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1. Introduction

1.1. Statement of the main result. We study a two-center two-body problem.
Consider two fixed centers Q1 and Q2 of masses m1 = m2 = 1 located at distance
χ from each other and two small particles Q3 and Q4 of masses m3 = m4 = µ� 1.
Qis interact with each other via Newtonian potential. If we choose coordinates so
that Q2 is at (0, 0) and Q1 is at (−χ, 0) then the Hamiltonian of this system can be
written as

(1.1) H =
|P3|2

2µ
+
|P4|2

2µ
− µ

|Q3|
− µ

|Q3 − (−χ, 0)|
− µ

|Q4|
− µ

|Q4 − (−χ, 0)|
− µ2

|Q3 −Q4|
.

We assume that the total energy of the system is zero.

We want to study singular solutions of this system, that is, the solutions which can
not be continued for all positive times. We will exhibit a rich variety of singular
solutions. Fix ε0 < χ. Let ω = {ωj}∞j=1 be a sequence of 3s and 4s.

Definition 1.1. We say that (Q3(t), Q4(t)) is a singular solution with symbolic
sequence ω if there exists a positive increasing sequence {tj}∞j=0 such that

• t∗ = limj→∞ tj <∞.
• |Q3(tj)−Q2| ≤ ε0, |Q4(tj)−Q2| ≤ ε0.
• If ωj = 4 then for t ∈ [tj−1, tj ], |Q3(t)−Q2| ≤ ε0 and {Q4(t)}t∈[tj−1,tj ] winds

around Q1 exactly once.
If ωj = 3 then for t ∈ [tj−1, tj ], |Q4(t)−Q2| ≤ ε0 and {Q3(t)}t∈[tj−1,tj ] winds
around Q1 exactly once.
• |Q̇i(t)| → ∞ as t→ t∗.

During the time interval [tj−1, tj ] we refer to Qωj as the traveling particle and to
Q7−ωj as the captured particle. Thus ωj prescribes which particle is the traveler
during the j trip.

We denote by Σω the set of initial conditions of singular orbits with symbolic se-
quence ω. Note that if ω contains only finitely many 3s then there is a collision of
Q3 and Q2 at time t∗. If ω contains only finitely many 4s then there is a collision
of Q4 and Q2 at time t∗. Otherwise at we have a collisionless singularity at t∗.

Theorem 1. There exists µ∗ � 1 such that for µ < µ∗ the set Σω 6= ∅.
Moreover there is an open set U on the zero energy level and a foliation of U by
two-dimensional surfaces such that for any leaf S of our foliation Σω∩S is a Cantor
set.

Remark 1.1. By rescaling space and time variables we can assume that χ� 1. In
the proof we shall make this assumption and set ε0 = 2.

Remark 1.2. It follows from the proof that the Cantor set described in Theorem 1
can be chosen to depend continuously on S. In other words Σω contains a set which
is local a product of a five dimensional disc and a Cantor set. The fact that on
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each surface we have a Cantor set follows from the fact that we have a freedom of
choosing how many rotations the captured particle makes during j-th trip.

Remark 1.3. The construction presented in this paper also works for small nonzero
energies. Namely, it is sufficient that the total energy is much smaller than the
kinetic energies of the individual particles. The assumption that the total energy is
zero is made to simplify notation since then the energies of Q3 and Q4 have the
same absolute values.

Remark 1.4. One can ask if Theorem 1 holds for other choices of masses. The
fact that the masses of the fixed centers Q1 and Q2 are the same is not essential
and is made only for convenience. The assumption that Q3 and Q4 are light is
important since it allows us to treat their interaction as a perturbation except during
the close encounters of Q3 and Q4. The fact that the masses of Q3 and Q4 are equal
allows us to use an explicit periodic solution of a certain limiting map (Gerver map)
which is found in [G2]. It seems likely that the conclusion of Theorem 1 is valid if
m3 = µ,m4 = cµ where c is a fixed constant close to 1 and µ is sufficiently small
but we do not have a proof of that.

1.2. Motivations.

1.2.1. Non-collision singularity in N-body problem. Our work is motivated by the
following fundamental problem in celestial mechanics. Describe the set of initial
conditions of the Newtonian N-body problem leading to global solutions. The com-
pliment to this set splits into the initial conditions leading to the collision and
non-collision singularities.

It is clear that the set of initial conditions leading to collisions is non-empty for all
N > 1 and it is shown in [Sa1] that it has zero measure. Much less is known about
the non-collision singularities. The main motivation for our work is provided by
following basic problems.

Conjecture 1. The set of non-collision singularities is non-empty for all N > 3.

Conjecture 2. The set of non-collision singularities has zero measure for all N > 3.

Conjecture 1 probably goes back to Poincaré who was motivated by King Oscar II
prize problem about analytic representation of collisionless solutions of the N -body
problem. It was explicitly mentioned in Painlevé’s lectures [Pa] where the author
proved that for N = 3 there are no non-collision singularities. Soon after Painlevé,
von Zeipel showed that if the system of N bodies has a non-collision singularity then
some particle should fly off to infinity in finite time. Thus non-collision singularities
seem quite counterintuitive. However in [MM] Mather and McGehee constructed a
system of four bodies on the line where the particles go to infinity in finite time after
an infinite number of binary collisions (it was known since the work of Sundman
[Su] that binary collisions can be regularized so that the solutions can be extended
beyond the collisions). Since Mather-McGehee example had collisions it did not
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solve Conjecture 1 but it made it plausible. Conjecture 1 was proved independently
by Xia [X] for the spacial five-body problem and by Gerver [G1] for a planar 3N
body problem where N is sufficiently large. The problem still remained open for
N = 4 and for small N in the planar case. However in [G2] (see also [G3]) Gerver
sketched a scenario which may lead to a non-collision singularity in the planar four-
body problem. Gerver has not published the details of his construction due to a
large amount of computations involved (it suffices to mention that even technically
simpler large N case took 68 pages in [G1]). The goal of this paper is to realize
Gerver’s scenario in the simplified setting of two-center-two-body problem. Some
of the estimates obtained here are used in the companion paper [Xu] which proves
Conjecture 1 for the planar four body problem.

Conjecture 2 is mentioned by several authors, see e.g. [Sim, Sa3, K]. It is known
that the set of initial conditions leading to the collisions has zero measure [Sa1] and
that the same is true for non-collisions singularities if N = 4. To obtain the complete
solution of this conjecture one needs to understand better of the structure of the
non-collision singularities and our paper is one step in this direction.

1.2.2. Well-posedness in other systems. Recently the question of global well-posedness
in PDE attracted a lot of attention motivated in part by the Clay Prize problem
about well-posedness of the Navier-Stokes equation. One approach to constructing
a blowup solutions for PDEs is to find a fixed point of a suitable renormalization
scheme and to prove the convergence towards this fixed point (see e.g. [LS]). The
same scheme is also used to analyze two-center-two-body problem and so we hope
that the techniques developed in this paper can be useful in constructing singular
solutions in more complicated systems.

1.2.3. Poincaré’s second species solution. In his book [Po], Poincaré claimed the
existence of the so-called second species solution in three-body problem, which are
periodic orbits converging to collision chains as µ→ 0. The concept of second species
solution was generalized to the non-periodic case. In recent years significant progress
was made in understanding second species solutions in both restricted [BM, FNS]
and full [BN] three-body problem. However the understanding of general second
species solutions generated by infinite aperiodic collision chains is still incomplete.
Our result can be considered as a generalized version of second species solution. All
masses are positive and there are infinitely many close encounters. Therefore the
techniques developed in this paper can be useful in the study of the second species
solutions.

1.3. Extension to the 4-body problem. Consider the same setting as in our
main result but suppose that Q1 and Q2 are also free (not fixed). Then we can
expect that during each encounter light particle transfers a fixed proportion of their
energy and momentum to the heavy particle. The exponential growth of energy
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and momentum would cause Q1 and Q2 to go to infinity in finite time leading to a
non-collision singularity.

Unfortunately a proof of this involves a significant amount of additional compu-
tations due to higher dimensionality of the full four-body problem. A good news
is that similarly to the problem at hand, the Poincaré map of the full four-body
problem will have only two strongly expanding directions whose origin could be un-
derstood by looking at our two-center-two-body problem. The other directions will
be dominated by the most expanding ones. This allows our strategy to extend to the
full four-body problem leading to the complete solution of the Painlevé conjecture.
However, due to the length of the arguments, the details are presented in a separate
paper [Xu].

1.4. Plan of the paper. The paper is organized as follows. Section 2 and 3 consti-
tute the framework of the proof. In Section 2 we give a proof of the main Theorem 1
based on a careful study of the hyperbolicity of the properties of the Poincaré map.
In Section 3, we summarize all later calculations and we prove the hyperbolicity
results of Section 3. All the later sections provide calculations needed in Section 3.
We define the local map to study the local interaction between Q3 and Q4 and
global map to cover the time interval when Q4 is traveling between Q1 and Q2.
Sections 4, 6, 7 and 8 are devoted to the global map, while Sections 9,10, and 12
study local map. Relatively short Sections 5 and 11 contain some technical results
pertaining to both local and global maps. Finally, we have two appendices. In
Appendix A, we include an introduction to the Delaunay coordinates for Kepler
motion, which is used extensively in our calculation. In Appendix B, we summarize
the information about Gerver’s model in [G2].

2. Proof of the main theorem

2.1. Idea of the proof. The proof of the Theorem 1 is based on studying the
hyperbolicity of the Poincaré map. Our system has four degrees of freedom. We pick
the zero energy surface and then consider a Poincaré section. The resulting Poincaré
map is six dimensional. In turns out that for orbits of interest (that is, the orbits
where the captured particle rotates around Q2 and the traveler moves back and
forth between Q1 and Q2) there is an invariant cone family which consists of vectors
close to a certain two dimensional subspace such that all vectors in the cone are
strongly expanding. This expansion comes from the combination of shearing (there
are long stretches when the motion of the light particles is well approximated by
the Kepler motion and so the derivatives are almost upper triangular) and twisting
caused by the close encounters between Q4 and Q3 and between Q4 and Q1. We
restrict our attention to a two dimensional surface whose tangent space belong to
the invariant cone and construct on such a surface a Cantor set of singular orbits
as follows. The two parameters coming from the two dimensionality of the surface
will be used to control the phase of the close encounter between the particles and
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their relative distance. The strong expansion will be used to ensure that the choices
made at the next step will have a little effect on the parameters at the previous steps.
This Cantor set construction based on the instability of near colliding orbits is also
among the key ingredients of the singular orbit constructions in [MM] and [X].

2.2. Main ingredients. In this section we present the main steps in proving The-
orem 1. In Subsection 2.3 we describe a simplified model for constructing singular
solutions given by Gerver [G2]. This model is based on the following simplifying
assumptions:

• µ = 0, χ = ∞ so that Q3(resp. Q4) moves on a standard ellipse (resp.
hyperbola).
• The particles Q3, Q4 do not interact except during a close encounter.
• Velocity exchange during close encounters can be modeled by an elastic

collision.
• The action of Q1 on light particles can be ignored except that during the

close encounters of the traveler particle with Q1 the angular momentum of
the traveler with respect to Q2 can be changed arbitrarily.

The main conclusion of [G2] is that the energy of the captured particle can be
increased by a fixed factor while keeping the shape of its orbit unchanged. Gerver
designs a procedure with two steps of collisions having the following properties:

• The incoming and outgoing asymptotes of the traveler are horizontal.
• The major axis of the captured particle remains vertical.
• After two steps of collisions, the elliptic orbit of the captured particle has

the same eccentricity but smaller semimajor axis compared with the elliptic
orbit before the first collision (see Fig 1 and 2).

For quantitative information, see Appendix B.

Since the shape is unchanged after the two trips described above the procedure can
be repeated. Then the kinetic energies of the particles grow exponentially and so
the time needed for j-th trip is exponentially small. Thus the particles can make
infinitely many trips in finite time leading to a singularity. Our goal therefore is to
get rid of the above mentioned simplifying assumptions.

In Subsection 2.4 we study near collision of the light particles. This assumption that
velocity exchange can be modeled by elastic collision is not very restrictive since
both energy and momentum are conserved during the exchange and any change
of velocities conserving energy and momentum amounts to rotating the relative
velocity by some angle and so it can be effected by an elastic collision. In Subsection
2.5 we state a result saying that away from the close encounters we can disregard
interaction between the light particles and the action of Q1 to the particle which is
captured by Q2 can indeed be disregarded. In Subsection 2.6 we study the Poincaré
map corresponding to one trip of one light particle around Q1. After some technical
preparations we present the main result of that section Lemma 2.7 which says that
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Figure 1. Angular momentum transfer

Figure 2. Energy transfer

after this trip the angular momentum of the traveler particle indeed can change
in an arbitrary way. Finally in Subsection 2.7 we show how to combine the above
ingredients to construct a Cantor set of singular orbits.
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2.3. Gerver map. Following [G2], we discuss in this section the limit case µ =
0, χ = ∞. We assume that Q3 has elliptic motion and Q4 has hyperbolic motion
with respect to the focus Q2. Since µ = 0, Q3 and Q4 do not interact unless they
have exact collision. Since we assume that Q4 just comes from the interaction from
Q1 located at (−∞, 0) and the new traveler particle is going to interact with Q1

in the future, the slope of incoming asymptote θ−4 of Q4 and that of the outgoing
asymptote θ̄+ of the traveler particle should satisfy θ− = 0, θ̄+ = π.

The Kepler motions of Q3 and Q4 has three first integrals Ei, Gi and gi where Ei
denotes the energy, Gi denotes the angular momentum and gi denotes the argument
of periapsis. Since the total energy of the system is zero we have E4 = −E3. It turns

out convenient to use eccentricities ei =
√

1 + 2G2
iEi instead of Gi since the proof of

Theorem 1 involves a renormalization transformation and ei are scaling invariant.
The Gerver map describes the parameters of the elliptic orbit change during the
interaction of Q3 and Q4. The orbits of Q3 and Q4 intersect in two points. We pick
one of them. We use a discrete parameter j ∈ {1, 2} to describe the first or the
second collision in Gerver’s construction.

Since Q3 and Q4 only interact when they are at the same point the only effect of the
interaction is to change their velocities. Any such change which satisfies energy and
momentum conservation can be described by an elastic collision. That is, velocities
before and after the collision are related by

(2.1) v+
3 =

v−3 + v−4
2

+

∣∣∣∣v−3 − v−42

∣∣∣∣n(α), v+
4 =

v−3 + v−4
2

−
∣∣∣∣v−3 − v−42

∣∣∣∣n(α),

where n(α) is a unit vector making angle α with v−3 − v
−
4 .

With this in mind we proceed to define the Gerver map Ge4,j,ω(E3, e3, g3). This map
depends on two discrete parameters j ∈ {1, 2} and ω ∈ {3, 4}. The role of j has
been explained above, and ω will tell us which particle will be the traveler after the
collision.

To define G we assume that Q4 moves along the hyperbolic orbit with parameters
(−E3, e4, g4) where g4 is fixed by requiring that the incoming asymptote of Q4 is
horizontal. We assume that Q3 and Q4 arrive to the j-th intersection point of their
orbit simultaneously. At this point their velocities are changed by (2.1). After
that the particle proceed to move independently. Thus Q3 moves on an orbit with
parameters (Ē3, ē3, ḡ3), and Q4 moves on an orbit with parameters (Ē4, ē4, ḡ4).

If ω = 4, we choose α so that after the exchange Q4 moves on hyperbolic orbit and
θ̄+

4 = π and let

Ge4,j,4(E3, e3, g3) = (Ē3, ē3, ḡ3).

If ω = 3 we choose α so that after the exchange Q3 moves on hyperbolic orbit and
θ̄+

3 = π and let

Ge4,j,3(E3, e3, g3) = (Ē4, ē4, ḡ4).
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In the following, to fix our notation, we always call the captured particle Q3 and the
traveler Q4.

We will denote the ideal orbit parameters in Gerver’s paper [G2] of Q3 and Q4

before the first (respectively second) collision with * (respectively **). Thus, for
example, G∗∗4 will denote the angular momentum of Q4 before the second collision.
Moreover, the actual values after the first (respectively, after the second) collisions
are denoted with a bar or double bar.

Note G has a skew product form

ē3 = fe(e3, g3, e4), ḡ3 = fg(e3, g3, e4), Ē3 = E3fE(e3, g3, e4).

This skew product structure will be crucial in the proof of Theorem 1 since it will
allow us to iterate G so that E3 grows exponentially while e3 and g3 remains almost
unchanged.

The following fact plays a key role in constructing singular solutions.

Lemma 2.1 ([G2]). There exist (e∗3, g
∗
3), such that for sufficiently small δ̄ > 0 given

ω′, ω′′ ∈ {3, 4}, there exist λ0 > 1 and functions e′4(e3, g3), e′′4(e3, g3), defined in a
small (depending on δ̄) neighborhood of (e∗3, g

∗
3), such that

(a) for e∗4, e
∗∗
4 given by e′4(e∗3, g

∗
3) = e∗4 and e′′4(e∗3, g

∗
3) = e∗∗4 , we have

(e3, g3, E3)∗∗ = Ge∗4,1,ω
′ (e3, g3, E3)∗ , (e3,−g3, λ0E3)∗ = Ge∗∗4 ,2,ω′′ (e3, g3, E3)∗∗ ,

(b) If (e3, g3) lie in a δ̄ neighborhood of (e∗3, g
∗
3), we have

(ē3, ḡ3, Ē3) = Ge′4(e3,g3),1,ω′ (e3, g3, E3) , (¯̄e3,−¯̄g3,
¯̄E3) = Ge′′4 (e3,g3),2,ω′′

(
ē3, ḡ3, Ē3

)
,

and

¯̄e3 = e∗3, ¯̄g3 = g∗3,
¯̄E3 = λ(e3, g3)E3, where λ0 − δ̄ < λ < λ0 + δ̄.

Part (a) is the main result of the above lemma. It allows us to increase energy after
two collisions without changing the shape of the orbit in the limit case µ = 0, χ =∞.
Part (b) is of a more technical nature. It allows us to fight the perturbation coming
from the fact that µ > 0 and χ <∞.
Lemma 2.1 is a slight restatement of the main result of [G2]. Namely part (a) is
proven in Sections 3 and 4 of [G2] and part (b) is stated in Section 5 of [G2] (see
equations (5-10)–(5-13)). The proof of part (b) proceeds by a routine numerical
computation. For the reader’s convenience we review the proof of Lemma 2.1 in
Appendix B explaining how the numerics is done.

Remark 2.1. In fact Gerver produces a one parameter family of the periodic solu-

tion. Namely one can take e∗3 to be any number (0,
√

2
2 ) and g∗3 = 0. In the course

of the proof of Theorem 1 we need to check several non-degeneracy conditions. This

will be done numerically for e∗3 =
1

2
.
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Remark 2.2. We try to minimize the use of numerics in our work. The use of
numerics is always preceded by mathematical derivations. Readers can see that the
numerics in this paper can also be done without using computer. We prefer to use
the computer since computers are more reliable than humans when doing routine
computations.

2.4. Asymptotic analysis, local map. We assume that the two centers are at
distance χ � 1 and that Q3, Q4 have positive masses 0 < µ � 1. We also assume
that Q3 and Q4 have initial orbit parameters (E3, `3, e3, g3, e4, g4) ∈ R4 × T2 in the
section {x4(0) = −2, ẋ4(0) > 0} (the choice of this section in justified by Lemma
2.3 below). Here `3 stands for the mean anomaly of Q3, see Appendix A. We let
particles move until one of the particles reach the surface {x4 = −2, ẋ4 < 0} moving
on hyperbolic orbit. We measure the final orbit parameters (Ē3, l̄3, ē3, ḡ3, ē4, ḡ4). We
call the mapping moving initial positions of the particles to their final positions the
local map L. In Fig. 3 of Section 3.2 the local map is to the right of the section
{x = −2}.
Lemma 2.2. Suppose that the initial orbit parameters (E3, `3, e3, g3, e4, g4) are such
that the traveler particle(s) satisfy θ− = O(µ) and θ̄+ = π+O(µ) then the following
asymptotics holds uniformly

(Ē3, ē3, ḡ3) = Ge4(E3, e3, g3) + o(1), as µ→ 0, χ→∞.

