and vector field
u. This means that the convergence of the slow motion of a deterministically pertrubed
deterministic system to the stochastic process Zt is an intrinsic property of the system and
the deterministic perturbation. The addition of a small stochastic term is used only as a
regularization of the problem. The stochasticity of the limiting slow motion is actually a
result of instability of system (1) near the saddle points. These results were obtained by
Brin and Freidlin in [4] for the case when all the level sets of H are compact.

In the current paper we consider an incompressible periodic vector field v. We assume
that v is typical in the sense that all the equilibrium points of v are non-degenerate,
there are no saddle connections, and the projections of some of the flow lines on T2 are
not periodic (the case when the projections of all the unbounded flow lines are periodic
was covered in [4]). It has been conjectured by M. Freidlin ([9]) that the averaging
principle (Theorem 1 below) holds for random perturbations of such flows. This has been
proved by Dolgopyat and Koralov in [6] for generic flows (flows with Diophantine rotation
numbers) and by Sowers in [16] (for flows whose stream function is nearly periodic). In [7]
a general result for arbitrary rotation numbers was obtained, covering in particular the
cases considered in [6] and [16]. An assumption was made that the Lebesgue measure on
the torus was invariant for the diffusion processes that appear after the small perturbation
of the original flow. In the current paper we get rid of this assumption and then study
deterministic perturbations of such flows.

Let us start by describing the structure of the stream lines of the unperturbed flow.
Since v is periodic, we can write H as

H(x1, x2) = H0(x1, x2) + ax1 + bx2,

where H0 is periodic. Note that a and b are rationally independent (otherwise all the
unbounded flow lines would be periodic). It has been shown by Arnold in [1] that in this
case the structure of the stream lines of v considered on the torus is as follows. There
are finitely many domains Uk, k = 1, . . . , n, bounded by the separatrices of the flow, such
that the trajectories of the dynamical system Ẋt = v(Xt) in each Uk behave as in a part
of the plane: they are either periodic or tend to a point where the vector field is equal to
zero. The trajectories form one ergodic class outside of the domains Uk. More precisely,
let E = T2\[

⋃n
k=1Uk]. Here [·] stands for the closure of a set. Then the dynamical system

is ergodic on E (and is, in fact, mixing for typical rotation numbers (see [12])).
Although H itself is not periodic, we can consider its critical points as points on the

torus, since ∇H is periodic. All the maxima and the minima of H are located inside the
domains Uk. There may also be saddle points of H inside some of the domains Uk, and
the level sets containing such points will be the separatrices of the flow.
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Let us introduce the finite graph G and the mapping h : T2 → G that correspond to
the structure of the stream lines of the flow on the torus. The graph is a tree and h maps
the entire ergodic component to one point - to the root of the tree that will be denoted
by O. Next, we identify all the points that belong to each of the compact flow lines. This
way each connected domain bounded by the separatrices gets mapped into an edge of the
graph, while the separatrices and the local maxima and minima of H get mapped into
vertices of the graph (see Figure 2). In particular, the root of the graph serves as an end
point for n edges (n is the number of domains Uk).

Figure 2: The stream lines of the flow and the corresponding graph

Let I1, ..., In be the edges of the graph. We can introduce coordinates hk, 1 ≤ k ≤ n,
on the edges as follows. If V is a connected domain such that H(V ) = Ik, x0 ∈ ∂V is such
that H(x0) = y0, where y0 is the end point of Ik that is closer to the root, and x ∈ V is
such that H(x) = y, then we put hk(y) = H(x) −H(x0). Then the value of hk together
with the number of the edge k form a global coordinate system on G (each interior vertex
belongs to several edges, so it can be described by different coordinates).

Now consider the process Xκ,ε
t on T

2 given by the stochastic differential equation

dXκ,ε
t =

1

ε
v(Xκ,ε

t )dt+ β(Xκ,ε
t )dt+ κu(Xκ,ε

t )dt+
√

κσ(Xκ,ε
t )dWt , Xκ,ε

t ∈ T
2, (5)

which can be viewed as a small stochastic perturbation of (2). Here v is an incompressible
periodic vector field, β and u are periodic vector fields, σ is a 2 × 2 periodic matrix such
that α(x) = σ(x)σ∗(x) is positive definite for all x, Wt is a two-dimensional Brownian
motion and κ > 0 is a small parameter. We assume that v, β, u and σ are infinitely
smooth and have a common period in each of the variables that is equal to one and that
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the initial distribution of Xκ,ε
t does not depend on ε. We assume that the generator Lκ,ε

of the process Xκ,ε
t can be written in the form

Lκ,εf =
1

ε
〈v,∇f〉 + 〈β,∇f〉+

κ

2
div(α∇f),

that is
ui = ((α1i)

′
x1

+ (α2i)
′
x2

)/2, i = 1, 2. (6)

The latter assumption is made only for simplicity of notation, it can be easily avoided by
adding a small correction term to β.

Let Y κ,ε
t = h(Xκ,ε

t ) be the corresponding process on G. In Section 2 we demonstrate
that for fixed κ > 0 the process Y κ,ε

t converges, in the sense of weak convergence of
induced measures, as ε ↓ 0, to a Markov process on the graph. The limiting process will
be denoted by Zκ

t . In Section 3 we identify the limit of Zκ

t as κ ↓ 0 and show that it does
not depend on the random perturbation (choice of the matrix-valued function α). The
limiting process, which will be denoted by Zt, moves deterministically along the edges of
the graph. When it reaches a vertex, other than the root, it proceeds with deterministic
motion along the “next” edge, which is chosen randomly with probabilities that depend
on v and β. If the process reaches the root of the graph, it is delayed there for a random
exponentially distributed time, and then moves along the “next” edge, which is chosen
randomly.

The parameter of the exponential distribution is independent of the matrix α. This
means that stochasticity at O is an intrinsic property of purely deterministic system (2).

2 Averaging principle for random perturbations

2.1 Formulation of the result

We assume for brevity that each of the domains Uk, k = 1, ..., n, contains a single critical
pointMk ofH (a maximum or a minimum ofH). The general case can be easily considered
using the results of this paper and [4]. Let Ak, k = 1, ..., n, be the saddle points of H ,
such that Ak is on the boundary of Uk. We denote the boundary of Uk by γk.

For now we are assuming that κ is fixed and ε tends to zero. Therefore, we can
temporarily omit the dependence of the process on κ from the notations. Let Xε

t solve
the stochastic differential equation

dXε
t =

1

ε
v(Xε

t )dt+ β(Xε
t )dt+ u(Xε

t )dt+ σ(Xε
t )dWt , Xε

t ∈ T
2. (7)

We assume that the initial distribution of Xε
t does not depend on ε.

The phase space of the limiting process will be a graph G, which consists of n edges
Ik, k = 1, ..., n, (segments labeled by k), where each segment is either [H(Mk)−H(Ak), 0]
(if Mk is a minimum) or [0, H(Mk) −H(Ak)] (if Mk is a maximum). All the edges share

6



a common vertex (the root) that will be denoted by O. Thus a point in G \ O can be
determined by specifying k (the number of the edge) and the coordinate on the edge. We
define the mapping h : T

2 → G as follows

h(x) =

{
O if x ∈ [E ]
(k,H(x) −H(A)) if x ∈ Uk,

where [E ] is the closure of E . We shall use the notation hk for the coordinate on Ik. For a
function f defined on G we will often write f(hk) instead of f(k, hk) when it is clear that
the argument belongs to the k-th edge of the graph.

We denote the set {x ∈ [Uk] : H(x)−H(A) = hk} by γk(hk). Thus γk = γk(0) = ∂Uk.
Let Lkf(hk) = ak(hk)f

′′ + bk(hk)f
′ be the differential operator on the interior of Ik with

the coefficients

ak(hk) =
1

2

(∫

γk(hk)

1

|∇H|dl
)−1 ∫

γk(hk)

〈α∇H,∇H〉
|∇H| dl and (8)

bk(hk) =
1

2

(∫

γk(hk)

1

|∇H|dl
)−1 ∫

γk(hk)

2〈β + u,∇H〉+ α ·H ′′

|∇H| dl, (9)

where α ·H ′′(x) =
∑

1≤i,j≤2 αij(x)H
′′
xixj

(x). Let

pk = ±1

2
(Area(E))−1

∫

γk

〈α∇H,∇H〉
|∇H| dl = ±1

2
(Area(E))−1

∣∣∣∣
∫

Uk

div(α∇H)(x)dx

∣∣∣∣ , (10)

where the sign + is taken if Ak is a local minimum for H restricted to Uk, and − is taken
otherwise.

Consider the process Yt on G which is defined via its generator L as follows. The
domain of L denoted by D(L) consists of those functions f ∈ C(G) which

(a) Are twice continuously differentiable in the interior of each of the edges;
(b) Have the limits limhk→0 Lkf(hk) and limhk→(H(Mk)−H(Ak)) Lkf(hk) at the endpoints

of each of the edges. Moreover, the value of the limit q = limhk→0 Lkf(hk) is the same for
all edges;

(c) Have the limits limhk→0 f
′(hk), and

n∑

k=1

pk lim
hk→0

f ′(hk) = q. (11)

For functions f which satisfy the above three properties, we define Lf = Lkf in the
interior of each edge, and as the limit of Lkf at the endpoints of Ik.

It well-known (see [10], [15]) that there exists a strong Markov process on G with
continuous trajectories, with the generator L. The measure on C([0,∞),G) induced by
the process is uniquely defined by the operator and the initial distribution of the process.

The rest of this section is devoted to the proof of the following theorem.
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Theorem 1. The measure on C([0,∞),G) induced by the process Y ε
t = h(Xε

t ) converges
weakly to the measure induced by the process with the generator L with the initial distri-
bution h(Xε

0).

In the case β = 0 the limiting operator has a clear intuitive meaning. First let us
consider the motion inside an edge. Let the support of f ∈ D(L) belong to the interior
of one edge Ik. Applying the Ito formula to f(hk(X

ε
t )), we see that

f(hk(X
ε
t )) −

∫ t

0

(a(Xε
s )f

′′(hk(X
ε
s )) + b(Xε

s )f
′(hk(X

ε
s ))) ds

is a martingale, where

a =
1

2
〈α∇H,∇H〉, b = 〈u,∇H〉 +

1

2
αH ′′.

When ε is small, the trajectories of the diffusion process converge to the motion along the
streamlines of H , so the integrals over time are well approximated by the averaged values
over the streamlines.

Next we explain the gluing conditions. Note that for each ε the Lebesgue measure is
invariant for process on T2, so its projection µ to G should be invariant for the limiting
process. In other words, for each f ∈ D(L) we should have

∫

G

(Lf)dµ = 0. (12)

The projection has the following form

dµ =

n∑

k=1

gk(hk)dhk + λ(E)δO,

where

gk(hk) =

∫

γk(hk)

1

|∇H|dl.