The lemma tells us Gerver map is a good approximation of the local map L for the
real case 0 < µ� 1� χ <∞ for the orbits of interest. Lemma 2.2 will be proven
in Section 10 where we also present some additional information about the local
map (see Lemma 10.2).

We also need the following fact. Fix a small number θ̃.

Lemma 2.3. Suppose the initial orbit parameters (E3, `3, e3, g3, e4, g4) for the local

map are such that E3 = −1

2
+ O(µ), and the incoming and outgoing asymptotes of

Q4 satisfy θ− = O(µ) and |θ̄+ − π| ≤ θ̃ � 1. Then for µ sufficiently small and χ
sufficiently large we have |Q3| ≤ 2 − δ where δ > 0 is a constant independent of µ
and χ.

The proof of this lemma is also given in to Section 10.

2.5. Asymptotic analysis, global map. As before we assume that the two cen-
ters are at distance χ� 1. We assume that initially Q3 moves on an elliptic orbit, Q4

moves on hyperbolic orbit and {x4(0) = −2, ẋ4(0) < 0}. We assume that |y4(0)| < C
and after moving around Q1 it hits the surface {x4 = −2, ẋ4 > 0} so that |y4| < C.
We call the mapping moving initial positions of the particles to their final positions
the (pre) global map G. In Section 2.6 we will slightly modify the definition of
the global map but it will not change the essential features discussed here. In Fig
3 from Section 3.2, the global map is to the left of the section {x = −2}. We
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let (E3, `3, e3, g3, e4, g4) denote the initial orbit parameters measured in the section
{x4 = −2, ẋ4 < 0} and (Ē3, l̄3, ē3, ḡ3, ē4, ḡ4) denote the final orbit parameters mea-
sured in the section {x4 = −2, ẋ4 > 0}. Fix a large constant C.

Lemma 2.4. Assume that |y4| < C holds both at initial and final moments. Then
uniformly in χ, µ we have the following estimates

(a) Ē3 − E3 = O(µ), Ḡ3 −G3 = O(µ), ḡ3 − g3 = O(µ).

(b) θ+
4 = π +O(µ), θ̄−4 = O(µ).

The proof of this lemma is given in Section 4.

2.6. Admissible surfaces. Given a sequence ω we need to construct orbits having
singularity with symbolic sequence ω.

We will study the Poincaré map P = G ◦ L to the surface {x4 = −2, ẋ4 > 0}. It is
a composition of the local and global maps defined in the previous sections.

Given δ consider open sets in the phase space defined by

U1(δ) =

{∣∣∣∣E3 −
(
−1

2

)∣∣∣∣ , |e3 − e∗3|, |g3 − g∗3|, |θ−4 | < δ, |e4 − e∗4| <
√
δ

}
,

U2(δ) =
{
|E3 − E∗∗3 |, |e3 − e∗∗3 |, |g3 − g∗∗3 |, |θ−4 | < δ, |e4 − e∗∗4 | <

√
δ
}
.

We will also need the renormalization map R defined as follows. Partition our
section {x4 = −2, ẋ4 > 0} into cubes of size 1/

√
χ and on each cube we rescale the

space and time so that

• in the center of the cube Q3 has elliptic orbit with energy −1

2
.

• the potential of the fixed centers is still 1/|Qi −Qj |, i = 1, 2, j = 3, 4.

In addition we reflect the coordinates with respect to x axis. We define λ = |E3| > 1
as the dilation rate where E3 is the energy of Q3 at the center of each cube. We
push forward each cube to the section {x4 = −2/λ, ẋ4 > 0}. We include the piece
of orbits from the section {x4 = −2, ẋ4 > 0} to {x4 = −2/λ, ẋ4 > 0} to the global
map and apply the R to the section {x4 = −2/λ, ẋ4 > 0}. So the locally constant
map R amounts to zooming in the configuration by multiplying by λ and slowing
down the velocity by dividing

√
λ. This is then followed by a reflection. We have

R({x4 = −2/λ, ẋ4 > 0}) = {x4 = −2, ẋ4 > 0}, and

R(E3, `3, e3, g3, e4, g4) = (E3/λ, `3, e3,−g3, e4,−g4).

Note that the rescaling changes (for the orbits of interest, increases) the distance
between the fixed centers by sending χ to λχ. Observe that at each step we have the
freedom of choosing the centers of the cubes. We describe how this choice is made
in the next section. In the following we give a proof of the main theorem based on
the three lemmas, whose proofs are in the next section.
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Lemma 2.5. There are cone families K1 on TU1(R4×T2) and K2 on TU2(R4×T2),
each of which contains a two dimensional plane and a constant c such that for all
x ∈ U1(δ) satisfying P(x) ∈ U2(δ), and for all x ∈ U2(δ) satisfying R◦P(x) ∈ U1(δ),

(a) dP(K1) ⊂ K2, d(R ◦ P)(K2) ⊂ K1.
(b) If v ∈ K1, then ‖dP(v)‖ ≥ cχ‖v‖.

If v ∈ K2, then ‖d(R ◦ P)(v)‖ ≥ cχ‖v‖.

We call a C1 surface S1 ⊂ U1(δ) (respectively S2 ⊂ U2(δ)) admissible if TS1 ⊂ K1

(respectively TS2 ⊂ K2).

Lemma 2.6. (a) The vector w̃ =
∂

∂`3
is in Ki.

(b) Any plane Π in Ki the map projection map πe4,`3 = (de4, d`3) : Π → R2 is
one-to-one. In other words (e4, `3) can be used as coordinates on admissible
surfaces.

We call an admissible surface essential if πe4,`3 is an I × T1 for some interval I. In
other words given e4 ∈ I we can prescribe `3 arbitrarily.

Lemma 2.7. (a) Given an essential admissible surface S1 ∈ U1(δ) and ẽ4 ∈
I(S1) there exists ˜̀

3 such that P((ẽ4, ˜̀
3)) ∈ U2(Kδ). Moreover if dist(ẽ4, ∂I) >

1/χ then there is a neighborhood V (ẽ4) of (ẽ4, ˜̀
3) such that πe4,`3 ◦ P maps

V surjectively to
{|e4 − e∗4| < Kδ} × T1.

(b) Given an essential admissible surface S2 ⊂ U2(δ) and ẽ4 ∈ I(S2) there exists
˜̀
3 such that R ◦ P((ẽ4, ˜̀

3)) ∈ U1(Kδ). Moreover if dist(ẽ4, ∂I) > 1/χ then

there is a neighborhood V (ẽ4) of (ẽ4, ˜̀
3) such that πe4,`3 ◦ R ◦ P maps V

surjectively to
{|e4 − e∗∗4 | < Kδ} × T1.

(c) For points in V (ẽ4) from parts (a) and (b), the particles avoid collisions
before the next return and the minimal distance between the particles satisfies

µδ ≤ d ≤ µ

δ
.

Note that by Lemma 2.5 the diameter of V (ẽ4) is O(δ/χ).

2.7. Construction of the singular orbit. Fix a number ε which is small but is
much larger than both µ and 1/χ. Let S0 be an admissible surface such that the
diameter of S0 is much larger than 1/χ and such that on S0 we have

|e3 − ê3| < ε, |g3 − ĝ3| < ε.

where (ê3, ĝ3) is close to (e∗3, g
∗
3). For example, we can pick a point x ∈ U1(δ) and

let ŵ be a vector in K1(x) such that
∂

∂`3
(ŵ) = 0. Then let

S0 = {(E3, `3, e3, g3, e4, g4)(x) + aŵ + (0, b, 0, 0, 0, 0)}a≤ε/K̄
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where K̄ is a large constant.

We wish to construct a singular orbit in S0. We define Sj inductively so that Sj is
component of P(Sj−1) ∩ U2(δ) if j is odd and Sj is component of (R ◦ P)(Sj−1) ∩
U1(δ) if j is even (we shall show below that such components exist). Let x =
limj→∞(RP2)−jS2j . We claim that x has singular orbit. Indeed by Lemma 2.1 the

unscaled energy of Q4 satisfies E(j) ≥ (λ0−δ̃)j/2 where δ̃ → 0 as δ → 0. Accordingly

the velocity of Q4 during the trip j is bounded from below by c
√
E(j) ≥ c(λ0−δ̃)j/4.

Therefore tj+1 − tj = O((λ0 − δ̃)−j/4) and so t∗ = limj→∞ tj <∞ as needed.

It remains to show that we can find a component of P(S2j) inside U2(δ) and a
component of (R ◦ P(S2j+1)) inside U1(δ). Note that Lemma 2.7 allows to choose
such components inside larger sets U2(Kδ) and U1(Kδ).

First note that by Lemma 2.4 on P(S2j)
⋂
U1(Kδ) and on (R ◦ P2)(S2j)

⋂
U2(Kδ)

we have θ−4 = O(µ). Also by Lemma 2.7 e4 can be prescribed arbitrarily. In other
words we have a good control on the orbit of Q4.

In order to control the orbit of Q3 note that by Lemma 2.5(b) the preimage of
S2j has size O(1/χ) and so by Lemmas 2.2, 2.4 and 2.6 given ε we have that e3

and g3 have oscillation less than ε on S2j if µ is small enough. Namely part (b) of
Lemma 2.6 shows that e3 and g3 have oscillation O(1/χ) on the preimage of S2j

while Lemmas 2.2 and 2.4 show that the oscillations do not increase much after
application of local and global map. Thus there exist (ê3, ĝ3) such that on S2j we
have

|e3 − ê3| < ε, |g3 − ĝ3| < ε.

Also due to rescaling defined in Section 2.6 and Lemma 2.4, we have∣∣∣∣E3 −
(
−1

2

)∣∣∣∣ = O

(
1
√
χ

+ µ

)
.

Set

(2.2) S̃2j+1 = PV (e′(ê3, ĝ3)), S̃2j+2 = (R ◦ P)V (e′′(ê3, ĝ3)).

Then on S̃2j+1 we shall have

|e3 − e∗∗3 | < Kε, |g3 − g∗∗3 | < Kε and |E3 − E∗∗3 | < Kε

while on S̃2j+2 we shall have

|e3 − e∗3| < K2ε, |g3 − g∗3| < K2ε and

∣∣∣∣E3 +
1

2

∣∣∣∣ < K(1/
√
χ+ µ).

Denote

S2j+1 = S̃2j+1 ∩ {|e4− e′′(e∗3, g∗3)| <
√
δ}, S2j+2 = S̃2j+2 ∩ {|e4− e′(e∗3, g∗3)| <

√
δ}.

Taking ε so small that K2ε < δ we get that S2j+1 ∈ U2(δ), S2j+2 ∈ U1(δ) as needed.
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Finally we use the freedom to choose the appropriate partition in the definition of R
to ensure that R is continuous on the preimage of V (e′(ê3, ĝ3)) so that V (e′(ê3, ĝ3))
is a smooth surface.

Remark 2.3. In fact we do not need to use exactly e′(ê3, ĝ3) and e′′(ê3, ĝ3) in (2.2).

Namely any V (e†4) and V (e‡4) would do provided that∣∣∣e†4 − e′4(ê3, ĝ3)
∣∣∣ < ε,

∣∣∣e‡4 − e′′4(ê3, ĝ3)
∣∣∣ < ε.

Different choices of e†4 and e‡4 allow us obtain different orbits. Since such freedom
exists at each step of our construction we have a Cantor set of singular orbits with
a given symbolic sequence ω.

3. Hyperbolicity of the Poincaré map

3.1. Construction of invariant cones. Here we derive Lemma 2.5, 2.6 and 2.7
from the asymptotics of the derivative of local and global maps.

Lemma 3.1. There exist continuous functions uj(x), lj(x) and Bj(x) such that if

x ∈ Uj(δ), j = 1, 2 is such that L(x) satisfies θ−4 = O(µ), |θ̄+
4 − π| ≤ θ̃ � 1 where θ̃

is independent of µ, χ, then we have

dL(x) =
1

µ
uj(x)⊗ lj(x) +Bj(x) + o(1).

Moreover there exist a linear functional l̂j and a vector ûj such that

lj = l̂j + o(1), uj = ûj + o(1), Bj = B̂j + o(1), as δ, µ, 1/χ→ 0.

This lemma is proven in Section 12.

Lemma 3.2. Let x and y = G(x) ∈ U3−j(δ), be such that |y(x)| ≤ C, |y(y)| ≤
C Then there exist linear functionals l̄j(x) and ¯̄lj(x) and vectorfields ūj(y) and
¯̄uj(y), j = 1, 2, such that

dG(x) = χ2ūj(y)⊗ l̄j(x) + χ¯̄uj(y)⊗ ¯̄lj(x) +O(µ2χ).

Moreover there exist vector wj and linear functionals ˆ̄lj ,
ˆ̄̄
lj such that if δ, µ, 1

χ → 0

then

l̄j(x)→ ˆ̄lj ,
¯̄lj(x)→ ˆ̄̄

lj .

and
span(ūj(y), ¯̄uj(y))→ span(wj , w̃).

where w̃ =
∂

∂`3
.

This lemma is proven in Section 3.2.

Lemma 3.3. The following non degeneracy conditions are satisfied.
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(a1) span(û1, B(̂l1(w̃)dRw2 − l̂1(dRw2)w̃)) is transversal to Ker(̂̄l1) ∩Ker(
ˆ̄̄
l1).

(a2) de4(span(dRw2, dRw̃)) 6= 0.

(b1) span(û2, B(̂l2(w̃)w1 − l̂2(w1)w̃)) is transversal to Ker(̂̄l2) ∩Ker(
ˆ̄̄
l2).

(b2) de4(w1) 6= 0.

This lemma is proven in Section 3.3.

Definition 3.1. We now take K1 to be the set of vectors which make an angle less
than a small constant η with span(dRw2, w̃2), and K2 to be the set of vectors which
make an angle less than a small constant η with span(w1, w̃1).

Proof of Lemma 2.5. Consider for example the case where x ∈ U2(δ). We claim that

if δ, µ are small enough then dL(span(w1, w̃)) is transversal to Ker̄l2∩Ker̄̄l2. Indeed
take Γ such that l(Γ) = 0. If Γ = aw1 + ãw̃ then al2(w1) + ãl2(w̃) = 0. It follows

that the direction of Γ is close to the direction of Γ̂ = l̂2(w̃)w1− l̂2(w1)w̃. Next take

Γ̃ = bw + b̃w̃ where bl2(w1) + b̃l2(w̃) 6= 0. Then the direction of dLΓ̃ is close to û2

and the direction of dL(Γ) is close to B(Γ̂) so our claim follows.

Thus for any plane Π close to span(w1, w̃) we have that dL(Π) is transversal to

Ker̄l2 ∩ Ker̄̄l2. Take any Y ∈ K2. Then either Y and w1 are linearly independent
or Y and w̃ are linearly independent. Hence dL(span(Y,w1)) or dL(span(Y, w̃)) is

transversal to Ker̄l2 ∩Ker̄̄l2. Accordingly either l̄2(dL(Y )) 6= 0 or ¯̄l2(dL(Y )) 6= 0. If
l̄2(dL(Y )) 6= 0 then the direction of d(G ◦L)(Y ) is close to ū. If l̄2(dL(Y )) = 0 then
the direction of d(G ◦ L)(Y ) is close to ¯̄u. In either case d(RG ◦ L)(Y ) ∈ K1 and
‖d(G ◦ L)(Y )‖ ≥ cχ‖Y ‖. This completes the proof in the case x ∈ U2(δ). The case
where x ∈ U1(δ) is similar. �

Proof of Lemma 2.6. Part (a) follows from the definition of Ki. Also by part (b)
of Lemma 3.3 the map π : span(w, w̃) → R2 given by π(Γ) = (d`3(Γ), de4(Γ)) is
invertible. Namely if Γ = aw + ãw̃ then

a =
de4(Γ)

de4(w)
, ã = d`3(Γ)− ad`3(w).

Accordingly π is invertible on planes close to span(w, w̃) proving our claim. �

To prove Lemma 2.7 we need two auxiliary results.

Sublemma 3.4. Given ẽ4 there exists ˜̀
3 such that P(ẽ4, ˜̀

3) ∈ U2(δ).

The proof of this sublemma is postponed to Section 11.2.

Sublemma 3.5. Let F be a map on R2 which fixes the origin and such that if
|F(z)| < R then ‖dF(X)‖ ≥ χ̄‖X‖. Then for each a such that |a| < R there exists
z such that |z| < R/χ̄ and F(z) = a.
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Proof. Without the loss of generality we may assume that a = (r, 0). Let V (z)
be the direction field defined by the condition that the direction of dF(V (z)) is
parallel to (1, 0). Let γ(t) be the integral curve of V passing through the origin and
parameterized by the arclength. Then F(γ(t)) has form (σ(t), 0) where σ(0) = 0
and |σ̇(t)| ≥ χ̄ as long as |σ| < R. Now the statement follows easily. �

Proof of Lemma 2.7. (a) We claim that it suffices to show that for each (ē4, ¯̀
3)

such that |ē4 − e∗∗4 | <
√
δ there exist (ê4, ˆ̀

3) such that

(3.1) P(ê4, ˆ̀
3) = (ē4, ¯̀

3).

Indeed in that case Sublemma 4.9 from Section 4.3 says that the outgoing asymp-
tote is almost horizontal. Therefore by Lemma 2.2 our orbit has (E3, e3, g3) close

to Gẽ4,2,4(E3(ê4, ˆ̀
3), e3(ê4, ˆ̀

3), g3(ê4, ˆ̀
3)). Next Lemma 2.4 shows that after the ap-

plication of G, (E3, e3, g3) change little and θ−4 becomes O(µ) so that P(ê4, ˆ̀
3) ∈

U2(Kδ).

We will now prove (3.1). Our coordinates allow us to treat P as a map R×T→ R×T.
Due to Lemma 2.5 we can apply Sublemma 3.5 to the covering map P̃ : R2 → R2

with χ̄ = cχ obtaining (3.1). Part (b) of the lemma is similarly proven.

Part (c) follows from Lemma 10.2 proven in Section 10. �

3.2. Expanding directions of the global map. Estimating the derivative of the
global map is the longest part of the paper. It occupies Sections 5–8.

It will be convenient to use the Delaunay coordinates (L3, `3, G3, g3) for Q3 and
(G4, g4) for Q4. Delaunay coordinates are action-angle coordinates for the Kepler
problem. We collect some facts about the Delaunay coordinates in Appendix A.

We divide the plane into several pieces by lines x4 = −2 and x4 = −χ
2

. Those lines

cut the orbit of Q4 into 4 pieces:

• {x4 = −2, ẋ4 < 0} →
{
x4 = −χ

2
, ẋ4 < 0

}
. We call this piece (I).

•
{
x4 = −χ

2
, ẋ4 < 0

}
→
{
x4 = −χ

2
, ẋ4 > 0

}
turning around Q1. We call it

(III).

•
{
x4 = −χ

2
, ẋ4 > 0

}
→ {x4 = −2, ẋ4 > 0}. We call it (V )

• {x4 = −2, ẋ4 > 0} → {x4 = −2, ẋ4 < 0} turning around Q2.

We composition of the first three pieces constitutes the global map. The last piece
defines the local map. See Fig 3. Notice that when we define R in Section 2.6,
after the second collision in Gerver’s construction, the global map sends {x4 =
−2, ẋ4 < 0} to {x4 = −2/λ, ẋ4 > 0}. Then R sends {x4 = −2/λ, ẋ4 > 0} to
{x4 = −2, ẋ4 > 0} before applying local map. So without leading to confusion,
when we are talking about sections after the second collision, we always talk about
R ◦G so that the section {x4 = −2, ẋ4 < 0} is sent to {x4 = −2, ẋ4 > 0}.
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Figure 3. Poincaré sections

The line x4 = −χ
2

is convenient because if Q4 is moving to the right of the line

x4 = −χ
2

, its motion can be treated as a hyperbolic motion focused at Q2 with

perturbation caused by Q1 and Q3. If Q4 is moving to the left of this line, its
motion can be treated as a hyperbolic motion focused at Q1 perturbed by Q2 and
Q3.