Integrating by parts, we get

∫

G

(Lf)dµ =

n∑

k=1

∫

Ik

(L∗gk)dhk + λ(E)Lf(0) +

n∑

k=1

sk (((akgk)
′ − bkgk)f − akgkf

′) (0),

where sk = 1 if Ak is a local minimum for H restricted to Uk, and sk = −1 otherwise.
Note that from (8), (9) and the Stokes formula it follows that (gkak)

′ = gkbk. There-
fore (12) reduces to

λ(E)Lf(0) =

n∑

k=1

sk(akgkf
′)(0),
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which explains the choice of coefficients pk in (11).
If β 6= 0, then the form of L inside the edges can be found by the same reasoning

as above, but the meaning of the gluing conditions is less clear. The main result of
this section is that the gluing conditions remain the same as in the incompressible case.
Roughly speaking, the reason is the following. In [7] we showed that the orbit can not
stay in E for a long time. Therefore, the Girsanov Theorem shows that the behavior of
the process with β 6= 0 in a neighborhood of E should be similar to the behavior of the
process with the same coefficients u and σ, but with β = 0, and so the gluing conditions
for the two processes should be the same.

Let us now give a rigorous argument. We need the following lemma.

Lemma 2.1. For any function f ∈ D(L) and any T > 0 we have

Ex[f(h(Xε
T )) − f(h(Xε

0)) −
∫ T

0

Lf(h(Xε
s ))ds] → 0 as ε→ 0, (13)

uniformly in x ∈ T2.

An analogous lemma was used in the monograph of Freidlin and Wentzell ([11], Chap-
ter 8) to justify the convergence of the process Y ε

t to the limiting process on the graph.
The main idea, roughly speaking, is to use the tightness of the family Y ε

t , and then to
show that the limiting process (along any subsequence), is a solution of the martingale
problem, corresponding to the operator L.

The main difference between our case and that of [11] is the presence of an ergodic
component. However, all the arguments used to prove the main theorem based on (13)
remain the same. Thus, upon referring to Lemma 3.1 of [11], it is enough to prove our
Lemma 2.1 above.

Lemma 2.1 was proved in [7] for the case when β = 0. One of the important ingre-
dients in the proof is an estimate on the time it takes for the process to exit the ergodic
component. The estimate uses the results of [8] and [17] (which are also closely related to
[3] and [5]) which allow one to relate the time it takes the process to exit E to the spectral
properties of the operators related to the generator of the process in E . In the current
paper we reduce the general case to the one with β = 0.

2.2 Proof of Lemma 2.1.

Before we proceed with the rigorous arguments, let us briefly discuss the main idea for
the proof of Lemma 2.1. Together with Xε

t , we will consider an auxiliary process X̃ε
t

obtained from Xε
t by setting β = 0 in the right hand side of (7). For ρ > 0, the measure

on C([0, ρ]) induced by Xε
t is absolutely continuous with respect to the measure induced

by X̃ε
t starting at the same point, and the density of the first measure with respect to

the second one is close to one if ρ is small, as follows from the Girsanov theorem. We
can split the interval [0, T ] into subintervals of length ρ and consider the contribution to
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the expectation in (13) from each of the small intervals separately. We further split each
of the small intervals into random subintervals as follows. Introduce the curves γk inside
Uk that are asymptotically close to γk when ε ↓ 0, thus separating the time axis into
the intervals (between hitting γk and γ) that the process spends in Uk on the way to the
ergodic component and the intervals (between hitting γ and hitting one of the intervals
γk) that the process spends in a neighborhood of E . The contribution from the intervals
of the first type is treated using the classical averaging theory. The contribution from
the intervals of the second type is compared to the contribution from the same intervals
for the auxiliary process, for which the result is already available, using the fact that the
measures induced by the two processes are similar.

The proof of Lemma 2.1 will rely on several other lemmas. Below we shall introduce
a number of processes, stopping times, and sets, which will depend on ε. However, we
shall not always incorporate this dependence on ε into notation, so one must be careful
to distinguish between the objects which do not depend on ε and those which do.

Fix an arbitrary α ∈ (1/4, 1/2). Let γk = γk(ε
α) and γ =

⋃n
k=1 γk. Let γ =

⋃n
k=1 γk

be the boundary of U =
⋃n

k=1Uk. Let σ be the first time when the process Xε
t reaches γ

and τ be the first time when the process reaches γ.
We inductively define the following two sequences of stopping times. Let σ0 = σ. For

n ≥ 0 let τn be the first time following σn when the process reaches γ. For n ≥ 1 let σn

be the first time following τn−1 when the process reaches γ.

Lemma 2.2. We have the following limit

lim
ε↓0

sup
x∈Cl(E)

Exσ = 0.

Proof. The same lemma was proved in [7] under the additional assumption that β = 0.

Consider an auxiliary process X̃ε
t obtained from Xε

t by setting β = 0 in the right hand
side of (7). Since the result holds when β = 0, for each δ > 0 we have

lim
ε↓0

sup
x∈Cl(E)

Px(σ̃ > δ) = 0, (14)

where σ̃ is the first time when the process X̃ε
t reaches γ. Let µε

x be the measure on

C([0, δ],T2) induced by Xε
t starting at x and µ̃ε

x the measure induced by X̃ε
t starting at x.

By the Girsanov theorem, µε
x is absolutely continuous with respect to µ̃ε

x with a density
pε

x, and
inf

x∈Cl(E)
µ̃ε

x(p
ε
x ≥ 3/4) ≥ 3/4

provided that δ is sufficiently small. Therefore, by (14),

sup
x∈Cl(E)

Px(σ > δ) ≤ 1/2,

provided that ε is sufficiently small. Since δ was arbitrary, the lemma follows from the
Markov property of the process Xε

t .
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Lemma 2.3. For each function f ∈ D(L) we have

sup
x∈T2

sup
σ′≤σ

|Ex[f(h(Xε
σ′)) − f(h(Xε

0)) −
∫ σ′

0

Lf(h(Xε
s ))ds]| → 0 as ε → 0, (15)

where the first supremum is taken over all stopping times σ′ ≤ σ.

Proof. If the supremum is restricted to the set T2 \Cl(E), then the statement follows from
the averaging principle inside a periodic component (see [13] for the case when there are
no saddle points inside Uk and [11] in the general case). The statement with the supre-
mum taken over Cl(E) immediately follows from Lemma 2.2 if one takes into account that
f(h(x)) = const for x ∈ Cl(E).

Lemma 2.4. For each function f ∈ D(L) we have

sup
x∈T2

|Ex[f(h(Xε
τ )) − f(h(Xε

0)) −
∫ τ

0

Lf(h(Xε
s ))ds]| → 0 as ε→ 0. (16)

Proof. Let U ⊆ U be the union of the domains bounded by γ. Note that

sup
x∈U

|Ex[f(h(Xε
τ )) − f(h(Xε

0)) −
∫ τ

0

Lf(h(Xε
s))ds]| → 0 as ε→ 0,

as follows from the classical averaging principle. Since Lf is bounded and f is nearly
constant on T2 \ U (which is a small neighborhood of E), it is sufficient to show that

sup
x∈T2\U

Exτ → 0 as ε→ 0. (17)

This has been done in [7] for the case when β = 0. The general case follows from the
Markov property of the process and the Girsanov theorem the same way as in the proof
of Lemma 2.2.

Lemma 2.5. For each function f ∈ D we have the following asymptotic estimate

sup
x∈γ

sup
σ′≤σ

|Ex[f(h(Xε
σ′)) − f(h(Xε

0)) −
∫ σ′

0

Lf(h(Xε
s ))ds]| = o(εα) as ε→ 0, (18)

where the first supremum is taken over all stopping times σ′ ≤ σ.

This lemma is similar to the averaging principle inside the periodic component – the
difference is that now the initial point is not fixed, but is located at a distance of order
εα from the boundary of the periodic component. This guarantees that the expectation
of the exit time from the periodic component is of order O(εα), which allows for the
o(εα) estimate of the left hand side of (18). The needed modifications to the averaging
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principle are not difficult (see, for example, Lemma 4.4 of [14] where a similar statement
was proved).

We’ll need to control the number of excursions between γ and γ before time T . For this
purpose we formulate the following lemma, whose proof is similar to that of Lemma 2.5
in [6].

Lemma 2.6. There is a constant r > 0, such that for all sufficiently small ε we have

sup
x∈γ

Exe
−σ ≤ 1 − rεα.

Using the Markov property of the process and Lemma 2.6, for n ≥ 1 we get the
estimate

sup
x∈T2

Exe
−σn ≤ sup

x∈γ
Exe

−σn−1 ≤ (sup
x∈γ

Exe
−σ)n−1 ≤ (1 − rεα)n−1. (19)

The first inequality here follows from the definition of σn. Note that for n ≥ 0

Px(τn < T ) ≤ Px(σn < T ) ≤ Px(e
−σn > e−T ) ≤ eT (1 − rεα)n−1.

The last inequality here is due to (19) and the Chebyshev inequality if n ≥ 1 and is
obvious for n = 0. Taking the sum in n, we obtain

∞∑

n=0

Px(τn < T ) ≤
∞∑

n=0

Px(σn < T ) ≤
∞∑

n=0

eT (1 − rεα)n−1 ≤ Kε−α, (20)

where the constant K depends on T .

Proof of Lemma 2.1. Let f ∈ D, T > 0, and η > 0 be fixed. We would like to show
that the absolute value of the left hand side of (13) is less than η for all sufficiently small
positive ε. Using the stopping times τn and σn we can rewrite the expectation in the left
hand side of (13) as follows

Ex[f(h(Xε
T )) − f(h(Xε

0)) −
∫ T

0

Lf(h(Xε
s ))ds] =

Ex[f(h(Xε
T∧σ)) − f(h(Xε

0)) −
∫ T∧σ

0

Lf(h(Xε
s ))ds]+

∞∑

n=0

Ex(χ{σn<T}[f(h(Xε
τn∧T )) − f(h(Xε

σn
)) −

∫ τn∧T

σn

Lf(h(Xε
s ))ds])+ (21)

∞∑

n=0

Ex(χ{τn<T}[f(h(Xε
σn+1∧T )) − f(h(Xε

τn
)) −

∫ σn+1∧T

τn

Lf(h(Xε
s ))ds]),

provided that the sums in the right hand side converge absolutely (which follows from
the arguments below). Due to (15), the absolute value of the first term on the right hand

12



side of this equality can be made smaller than η/4 for all sufficiently small ε. Therefore,
it remains to estimate the two infinite sums.

Let us start with the second sum. By (18), we can find ε0, such that for all ε < ε0 we
have

sup
x∈γ

sup
σ′≤σ

|Ex[f(h(Xε
σ′)) − f(h(Xε

0)) −
∫ σ′

0

Lf(h(Xε
s ))ds]| ≤

ηεα

4K
.