Since we use different guiding centers to the left and right of the line of x4 = −χ
2

we

will need to change variables when Q4 hits this line. This will give rise to two more
matrices for the derivative of the global map: (II) will correspond to the change of
coordinates from right to left and (IV ) will correspond for the change of coordinates
from left to right. Thus dG = (V )(IV )(III)(II)(I). In turn, each of the matrices
(II) and (IV ) will be products of three matrices corresponding to changing one
variable at a time. Thus we will have (II) = [(iii)(ii)](i) and (IV ) = (iii′)[(ii′)(i′)].

The asymptotics of the above mentioned matrices is presented in the two proposi-
tions below.

To refer to a certain subblock of a matrix (]), we use the following convention:

(]) =

[
(])33 (])34

(])43 (])44

]
.

Thus (])33 is a 4 × 4 matrix and (])44 is a 2 × 2 matrix. To refer to the (i, j) − th
entry of a matrix (]) (in the Delaunay coordinates mentioned above) we use (])(i, j).
For example, (I)(1, 3) means the derivative of L3 with respect to G3 when the orbit

moves between sections {x4 = −2} and
{
x4 = −χ

2

}
.

Proposition 3.6. Under the assumptions of Lemma 3.2 the matrices introduced
above satisfy the following estimates.

(I) =


1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)
O(χ) O(µχ) O(µχ) O(µχ) O(µχ) O(µχ)
O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)
O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)
O(1) O(µ) O(µ) O(µ) O(1) O(1)
O(1) O(µ) O(µ) O(µ) O(1) O(1)

 ,
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(i) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

− G̃4R/kRL̃3

k2RL̃
2
3+G̃

2
4R

+O( 1
χ ) O( 1

χ2 ) O( 1
χ2 ) O( 1

χ2 ) 1
k2RL̃

2
3+G̃

2
4R

+O( 1
χ ) − 1

kRL̃3
+O( 1

χ )


,

[(iii)(ii)] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) 1 −χ
O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) − 1

L̃3
+O(1/χ) χ

L̃3
+O(1)

 ,

(III) =


1 +O(1/χ) O(1/χ) O(1/χ) O(1/χ) O(µ/χ) O(µ/χ)

O(χ) O(1) O(1) O(1) O(1) O(1)
O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ) O(µ/χ) O(µ/χ)
O(1/χ) O(1/χ) O(1/χ) 1 +O(1/χ) O(µ/χ) O(µ/χ)
O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(1)
O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(1)

 ,

[(ii′)(i′)] =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

O(1) O(1/χ2) O(1/χ2) O(1/χ2) χ

L̂2
3

+O(1) − χ

L̂3
+O(1)

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) 1
L̂2
3

+O(1/χ) − 1
L̂3

+O(1/χ)


,

(iii′) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Ĝ4R/(kR)

(k2RL̂
2
3+G

2
4R)

+O( 1
χ ) O( 1

χ2 ) O( 1
χ2 ) O( 1

χ2 ) − kRL̂3

k2RL̂
2
3+Ĝ

2
4R

+O( 1
χ ) kRL̂3 +O( 1

χ )


,

(V ) =


O(µ2χ) O(µ) O(µ) O(µ) O(µ) O(µ)
O(χ) 1 +O(µ) O(µ) O(µ) O(1) O(1)
O(µ2χ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)
O(µ2χ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)
O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)
O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)

 .
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where kR = 1 + µ, L̃3, G̃4 are the initial values of G of L3, G4 and L̂3, Ĝ4 are the
initial values of G of L3, G4. Moreover, the matrix of the renormalization map R
has the form diag{

√
λ, 1,−

√
λ,−1,−

√
λ,−1}, where the constant λ is the dilation

rate defined in Section 2.6 and the “−” appears due to the reflection.

Proposition 3.7. The O(1) blocks in Proposition 3.6 can be written as a continuous
function of x and y plus an error which vanishes in the limit µ → 0, χ → ∞.
Moreover the O(1) blocks have the following limits for orbits of interest.

(I)44 =


1 +

L̃2
4

2(L̃2
4 + G̃2

4)
− L̃4

2

L̃3
4

2(L̃2
4 + G̃2

4)2
1− L̃2

4

2(L̃2
4 + G̃2

4)

 , (III)44 =

 1

2
−L4

2
3

2L4

1

2



(V )44 =


1− 1/2L̂2

4

L̂2
4 + Ĝ2

4

−1/2L̂4

1/2L̂3
4

(L̂2
4 + Ĝ2

4)2
1 +

1/2L̂2
4

L̂2
4 + Ĝ2

4

 .
In addition for map (I) we have

((I)(5, 1), (I)(6, 1))T =

(
− G̃4L̃4

2(L̃2
4 + G̃2

4)
,− G̃4L̃

2
4

2(L̃2
4 + G̃2

4)2

)T
.

where tilde, hat have the same meaning as the previous Proposition.

Here and below the phrase after the first collision means that the initial orbit has

parameters (
1

2
, e∗∗3 , g

∗∗
3 )+o(1) for Q3, G4 satisfies G4+G∗∗3 = G∗3+G∗4+o(1) and that

at the final moment the angular momentum of Q4 is close to G∗∗4 . The phrase after

the second collision means that the initial orbit has parameters (
1

2
, e∗3, g

∗
3) + o(1)

for Q3, G4 satisfies G4 + G∗3 = G∗∗3 + G∗∗4 + o(1) and that at the final moment the
angular momentum of Q4 is close to G∗4.

The estimates of (I), (III), (V ) from Proposition 3.6 are proven in Sections 4–7.
The estimates of (II), (IV ) are given in Section 8. Proposition 3.7 is proven in
Section 6.2. Now we prove Lemma 3.2 based on the Proposition 3.7.

Proof of Lemma 3.2. dG is a product of several matrices. We will divide the product
into three groups. The following estimates are obtained from Proposition 3.6 by
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direct computation.

(i)(I) =


1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)
O(χ) O(µχ) O(µχ) O(µχ) O(µχ) O(µχ)
O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)
O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)
O(1) O(µ) O(µ) O(µ) O(1) O(1)
O(1) O(µ) O(µ) O(µ) O(1) O(1)

 ,

M = [(ii′)(i′)](III)[(iii)(ii)]

=


1 +O(1/χ) O(1/χ) O(1/χ) O(1/χ) O(1/χ2) O(1/χ)

O(χ) O(1) O(1) O(1) O(1) O(χ)
O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ) O(1/χ2) O(1/χ)
O(1/χ) O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ2) O(1/χ)
O(1) O(µ) O(µ) O(µ) O(χ) O(χ2)
O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(χ)


,

(V )(iii′) =


O(µ2χ) O(µ) O(µ) O(µ) O(µ) O(µ)
O(χ) 1 +O(µ) O(µ) O(µ) O(1) O(1)
O(µ2χ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)
O(µ2χ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)
O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)
O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)

 .

We decompose (i)(I) and (V )(iii′) as

(3.2)

(i)(I) =


1 +O(µ) O(µ) O(µ) O(µ) 0 0
O(χ) O(µχ) O(µχ) O(µχ) 0 0
O(µ) O(µ) 1 +O(µ) O(µ) 0 0
O(µ) O(µ) O(µ) 1 +O(µ) 0 0

0 0 0 0 1 0
0 0 0 0 0 1

×


1 0 0 0 O(µ) O(µ)
0 1 0 0 O(µ) O(µ)
0 0 1 0 O(µ) O(µ)
0 0 0 1 O(µ) O(µ)

O(1) O(µ) O(µ) O(µ) O(1) O(1)
O(1) O(µ) O(µ) O(µ) O(1) O(1)

 := [b][a]
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(V )(iii′) =


1 0 0 0 O(µ) O(µ)
0 1 0 0 O(1) O(1)
0 0 1 0 O(µ) O(µ)
0 0 0 1 O(µ) O(µ)

O(1) O(µ2) O(µ) O(µ) O(1) O(1)
O(1) O(µ2) O(µ) O(µ) O(1) O(1)

×

O(µ2χ) O(µ) O(µ) O(µ) 0 0
O(χ) 1 +O(µ) O(µ) O(µ) 0 0
O(µ2χ) O(µ) 1 +O(µ) O(µ) 0 0
O(µ2χ) O(µ) O(µ) 1 +O(µ) 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 := [d][c]

Note that [d] and [a] are bounded so they do not change the order of magnitude of
the derivative growth. On the other hand, denoting D = [c]M [b] we obtain

D =


O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)
O(χ) O(µχ) O(µχ) O(µχ) O(1) O(χ)
O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)
O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)
O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(χ) O(χ2)
O(µ) O(µ2) O(µ2) O(µ2) O(1) O(χ)

 .

Note that D44 = M44. In particular

D(5, 6)

χ2
=

(
kR
L2

3

,
kR
L3

)
(III)44

 1
1

L3

+ o(1).

It follows that if χ is large and µ is small then
D(5, 6)

χ2
is uniformly bounded from

above and below. Hence D can be represented as

D = χ2ū′ ⊗ l̄′ + χ¯̄u′ ⊗ ¯̄l
′
+O(µ2χ),

where

ū′ = (O(µ/χ), O(1/χ), O(µ/χ), O(µ/χ), 1, O(1/χ))T , l̄′ =

(
0, 0, 0, 0,

D(5, 5)

D(5, 6)
, 1

)
,

¯̄u′ = (O(µ), 1, O(µ), O(µ), O(µ), 0)T , ¯̄l
′
= (1, O(µ), O(µ), O(µ), 0, 0)

and we have used the fact that
D(5, 5)

D(5, 6)
= O

(
1

χ

)
. In the limit µ→ 0, χ→∞, we

have

ū′ = (0, 0, 0, 0, 1, 0)T , l̄′ = (0, 0, 0, 0, 0, 1),

¯̄u′ = (0, 1, 0, 0, 0, 0)T , ¯̄l
′
= (1, 0, 0, 0, 0, 0).
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This allows us to compute the limiting values of l̄ and ¯̄l. Since dG is obtained from
D by multiplying from the right and the left by bounded matrices we get

dG = χ2ū⊗ l̄ + χ¯̄u⊗ ¯̄l +O(µ2χ),

where

ū = [d]ū′, ¯̄u = [d]¯̄u′, l̄ = l̄′[a], ¯̄l = ¯̄l
′
[a].

Similarly Proposition 3.7 shows that as χ → ∞, µ → 0 ¯̄u → (0, 1, 0, 0, 0, 0)T and
it allows us to compute the limiting components of ū except that we do not have
the exact expression for d`3(ū). However we do not need to know this component
because we only interested in the span of ū and ¯̄u and d`3(ū) can be suppressed by

subtracting a suitable multiple of ¯̄u. It turns out that ¯̄l has the same asymptotics

as ¯̄l
′
, and w̃ the same as ¯̄u′. The functional l̄ is the limit of the sixth row of [a],

which is also the sixth row of (i)(I). The vector ū is the fifth column of [d], which
is also the fifth column of (V )(iii′). Thus the asymptotic parameters of dG can be
summarized as follows:

ˆ̄l =

(
− G̃4/L̃4

L̃2
4 + G̃2

4

, 0, 0, 0,
1

L̃2
4 + G̃2

4

,− 1

L̃4

)
,

ˆ̄̄
l = (1, 0, 0, 0, 0, 0),

w =

(
0, 0, 0, 0, 1,− L̂4

L̂2
4 + Ĝ2

4

)T
, w̃ = (0, 1, 0, 0, 0, 0)T .

(3.3)

�

3.3. Checking transversality. We study the local map numerically. The O(1/µ)
part of dL in Lemma 3.1 is

Lemma 3.8. The vectors l,u in the O(1/µ) part of the matrix dL satisfy the fol-
lowing:

(a) As µ→ 0, we have

l̂j · w̃ 6= 0, l̂j · w3−j 6= 0, ˆ̄lj · ûj 6= 0,

j = 1, 2 meaning the first or the second collision.
(b) If Q3 and Q4 switch roles after the collisions, the vectors û1 and û2 get a

“−” sign.

The computation is done using the choice of E∗3 = −1

2
and e∗3 =

1

2
, at Gerver’s

collision points.

To check the nondegeneracy condition, it is enough to know the following.
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Lemma 3.9. Let x ∈ Uj(δ) where δ is small enough. If we take the directional
derivative at x of the local map along a direction Γ ∈ span{ū3−j , ¯̄u3−j}, such that

l̄j · (dLΓ) = 0, j = 1, 2

then

lim
µ→0,χ→∞

∂E+
3

∂Γ
6= 0,

where E+
3 is the energy of Q3 after the close encounter with Q4. These derivatives

are computed in Gerver’s case starting with E∗3 = −1/2, e∗3 = 1/2 and evaluated at
Gerver’s collision points. See the Appendix B.2 for concrete values.

The proofs of the two lemmas are postponed to Section 12.

Now we can check the nondegeneracy condition.

Proof of Lemma 3.3. We prove (b1) and (b2). The proofs of (a1) and (a2) are
similar and are left to the reader.

To check (b2), de4 we differentiate e4 =
√

1 + (G4/L4)2 to get

de4 =
1

e4

(
G4

L2
4

dG4 −
G2

4

L3
4

dL4

)
.

Thus (3.3) gives de4w =
G4

L2
4

6= 0 as claimed.

Next we check (b1) which is equivalent to the following condition

(3.4) det

(
ˆ̄l2(û2) ˆ̄l2(B̂2Γ′))
ˆ̄̄
l2(û2)

ˆ̄̄
l2(B̂2Γ′)

)
6= 0.

where Γ′ = l̂2(w̃)w1 − l̂2(w1)w̃. The vector Γ′ 6= 0 due to part (a) of Lemma 3.8.

Let Γ be a vector satisfying ˆ̄l2 · (dLΓ) = 0 chosen as follows. dLΓ is a vector in

span{ûi, B̂iΓ′i}, so it can be represented as dLΓi = bû2 + b′B̂2Γ′. Thus we can take

b = −ˆ̄l2 · B̂2Γ′ and b′ = ˆ̄l2 · û2 to ensure that dLΓi ∈ Kerˆ̄l2. Note that we have
b′ 6= 0 by part (a) of Lemma 3.8. Hence

det

(
ˆ̄l2(û2) ˆ̄l2(B̂2Γ′)
ˆ̄̄
l2(u2)

ˆ̄̄
l2(B̂2Γ′)

)
=

1

b′
det

(
ˆ̄l2(û2) ˆ̄l2(dLΓ)
ˆ̄̄
l2(û2)

ˆ̄̄
l2(dLΓ)

)
=

ˆ̄̄
l2(dLΓ)

where the last equality holds since ˆ̄l2(dLΓ) = 0. By Lemma 3.8
ˆ̄̄
li = (1, 0, 0, 0, 0, 0).

Therefore
ˆ̄̄
l2(dLΓ) =

∂E+
3

∂Γ
and so (b2) follows from Lemma 3.9. �

Remark 3.1. Let us describe the physical and geometrical meanings of the vectors

l̄, ¯̄l, ū, ¯̄u, l,u and the results in this section.
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(1) The structure of dL shows that a significant change of the behavior of the
outgoing orbit parameters occurs when we vary the orbit parameters in the
direction of l, which is actually varying the closest distance (called impact
parameter) between Q3 and Q4 (see Section 12, especially Corollary 12.1).
The vector w in dG means that after the global map, the variable G4 gets
significant change as asserted by Lemma 2.7. So l̂i ·w3−i 6= 0 in Lemma 3.8
means that by changing G4 after the global map, we can change the impact
parameter and hence change the outgoing orbit parameters after the local
map significantly. Similarly we see l̂i · w̃ 6= 0 means the same outcome by
varying `3 instead of G4.

(2) The result ˆ̄li · ûi 6= 0 in Lemma 3.8 means that by changing the outgoing
orbit parameter of the local map in û direction, which is in turn changed sig-
nificantly by changing the impact parameter in the local map, we can change
the final orbit parameter of the global map in the ū direction significantly.

The vector ˆ̄l has clear physical meaning. If we differentiate the outgoing

asymptote θ+
4 = g+

4 − arctan
G+

4

L+
4

, where + means after close encounter of

Q3 and Q4, we get dθ+
4 = L+

4
ˆ̄l.

(3) Lemma 3.9 means that if we vary the incoming orbit parameter of the local
map in the direction Γ such that there is no significant change of the outgo-
ing parameters of the local map in certain direction, then the energy (and,
hence, semimajor axis) of the ellipse after Q3, Q4 interaction will change ac-
cordingly. One may think this as varying the incoming orbit parameter while
holding the outgoing asymptotes unchanged. The change of energy means the
change of periods of the ellipses according to Kepler’s law. Ellipses with dif-
ferent periods will accumulate huge phase difference during one return time
O(χ) of Q4. This is the mechanism that we use to fine tune the phase of
Q3 such that Q3 comes to the correct phase to interact with Q4. Since the
phase is defined up to 2π, we get a Cantor set as initial condition of singular
orbits.

4. C0 estimates for global map

4.1. Equations of motion in Delaunay coordinates. We use Delaunay vari-
ables to describe the motion of Q3 and Q4 (for reader’s convenience we collect the
basic properties of Delaunay variables in Appendix A). We have eight variables
(L3, `3, G3, g3) and (L4, `4, G4, g4). We eliminate L4 using the energy conservation
and `4 will play the role of independent variable.

After setting v3,4 = P3,4/µ and dividing (1.1) by µ the Hamiltonian takes the form

(4.1) H =
v2

3

2
+
v2

4

2
− 1

|Q3|
− 1

|Q4|
− 1

|Q3 − (−χ, 0)|
− 1

|Q4 − (−χ, 0)|
− µ

|Q3 −Q4|
.
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When Q4 is moving to the left of the section {x4 = −χ/2}, we consider the motion
of Q3 as elliptic motion with focus at Q2, and Q4 as hyperbolic motion with focus
at Q1, perturbed by other interactions. We can write the Hamiltonian in terms of
Delaunay variables as

HL = − 1

2L2
3

+
1

2L2
4

− 1

|Q4|
− 1

|Q3 − (−χ, 0)|
− µ

|Q3 −Q4|
.

When Q4 is moving to the right of the section {x4 = −χ/2}, we consider the mo-
tion of Q3 as an elliptic motion with focus at Q2, and that of Q4 as a hyperbolic
motion with focus at Q2 attracted by the pair Q2, Q3 which has mass 1 + µ plus a
perturbation. For |Q4| ≥ 2 we have the following Taylor expansion

µ

|Q3 −Q4|
=

µ

|Q4|
+
µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
.

Hence the Hamiltonian takes form

H =
v2

3

2
+
v2

4

2
− 1

|Q3|
−1 + µ

|Q4|
− 1

|Q3 − (−χ, 0)|
− 1

|Q4 − (−χ, 0)|
−µQ3 ·Q4

|Q4|3
+O

(
µ

|Q4|3

)
.

In terms of the Delaunay variables we have
(4.2)

HR = − 1

2L2
3

+
(1 + µ)2

2L2
4

− 1

|Q3 + (χ, 0)|
− 1

|Q4 + (χ, 0)|
− µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
.

We shall use the following notation. The coefficients of
1

2L2
4

in the Hamiltonian will

be called kL = 1 and kR = 1 + µ. The terms in the Hamiltonian containing Q4 will
be denoted by

(4.3) VR = − 1

|Q4 + (χ, 0)|
−µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
, and VL = − 1

|Q4|
− µ

|Q3 −Q4|
.

Here subscripts L and R mean that the corresponding expressions are used when Q4

is to the left (respectively to the right) of the line Q = −χ
2
. Likewise for the terms

containing Q3 we define
(4.4)

UR = − 1

|Q3 + (χ, 0)|
− µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
, UL = − 1

|Q3 − (−χ, 0)|
− µ

|Q3 −Q4|
.



SINGULARITIES IN THE PLANAR TWO-CENTER-TWO-BODY PROBLEM 27

The use of subscripts R,L here is the same as above. Let us write down the full
Hamiltonian equations with the subscripts R and L suppressed.