Therefore, by (20) and due to the Markov property of the process, for ε < ε0 we have

|
∞∑

n=0

Ex(χ{τn<T}[f(h(Xε
σn+1∧T )) − f(h(Xε

τn
)) −

∫ σn+1∧T

τn

Lf(h(Xε
s ))ds])| ≤

sup
x∈γ

sup
σ′≤σ

|Ex[f(h(Xε
σ′)) − f(h(Xε

0)) −
∫ σ′

0

Lf(h(Xε
s ))ds]|

∞∑

n=0

Exχ{τn<T} ≤
η

4
. (22)

It remains to estimate the first sum in the right hand side of (21). Fix ρ > 0, to be specified
later. We introduce the stopping times σn, where σ0 = σ0 and σn, 0 ≤ n ≤ [T/ρ], is the
first of the stopping times σk which exceeds σn−1 by at least ρ. We wish to replace the
sum by

[T/ρ]∑

n=0

Ex(χ{σn<T}EXε
σn

∞∑

k=0

χ{σk<ρ}[f(h(Xε
τk

)) − f(h(Xε
σk

)) −
∫ τk

σk

Lf(h(Xε
s ))ds]). (23)

Indeed, by Lemma 2.4 and the Markov property of the process, we can replace τn ∧ T
by τn everywhere in first sum in the right hand side of (21), and the difference will be
smaller than η/4 if ε is sufficiently small. The difference between the resulting expression
and the one in (23) is estimated using the Markov property by

sup
x∈γ

sup
α≤ρ

|Ex

∞∑

k=0

χ{σk<α}[f(h(Xε
τk

)) − f(h(Xε
σk

)) −
∫ τk

σk

Lf(h(Xε
s ))ds]|, (24)

where the second supremum is taken over stopping times α ≤ ρ. In order to estimate the
expressions in (23) and (24), we will need the following lemma, whose proof is provided
below.

Lemma 2.7. For each f ∈ D and δ > 0 there is ρ > 0 such that

sup
x∈γ

sup
α≤ρ

|Ex

∞∑

n=0

χ{σn<α}[f(h(Xε
τn

)) − f(h(Xε
σn

)) −
∫ τn

σn

Lf(h(Xε
s))ds]| ≤ δρ (25)

for all sufficiently small ε, where the second supremum is taken over stopping times α ≤ ρ.

13



If we choose δ = η/(4(T + 1)) and take ρ ∈ (0, 1) such that (25) holds, then the
absolute value of the expression in (23) and the expression in (24) are estimated by η/4.
This shows that the right hand side of (21) is estimated by η, as required.

Proof of Lemma 2.7. We’ll divide the proof into several steps.
(a) Consider the process X̃ε

t obtained from Xε
t by setting β = 0 in the right hand side

of (7). Let us show that for each ρ > 0,

lim
ε↓0

sup
x∈γ

sup
α≤ρ

|Ex

∞∑

n=0

χ{σn<α}[f(h(X̃ε
τn

)) − f(h(X̃ε
σn

)) −
∫ τn

σn

Lf(h(X̃ε
s ))ds]| = 0. (26)

Indeed, Lemma 2.1 holds for the process X̃ε
t , as shown in [7]. Moreover, the same proof

shows that (13) remains valid if T is replaced by a stopping time α ≤ T and the conver-
gence is uniform in α if T is fixed. Therefore,

lim
ε↓0

sup
x∈γ

sup
α≤ρ

|Ex[f(h(X̃ε
α)) − f(h(X̃ε

0)) −
∫ α

0

Lf(h(X̃ε
s ))ds]| = 0. (27)

The expectation in (27) can be represented as a sum of terms corresponding to the intervals
[σn, τn] and intervals [τn, σn+1], as above. The contribution from the intervals of the second
type tends to zero, as in (22). Therefore the contribution from the intervals of the first
type also tends to zero. Notice that the expectation in (26) is equal to the contribution
from the intervals of the first type (up to a term found in (16)), thus proving (26).

(b) Given ρ > 0, let µε
x be the measure on C = C([0, 2ρ],R2) induced by the process

Xε
t starting at x and µ̃ε

x be the measure on C induced by the process X̃ε
t starting at x.

Let pε
x be the density of µε

x with respect to µ̃ε
x. By the Girsanov theorem, for each c > 0

there is ρ0 > 0 such that for ρ ≤ ρ0 we have

µ̃ε
x(1 − cδ ≤ pε

x ≤ 1 + cδ) ≥ 1 − ρ2 (28)

for all sufficiently small ε and all x ∈ γ. Let C′ ⊆ C be the event where pε
x /∈ [1−cδ, 1+ cδ]

and Ω′ ⊆ Ω be the event that (Xε
t , t ∈ [0, 2ρ]) ∈ C′.

(c) Note that by the Markov property of the process and Lemma 2.4, we can replace
the stopping times τn in (25) by τ ′n = min(τn, 2ρ).

(d) For 0 < ρ < 1, we can take the same sum as in (20), but starting with n =
[ε−α ln(C/ρ)] instead of n = 0. We then obtain that for each δ > 0 there is a sufficiently
large C > 0 that does not depend on ρ such that

∞∑

n=[ε−α ln(C/ρ)]

Px(σn < ρ) ≤
∞∑

n=[ε−α ln(C/ρ)]

eρ(1 − rεα)n−1 ≤ δρε−α.

Therefore, if δ > 0, Ω′ is the event constructed above and ρ is sufficiently small (ρ may
depend on δ now), then

∞∑

n=0

Px(Ω
′ ∩ {σn < α}) ≤

∞∑

n=0

Px(Ω
′ ∩ {σn < ρ}) ≤
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[ε−α ln(C/ρ)]−1∑

n=0

Px(Ω
′) +

∞∑

n=[ε−α ln(C/ρ)]

Px(σn < ρ) (29)

≤ ε−α ln(C/ρ)ρ2 + δρε−α ≤ 2δρε−α.

(e) Let us show that we can replace χ{σn<α} in (25) by χ{σn<α}\Ω′ . Indeed,

|Ex

∞∑

n=0

χ{σn<α}∩Ω′ [

∫ τ ′

n

σn

Lf(h(Xε
s ))ds]| ≤ 2ρ sup |Lf |Px(Ω

′).

For arbitrary δ > 0, this can be made smaller than δρ for all sufficiently small ε by taking
a sufficiently small ρ. Also,

|Ex

∞∑

n=0

χ{σn<α}∩Ω′ [f(h(Xε
τ ′

n
)) − f(h(Xε

σn
))]| ≤ 2|f ′(0)|εα

∞∑

n=0

Px(Ω
′ ∩ {σn < α}),

which can be made smaller than δρ for all sufficiently small ε by taking a sufficiently
small ρ due to (29).

We have thus demonstrated that the expectation in the left hand side of (25) can be
approximated (with the accuracy of δρ with arbitrarily small δ) by

Ex

(
χΩ\Ω′

∞∑

n=0

χ{σn<α}[f(h(Xε
τ ′

n
)) − f(h(Xε

σn
)) −

∫ τ ′

n

σn

Lf(h(Xε
s ))ds]

)
. (30)

(f) We claim that there is a constant K such that

sup
x∈γ

sup
α≤ρ

Ex|
∞∑

n=0

χ{σn<α}[f(h(X̃ε
τ ′

n
)) − f(h(X̃ε

σn
)) −

∫ τ ′

n

σn

Lf(h(X̃ε
s ))ds]| ≤ Kρ (31)

for all sufficiently small ε. Indeed,

Ex|
∞∑

n=0

χ{σn<α}[

∫ τ ′

n

σn

Lf(h(X̃ε
s))ds]| ≤ 2ρ sup |Lf |,

while

Ex|
∞∑

n=0

χ{σn<α}[f(h(X̃ε
τ ′

n
)) − f(h(X̃ε

σn
))]| ≤ 2|f ′(0)|εα

∞∑

n=0

Px(σn < α) ≤ Kρ,

for some K, where the last inequality is due to (20).
(g) Let F be the functional on C = C([0, 2ρ],R2) corresponding to the sum in (30).

Thus the expectation in (30) can be written as
∫

C\C′

Fdµε
x =

∫

C\C′

Fpε
xdµ̃

ε
x =

∫

C\C′

Fdµ̃ε
x +

∫

C\C′

F (pε
x − 1)dµ̃ε

x. (32)
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The first integral on the right hand side can be made smaller than δρ for all sufficiently
small ε. Indeed, the arguments in steps (c), (d) and (e) can be applied to the process X̃ε

t ,

and therefore due to (26) the expression in (30) with Xε
t replaced by X̃ε

t can be made
smaller than δρ.

Finally, the second integral on the right hand side of (32) can be estimates as follows

|
∫

C\C′

F (pε
x − 1)dµ̃ε

x| ≤ cδ

∫

C\C′

|F |dµ̃ε
x ≤ cKδρ,

where the first inequality follows from the definition of C′ and the second one from (31).
It remains to take a sufficiently small constant c in (28).

3 Averaging principle for deterministic perturbations

Recall that the process Xκ,ε
t is defined in (5), which is different from (7) in that now

the terms u(Xε
t )dt + σ(Xε

t )dWt in the right hand side are replaced by κu(Xε
t )dt +√

κσ(Xε
t )dWt, where κ > 0 is a small parameter.

Let Y κ,ε
t = h(Xκ,ε

t ) be the corresponding process on the graph G. In Section 2
we demonstrated that the distribution of Y κ,ε

t converges, as ε ↓ 0, to the distribution
of a limiting process, which will be denoted by Zκ

t . In this section we show that the
distribution of Zκ

t , in turn, converges to the distribution of a limiting Markov process on
G when κ ↓ 0.

We need additional notations in order to describe the limiting distribution of Zκ

t . Let

ϕk =

∫

γk

〈α∇H,∇H〉
|∇H| dl,

ψk = 2

∫

γk

〈β,∇H〉
|∇H| dl.

Let us recall that Zκ
0 is distributed as h(Xκ,ε

0 ) (we assume that Xκ,ε
0 does not depend

on ε). Denote the generator of Zκ

t by Lκ. Recall that Lκ can be described as follows.
Let Lκ

k f(hk) = aκ

k (hk)f
′′(hk)+bκ

k (hk)f
′(hk) be the differential operator on the interior

of Ik with the coefficients

aκ

k (hk) =
1

2
(Tk(hk))

−1

∫

γk(hk)

〈κα∇H,∇H〉
|∇H| dl and

bκ

k (hk) =
1

2
(Tk(hk))

−1

∫

γk(hk)

2〈β + κu,∇H〉 + κα ·H ′′

|∇H| dl,

where

Tk(hk) =

∫

γk(hk)

1

|∇H|dl
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is the period of the unperturbed system. Note that

aκ

k (hk) =
1

2
(Tk(hk))

−1
κϕk(1 + o(1)), |hk| ↓ 0,

bκ

k (hk) =
1

2
(Tk(hk))

−1(ψk(1 + o(1)) + κO(ln(|hk|))), |hk| ↓ 0,

and therefore
bκ

k (hk)

aκ

k (hk)
=

ψk

κϕk

(1 + o(1)) +O(ln(|hk|))), |hk| ↓ 0. (33)

The domain of Lκ consists of those functions f ∈ C(G) which
(a) Are twice continuously differentiable in the interior of each of the edges;
(b) Have the limits limhk→0 L

κ

k f(hk) and limhk→(H(Mk)−H(Ak)) L
κ

k f(hk) at the endpoints
of each of the edges. Moreover, the value of the limit qκ = limhk→0 L

κ

k f(hk) is the same
for all edges;

(c) Have the limits limhk→0 f
′(hk), and

κ

n∑

k=1

pk lim
hk→0

f ′(hk) = qκ, (34)

where pk are given by (10).
For functions f which satisfy the above three properties, we define Lκf = Lκ

k f in the
interior of each edge, and as the limit of Lκ

k f at the endpoints of Ik.
We assume that ψk 6= 0. Let sk, 1 ≤ k ≤ n, take values zero and one. We set sk = 1 if

ψk > 0 and Mk is a local maximum of H as well as if ψk < 0 and Mk is a local minimum
of H . Otherwise, we set sk = 0. Let

rk =

∣∣∣∣
skpkψk

ϕk

∣∣∣∣ =
sk|ψk|

2Area(E)
, 1 ≤ k ≤ n.