(4.5)



L̇3 = −∂Q3

∂`3
· ∂U
∂Q3

, ˙̀
3 =

1

L3
3

+
∂Q3

∂L3
· ∂U
∂Q3

,

Ġ3 = −∂Q3

∂g3
· ∂U
∂Q3

, ġ3 =
∂Q3

∂G3
· ∂U
∂Q3

,

L̇4 = −∂Q4

∂`4
· ∂V
∂Q4

, ˙̀
4 = − k

2

L3
4

+
∂Q4

∂L4
· ∂V
∂Q4

,

Ġ4 = −∂Q4

∂g4
· ∂V
∂Q4

, ġ4 =
∂Q4

∂G4
· ∂V
∂Q4

.

Next we use the energy conservation to eliminate L4. We have

(4.6)

L3
4

k2
R

= kRL
3
3 ·
(

1− 3L2
3

(
1

|Q3 + (χ, 0)|
+

1

|Q4 + (χ, 0)|

+
µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
+O(1/χ2)

))
:= kRL

3
3 +WR,

L3
4

k2
L

= kLL
3
3

(
1− 3L2

3

(
1

|Q3 + (χ, 0)|
+

1

|Q4|
− µ

|Q4 −Q3|
+O(1/χ2)

))
: = kLL

3
3 +WL.

We use `4 as the independent variable. Dividing (4.5) by ˙̀
4 and using (4.6) to

eliminate L4 we obtain

(4.7)



dL3

d`4
= (kL3

3 +W )
∂Q3

∂`3
· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
d`3
d`4

= −(kL3
3 +W )(

1

L3
3

+
∂Q3

∂L3
· ∂U
∂Q3

)

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
dG3

d`4
= (kL3

3 +W )
∂Q3

∂g3
· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
dg3

d`4
= −(kL3

3 +W )
∂Q3

∂G3
· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
dG4

d`4
= (kL3

3 +W )
∂Q4

∂g4
· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
dg4

d`4
= −(kL3

3 +W )
∂Q4

∂G4
· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
+O

(
µ

|Q4|3
+ 1/χ2

)
.

We shall use the following notation: X = (L3, `3, G3, g3), Y = (G4, g4).

4.2. A priori bounds.
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4.2.1. Estimates of positions. We have the following estimates for the positions.

Lemma 4.1. Given C and δ there exists C ′ such that if

(4.8) |Q3| < 2− δ, |Q4y| < C

then

(a) we have

(4.9)

∣∣∣∣∂Q3

∂X

∣∣∣∣ < C ′;

(b) when Q4 is moving to the right of the section {x4 = −χ/2} we have

(4.10) |Q4|

 ≥ 2, if |`∗4| ≤ |`4| ≤ C

∈
[

1

2
, 2

]
L2

4(`∗4)|`4|, if |`4| ≥ C,

where `∗4 is the value of `4 restricted on x4 = −2;
when Q4 is moving to the left of the section {x4 = −χ/2}, we have

(4.11) |Q4 −Q1| ≤ 2L2
4(`∗4)|`4|+ C ′

for some constant C ′ where `4 is one of the Delaunay variables in the left
and `∗4 is its value on the section {x4 = −χ/2}.

The intuition behind this lemma is the following. Since the total energy of the
system is zero and Q3 and Q4 interact only weakly with each other, then both

particles have energies close to
1

2L2
4(`∗4)

in absolute value. Since Q4 spends most of

the time away from Q1, Q2 and Q3 most of its energy is kinetic energy so it moves
with approximately constant speed. Since it makes a little progress in y direction
its velocity is almost horizontal most of the time. This explains (4.10),(4.11). To
give the complete proof we have to use the Hamiltonian equations. See Section 4.3.

Lemma 4.2. If inequalities (4.8), (4.10), (4.11) are valid and in addition

(4.12) 1/C ≤ |L3|, |L4| ≤ C, |G3|, |G4| < C,

then we have

∂Q4

∂`4
= O(1),

∂Q4

∂(L4, G4, g4)
= O(`4),

∂Q4

∂g4
·Q4 = 0 and

∂Q4

∂G4
·Q4 = O(`4)

as t→∞.

Proof. This follows directly from Lemma A.2 in Appendix A.4. �
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4.2.2. Estimates of potentials.

Lemma 4.3. Under the assumptions of Lemma 4.2 we have the following estimates
for the potentials U, V,W :

(a) When Q4 is moving to the right of the section {x4 = −χ/2}, we have

VR, UR, WR = O

(
1

χ
+

µ

`24 + 1

)
.

(b) When Q4 is moving to the left of the section {x4 = −χ/2}, we have

VL, UL, WL = O

(
1

χ

)
.

Proof. This follows directly from equations (4.3), (4.4) and (4.6) and (4.10) in
Lemma 4.1. Our choice of the section {x4 = −2} excludes the collision between

Q3 and Q4. So we put
µ

`24 + 1
to stress the fact that the denominator is bounded

away from zero. We do the same thing in the following proofs without mentioning
it any more. �

4.2.3. Estimates of gradients of potentials. To take partial derivatives w.r.t. Delau-
nay variables, we use the formulas

∂

∂X
=
∂Q3

∂X
· ∂

∂Q3
,

∂

∂Y
=
∂Q4

∂Y
· ∂

∂Q4
.

Lemma 4.4. Under the assumptions of Lemma 4.2 we have the following estimates
for the gradients of the potentials U, V

(4.13)

∂UR
∂Q3

,
∂Q4

∂(G4, g4)

∂VR
∂Q4

= O

(
1

χ2
+

µ

`24 + 1

)
,

∂VR
∂Q4

= O

(
1

χ2
+

µ

|`4|3 + 1

)
,

∂UL
∂Q3

= O

(
1

χ2

)
,

∂VL
∂Q4

= O

(
1

χ2

)
,

∂Q4

∂(G4, g4)

∂VL
∂Q4

= O

(
1

χ2

)
.

Proof. The estimates for the
∂

∂Q3,4
terms are straightforward. Indeed, we only need

to use the fact

∣∣∣∣ ddx 1

|x|k

∣∣∣∣ =
k

|x|k+1
together with the estimates in Lemma 4.1.

The estimates of all
∂

∂(G4, g4)
terms are similar. We consider for instance

∂Q4

∂G4

∂VR
∂Q4

.

We have

(4.14)
∂Q4

∂G4

∂VR
∂Q4

=
∂Q4

∂G4

Q4 + (χ, 0)

|Q4 + (χ, 0)|3
+O

(
µ

∣∣∣∣∂Q4

∂G4

∣∣∣∣ |Q4|−3

)
.



30 JINXIN XUE AND DMITRY DOLGOPYAT

The second term here is O(µ/(`24 + 1)) due to (4.10) and Lemma A.2(a). To handle

the first term let
∂Q4

∂G4
= (a, b), Q4 = (x, y). Note that equations (A.3), (A.4), (4.8),

(4.10), and (4.12) show that x, `4 are all comparable in the sense that the ratios
between any two of these qualities are bounded from above and below. On the
other hand Lemma A.2(a) tells us that ax+ by = O(`4). Since by = O(b) = O(`4)
we conclude that ax = O(`4) and thus a = O(1). Thus the first term in (4.14) is

∂Q4

∂G
·Q4 + aχ

|Q4 + (χ, 0)|3
.

The numerator here is O(χ) while the denominator is at least (χ/2)3. This completes

the estimate of
∂Q4

∂G4

∂VR
∂Q4

. Other derivatives are similar. �

Plugging the above estimates into (4.7) we obtain the following.

Lemma 4.5. Under the assumptions of Lemma 4.2 we have the following estimates
on the RHS of (4.7).

(a) When −χ
2
≤ x4 ≤ −2 we have

dL3

d`4
,
dG3

d`4
,
dg3

d`4
,
dG4

d`4
,
dg4

d`4
= O

(
1

χ2
+

µ

`24 + 1

)
,

d`3
d`4

= O(1).

(b) When Q4 is moving to the left of the section {x4 = −χ/2}, we have

dL3

d`4
,
dG3

d`4
,
dg3

d`4
,
dG4

d`4
,
dg4

d`4
= O

(
1

χ2

)
,

d`3
d`4

= O(1).

In Section 6 we will need the following bounds on the second derivatives.

Lemma 4.6. Under the assumptions of Lemma 4.2 we have the following estimates
for the second derivatives.

(4.15)

∂2UR
∂Q2

3

= O

(
1

χ3
+

µ

`24 + 1

)
,
∂2VR
∂Q2

4

= O

(
1

χ3
+

µ

`44 + 1

)
,

∂2(UR, VR)

∂Q3∂Q4
= O

(
µ

|`4|3 + 1

)
,

∂2UL
∂Q2

3

= O

(
1

χ3

)
,

∂2VL
∂Q2

4

= O

(
1

χ3

)
,

∂2(UL, VL)

∂Q3∂Q4
= O

(
1

χ3

)
.

We omit the proof since it is again a direct computation.
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4.3. Proof of Lemma 4.1.

Proof of Lemma 4.1. Let τ be the maximal time interval such that

(4.16)
3

4
|L3(`∗4)| ≤ |L3| ≤

4

3
|L3(`∗4)|, 3

4
|Gi(`∗4)| ≤ |Gi(`4)| ≤ 4

3
|Gi(`∗4)|, i = 3, 4,

on [0, τ ] where `∗4 is the value `4 restricted on {x4 = −2}. (4.16) implies that

e4 =
√

1 +G2
4/L

2
4 is bounded. We always have we have |Q4| ≥ 2 since Q4 is to

the left of the section {x4 = −2}. Therefore (4.6) implies that L4 = L3 + O(µ)
in the right case and L4 = L3 + O(1/χ) in the left case. Now formula (A.3) and

Lemma A.1 allow us replace sinhu, coshu by (1 + o(1))
`4
e4

as |`4| → ∞.

|Q4| = L4

√
L2

4(coshu− e4)2 +G2
4 sinh2 u

= L4

√
(L2

4 +G2
4)(1 + o(1))2

`24
e2

4

= L2
4(1 + o(1))|`4|.

This proves estimate (4.10) for t ≤ min(τ, τ̄) where τ̄ is the first time then x4 reaches

−χ
2
. Thus for t ≤ min(τ, τ̄) the assumptions of Lemma 4.5 are satisfied and hence

(4.17)
dL3

d`4
,
dG4

d`4
,
dG3

d`4
= O

(
1

χ2
+

µ

|Q4 −Q3|2

)
(note that to prove the estimates in Lemma 4.5 in the right case we do not need the
assumption (4.11)). If we integrate (4.17) w.r.t. `4 on the interval of size O(χ) we
find that the oscillations of L3, G4, G3 are O(µ). Therefore τ̄ < τ and we obtain the
estimates of (4.10) up to the time τ̄ .

The analysis of the cases when Q4 is to the left of the section {x4 = −χ/2} and
then it travels back from {x4 = −χ/2} to {x4 = −2} is similar once we establish
the bounds on the angular momentum at the beginning of the corresponding pieces
of the orbit. Let us show, for example, that at the moment then the orbit hits

{x4 = −χ
2
} for the first time, the angular momentum of Q4 w.r.t. Q1 is O(1).

Indeed we have already established that G4R = −χv4y

2
− yv4x = O(1). Also (4.16)

shows that v = O(1) and so (4.8) implies that yv4x = O(1). Accordingly

χv4y = −G4R − yv4y = O(1)

and hence G4L = G4R +χv4y = O(1) as claimed. The argument for the second time

the orbit hits {x4 = −χ
2
} is the same. This completes the proof of part (b).

To show part (a), we notice
∂Q3

∂X
depends on `3, g3 periodically according to equation

(A.1). So part (a) follows since we have already obtained bounds on L3 and G3. �
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The next lemma gives more information about theQ4 part of the orbit than Lemma 4.1.
It justifies the assumptions of Lemma A.2.

Lemma 4.7. Under the hypothesis of Lemma 4.2, we have:

(a) when Q4 is moving to the right of the section {x = −χ/2}, we have

tan g4 = sign(u)
G4

L4
+O

(
µ

|`4|+ 1
+

1

χ

)
, as |`4|, χ→∞.

(b) when Q4 is moving to the left of the section {x = −χ/2}, then

G4, g4 = O(1/χ), as χ→∞.

Proof. We prove part (b) first. From equation (A.5) we see that if `4 is of order χ
and y = O(1) then G4 cos g4 + sign(u)L4 sin g4 = O(1/χ). Integrating the estimates
of Lemma 4.5(b) we see that during the time x4 ≤ −χ/2 we have

(4.18) G4 = G∗ +O(1/χ), L4 = L∗ +O(1/χ), g4 = g∗ +O(1/χ)

where (L∗, G∗, g∗) are the orbit parameters of Q4 then it first hits {x4 = −χ/2}. It
follows that both

G∗ cos g∗ + L∗ sin g∗ = O(1/χ), and G∗ cos g∗ − L∗ sin g∗ = O(1/χ).

Since L∗ is not too small this is only possible if G∗ = O(1/χ), g∗ = O(1/χ). Now
part (b) follows from (4.18).

The proof of part (a) is similar. Consider for example the case when Q4 moves to
the right. Now (4.18) has to be replaced by

(4.19) (G4, L4, g4) = (G∗, L∗, g∗) +O

(
µ

|`4|+ 1
+

1

χ

)
,

(since we use part (a) of Lemma 4.5 rather than part (b)). As before we have

G∗ cos g∗ + L∗ sin g∗ = O(1/χ).

Since cos g∗ can not be too small (since otherwise G∗ cos g∗ − L∗ sin g∗ ≈ L∗ sin g
would not be small) we can divide the last equation by L∗ cos g to get

tan g∗ =
G∗

L∗
+O

(
1

χ

)
.

Now part (a) follows from (4.19). �

4.4. Proof of Lemma 2.4. We begin by demonstrating that the orbits satisfying
the conditions of Lemma 2.4 satisfy the assumptions of Lemma 4.5.

Lemma 4.8. (a) Given δ, C there exist constants Ĉ, µ0 such that for µ ≤ µ0

the following holds. Consider a time interval [0, T ] and an orbit satisfying
the following conditions

(i) x4(t) ∈ (−χ− 1,−2) for t ∈ (0, T ), x4(0) = −2, x4(T ) = −χ.
(ii) y4(0) ≤ C, y4(T ) ≤ C.
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(iii) At time 0, Q3 moves on an elliptic orbit which is completely contained
in {x3 ≥ −(2− δ)}.

Then |y4(t)| ≤ Ĉ for all t ∈ [0, T ].
(b) The result of part (a) remains valid if (i) is replaced by

(̃i) x4(t) < −2 for t ∈ (0, T ), x4(0) = x4(T ) = −2.

Proof. To prove part (a) we first establish a preliminary estimate showing that Q4

travels roughly in the direction of Q1.

Sublemma 4.9. Given θ̃ > 0 there exists µ0, χ0 such that the following holds for
µ ≤ µ0, χ > χ0. If the outgoing asymptote satisfies

(4.20) |π − θ+
4 (0)| > θ̃

then Q4 escapes from the two center system.

Proof. We consider the case θ+
4 (0) < π− θ̃, the other case is similar. If we disregard

the influence of Q1 and Q3 then Q4 would move on a hyperbolic orbit and its velocity
would approach (

√
2E4(0) cos θ+

4 (0),
√

2E4(0) sin θ+
4 (0)). Accordingly given R we

can find t̄, µ0 such that uniformly over all orbits satisfying (i)-(iii) and θ+
4 (0) < π− θ̃

we have for µ ≤ µ0

y4(t̄) > R, v4y(t̄) > 0.8
√
E4(0) sin θ̃.

Let t̃ = inf{t > t̄ : v4y <

√
E4(0)

2 sin θ̃}. We shall show that t̃ =∞ which implies the

sublemma since for t ∈ [t̄, t̃] we have

(4.21) y4(t) > R+ (t̃− t̄)
√
E4

2
sin θ̃.

To see that t̃ =∞ note that (4.21) implies that

|v̇4y| ≤
1

(R+ (t̃− t̄)
√
E4
2 sin θ̃)2

and so

|v4y(t̃)− v4y(t̄)| ≤
∫ ∞

0

ds

(R+ s
√
E4
2 sin θ̃)2

=
2

R
√
E4 sin θ̃

.

Hence if R is sufficiently large we have v4y(t̃) ≥
√
E4

2
sin θ̃ which is only possible if

t̃ =∞. �

We now consider the case |π − θ+
4 | < θ̃. Arguing as above we see that given R, we

can find for µ small enough a time t̄ such that

x4(t) < −R, v4x(t̄) < −0.8
√
E4(0) cos θ̃.

Let t̂ be the first time after t̄ such that x4 = −(χ−R). Arguing as in Sublemma 4.9

we see that for t ∈ [t̄, t̂] we have |v4x| ≥
√
E4(0)

2 cos θ̃. Hence the force from Q2 and Q3
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is O(1/t2) and the force from Q1 is O(1/(t̂−t)2). Accordingly v4 remains O(1) so the
energy of Q4 remains bounded. Next if |y4(t̂)| > R then the argument of Sublemma
4.9 shows that y4(T ) > R/2 giving a contradiction if R > 2C. Accordingly we have
for t ∈ [t̂, T ] that E4 = O(1), y4 = O(1) and G4L = O(1). It remains to show that

|y4(t)| < Ĉ for t ∈ [t̄, t̂]. To this end let t∗ be the first time when x4 = −χ
2
. We

first get E4 = O(1) for t ∈ [t∗, t̂] since by arguing as in the Sublemma we get the
oscillation of v4 is bounded. Next, we have that G4L(t∗) = O(1) since G4L(t̂) = O(1)

and for t ∈ [t∗, t̂] we have Ġ4L = O(1/χ),(this estimate of Ġ4L = v̈4 × x4 does not
need any assumption on G4L.) Likewise G4R = O(1). Therefore

χv4y(t
∗) = G4R −G4L = O(1)

and so v4y(t
∗) = O(1/χ). Since G4L(t∗) =

(χ
2
v4y − yv4x

)
(t∗) we have y(t∗) = O(1).

Next for t ∈ [t∗, t̂] we have

y4(t) = y4(t∗) + v4y(t− t∗) +

∫ t

t∗

∫ u

t∗
ÿ4(s)dsdu.

Note that

ÿ4(s) = O

(
y

|Q4 −Q1|3

)
= O

(
y

(t̂− s+R)3

)
.

Combining the last two estimates we get

|y(t)| ≤ C1 + C2 sup
s
{|y(s)|}

∫ t

t∗

∫ u

t∗

dsdu

(t̂− s+R)3
≤ C + C

(
1

R
+

1

χ

)
sup
s
|y(s)|.

We choose R large enough to get that |y| is bounded on [t∗, t̂]. The argument for

[t̄, t∗] is the same except that the force from Q3 is O

(
µy4

|Q4|3

)
. This completes the

proof of part (a).

To prove part (b) we note that if |y4(t̂)| > R2 then Q4 escapes by the argument of
Sublemma 4.9. Hence |y4(t̂)| < R2. This implies (via already established part (a)
of the lemma) that y is uniformly bounded on [0, t̂]. The argument for [t̂, T ] is the
same with the roles of Q1 and Q2 interchanged. �

Proof of Lemma 2.4. Initially we have 1/C ≤ |L3| ≤ C, |G3|, |G4| ≤ C for some
constant C > 1. We assume (4.16) from time 0 to some time τ . Due to the previous
lemma, we can use Lemma 4.5 to get the estimates on the time interval [0, τ ]

dL3

d`4
,
dG3

d`4
,
dg3

d`4
,
dG4

d`4
,
dg4

d`4
= O

(
1

χ2
+

µ

`24 + 1

)
.

We integrate the equations to get O(µ) oscillations of L3, G3, G4 so that τ can be
extended to as large as χ. For part (a) of Lemma 2.4, we integrate the equations
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of
dL3

d`4
,
dG3

d`4
,
dg3

d`4
, over time of order χ as Q4 first moves away from Q2 and then

comes back. Therefore we get

O

(
2

∫ χ

2

[
µ

`24 + 1
+

1

χ2

]
d`4

)
= O(µ)

estimate for the change of L3, G3 and g3 proving part (a).

Part (b) of Lemma 2.4 follows from Lemma 4.7. �

5. Derivatives of the Poincaré map

In computing C1 asymptotics of both local and global maps we will need formulas
for the derivatives of Poincaré maps between two sections. Here we give the formulas
for such derivatives for the later reference.