Note that rk do not depend on α. Let Zt be the family of processes (that depend on
the initial point) on the state space G whose distribution is determined by the following
conditions:

(a) Zt is a strong Markov family with continuous trajectories;
(b) If Z0 = O, where O is the root of G, then the process spends a random time τ in

O. There is a random variable ξ that is independent of τ , takes values in the set {1, ..., n},
and is such that Zt ∈ Iξ for t > τ .

If sk = 0 for 1 ≤ k ≤ n, then τ = ∞. If sk = 1 for some k, then τ is exponentially
distributed with the parameter

µ =

n∑

k=1

rk. (35)
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If sk = 1 for some k, then

P(Zt ∈ Ik for t > τ) = rk

(
n∑

i=1

ri

)−1

.

(c) If Z0 ∈ int(Ik), then dZt/dt = bk(Zt) for t < σ, where σ = inf(t : Zt = O) and

bk(hk) = b0k(hk) =
1

2
(Tk(hk))

−1

∫

γk(hk)

2〈β,∇H〉
|∇H| dl.

Thus Zt moves deterministically along the edge Ik of the graph with the speed bk(hk).
If the process reaches O in finite time (in which case sk = 0), then it either stays at
O (if sm = 0, 1 ≤ m ≤ n) or spends exponential time in O and then continues with
deterministic motion away from O along a randomly selected edge (if sm = 1 for some
m).

Theorem 2. The measure on C([0,∞),G) induced by the process Zκ

t converges weakly
to the measure induced by the process Zt with the initial distribution h(Xε

0).

We would like to underline again that the process Zt is defined by the deterministic
system (2). The stochastic perturbations are used just for regularization purposes.

The motion of Zκ

t inside each edge can be understood by standard perturbation theory.
Namely, let

0 ≤ δ < min
1≤k≤n

|H(Ak) −H(M)|, σκ(δ) = inf(t : |Zκ

t | = δ), σ(δ) = inf(t : |Zt| = δ).

Using the fact that for small κ we have a small perturbation of the deterministic system
dZt/dt = bk(Zt), one can easily obtain the following statements:

For the processes Zκ

t and Zt starting on the edge Ik with |Zκ

0 | = |Z0| = δ,

if σ(0) <∞, then lim
κ↓0

(σκ(0) − σ(0)) = 0 in probability

and for each T <∞,

lim
κ↓0

( max
t≤min(T,σκ (0))

|Zκ

t − Zt|) = 0 in probability.

From here it easily follows that for the process Zκ

t starting at O

lim
κ↓0

σκ(δ) = ∞ in probability

if rk = 0 for all k. It remains to describe the behavior of the process Zκ

t starting at O till
the time it exits a small neighborhood of O in the case when rk 6= 0 for some k. Thus
Theorem 2 will follow from the two lemmas below.
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Lemma 3.1. If Zκ
0 = O and rk 6= 0 for some k, then

lim
κ↓0

P(Zκ

σκ (δ) ∈ Ik) = rk

(
n∑

i=1

ri

)−1

.

Proof. Let Gδ = {(i, hi) ∈ G : |hi| ≤ δ}. Let fk,κ(h), h ∈ Gδ, be the probability that the
process Zκ

t starting at h exits Gδ through the point that belongs to Ik. Thus fk,κ is a
continuous function on Gδ, is twice continuously differentiable for |hi| ∈ (0, δ) and is such
that

(a) Lκ

i fk,κ(hi) = 0 for |hi| ∈ (0, δ), 1 ≤ i ≤ n;
(b) The limits limhi→0 f

′
k,κ(hi) exist and (34) holds with fk,κ instead of f and qκ = 0.

(c) fk,κ(hk) = 1 for |hk| = δ; fk,κ(hi) = 0 for |hi| = δ if i 6= k.
Note that we are interested in the limit limκ↓0 fk,κ(O). Assuming that fk,κ(O) is known,
we can use the differential relation (a) to find fi,κ(hi), 0 ≤ |hi| ≤ δ, 1 ≤ i ≤ n. Namely,

fi,κ(hi) = fk,κ(O) + ci,κ

∫ hi

0

exp

(
−
∫ s

0

bκ

i (u)

aκ
i (u)

du

)
ds.

The constants ci,κ can be found from the boundary condition (c) and are equal to

ck,κ =
1 − fk,κ(O)

Ik(κ)
; ci,κ =

−fk,κ(O)

Ii(κ)
, i 6= k,

where

Ii(κ) =

∫ δ

0

exp

(
−
∫ s

0

bκ

i (u)

aκ
i (u)

du

)
ds. (36)

From (b) we find that
∑n

i=1 pici,κ = 0, and therefore

fk,κ(O) =
pkI

−1
k (κ)∑n

i=1 piI
−1
i (κ)

. (37)

From (33) it easily follows that

Ii(κ) = (κ + o(κ))
ϕi

ψi

when κ ↓ 0 if si = 1; (38)

Ii(κ) → ∞ when κ ↓ 0 if si = 0. (39)

Substituting this into (37), we obtain the desired result.

The next lemma shows that the distribution of the time spent by the process in a
small neighborhood of O is asymptotically exponential with parameter µ and that this
time is asymptotically independent of which edge it chooses upon exiting from O.
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Lemma 3.2. Let λ ≥ 0, Zκ
0 = O and rk 6= 0 for some k. Let Am denote the event that

Zκ
σκ (δ) ∈ Im. Then

E (χAm
exp(−λσκ(δ))) =

rm

µ+ λ
(1 + ξm(λ, δ,κ)) +

ληm(λ, δ,κ)

µ+ λ
, (40)

where µ is defined in (35), limκ↓0 ξm(λ, δ,κ)) = 0 uniformly in λ ≥ 0, δ < δ0 for some
positive δ0 and limδ↓0 ηm(λ, δ,κ) = 0 uniformly in λ ≥ 0,κ < κ0 for some positive κ0.

In particular

E exp(−λσκ(δ)) =
µ

µ+ λ
(1 + ξ(λ, δ,κ)) +

λη(λ, δ,κ)

µ+ λ
, (41)

where ξ and η have the same properties as ξm and ηm.

Proof. Let us prove (40). Let fκ(h), h ∈ Gδ, be equal to the expectation in the left hand
side of (40), where the stopping time σκ(δ) is that of the process starting at h instead
of O. Then fκ is a continuous function on Gδ, is twice continuously differentiable for
|hk| ∈ (0, δ) and is such that

(a) Lκ

k fκ(hk) − λfκ(hk) = 0 for |hk| ∈ (0, δ), 1 ≤ k ≤ n;
(b) The limits limhk→0 f

′
κ
(hk) exist and (34) holds with fκ instead of f and qκ replaced

by λfκ(O).
(c) fκ(hm) = 1 for |hm| = δ, and fκ(hk) = 1 for |hk| = δ, k 6= m.

Note that we are interested in the asymptotics of fκ(O) as κ ↓ 0. Let us temporarily
treat λfκ as a known function, which we denote by gκ. Note that gκ is continuous and
|gκ| is bounded by λ. Then fκ(O) = gκ(O)/λ. From this and the differential relation (a)
we can find f ′

κ(hk), 0 ≤ |hk| ≤ δ, 1 ≤ k ≤ n. Namely,

f ′
κ
(hk) =

(∫ hk

0

gκ(s)

aκ

k (s)
exp

(∫ s

0

bκ

k (u)

aκ

k (u)
du

)
ds+ ck,κ

)
exp

(
−
∫ hk

0

bκ

k (s)

aκ

k (s)
ds

)
, (42)

where ck,κ are constants. From (b) it follows that

n∑

k=1

pkck,κ = gκ(O)/κ. (43)

Upon integrating (42) from 0 to δ and using (c), we obtain

fκ(O) = δkm−
∫ δ

0

(∫ hk

0

gκ(s)

aκ

k (s)
exp

(∫ s

0

bκ

k (u)

aκ

k (u)
du

)
ds+ ck,κ

)
exp

(
−
∫ hk

0

bκ

k (s)

aκ

k (s)
ds

)
dhk =

δkm −
∫ δ

0

(∫ hk

0

gκ(s)

aκ

k (s)
exp

(∫ s

0

bκ

k (u)

aκ

k (u)
du

)
ds

)
exp

(
−
∫ hk

0

bκ

k (s)

aκ

k (s)
ds

)
dhk − ck,κIk(κ) =

δkm − Jk(δ, λ,κ) − ck,κIk(κ),
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where

Jk(δ, λ,κ) =

∫ δ

0

(∫ hk

0

gκ(s)

aκ

k (s)
exp

(∫ s

0

bκ

k (u)

aκ

k (u)
du

)
ds

)
exp

(
−
∫ hk

0

bκ

k (s)

aκ

k (s)
ds

)
dhk, (44)

Ik(κ) was defined in (36) and δkm equals 1 if k = m and 0 otherwise. Let us multiply
both sides of this equality by pk/Ik(κ) and take the sum in k. Upon using (43), we obtain

fκ(O)

n∑

k=1

pk

Ik(κ)
=

pm

Im(κ)
−

n∑

k=1

pkJk(δ, λ,κ)

Ik(κ)
− λfκ(O)

κ
.

This is a linear equation on fκ(O). Solving it, we obtain

fκ(O) =

(
n∑

k=1

pkIk(κ) +
λ

κ

)−1
pm

Im(κ)
+

(
n∑

k=1

pk

Ik(κ)
+
λ

κ

)−1 n∑

k=1

pkJk(δ, λ,κ)

Ik(κ)
.

By (38) and (39), the first term on the right hand side converges, as κ ↓ 0, to rm/(µ+ λ).
It remains to show that

lim
δ↓0

κJk(δ, λ,κ)

Ik(κ)
= 0

for each k. When k is such that sk = 0, we use the fact that by (33)

∫ hk

0

gκ(s)

λ

κ

aκ

k (s)
exp

(∫ s

0

bκ

k (u)

aκ

k (u)
du

)
ds

converges to zero when δ ↓ 0, while the second factor inside the integral in (44) is the
same as the integrand in the definition of Ik(κ). When sk = 1, we rewrite Jk as follows

Jk(δ, λ,κ) =

∫ δ

0

(∫ hk

0

gκ(s)

aκ

k (s)
exp

(
−
∫ hk

s

bκ

k (u)

aκ

k (u)
du

)
ds

)

and again use (33) to show that Jk(δ, λ,κ) tends to zero when δ ↓ 0. This proves (40).
Now (41) follows from (40) by summing over m.

Finally, as it was already mentioned, the case where some of the periodic components
contains saddles could be treated using the analysis of [4]. Namely the limit process is still
Markov. Upon reaching a vertex corresponding to a saddle point the process instantly
chooses one of the edges where the averaged field points inside the edge and the proba-
bility to choose the edge k is proportional to |ψ̄k|.
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