Recall our use of notations. X denotes Q3 part of our system and Y denotes Q4

part. Thus

X = (L3, `3, G3, g3), Y = (G4, g4).

(X,Y )i will denote the orbit parameters at the initial section and (X,Y )f will denote
the orbit parameters at the final section. Likewise we denote by `i4 the initial “time”

when Q4 crosses some section, and by `f4 final “time” when Q4 arrives at the next.
We abbreviate the RHS of (4.7)) as

X ′ = U , Y ′ = V.

Here ′ is the derivative w.r.t. `4. We also denote Z = (X,Y ) and W = (U ,V) to
simplify the notations further.

Suppose that we want to compute the derivative of the Poincaré map between the
sections Si and Sf . Assume that on Si we have `4 = `i4(Zi) and on Sf we have

`4 = `f4(Zf ). We want to compute the derivative D of the Poincaré map along the

orbit starting from (Zi∗, `
i
∗) and ending at (Zf∗ , `

f
∗). We have D = dF3dF2dF1 where

F1 is the Poincaré map between Si and {`4 = `i∗}, F2 is the flow map between the

times `i∗ and `f∗ , and F3 is the Poincaré map between {`4 = `f∗} and Sf . We have
F1 = Φ(Zi, `4(Zi), `i∗) where Φ(Z, a, b) denotes the flow map starting from Z at time
a and ending at time b. Since

∂Φ

∂Z
(Zi∗, `

i
∗, `

i
∗) = Id,

∂Φ

∂a
= −W

we have dF1 = Id−W(`i4)⊗ D`i4
DZi

. Inverting the time we get

dF3 =

(
Id−W(`f4)⊗ D`f4

DZf

)−1

.
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Finally dF2 =
DZ(`f∗)

DZ(`i∗)
is just the fundamental solution of the variational equation

between the times `i∗ and `f∗ . Thus we get

(5.1) D =

(
Id−W(`f4)⊗ D`f4

DZf

)−1
DZ(`f4)

DZ(`i4)

(
Id−W(`i4)⊗ D`i4

DZi

)
.

Next, we study the fundamental solution
DZ(`f∗)

DZ(`i∗)
of the variational equation. We

consider Q3 and Q4 individually. The variational equation takes form(
∂X

∂X(`i∗)

)′
=
∂U
∂X

∂X

∂X(`i∗)
+
∂U
∂Y

∂Y

∂X(`i∗)
,

(
∂X

∂Y (`i∗)

)′
=
∂U
∂X

∂X

∂Y (`i∗)
+
∂U
∂Y

∂Y

∂Y (`i∗)
,(

∂Y

∂X(`i∗)

)′
=
∂V
∂Y

∂Y

∂X(`i∗)
+
∂V
∂X

∂X

∂X(`i∗)
,

(
∂Y

∂Y (`i∗)

)′
=
∂V
∂Y

∂Y

∂Y (`i∗)
+
∂V
∂X

∂X

∂Y (`i∗)
.

Using the Duhamel principle we see that the solution of the variational equation
should satisfy
(5.2)

∂X(`f∗)

∂X(`i∗)
= U(`i∗, `

f
∗) +

∫ `f∗

`i∗

U(`4, `
f
∗)
∂U
∂Y

∂Y

∂X(`i∗)
d`4,

∂X

∂Y (`i4)
=

∫ `f∗

`i∗

U(`4, `
f
∗)
∂U
∂Y

∂Y

∂Y (`i∗)
d`4,

∂Y

∂Y (`i4)
= V(`i∗, `

f
∗) +

∫ `f∗

`i∗

V(`4, `
f
∗)
∂V
∂X

∂X

∂Y (`i∗)
d`4,

∂Y

∂X(`i4)
= U(`4, `

f
∗)
∂V
∂X

∂X

∂X(`i∗)
d`4

where U and V denote the fundamental solutions of U′ =
∂U
∂X

U and V′ =
∂V
∂Y

V
respectively.

6. Variational equation

The next step in the proof is the C1 analysis of the global map. It occupies sections
6-8. We shall work under the assumptions of Lemma 3.2. In particular we will use
the estimates of Section 4 and Appendix A.

The plan of the proof of Proposition 3.6 is the following. Matrices (I), (III) and
(V) are treated in Sections 6 and 7. Namely, in Sections 6 we study the variational
equation while in Section 7 we describe the contribution of the boundary terms.
Finally in Section 8 we compute matrices (II) and (IV) which describe the change
of variables between the Delaunay coordinates with different centers which are used

to the left and to the right of the line x = −χ
2
.

6.1. Estimates of the coefficients.
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Lemma 6.1. We have the following estimates for the RHS of the variational equa-
tion.

(a) When Q4 is moving to the right of the section {x = −χ/2}, we have

 ∂UR
∂X

∂UR
∂Y

∂VR
∂X

∂VR
∂Y

 = O



1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ

1
χ2

1
χ2

1
χ2

1
χ

1
χ

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ

1
χ3

1
χ3

1
χ3

1
χ

1
χ

1
χ

1
χ3

1
χ3

1
χ3

1
χ

1
χ


+O

(
µ

|Q4|2

)

In addition we have

∂V
∂Y

= − 1

χ


ξL4sign(ẋ4)

(G2 + L2)(1− ξ)3

ξL3

(1− ξ)3

−ξL5

(G2 + L2)2(1− ξ)3

−ξL4sign(ẋ4)

(G2 + L2)(1− ξ)3

+O

(
µ

χ
+

µ

|Q4|2

)
,

∂V
∂L3

= − 1

χ

(
−ξG4L

3
4sign(ẋ4)

(L2
4 +G2

4)(1− ξ)3
,

ξG4L
4
4

(L2 +G2
4)2(1− ξ)3

)T
+O

(
µ

χ
+

µ

|Q4|2

)
,

where ξ =
|Q4|
χ

=
|Q4 −Q2|

χ
.

(b) When Q4 is moving to the left of the section x = −χ/2, we have

 ∂UL
∂X

∂UL
∂Y

∂VL
∂X

∂VL
∂Y

 = O



1
χ2

1
χ2

1
χ2

1
χ2

µ
χ2

µ
χ2

1
χ

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

1
χ2

µ
χ2

µ
χ2

1
χ2

1
χ2

1
χ2

1
χ2

µ
χ2

µ
χ2

1
χ2

µ
χ2

µ
χ2

µ
χ2

1
χ

1
χ

1
χ2

µ
χ2

µ
χ2

µ
χ2

1
χ

1
χ


In addition we have

∂V
∂Y

= − 1

χ


ξL2sign(ẋ4)

(1− ξ)3

ξL3

(1− ξ)3

−ξL
(1− ξ)3

−ξL2sign(ẋ4)

(1− ξ)3

+O

(
µ

χ

)
,

where ξ =
|Q4 −Q1|

χ
.

Proof. (a) We estimate the four blocks of the derivative matrix separately.

• We begin with
∂UR
∂X

part. We consider first the partial derivatives of `′3 since it is

the largest component of U . Opening the brackets in the second line of (4.7) we get
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(6.1)
d`3
d`4

= −k+
1

L3
3

W+kL3
3

∂Q3

∂L3
· ∂U
∂Q3

+k2L3
3

∂Q4

∂L4
· ∂V
∂Q4

+2kW
∂Q4

∂L4
· ∂V
∂Q4

+O

(
1

χ2
+

µ

|Q4|3

)
.

Note that by (4.6)

(6.2)

WR = kR3L5
3

(
1

|Q3 + (χ, 0)|
+

1

|Q4 + (χ, 0)|
+
µQ4 ·Q3

|Q4|3

)
+O

(
µ

|Q4|3

)
= O

(
1

χ
+

µ

|Q4|2

)
Observe that the RHS of (6.1) depends on L3 in three ways. First, in contains
several terms of the form Lm3 . Second, Q3 depends on L3 via (A.2). Third, Q4

depends on L4 via (A.5) and L4 depends on L3 via (4.6). In particular we need to

consider the contribution to
∂

∂L3

d`3
d`4

coming from

∂L4

∂L3

∂

∂L4
=
∂L4

∂L3

∂Q4

∂L4

∂

∂Q4
.

By Lemma A.2 and equation (4.10) we have
∂Q4

∂L4
= O(|Q4|). Therefore the main

contribution to (2,1) entry is O

(
1

χ
+

µ

|Q4|2

)
and it comes from

∂WR

∂Q4

∂Q4

∂L4

∂L4

∂L3
,

WR
∂

∂L3

1

L3
3

and
∂L4

∂L3

∂

∂L4

(
k2L3

3

∂Q4

∂L4
· ∂V
∂Q4

)
.

For the (2, 2), (2, 3), (2, 4) entries, the computations are similar. We need to act
∂

∂`3
,
∂

∂G3
,
∂

∂g3
on (6.1). (4.6) and (6.2) show that the contribution coming from

∂L4

∂(`3, G3, g3)
is O

(
1

χ2
+

µ

|Q4|2

)
. It remains to consider the contribution coming

from
∂Q3

∂(`3, G3, g3)

∂

∂Q3
. Now the bound for (2, 2), (2, 3) and (2, 4) entries follows

directly from Lemmas 4.1, 4.3, 4.4, and 4.6.

Next, consider (1, 1) entry. We need to estimate

∂

∂L3

(
(kL3

3 +W )
∂Q3

∂`3
· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

))
.

Using the Leibniz rule we see that the leading term comes from
∂

∂L3

(
kL3

3

∂Q3

∂`3
· ∂U
∂Q3

)
and it is of order O

(
1

χ2
+

µ

|Q4|2

)
. The estimates for other entries of the

∂UR
∂X

part

are similar to the (1, 1) entry. This completes the analysis of
∂UR
∂X

.
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• Next, we consider
∂VR
∂Y

.

Using the Leibniz rule again we see that the main contribution to the derivatives of

V comes from differentiating

 L3
3

∂Q4

∂g4
· ∂V
∂Q4

−L3
3

∂Q4

∂G4
· ∂V
∂Q4


Consider the (5, 5) entry. The main contribution to this entry comes from

∂

∂G4

(
L3

3

∂Q4

∂g4
· ∂V
∂Q4

)
= L3

3

(
∂2Q4

∂G4∂g4
· ∂V
∂Q4

+
∂Q4

∂g4
· ∂

2V

∂Q2
4

· ∂Q4

∂G4

)
.

By Lemmas 4.4 and 4.6 the first term is |Q4| · O
(

1

χ2
+

µ

|Q4|3

)
= O

(
1

χ
+

µ

|Q4|2

)
and the second term is |Q4|2 · O

(
1

χ3
+

µ

|Q4|4

)
= O

(
1

χ
+

µ

|Q4|2

)
. This gives the

desired upper bound of the (5, 5) entry. Notice that O(1/χ) term comes from

L3
3

∂

∂G4

(
∂Q4

∂g4
· ∂Ṽ
∂Q4

)
where Ṽ = − 1

|Q4 + (χ, 0)|
. Thus we need to find the asymp-

totics of

(6.3) L3
3

∂

∂G4

(
∂Q4

∂g4
· (Q4 + (χ, 0))

|Q4 + (χ, 0)|3

)
.

Let
∂Q4

∂g4
= (a, b). Arguing in the same way as in the estimation of (4.14) we see

that a = O(1). Accordingly the numerator in (6.3) is O(χ) so if we differentiate the
denominator of (6.3) the resulting fraction will be of order O(χ)O(χ−3) = O(χ−2).
Hence O(1/χ) term comes from

L3
3

∂
∂G4

(
∂Q4

∂g4
· (Q4 + (χ, 0))

)
|Q4 + (χ, 0)|3

.

The numerator here equals to

∂

∂G4

(
∂Q4

∂g4
·Q4

)
+

∂2Q4

∂G4∂g4
· (χ, 0).

The first term is O(χ) due to Lemma A.2(a) so the main contribution comes from
the second term. Using Lemma A.3 we see that (5, 5) entry equals to

− L3
3L

2
4√

L2
4 +G2

4

χ sinhu

|Q4 + (χ, 0)|3
+O

(
µ

χ
+

µ

|Q4|2

)
.

Recall that L3 = L4(1 + o(1)) (due to (4.6)) and sinhu = sign(u)
|`4|L4√
L2

4 +G2
4

(due

to (A.4)). Since Lemma 4.1 implies that |Q4| = |`4|/L2
4(1 + o(1)) we obtain that
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O(1/χ)-term in (5, 5) is asymptotic to

−L
4sign(u)

L2 +G2

χ|Q4|
(χ− |Q4|)3

.

Since u and ẋ4 have opposite signs we obtain the asymptotics of O(1/χ)-term

claimed in part (a) of the Lemma 6.1. The analysis of other entries of
∂VR
∂Y

is

similar.

• Next, consider the
∂UR
∂Y

term.

The analysis of (2, 5) entry is similar to the analysis of (2, 2) entry except that
∂

∂G4

(
k2L3

3

∂Q4

∂L4

∂V

∂Q4

)
contains the term k2L3

3

∂2Q4

∂L4∂G4

∂V

∂Q4
which is of order O(1/χ)

due to Lemmas 4.6 and A.3 and this term provides the leading contribution for large
t. The analysis of (2, 6) is similar to (2, 5).

The estimate of the remaining entries of
∂UR
∂Y

is similar to the analysis of (1, 1)

entry.

• Thus to complete the proof of (a) it remains to consider
∂V
∂X

. We begin with (5, 1)

entry. We need to act by
∂

∂L3
+
∂L4

∂L3

∂

∂L4
on

(kL3
3 +W )

∂Q4

∂g4
· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
.

The leading term for the estimate of (5, 1) comes from(
∂

∂L3
+
∂L4

∂L3

∂

∂L4

)(
∂Q4

∂g4
· ∂V
∂Q4

)
=
∂L4

∂L3

∂

∂L4

(
∂Q4

∂g4
· ∂V
∂Q4

)
+O

(
1

χ2
+

µ

|Q4|2

)
= O

(
1

χ
+

µ

|Q4|2

)
.

Observe that O(1/χ) term here comes from
∂

∂L4

(
∂Q4

∂g4
· ∂V
∂Q4

)
which can be an-

alyzed in the same way as (5, 5) term. The analysis of (6, 1) is the same as of
(5, 1).

The (5, 2) entry is equal to

(
∂

∂`3
+
∂L4

∂`3

∂

∂L4

)[(
∂Q4

∂g4
· ∂V
∂Q4

)
Γ

]
where

Γ = kL3
3 +W + k2L6

3

∂Q4

∂L4
· ∂V
∂Q4

+ 2kL3
3W

∂Q4

∂L4
· ∂V
∂Q4

+W 2∂Q4

∂L4
· ∂V
∂Q4

.

Now the estimate of the (5, 2) entry follows from the following estimates

Γ = O(1),

(
∂Q4

∂g4
· ∂V
∂Q4

)
= O

(
1

χ2
+

µ

|Q4|2

)
,
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∂

∂`3
+
∂L4

∂`3

∂

∂L4

)(
∂Q4

∂g4
· ∂V
∂Q4

)
=
∂Q4

∂g4
· ∂
∂`3

∂V

∂Q4
+
∂L4

∂`3

∂

L4

(
∂Q4

∂g4
· ∂V
∂Q4

)
= O

(
µ

|Q4|2
+

(
1

χ2
+

µ

|Q4|2

)(
1

χ
+

µ

|Q4|2

))
= O

(
1

χ3
+

µ

|Q4|2

)
,

and (
∂

∂`3
+
∂L4

∂`3

∂

∂L4

)
Γ = O

(
1

χ2
+

µ

|Q4|2

)
.

The remaining entries of
∂V
∂X

are similar to the (5, 2) entry. This completes the

proof of part (a).

(b)• The estimate of
∂VL
∂Y

and
∂UL
∂X

are the same as in part (a) however, now |Q4| is
of order χ so O(µ/|Q4|2) is dominated by other terms. In addition to compute the
leading part we need to use part (c) Lemma A.3 rather than part (b). Moreover, in
order to be able to use the formulas of that Lemma we need to shift the origin to
Q1. Therefore the coordinates of Q2 become (χ, 0). Then we have

(6.4)
∂VL
∂Y

= L3
3


∂2Q4

∂G∂g
· (−χ, 0)

|Q4 − (χ, 0)|3
∂2Q4

∂g2
· (−χ, 0)

|Q4 − (χ, 0)|3

−∂
2Q4

∂G2
· (−χ, 0)

|Q4 − (χ, 0)|3
− ∂

2Q4

∂G∂g
· (−χ, 0)

|Q4 − (χ, 0)|3

+O

(
µ

χ

)
.

Now the asymptotic expression of
∂VL
∂Y

follows directly from Lemma A.3(c). We

point out that the “−” sign in front of the matrices of
∂V

∂Y
and

∂V

∂L3
comes from

the fact that the new time `4 that we are using satisfies
d`4
dt

= − 1

L3
4

+ o(1) as

µ→ 0, χ→∞.

• Next, we consider the
∂UL
∂Y

term.

First consider (1, 5). We need to find G4 derivative of[
∂Q3

∂`3
· ∂U
∂Q3

]
(kL3

3 +W )

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

)
.

Differentiating the first factor we get using Lemma 4.6

(6.5)
∂

∂G4

(
∂Q3

∂`3
· ∂U
∂Q3

)
=
∂Q3

∂`3
· ∂2U

∂Q3∂Q4

∂Q4

∂G4
= O

(
µ

χ2

)
.

When we differentiate the product of the remaining factors then the main contribu-
tion comes from

(6.6)
∂

∂G4

(
∂Q4

∂L4
· ∂V
∂Q4

)
=

∂2Q4

∂L4∂G4
· ∂V
∂Q4

+
∂Q4

∂L4
· ∂

∂G4

(
∂V

∂Q4

)
.
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To bound the last expression we use Lemma A.3. Namely, the second derivative
∂2Q4

∂G4∂L4
= O(1) + `4(0, 1), is almost vertical and

∂VL
∂Q4

=
Q4

|Q4|3
+
µ(Q4 −Q3)

|Q4 −Q3|3
is

almost horizontal. This shows that
∂2Q4

∂G4∂L4
· ∂V
∂Q4

=
1

χ2
. The main contribution to

the second summand in (6.6) comes from
∂

∂G4

(
∇
(

1

Q4

))
. Using Lemma A.2, we

get

∂Q4

∂L4
· ∂
∂G4

(
∇
(

1

Q4

))
= (`4(1, 0)+O(1))

(
−Id

|Q4|3
+ 3

Q4 ⊗Q4

|Q4|5

)
(`4(0, 1)+O(1)) =

1

χ2
.

Since
∂Q3

∂`3
· ∂U
∂Q3

= O(1/χ2) we get the required estimate for (1, 5) entry.

The estimates of other
∂UL
∂Y

terms are similar to the estimate of (1, 5) entry, except

for (2, 5) and (2, 6) entries which are different because
d`3
d`4

is larger than the other

coordinates of U .
Now consider (2, 5) entry. We need to compute
(6.7)

− ∂

∂G4

(
(kL3

3 +W )(
1

L3
3

+
∂Q3

∂L3
· ∂U
∂Q3

)

(
1 + (kL3

3 +W )
∂Q4

∂L4
· ∂V
∂Q4

))
= − ∂

∂G4

(
k +

1

L3
3

W + kL3
3

∂Q3

∂L3
· ∂U
∂Q3

+ k2L3
3

∂Q4

∂L4
· ∂V
∂Q4

+ 2kW
∂Q4

∂L4
· ∂V
∂Q4

+
1

χ3

)
= 0 +

1

χ2
+

µ

χ2
+

1

χ2
+

1

χ3
+

1

χ3
= O

(
1

χ2

)
where the analysis of the leading terms is similar to (6.5), (6.6).

• Finally, we consider
∂VL
∂X

. We begin with (5, 1) entry. We need to compute[
∂

∂L3
+
∂L4

∂L3

∂

∂L4

]((
∂Q4

∂g4
· ∂V
∂Q4

)
Γ

)
where

Γ = kL3
3 +W + k2L6

3

∂Q4

∂L4
· ∂V
∂Q4

+ 2kL3
3W

∂Q4

∂L4
· ∂V
∂Q4

+W 2∂Q4

∂L4
· ∂V
∂Q4

.

The main contribution to

[
∂

∂L3
+
∂L4

∂L3

∂

∂L4

](
∂Q4

∂g4
· ∂V
∂Q4

)
comes from

∂L4

∂L3

∂

∂L4

(
∂Q4

∂g4
· ∂V
∂Q4

)
=
∂L4

∂L3

∂2Q4

∂L4∂g4
· ∂V
∂Q4

+
∂L4

∂L3

∂Q4

∂g4
· ∂

2V

∂Q2
4

∂Q4

∂L4
.
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The two summands above can be estimated by O(1/χ2) by the argument used to
bound (6.6). Next a direct calculation shows that

Γ = O(1),

[
∂

∂L3
+
∂L4

∂L3

∂

∂L4

]
Γ = O(1)

while

(
∂Q4

∂g4
· ∂V
∂Q4

)
= O(1/χ2) by Lemma 4.4 This gives the required bound for

the (5, 1) entry. The bound for the (6, 1) entry is similar.

Next, consider (5, 2). It equals to[
∂

∂`3
+
∂L4

∂`3

∂

∂L4

]((
∂Q4

∂g4
· ∂V
∂Q4

)
Γ

)
The main contribution to

[
∂

∂`3
+
∂L4

∂`3

∂

∂L4

](
∂Q4

∂g4
· ∂V
∂Q4

)
comes from

∂

∂`3

(
∂Q4

∂g4
· ∇
(

µ

|Q4 −Q3|

))
and it is of order O

(
µ

χ2

)
. On the other hand the

main contribution to

[
∂

∂`3
+
∂L4

∂`3

∂

∂L4

]
Γ comes from

∂W

∂`3
and it is of orderO

(
1

χ2

)
.

Combining this with C0 bounds mentioned used in the analysis of (5, 1) we obtain

the required estimate on the (5, 2) entry. The remaining entries of
∂VL
∂X

are similar

to (5, 2). �

6.2. Estimates of the solutions. We integrate the variational equations to get

the
∂(X,Y )(`f4)

∂(X,Y )(`i4)
in equation (5.1).

Recall that map (I) describes the transition between sections {x = −2} and
{
x = −χ

2

}
,

map (III) describes the transition between sections
{
x = −χ

2
, ẋ < 0

}
and{

x = −χ
2
, ẋ > 0

}
and map (V) describes the transition between sections

{
x = −χ

2

}
,

and {x = −2} .

Lemma 6.2. The following estimates are valid

(a) For maps (I) and (V ),
(6.8)

∂(X,Y )(`f4)

∂(X,Y )(`i4)
=


1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)
O(1) 1 +O(µ) O(µ) O(µ) O(1) O(1)
O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)
O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)
O(1) O(µ) O(µ) O(µ) O(1) O(1)
O(1) O(µ) O(µ) O(µ) O(1) O(1)

 .
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(b) For map (III),
(6.9)

∂(X,Y )(`f4)

∂(X,Y )(`i4)
=



1 +O( 1
χ) O( 1

χ) O( 1
χ) O( 1

χ) O(µχ) O(µχ)

O(1) 1 +O( 1
χ) O( 1

χ) O( 1
χ) O( 1

χ) O( 1
χ)

O( 1
χ) O( 1

χ) 1 +O( 1
χ) O( 1

χ) O(µχ) O(µχ)

O( 1
χ) O( 1

χ) O( 1
χ) 1 +O( 1

χ) O(µχ) O(µχ)

O( 1
χ) O(µχ) O(µχ) O(µχ) O(1) O(1)

O( 1
χ) O(µχ) O(µχ) O(µχ) O(1) O(1)


.

(c)
∂Y (`f4)

∂Y (`i4)
has the following limits as µ→ 0, χ→∞

Map (I) :


1 +

L̃2
4

2(L̃2
4 + G̃2

4)
− L̃4

2

L̃3
4

2(L̃2
4 + G̃2

4)2
1− L̃2

4

2(L̃2
4 + G̃2

4)

 , Map (III) :

 1

2
−L4

2
3

2L4

1

2

 ,

Map (V) :


1− L̂2

4

2(L̂2
4 + Ĝ2

4)
− L̂4

2

L̂3
4

2(L̂2
4 + Ĝ2

4)2
1 +

L̂2
4

2(L̂2
4 + Ĝ2

4)

 .

In addition for map (I) we have
∂Y

∂L3
→

(
− G̃4L̃4

2(L̃2
4 + G̃2

4)
,− G̃4L̃

2
4

2(L̃2
4 + G̃2

4)2

)T
.

Parts (a) and (b) of this lemma claim that we can integrate the estimates of Lemma
6.1 over `4-interval of size O(χ).

Proof. (a) We divide the proof into several steps.

Step 1. Keeping in mind the integrals∫ χ/2

0

1

χ
d`4 = O(1), and

∫ χ/2

0

µ

`24 + 1
d`4 = O(µ)

we conclude using the Gronwall inequality that if (δX, δY )(`i4) = O(1) then

(δX, δY )(`4) = O(1) for all `4 ∈ [`i4, `
f
4 ].

Step 2. Plugging the estimate of step 1 back into the variational equation we
see that (δL3, δG3, δg3)(`4) − (δL3, δG3, δg3)(`i4) = O(µ). This proves the required
bound for (δL3, δG3, δg3).

Step 3. Steps 1 and 2 imply that

(δY )′(`4) =
∂V
∂Y

(`4)δY (`4) +
∂V
∂L3

(`4)δL3(`i4) +O

(
µ

`24 + 1

)
.
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We treat this as a nonhomogeneous linear equation for δY. Thus
(6.10)

δY (`4) = V(`i4, `4)δY (`i4)+

(∫ `4

`04

V(s, `4)
∂V
∂L3

(s)ds

)
δL3(`i4)+

∫ `4

`i4

O

(
‖V(s, `4)‖ µ

1 + s2

)
ds

where V(s, `4) denotes the fundamental solution of the corresponding homogeneous
equation. (6.10) immediately implies the required bound for δY.

Step 4. Plugging the estimates of steps 2 and 3 into the equation for δ`3 we see
that if (δL3, δG3, δg3)(`i4) = 0 and hence (δL3, δG3, δg3)(`4) = O(µ) for all `4 then

(δ`3)′ = O

(
µ

1 + `24

)
proving the required bound for δ`3.

(b) We use the same steps as in part (a). On step 1 we show that (δX, δY )(`4) =
O(1) for all `4. On step 2 we conclude that (δL3, δG3, δg3)(`4)−(δL3, δG3, δg3)(`i4) =
O(1/χ). On step 3 we prove the result of part (b) for δY. On step 4 we use the
results of step 3 to show that if δX(`i4) = 0 then (δL3, δG3, δg3)(`4) = O(µ/χ) and
δ`3(`4) = O(1/χ).

To prove (c) we need to find the asymptotics of V. Consider map (I) first. V satisfies

V′ =
∂V
∂Y

V.

By already established part (a) V = O(1) so the above equation can be rewritten as

V′ =
ξL2

χ(1− ξ)3
AV +O

(
µ

`24 + 1
+
µ

χ

)
.

where A =

[
− L2

(G2+L2)
L

− L3

(G2+L2)2
L2

(G2+L2)

]
. Now Gronwall Lemma gives V ≈ Ṽ where Ṽ is

the fundamental solution of Ṽ′ =
ξL2

χ(1− ξ)3
AṼ. Using ξ as the independent variable

we get
dṼ
dξ

= − ξ

(1− ξ)3
AṼ. Note that ξ(`i4) = o(1), ξ(`f4) =

1

2
+ o(1). Making a

further time change dτ =
ξdξ

(1− ξ)3
we obtain the constant coefficient linear equation

dṼ
dτ

= −AṼ. Observe that Tr(A) =det(A) = 0 and so A2 = 0. Therefore

(6.11) Ṽ(σ, τ) = Id− (τ − σ)A.

Since τ =
ξ2

2(1− ξ)2
we have τ(0) = 0, τ

(
1

2

)
=

1

2
. Plugging this into (6.11) we get

the claimed asymptotics for map (I). The analysis of map (V) is similar. To analyze
map (III) we split

∂Y (`f4)

∂Y (`i4)
=
∂Y (`f4)

∂Y (`m4 )

∂Y (`m4 )

∂Y (`i4)
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where `m4 =
`i4 + `f4

2
. Using the argument presented above we obtain

∂Y (`m4 )

∂Y (`i4)
=

 3
2 −L

2

1
2L

1
2

 , ∂Y (`f4)

∂Y (`m4 )
=

 1
2 −L

2

1
2L

3
2

 .
Multiplying the above matrices we obtain the required asymptotics for map (III).

Next using the same argument as in analysis of
∂Y (`f4)

∂Y (`i4)
we obtain

∂Y

∂L3
≈W where

W′ =
ξL2

χ(1− ξ)3

[
AW +

(
GL

(L2 +G2)
,

GL2

(L2 +G2)2

)T]
.

In terms of the new time this equation reads

dW
dτ

= −

[
AW +

(
GL

(L2 +G2)
,

GL2

(L2 +G2)2

)T]
.

Solving this equation using (6.11) and initial condition (0, 0)T , we obtain the asymp-

totics of
∂Y

∂L3
. �

7. Boundary contributions and the proof of Proposition 3.6

According to (5.1) we need to work out the boundary contributions in order to
complete the proof of Proposition 3.6.

7.1. Dependence of `4 on variables (X,Y ). To use the formula (5.1) we need to

work out (U ,V)(`i4)⊗ ∂`i4
∂(X,Y )i

and (U ,V)(`f4)⊗ ∂`f4
∂(X,Y )f

. Consider x4 component

of Q4 (see equation (A.5)).

x4 = cos g4(L2
4 sinhu4 − e4)− sin g4(L4G4 coshu4).

For fixed x4 = −χ/2 or −2, we can solve for `4 as a function of L4, G4, g4. From the
calculations in the Appendix A.2, Lemma A.2, and the implicit function theorem,
we get

for the section x4 = −χ/2,
(
∂`4
∂L4

,
∂`4
∂G4

,
∂`4
∂g4

) ∣∣∣
x4=−χ/2

= (O(χ), O(1), O(1)),

for the section x4 = −2,

(
∂`4
∂L4

,
∂`4
∂G4

,
∂`4
∂g4

) ∣∣∣
x4=−2

= (O(1), O(1), O(1)).
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Using equation (4.6) which relates L4 to L3, we obtain for the section {x4 = −χ/2},

(7.1)

∂`4
∂(X,Y )

∣∣∣
x4=−χ/2

= (O(χ), O(1/χ), O(1/χ), O(1/χ), O(1), O(1)),

(U ,V)
∣∣∣
x4=−χ/2

= (O(1/χ2), O(1), O(1/χ2), O(1/χ2), O(1/χ2), O(1/χ2))T ,

For the section {x4 = −2},

(7.2)

∂`4
∂L3

∣∣∣
x4=−2

= (O(1), O(µ), O(µ), O(µ), O(1), O(1)),

(U ,V)
∣∣∣
x4=−2

= (O(µ), O(1), O(µ), O(µ), O(µ), O(µ))T .

The matrix (U ,V) ⊗ ∂`4
∂(X,Y )

∣∣∣
x4=−χ/2

has rank 1 and the only nonzero eigenvalue

is O(1/χ), and (U ,V)⊗ ∂`4
∂(X,Y )

∣∣∣
x4=−2

has rank 1 and the only nonzero eigenvalue

is O(µ). So the inversion appearing in (5.1) is valid.

7.2. Asymptotics of matrices (I), (III), (V ) from the Proposition 3.6. Here
we complete the computations of matrices (I), (III) and (V).

The boundary contribution to (I). In this case, `i4 stands for the section

{x4 = −2} and `f4 stands for the section {x4 = −χ/2}. So we use equation (7.2) to

form (U ,V)(`i4)⊗ ∂`i4
∂(X,Y )i

in equation (5.1) and equation (7.1) to form (U ,V)(`f4)⊗

∂`f4
∂(X,Y )f

. We have

(7.3)

(
Id− (U ,V)(`f4)⊗ ∂`i4

∂(X,Y )i

)−1

= Id +
∞∑
k=1

(
(U ,V)(`f4)⊗ ∂`i4

∂(X,Y )i

)k

= Id +

(
(U ,V)(`f4)⊗ ∂`i4

∂(X,Y )i

) ∞∑
k=0

(
∂`i4

∂(X,Y )i
· (U ,V)(`f4)

)k
= Id +

(
(U ,V)(`f4)⊗ ∂`i4

∂(X,Y )i

)
(1 +O(1/χ)) =


1 +O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) O(1/χ2) O(1/χ2)

O(χ) 1 +O(1/χ) O(1/χ) O(1/χ) O(1) O(1)
O(1/χ) O(1/χ3) 1 +O(1/χ3) O(1/χ3) O(1/χ2) O(1/χ2)
O(1/χ) O(1/χ3) O(1/χ3) 1 +O(1/χ3) O(1/χ2) O(1/χ2)
O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) 1 +O(1/χ2) O(1/χ2)
O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) O(1/χ2) 1 +O(1/χ2)


Now we use equation (5.1) and Lemma 6.2 to obtain the asymptotics of the matrix

(I) stated in Proposition 3.6.
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The boundary contribution to (III)

This time we use equation (7.1) to form both (U ,V)(`i4)⊗ ∂`i4
∂(X,Y )i

and (U ,V)(`f4)⊗

∂`f4
∂(X,Y )f

in equation (5.1).

The matrix

(
Id− (U ,V)(`f4)⊗ ∂`f4

∂(X,Y )f

)−1

has the same form as (7.3). Now we

use equation (5.1) and Lemma 6.2 to obtain the asymptotics of the matrix (III)
stated in Proposition 3.6.

The boundary contribution to (V )

This time we use equation (7.1) to form (U ,V)(`i4) ⊗ ∂`i4
∂(X,Y )i

and equation (7.2)

to form (U ,V)(`f4)⊗ ∂`f4
∂(X,Y )f

in equation (5.1).

The matrix

(
Id− (U ,V)(`f4)⊗ ∂`f4

∂(X,Y )f

)−1

has the form


1 +O(µ) O(µ2) O(µ2) O(µ2) O(µ) O(µ)
O(1) 1 +O(µ) O(µ) O(µ) O(1) O(1)
O(µ) O(µ2) 1 +O(µ2) O(µ2) O(µ) O(µ)
O(µ) O(µ2) O(µ2) 1 +O(µ2) O(µ) O(µ)
O(µ) O(µ2) O(µ2) O(µ2) 1 +O(µ) O(µ)
O(µ) O(µ2) O(µ2) O(µ2) O(µ) 1 +O(µ)


Now we use equation (5.1) and Lemma 6.2 to obtain the asymptotics of the matrix
(V ) stated in Proposition 3.6.

8. Switching foci

Recall that we treat the motion of Q4 as a Kepler motion focused at Q2 when it
is moving to the right of the section {x = −χ/2} and treat it as a Kepler motion
focused at Q1 when it is moving to the left of the section {x = −χ/2}. Therefore,
we need to make a change of coordinates when Q4 crosses the section {x4 = −χ/2}.
These are described by the matrices (II) and (IV ). Under this coordinate change
the Q3 part of the Delaunay variables does not change. The change of G4 is given
by the difference of angular momentums w.r.t. different reference points (Q1 or Q2).
To handle it we introduce an auxiliary variable v4y-the y component of the velocity
of Q4. Relating g4 with respect to the different reference points to v4y we complete
the computation.
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8.1. From the right to the left. We have

(II) =
∂(L3, `3, G3, g3, G4L, g4L)

∂(L3, `3, G3, g3, G4R, g4R)

∣∣∣
x4=−χ/2

= (iii)(ii)(i)

where matrices (i), (ii) and (iii) correspond to the following coordinate changes
restricted to the section {x4 = −χ/2}.

(G, g)4R
(i)−→ (G, vy)4R

(ii)−→ (G, vy)4L
(iii)−→ (G, g)4L.

Computation of matrices (i) and (iii)(ii) in Proposition 3.6. (i) is given by the re-
lation

v4y =

1
L4R

sinhu4R sin g4R − G4R

L2
4R

cos g4R coshu4R

1− e4R coshu4R
< 0, L4R = kRL3 −

WR

3L2
3

.

where last relation follows from (4.6). Recall that by Lemma 4.7

g4R = arctan
G4R

L4R
+O(1/χ).

In addition (8.1) below and the fact that G4R and G4L are O(1) implies v4y = O( 1
χ).

Now the asymptotics of (i) is obtained by a direct computation. We compute
dv4y

dL3

the other derivatives are similar but easier. We have
dv4y

dL3
=

dv4y

dL4R

∂L4R

∂L3
. The second

term is kR +O(1/χ). On the other hand

dv4y

dL4
=

∂
∂L4R

(
1

L4R
sinhu4R sin g4R − G4R

L2
4R

cos g4R coshu4R

)
1− e4R coshu4R

+ v4R

∂e4R
∂L4R

coshu4R

1− e4R coshu4R
+
∂v4R

∂`4R

∂`4R
∂L4R

.

The main contribution comes from the first term which equals

− G4R

L4R(L2
4R +G2

4R)
+O(1/χ).

The second term is O(1/χ) since v4R = O(1/χ). Next rewriting

v4y =

1
L4R

tanhu4R sin g4R − G4R

L2
4R

cos g4R

(1/ coshu4R)− e4R

we see that
∂v4y

∂`4R

∂`4R
∂L4R

= O(1/χ2)×O(χ) = O(1/χ)

since
∂`4R
∂L4R

= O(χ) by (7.1).
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(ii) is given by

(8.1) GL = GR − χv4y,

which comes from the simple relation v4 × Q4 = v4 × (Q4 − Q1) + v4 × Q1. Here
G4R and v4y are independent variables so the computation of the derivative of (ii)
is straightforward.

To compute the derivative of (iii) we use the relation

v4y =

1
L4L

sinhu4L sin g4L − G4L

L2
4L

cos g4L coshu4L

1− e4L coshu4L

where uL < 0. Arguing the same way as for (i) and using the fact that by Lemma

4.7, GL, gL = O(1/χ), − sinhuL, coshuL '
`4L
eL

we obtain

δv4y =
δG4L

k2
RL

2
3

+
δg4L

kRL3
+HOT

Hence

δg4R = −δG4L

kRL3
+ kRL3δv4y +HOT = −(δG4R/kR) + χδv4y

kRL3
+HOT

completing the proof of the lemma. �

8.2. From the left to the right. At this step we need to compute

(IV ) =
∂(L3, `3, G3, g3, G4R, g4R)

∂(L3, `3, G3, g3, G4L, g4L)

∣∣∣
x4=−χ/2

= (iii′)(ii′)(i′).

where the matrices (iii′), (ii′) and (i′) correspond to the following changes of vari-
ables restricted to the section {x4 = −χ/2}.

(G, g)L
(i′)−→ (G, v4y)L

(ii′)−→ (G, v4y)R
(iii′)−→ (G, g)R.

Computation of matrices (iii′) and (ii′)(i′) in Proposition 3.6. (i′) is given by

v4y =

1
L4L

sinhu4L sin g4L − G4L

L2
4L

cos g4L coshu4L

1− e4L coshu4L
< 0.

Here uL > 0 and G4L, g4L = O(1/χ).

(ii′) is given by
GR = GL + χv4yL.

Now the analysis is similar to Subsection 8.1. In particular the main contribution
to [(ii′)(i′)]44 comes from

∂(G4R, v4y)

∂(G4L, g4L)
=
∂(G4R, v4y)

∂(G4L, v4y)

∂(G4L, v4y)

∂(G4L, g4L)
=

[
1 χ
0 1

][ 1 0
1
L2
3

+O
(

1
χ

)
− 1
L3

+O
(

1
χ

) ]
.

The analysis of (43) part is similar.
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(iii′) is given by

GR = GR, v4y =

1
L4R

sinhu4R sin g4R − G4R

L2
4R

cos g4R coshu4R

1− e4R coshu4R
< 0.

Here u4R < 0, and by Lemma 4.7, tan g4R = −G4R

L4R
+O(1/χ). To get the asymptotics

of the derivative we first show that similarly to Subsection 8.1, we have

dv4y =

(
− G4R

L3(k2
RL

2
3 +G2

4R)
, 0, 0, 0,

1

k2
RL

2
3 +G2

4R

,
1

kRL3

)
+O

(
1

χ
,

1

χ2
,

1

χ2
,

1

χ2
,

1

χ
,

1

χ

)
and then take the inverse. �

9. Approaching close encounter

In this paper we choose to separate local and global maps by section {x4 = −2}.
We could have used instead {x4 = −10}, or {x4 = −100}. Our first goal is to show
that the arbitrariness of this choice does not change the asymptotics of derivative of
the local map (we have already seen in Sections 6.2 and 7 that it does not in change
the asymptotics of the derivative of the global map).

We choose the section {|Q3 − Q4| = µκ}, 1/3 < κ < 1/2. Outside the section the
orbits are treated as perturbed Kepler motions and inside the section the orbits are
treated as two body scattering. We shall estimate the errors of this approximation.
We break the orbit into three pieces: from {x4 = −2, ẋ4 > 0} to {|Q−3 −Q

−
4 | = µκ},

from {|Q−3 − Q−4 | = µκ} to {|Q+
3 − Q+

4 | = µκ} and from {|Q+
3 − Q+

4 | = µκ} to
{x4 = −2, ẋ4 > 0}. Here and below, we use the following convention.

Convention: A variable with superscript − (reap. +) means its value measured on
the section |Q3 −Q4| = µκ before (resp. after) Q3, Q4 coming to close encounter.

In this section we consider the two pieces of orbit outside the section {|Q3 −Q4| =
µκ}. We use Hamiltonian (4.1). Then we convert the Cartesian coordinates to
Delaunay coordinates. The resulting Hamiltonian is

(9.1) H = − 1

2L2
3

+
1

2L2
4

− 1

|Q4 + (χ, 0)|
− 1

|Q3 + (χ, 0)|
− µ

|Q3 −Q4|
.

The difference with the Hamiltonian (4.2) is that we do not do the Taylor expansion

to the potential − 1

|Q3 −Q4|
.

The next lemma and the remark after it tell us that we can neglect those two pieces.

Lemma 9.1. Consider the orbits satisfying the conditions of Lemma 3.1. For the
pieces of orbit from x4 = −2, ẋ4 > 0 to |Q−3 −Q

−
4 | = µκ and from |Q+

3 −Q
+
4 | = µκ

to x4 = −2, ẋ4 > 0, the derivative matrices have the following form in Delaunay
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coordinates
∂(X,Y )−

∂(X,Y )|x4=−2
,
∂(X,Y )|x4=−2

∂(X,Y )+
=


1 0 0 0 0 0

O(1) O(1) O(1) O(1) O(1) O(1)
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

+O

(
µ1−2κ +

1

χ3

)
.

Proof. The proof follows the plan in Section 5. We first consider the integration
of the variational equation. We treat the orbit as Kepler motions perturbed by Q1

and interaction between Q3 and Q4. Consider first the perturbation coming from
the interaction of Q3 and Q4. The contribution of this interaction to the variational

equation is of order
µ

|Q3 −Q4|3
. If we integrate the variational equation along an

orbit such that |Q3 −Q4| goes from −2 to µκ, then the contribution has the order

(9.2) O

(∫ µκ

−2

µ

|t|3
dt

)
= O(µ1−2κ).

Similar consideration shows that the perturbation from Q1 is O(1/χ3).

On the other hand absence of perturbation, all Delaunay variables except `3 are
constants of motion. The (2, 1) entry is also o(1) following from the same estimate
as the (2, 1) entry of the matrix in Lemma 6.1. After integrating over time O(1),
the solutions to the variational equations have the form

Id +O(µ1−2κ + 1/χ3).

Next we compute the boundary contributions. The analysis is the same as Section 7.

The derivative is given by formula (5.1). We need to work out (U ,V)(`i4)⊗ ∂`i4
∂(X,Y )i

and (U ,V)(`f4)⊗ ∂`f4
∂(X,Y )f

. In both cases we have

(U ,V) = (0, 1, 0, 0, 0, 0) +O(µ1−2κ).

For the section {x4 = −2}, we use (7.2). For the section {|Q3−Q4| = µκ}, we have

(9.3)
∂`4

∂(X,Y )
= −

(
∂|Q3 −Q4|

∂`4

)−1 ∂|Q3 −Q4|
∂(X,Y )

= −
(Q3 −Q4) · ∂(Q3−Q4)

∂(X,Y )

(Q3 −Q4) · ∂(Q3−Q4)
∂`4

We will prove in Lemma 10.2(c) below that the angle formed by Q3−Q4 and v3−v4

is O
(
µ1−κ) (the proof of Lemma 10.2 does not rely on section 9). Thus in (9.3) we
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can replace Q3 −Q4 by v3 − v4 making O
(
µ1−κ) mistake. Hence

∂`4
∂(X,Y )

=
(v3 − v4) · ∂(Q3−Q4)

∂(X,Y )

(v3 − v4) · ∂Q4

∂`4

+O(µ1−κ),

Note that
∂Q4

∂`4
is parallel to v4. Using the information about v3 and v4 from Ap-

pendix B.1 we see that 〈v3, v4〉 6= 〈v4, v4〉. Therefore the denominator in (9.3) is
bounded away from zero and so

∂`4
∂(X,Y )

= (O(1), O(1), O(1), O(1), O(1), O(1)).

We also need to make sure the second component
∂`4
∂`3

is not close to 1, so that

Id − (U ,V)(`f4) ⊗ ∂`f4
∂(X,Y )f

is invertible when |Q3 − Q4| = µκ serves as the final

section. In fact, due to (4.7),
∂`4
∂`3
' −1. Using formula (5.1), we get the asymptotics

stated in the lemma. �

Remark 9.1. Using the explicit value of the vectors ˆ̄l2,
ˆ̄l3, w, w̃ in equations (3.3),

we find that in the limit µ→ 0, χ→∞(
∂(X,Y )−

∂(X,Y )|x4=−2

)
span{w, w̃} = span{w, w̃}

and

ˆ̄l2

(
∂(X,Y )|x4=−2

∂(X,Y )+

)
= ˆ̄l2,

ˆ̄l3

(
∂(X,Y )|x4=−2

∂(X,Y )+

)
= ˆ̄l3

This tells us that we can neglect the derivative matrices corresponding to the pieces
of orbit from x4 = −2, ẋ4 > 0 to |Q−3 − Q

−
4 | = µκ and from |Q+

3 − Q
+
4 | = µκ to

x4 = −2, ẋ4 > 0. We thus can identify dL with

∂(L3, `3, G3, g3, G4, g4)+

∂(L3, `3, G3, g3, G4, g4)−
+O(µ1−2κ)

where (L3, `3, G3, g3, G4, g4)± denote the Delaunay variables measured on the section
{|Q±3 −Q

±
4 | = µκ}.

10. C0 estimate for the local map

In Sections 10 and 12 we consider the piece of orbit from |Q−3 − Q−4 | = µκ to
|Q+

3 −Q
+
4 | = µκ. Because of Remark 9.1, we simply write dL for the derivative for

this piece.
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10.1. Justifying Gerver’s asymptotics. It is convenient to use the coordinates
of relative motion and the motion of mass center. We define

(10.1) v± = v3 ± v4, Q± =
Q3 ±Q4

2
.

Here ”-” refers to the relative motion and ”+” refers to the center of mass motion.
To study the relative motion, we make the following rescaling:

(10.2) q− := Q−/µ, τ := t/µ and v− remains unchanged.

In this way, we zoom in the picture of Q3 and Q4 by a factor 1/µ.

Then we have the following lemma.

Lemma 10.1. Inside the sphere |Q−| = µκ, 1/3 < κ < 1/2,

(a) the equation governing the motion of the center of mass is a Kepler motion
focused at Q2 perturbed by O(µ2κ),

(10.3) Q̇+ =
v+

2
, v̇+ = − 2Q+

|Q+|3
+O(µ2κ).

(b) In the rescaled variables, the equation governing the relative motion is a
Kepler motion focused at the origin perturbed by O(µ1+2κ),

(10.4)
dq−
dτ

=
v−
2
,

dv−
dτ

=
q−

2|q−|3
+O(µ1+2κ).

Proof. Note that (10.1) preserves the symplectic form.

dv3 ∧ dQ3 + dv4 ∧ dQ4 = dv− ∧ dQ− + dv+ ∧ dQ+,

The Hamiltonian becomes

(10.5) H =
|v−|2

4
− µ

2|Q−|
+
|v+|2

4
− 1

|Q+ +Q−|
− 1

|Q+ −Q−|

− 1

|Q+ +Q− + (χ, 0)|
− 1

|Q+ −Q− + (χ, 0)|

=
|v−|2

4
− µ

2|Q−|
+
|v+|2

4
− 2

|Q+|
+
|Q−|2

2|Q+|3
− 3|Q+ ·Q−|2

2|Q+|5
+O(µ3κ) +O(1/χ),

where the O(µ3κ) includes the |Q−|3 and higher order terms. In the following, we
drop O(1/χ) terms since 1/χ� µ. So the Hamiltonian equations for the motion of
the mass center part are

Q̇+ =
v+

2
, v̇+ = − 2Q+

|Q+|3
+O(µ2κ)

proving part (a) of the lemma.
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Next, we study the relative motion. From equation (10.5), we get the equations of
motion for the center of mass

Q̇− =
v−
2
, v̇− = − µQ−

2|Q−|3
− Q−
|Q+|3

+
3|Q+ ·Q−|Q+

|Q+|5
+O(µ2κ),

as µ → 0, where O(µ2κ) includes quadratic and higher order terms of |Q−|. After
making the rescaling according to (10.2) the equations for the relative motion part
become

�(10.6)
dq−
dτ

=
v−
2
,

dv−
dτ

=
q−

2|q−|3
+
µ2q−
|Q+|3

− 3µ2|Q+ · q−|Q+

|Q+|5
+O(µ1+2κ).

Lemma 10.1 implies the following C0 estimate.

Lemma 10.2. (a) We have the following equations

(10.7)


v+

3 =
1

2
R(α)(v−3 − v

−
4 ) +

1

2
(v−3 + v−4 ) +O(µ(1−2κ)/3 + µ3κ−1),

v+
4 = −1

2
R(α)(v−3 − v

−
4 ) +

1

2
(v−3 + v−4 ) +O(µ(1−2κ)/3 + µ3κ−1),

Q+
3 +Q+

4 = Q−3 +Q−4 +O(µk),

|Q−3 −Q
−
4 | = µκ, |Q+

3 −Q
+
4 | = µκ,

where R(α) =

[
cosα − sinα
sinα cosα

]
,

(10.8) α = π + 2 arctan

(
Gin
µLin

)
, and

1

4L2
in

=
v2
−
4
− µ

2|Q−|
, Gin = 2v− ×Q−.

(b) We have Lin = O(1). If α is bounded away from 0 and 2π by an angle
independent of µ then Gin = O(µ) and the closest distance between Q3 and
Q4 is bounded away from zero by δµ and from above by µ/δ for some δ > 0
independent of µ.

(c) Also if α is bounded away from π by an angle independent of µ, then the
angle formed by Q− and v− is O(µ1−κ).

(d) The time interval during which the orbit stays in the sphere |Q−| = µκ is

∆t = µ∆τ = O(µκ).

Remark 10.1. Part (d) is very intuitive. The radius of the sphere |Q−| = µκ is µκ.
The relative velocity is O(1) and it gets larger when Q− gets closer to the origin.
So the total time for the relative motion to stay inside the sphere is O(µκ).

Proof. In the proof, we omit the subscript in standing for the variables inside the
sphere |Q−| = µκ without leading to confusion.

The idea of the proof is to treat the relative motion as a perturbation of Kepler
motion and then approximate the relative velocities by their asymptotic values for
the Kepler motion.
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Fix a small number δ1. Below we derive several estimates valid for the first δ1 units
of time the orbit spends in the set |Q−| ≤ µk. We then show that ∆t � δ1. It will
be convenient to measure time from the orbit enters the set |Q−| < µk.

Using the formula in the Appendix A.1, we decompose the Hamiltonian (10.5) as
H = Hrel + h(Q+, v+) where

Hrel =
µ2

4L2
+
|Q−|2

2|Q+|2
− |Q+ ·Q−|2

2|Q+|5
+O(µ3κ), as µ→ 0,

and h depends only on Q+ and v+.

Note that H is preserved and ḣ = O(1) which implies that
L

µ
is O(1) and moreover

that ratio does not change much for t ∈ [0, δ1]. Using the identity
µ2

4L2
=
v2
−
4
− µ

2|Q−|
we see that initially

L

µ
is uniformly bounded from below for the orbits from Lemma

2.2. Thus there is a constant δ2 such that for t ∈ [0, δ1] we have δ2µ ≤ L(t) ≤ µ

δ2
.

Expressing the Cartesian variables via Delaunay variables (c.f. equation (A.3) in
Section A.2) we have up to a rotation by g
(10.9)

q1 =
1

µ
L2(coshu− e), q2 =

1

µ
LG sinhu,

O(µκ) = |Q−| =
√
|q1|2 + |q2|2 =

L

µ

√
L2(cosh2 u− 2 coshue+ e2) +G2 sinhu

=
L

µ

√
L2(cosh2 u− 2e coshu+ e2) + (L2e2 − L2) sinhu

=
L2

µ

√
1− 2e coshu+ e2 + e2 sinhu =

L2

µ
(e coshu− 1),

where u− e sinhu = `. This gives ` = O(µκ−1).

Next

˙̀ = −∂H
∂L

= − µ2

2L3
− ∂Hrel

∂Q−

∂Q−
∂L

= − µ2

2L3
+O(µκ)O(µκ−1) = − µ2

2L3
+O(µ2κ−1).

Since the leading term here is at least
δ3

2

2µ
while ` = O(µκ−1) we obtain part (d) of the

lemma. In particular the estimates derived above are valid for the time the orbits
spend in |Q−| ≤ µκ. Next, without using any control on G (using the inequality∣∣∣∣ ∂e∂G

∣∣∣∣ =
1

L

G/L

e
≤ 1

L
), we have

(10.10) Ġ =
∂H

∂Q−

∂Q−
∂g

= O(|Q−|2) = O(µ2κ), L̇ =
∂H

∂Q−

∂Q−
∂`

= O(µκ+1),
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(10.11) ġ =
∂H

∂Q−

∂Q−
∂G

= O(µκ)O(µκ−1) = O(µ2κ−1).

Integrating over time ∆t = O(µκ) we get the oscillation of g and arctan
G

L
are

O(µ3κ−1).

We are now ready to derive the first two equations of (10.7). It is enough to show

v+
− = R(α)v−−+O(µ(1−2κ)/3+µ3κ−1) where α = 2 arctan

G

L
is the angle formed by the

two asymptotes of the Kepler hyperbolic motion. We first have |v+
−| = |v−−|+O(µκ)

using the total energy conservation. It remains to show the expression of α. Let

us denote till the end of the proof φ = arctan
G

L
, γ =

(1/2)− κ
3

. Recall (see (A.3))

that for v− = (p1, p2),

(10.12) p1 = p̃1 cos g + p̃2 sin g, p2 = −p̃1 sin g + p̃2 cos g where

p̃1 =
µ

L

sinhu

1− e coshu
, p̃2 =

µG

L2

coshu

1− e coshu
.

Consider two cases.

(I) G ≤ µκ+γ . In this case on the boundary of the sphere |Q−| = µκ we have
` > δ3µ

−γ for some constant δ3. Thus

p2
p1

=
µG
L2 coshu cos g + µ

L sinhu sin g

−µGL2 coshu sin g + µ
L sinhu cos g

=
G
L ± tan g

±1− G
L tan g

+O(e−2|u|) = tan(g ± φ) +O(µ2γ).

where the plus sign is taken if u > 0 and the minus sign is taken if u < 0. Since
arctan is globally Lipschitz, this completes the proof in case (I) by choosing α = 2φ.

(II) G > µκ+γ . In this case
G

L
� 1 and so it suffices to show that

p2

p1
(or

p1

p2
) changes

little during the time the orbit is inside the sphere. Consider first the case where

|g−| > π

4
so sin g is bounded from below. Then

p2

p1
= cot g +O(µ1−(κ+γ))

proving the claim of part (a) in that case. The case |g−| ≤ π

4
is similar but we need

to consider
p1

p2
. This completes the proof in case (II).

Combining equation (10.3) and Lemma 10.1(c) we obtain

(10.13) Q+
+ = Q−+ +O(µκ).

We also have Q+
− = Q−−+O(µκ) due to to the definition of the sections {|Q±−| = µκ}.

This proves the last two equation in (10.7). Plugging (10.13) into (10.3) we see that

v+
+ = v−+ +O(µκ).

This completes the proof of part (a).
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The first claim of part (b) has already been established. The estimate of G follows
from the formula for α. The estimate of the closest distance follows from the fact
that if α is bounded away from 0 and 2π then the Q− orbit of Q−(t) is a small
perturbation of Kepler motion and for Kepler motion the closest distance is of order
G. We integrate the Ġ equation (10.10) over time O(µκ) to get the total variation
∆G is at most µ3κ, which is much smaller than µ. So G is bounded away from 0 by
a quantity of order O(µ).

Finally part (c) follows since we know G = µκ|v−| sin](v−, Q−) = O(µ). �

Proof of Lemma 2.2. Letting µ = 0 in the first two equations of (10.7) we obtain
the equations of elastic collisions. Namely, both the kinetic energy conservation

|v+
3 |

2 + |v+
4 |

2 = |v−3 |
2 + |v−4 |

2

and momentum conservation

v+
3 + v+

4 = v−3 + v−4

laws hold. On the other hand, the Gerver’s map G in Lemma 2.2 is also defined
through elastic collisions. The assumption θ̄+ = π+O(µ) implies that α in (10.7) is
µ close to its value in Gerver’s case. As a result, Lemma 10.2 says actually the same
thing as Lemma 2.2 up to a change of variables going from Cartesian coordinates
to the set of variables E3, `3, G3, g3, G4, g4. �

10.2. Proof of Lemma 2.3.

Proof. We follow the same argument as in the proof of Lemma 2.2 to get that the
orbit of Q3 is a small (of order O(θ̃)) deformation of Gerver’s Q3 ellipse. So we only
need to prove this lemma in Gerver’s setting. Since the Q3 ellipse has semimajor 1
in Gerver’s case, the distance from the apogee to the focus is strictly less than 2.
Therefore we can find some δ > 0 such that |Q3| ≤ 2− 2δ in the Gerver case. The
rest of the proof is similar to the proof of Lemma 4.1. �

11. Consequences of C0 estimates

Here we obtain corollaries C0 estimates for the local end global maps. Namely, in
subsection 11.1 we show that the orbits we construct are collision free. In subsec-
tion 11.2 we show that the angular momentum can be prescribed freely during the
consecutive iterations of the inductive scheme, that is, we prove Sublemma 3.4.

11.1. Avoiding collisions. Here we exclude the possibility of collisions. The pos-
sible collisions may occur for the pair Q3, Q4 and the pair Q1, Q4. The fact that
there is no collision between Q4 and Q1 is a consequence of the following result.

Lemma 11.1. If an orbit satisfies the conditions of Lemma 4.1 and there is a
collision between Q4 and Q1 then we have Ḡ4 + G4 = O(µ) where Ḡ4 denotes the
angular momentum of Q4 after the application of the global map.
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Proof. Since we are concerned with the orbit of Q4 it is convenient to use L4 instead

of L3. L4 satisfies the equation L′4 = − dt

d`4

∂VL
∂`4

= O(1/χ2), where “′” means the
d

d`4
derivative. We write the equations of motion as Y′ = V, where Y = (L4, G4, g4)
and V is the RHS of the Hamiltonian equations (4.5).

We run the orbit coming to a collision backward so that we can compare it to the
orbits exiting collision. We shall use the subscript in to refer to the orbit coming to
collision with time direction reversed the subscript out for the orbit exiting collision.

We have

(Yin −Yout)
′ = O

(∥∥∥∥∂V

∂Y

∥∥∥∥ |Yin −Yout|
)

+O

(
µ

|Q4 −Q3|2

)
where the last term comes from the

µ

|Q4 −Q3|
term in the potential VL. We integrate

this estimate for `4 starting from the collision and ending when the outgoing orbit
hits the section {x4 = −χ/2}. The initial condition is Yin−Yout = 0 since L4, G4, g4

assume the same values before and after the Q4-Q1 collision. Next,

∥∥∥∥∂V

∂Y

∥∥∥∥ = O

(
1

χ

)
(this is proven in Lemma 6.1(b) for the case when L4 is replaced by L3, and the
proof in the present case is similar; the applicability of Lemma 6.1 as well as Lemma
4.1 used below follows from Lemma 4.8). Now the estimates∫ `f4

`i4

∂V

∂Y
d`4 = O(1),

∫ `f4

`i4

O

(
µ

|Q4 −Q3|2

)
d`4 = O(µ/χ)

and the Gronwall Lemma imply that

(11.1) Yin(`f4)−Yout(`
f
4) = O(µ/χ).

Next we estimate the angular momentum of Q4 w.r.t. Q2. We have

(11.2) G4R = G4L + v4 × (−χ, 0) = G4L + v4yχ,

where v4y is the y component of the velocity of Q4 at the time the orbit hits the
section {x4 = −χ/2}. Using the equation (A.5) in the Appendix A.2 and Lemma
4.7 we see that for the orbits of interest

v4y =
k

L2
4

(L4 sin g4 −G4 cos g4) +O

(
1

χ2

)
.

Now (11.1) shows that v4y,in − v4y,out = O(µ/χ). Hence (11.2) implies that

G4R,in −G4R,out = O(µ)

Finally the proof of Lemma 4.1 shows that the angular momentum of Q4 w.r.t. Q2

changes by O(µ) during the time the orbits moves from the section {x4 = −χ/2} to
the section {x4 = −2}. �
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Now we exclude the possibility of collisions between Q3 and Q4. Note that Q3

and Q4 have two potential collision points corresponding to two intersections of the
ellipse of Q3 and the branch of the hyperbola utilized by Q4. See Fig 1 and 2 in
Section 2.3. Now it follows from Lemma 10.2(b) that Q3 and Q4 do not collide
near the intersection where they have the close encounter. We need also to rule
out the collision near the second intersection point. This was done by Gerver in
[G2]. Namely he shows that the time for Q3 and Q4 to move from one crossing
point to the other are different. As a result, if Q3 and Q4 come to the correct
intersection points nearly simultaneously, they do not collide at the wrong points.
To see that the travel times are different recall that by second Kepler’s law the area
swiped by the moving body in unit time is a constant for the two-body problem. In

terms of Delaunay coordinates, this fact is given by the equation ˙̀ = ± 1

L3
where

− is for hyperbolic motion and + for elliptic. In our case, we have L3 ≈ L4 when
µ� 1, χ� 1. Therefore in order to collide Q3 and Q4 must swipe nearly the same
area within the unit time. We see from Fig 1 and Fig 2, the area swiped by Q4 is a
proper subset of that by Q3 between the two crossing points. Therefore the travel
time for Q4 is shorter.

11.2. Choosing angular momentum.

Proof of the Sublemma 3.4. The idea is to apply the strong expansion of the Poincaré
map in a neighborhood of the collisional orbit studied in Lemma 11.1. Notice De-
launay coordinates regularizes double collisions, so that our estimate of dG holds
also for collisional orbits.

Step 1. We first show that there is a collisional orbit as `3 varies. The proof of
Lemma 11.1 shows that Q4 nearly returns back to its initial position. Sublemma 4.9
shows that if after the application of the local map we have θ+

4 (0) = π + θ̃ then the
orbit hits the line x4 = −χ so that its y4 coordinate is a large positive number and if
θ+

4 (0) = π− θ̃ then the orbit hits the line x4 = −χ so that its y4 coordinate is a large
negative number. Therefore due to the Intermediate Value Theorem it suffices to
show that our surface Sj , j = 1, 2, contains points x1,x2 such that θ+

4 (x1) = π− θ̃,

θ+
4 (x2) = π+ θ̃. We have the expression θ+

4 = g+
4 −arctan

G+
4

L+
4

. By direct calculation

we find dθ+ = L+
4

ˆ̄l (see also item (2) of Remark 3.1). Since TSj ⊂ Kj and the cone
Kj is centered at the plane span{ū3−j , ¯̄u3−j}. At Gerver’s collision point θ+ = 0.
It is enough to show that as we vary `3 close to Gerver’s collision point such that

θ+ changes significantly. Note that ¯̄u3−j → w̃ =
∂

∂`3
. We get using Lemma 3.8

dθ+ · (dL¯̄u3−j) = L+
4

ˆ̄lj ·
(

1

µ
(ûj (̂ljw̃) + o(1)) +O(1)

)
= cj(x)/µ, cj(xj) 6= 0.
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We choose θ̃ � 1 but independent of µ such that the assumption of Lemma 3.1 and
Sublemma 4.9 is satisfied.

Step 2. We show that there exists `3 such that ē4(P(`3, ẽ4)) is close to e∗∗4 . We fix
ẽ4 then P becomes a function of one variable `3. As we vary `3, the same calculation

as in Step 1 gives ˆ̄lj · (dL¯̄u3−j) = c̄j(x)/µ, c̄j(xj) 6= 0 and that ūj contains nonzero
∂/∂e4 component. Therefore the projection of P = G ◦ L to the e4 component, i.e.
ē4(`3, ẽ4) as a function of `3 is strongly expanding with derivative bounded from

below by
c̄χ2

µ
provided that the assumptions of Lemma 4.1 are satisfied (for the

orbits of interest this will always be the case according to Lemma 4.8). Since the
map ē4(`3, ẽ4) is not injective, we study Ḡ4(`3, ẽ4) instead of ē4(`3, ẽ4) using the

relation e =
√

1 + 2(G/L)2. We have the same strong expansion for Ḡ4(`3, ẽ4) since
our estimates of the dL, dG are done using G4 instead of e4. Thus it follows from the
strong expansion of the map Ḡ4(`3, ẽ4) that a R-neighborhood of G∗∗4 (corresponding

to e∗∗4 ) is covered if e4 varies in a
Rµ

c̄χ2
-neighborhood. Taking R large we can ensure

that Ḡ4 changes from a large negative number to a large positive number. Then
we use the intermediate value theorem to find e4 such that |Ḡ4 −G∗∗4 | <

√
δ, hence

|ē4 − e∗∗4 | <
√
δ.

Step 3. We show that for the orbit just constructed P(`3, ẽ4) ∈ U2(δ). Since e4

changes substantially Q4 must pass close to Q1 and hence L(ẽ4, l̃3) must have θ+
4

small. Therefore by Lemma 2.2 L(ẽ4, l̃3) has (E3, e3, g3) close to

Gẽ4,2,4(E3(ẽ4, l̃3), e3(ẽ4, l̃3), g3(ẽ4, l̃3)). It follows that

|E3 − E∗∗3 | < Kδ, |e3 − e∗∗3 | < Kδ, |g3 − g∗∗3 | < Kδ.

Next Lemma 2.4 shows that after the application of G, (E3, e3, g3) change little and
θ−4 becomes O(µ). �

12. Derivative of the local map

12.1. Justifying the asymptotics. Here we give the proof of Lemma 3.1. Our goal
is to show that the main contribution to the derivative comes from differentiating
the main term in Lemma 10.2.

Proof of Lemma 3.1. Since the transformation from Delaunay to Cartesian variables
is symplectic and the norms of the transformation matrices are independent of µ,
it is sufficient to prove the lemma in terms of Cartesian coordinates. To go to the
coordinates system used in Lemma 3.1, we only need to multiply the Cartesian

derivative matrix by O(1) matrices, namely, by
∂(L3, `3, G3, g3, G4, g4)+

∂(Q3, v3, Q4, v4)+
on the left
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and by
∂(Q3, v3, Q4, v4)−

∂(L3, `3, G3, g3, G4, g4)−
on the right. This does not change the form of the

dL stated in Lemma 3.1.

As before we use the formula (5.1). We need to consider the integration of the
variational equations and also the boundary contribution. The proof is organized as
follows. The main part of the proof is the study of the relative motion part, while
controlling the motion of the mass center is easier.

For the relative motion part, we use the Delaunay variables (L, `,G, g). Using ` as
the time variable we get from (10.5) that the equations for relative motion take the
following form (recall that the scale for ` is O(µκ−1)):

(12.1)



∂L

∂`
= −2µ−2L3∂H

∂`

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ2+κ),

∂G

∂`
= −2µ−2L3∂H

∂g

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ1+2κ),

∂g

∂`
= 2µ−2L3∂H

∂G

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ2κ),

where . . . denote the lower order terms. The estimates of the last two equations
follow from (10.10) and (10.11) while the estimate of the first equation is similar to
the last two.

Then we analyze the variational equations.

(12.2)
dδL

d`
dδG

d`
dδg

d`

 = O

 µ1+κ µ1+κ µ1+2κ

µ1+κ µ2κ µ1+2κ

µ2κ−1 µ2κ−1 µ2κ

 δL
δG
δg

+O

 µ2+κ 0
µ1+2κ 0
µ2κ 0

[ δQ+

δv+

]
.

In the following, we first set δQ+ = 0 and work with the fundamental solution of
the homogeneous equation. Then we will prove that δQ+ is negligible.

Introducing δG =
δg

µ3κ−2
we need the asymptotics of the fundamental solution of

(12.3)


dδL

d`
dδG

d`
dδG

d`

 = O

 µ1+κ µ1+κ µ5κ−1

µ1+κ µ2κ µ5κ−1

µ1−κ µ1−κ µ2κ

 δL
δG
δG

 .

Integrating this equation over time µκ−1 we see that the fundamental solution is
O(1). Now arguing the same way as in Section 6.2 we see that the fundamental
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solution takes form

(12.4) Id +O

 µ2κ µ2κ µ6κ−2

µ2κ µ3κ−1 µ6κ−2

1 1 µ3κ−1

 .

In the following it is convenient to use variables L = µL, G and g. In these variables
fundamental solution of the variational equation is

(12.5) Id +O

 µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1

 .

Next, we compute the boundary contribution. In terms of the Delaunay variables
inside the sphere |Q−| = µκ, we have

(12.6)
∂`

∂(L, G, g)
= −

(
∂|Q−|
∂`

)−1 ∂|Q−|
∂(L, G, g)

= (O(µκ−1), O(µκ−2), 0).

Indeed, due to (10.9) we have
∂|Q−|
∂g

= 0,
∂|Q−|
∂`

= O(µ),
∂|Q−|
∂L

= O(µκ) and

∂|Q−|
∂G

= O(µκ−1). Combining this with (12.1) we get

(12.7)

(
∂L
∂`
,
∂G

∂`
,
∂g

∂`

)
⊗ ∂`

∂(L, G, g)
= O

 µ2κ µ2κ−1 0
µ3κ µ3κ−1 0
µ3κ−1 µ3κ−2 0

 .

Using (5.1) we obtain the derivative matrix

(12.8)

∂(L, G, g)+

∂(L, G, g)−
=

Id +O

 µ2κ µ2κ−1 0
µ3κ µ3κ−1 0
µ3κ−1 µ3κ−2 0

−1

×

Id +O

 µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1

Id−O

 µ2κ µ2κ−1 0
µ3κ µ3κ−1 0
µ3κ−1 µ3κ−2 0


= Id +O

 µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1

 := Id + P.

We are now ready to compute the relative motion part of the derivative of the
Poincaré map. For the space variables, we are only interested in the angle Θ :=

arctan

(
q2

q1

)
since the length |(q1, q2)| is fixed when restricted on the sphere.

We split the derivative matrix as follows:

(12.9)
∂(Θ−, v−)+

∂(Θ−, v−)−
=
∂(Θ−, v−)+

∂(L, G, g)+

∂(L, G, g)+

∂(L, G, g)−
∂(L, G, g)−

∂(Θ−, v−)−
=
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∂(Θ−, v−)+

∂(L, G, g)+

∂(L, G, g)−

∂(Θ−, v−)−
+
∂(Θ−, v−)+

∂(L, G, g)+
P
∂(L, G, g)−

∂(Θ−, v−)−
= I + II.

Using equations (10.9) and (10.12) we obtain

(12.10)
∂(Θ−, v−)+

∂(L, G, g)+
= O

 1 µ−1 1
1 µ−1 1
1 µ−1 1

 .

Next, we consider the first term in (12.9).
(12.11)

I =
∂(Θ−, v−)+

∂L+
⊗ ∂L−

∂(Θ−, v−)−
+
∂(Θ−, v−)+

∂G+
⊗ ∂G−

∂(Θ−, v−)−
+
∂(Θ−, v−)+

∂g+
⊗ ∂g−

∂(Θ−, v−)−
.

Using the expressions

1

4L2
=
v2
−
4
− µ

2|Q−|
, G = v− ×Q− = |v−| · |Q−| sin](v−, Q−)

we see that

(12.12)
∂L−

∂(Θ−, v−)−
= O(1),

∂G−

∂(Θ−, v−)−
= (O(µκ), O(µκ)).

Next, we have
∂(Θ−, v−)+

∂g+
= (O(1), O(1)) from equations (10.9) and (10.12). To

obtain the derivatives of g we use the fact that

p2

p1
=

sin g sinhu± G
µL cos g coshu

cos g sinhu∓ G
µL sin g coshu

=
tan g ± G

µL

1∓ G
µL tan g

+ e−2|u|E(G/µL, g, u),

where E is a smooth function satisfying
∂E

∂g
= O(1) as `→∞. Therefore we get

g = arctan

(
p2

p1
− e−2|u|E(G/µL, g)

)
∓ arctan

G

µL
as `→∞.

We choose the + when considering the incoming orbit parameters. Thus

∂g

∂(Θ−, v−)

(
1 +O(e−2|u|)

)
=
∂ arctan p2

p1

∂(Θ−, v−)
+
∂ arctan G

µL
∂L

∂L
∂(Θ−, v−)

+

(
∂ arctan G

µL
∂G

+O(e−2|u|/µ)

)
∂G

∂(Θ−, v−)
+O(e−2|u|).

Hence

(12.13)
∂g

∂(Θ−, v−)
= O

(
1

µ

)
∂G

∂(Θ−, v−)
+O(1),
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where the 1/µ comes from

∂ arctan
G

µL
∂G

and all other terms are O(1) or even smaller.

Therefore
(12.14)

I =
1

µ

(
µ
∂(Θ−, v−)+

∂G+
+ µ

∂ arctan G−

µL−

∂G−
∂(Θ−, v−)+

∂g+
+O(e−2|u|)

)
⊗ ∂G−

∂(Θ−, v−)−
+∂(Θ−, v−)+

∂L+
⊗ ∂L−

∂(Θ−, v−)−
+
∂(Θ−, v−)+

∂g+
⊗

∂ arctan
p−2
p−1

∂(Θ−, v−)
+
∂ arctan G−

µL−

∂L−
∂L−

∂(Θ−, v−)




+O(e−2|u|). Since the expression in parenthesis of the first term is O(1), I has the
rate of growth required in Lemma 3.1.

Now we study the second term in (12.9)

(12.15)

II = O

 1 µ−1 1
1 µ−1 1
1 µ−1 1

 ·O
 µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1

 ∂(L, G, g)−

∂(θ−, v−)−

= O

 µ3κ−1 µ3κ−2 µ3κ−1

µ3κ−1 µ3κ−2 µ3κ−1

µ3κ−1 µ3κ−2 µ3κ−1

 ∂(L, G, g)−

∂(Θ−, v−)−

= O

 µ3κ−1

µ3κ−1

µ3κ−1

⊗ ∂L−

∂(Θ−, v−)−

+O

 µ3κ−2

µ3κ−2

µ3κ−2

⊗ ∂G−

∂(Θ−, v−)−
+O

 µ3κ−1

µ3κ−1

µ3κ−1

⊗ ∂g−

∂(Θ−, v−)−

where we use that µ2κ < µ3κ−1 and µ2κ−1 < µ3κ−2 since κ < 1/2. The first summand
in (12.15) is O(µ3κ−1).Therefore (12.13) implies that

(12.16) II =
1

µ
O

 µ3κ−1

µ3κ−1

µ3κ−1

⊗ ∂G−

∂(Θ−, v−)−
+O(µ3κ−1).

Now we combine (12.14) and (12.16) to get
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(12.17)

∂(Θ−, v−)+

∂(Θ−, v−)−
=

1

µ

(
µ
∂(Θ−, v−)+

∂G+
+ µ

∂ arctan G−

µL−

∂G−
∂(Θ−, v−)+

∂g+
+O(µ3κ−1)

)

⊗ ∂G−

∂(Θ−, v−)−
+

(
∂(Θ−, v−)+

∂L+
⊗ ∂L−

∂(Θ−, v−)−

+
∂(Θ−, v−)+

∂g+
⊗

 ∂ arctan
p−2
p−1

∂(Θ−, v−)−
+

∂ arctan
G−

µL−
∂L−

∂L−

∂(Θ−, v−)−

+O(µ3κ−1)

 .

(12.17) has the structure stated in the lemma. In (12.17), we use the variable Θ−

for the relative position Q− and we have
∂G−

∂(Θ−, v−)−
= O(µκ). To get back to Q−,

i.e. to obtain
∂(Q−, v−)+

∂(Q−, v−)−
, we use Q− = µκ(cos Θ−, sin Θ−). So we have the esti-

mate
∂Q+
−

∂(L−, G−, g−)+
= O(µκ)

∂Θ+
−

∂(L−, G−, g−)+
= O(µκ−1). To get

∂−
∂Q−−

, we use the

transformation from polar coordinates to Cartesian,
∂−
∂Q−−

=
∂−

∂(r−,Θ−)−
∂(r−,Θ−)−

∂Q−−
,

where r− = |Q−−| = µκ. Therefore we have

∂r−−
∂Q−−

= 0,
∂−
∂Q−−

=
1

µκ
∂−
∂Θ−−

(− sin Θ−−, cos Θ−−).

So we have the estimate
∂G−

∂Q−−
= O(1), and

∂L−

∂Q−−
=
∂L−

∂Θ−−
= 0 since in the expression

1

4L2
=
v2
−
4
− µ

2|Q−|
, the angle Θ− plays no role. Finally, we have

∂ arctan
p−2
p−1

∂Q−−
= 0.

So we get

∂(Q−, v−)+

∂(Q−, v−)−
=

1

µ
(O(µκ)1×2, O(1)1×2)⊗ (O(1)1×2, O(µκ)1×2) +O(1)4×4 +O(µ3κ−1).

It remains to show that other entries of the derivative matrix are O(1).

Consider the following decomposition
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(12.18)

∂(Q−, v−, Q+, v+)+

∂(Q−, v−, Q+, v+)−
=
∂(Q−, v−, Q+, v+)+

∂(L, G, g,Q+, v+)+

∂(L, G, g,Q+, v+)+

∂(L, G, g,Q+, v+)(`f )

∂(L, G, g,Q+, v+)(`f )

∂(L, G, g,Q+, v+)(`i)

∂(L, G, g,Q+, v+)(`i)

∂(L, G, g,Q+, v+)−
∂(L, G, g,Q+, v+)−

∂(Q−, v−, Q+, v+)−

:=

[
M 0
0 Id

] [
A 0
B Id

] [
C D
E F

] [
A′ 0
B′ Id

] [
N 0
0 Id

]
=

[
MACA′N +MADB′N MAD

(BC + E)A′N + (BD + F )B′N BD + F

]
We have already computed M, A, C, A′ and N (see (12.10), (12.7), (12.12), (12.13)),
where C is (12.5) and ACA′ = Id + P is given by (12.8). We still need to compute
B,B′, D,E, F .

From the Hamiltonian (10.5), we have ˙̀ = − 1

2µL3
+O(µ2κ). We need to supplement

(12.1) and (12.2) by the following equations.

(12.19)

dQ+

d`
= −v+

2
(2µL3)(1 +O(µ2κ+1)) = O(µ)

dv+

d`
=

(
2Q+

|Q+|3
+O(µ2κ)

)
(2µL3)(1 +O(µ2κ+1)) = O(µ).

(12.20)

 dδQ+

d`
dδv+

d`

 =

[
µ2κ+2 µ
µ 0

] [
δQ+

δv+

]
+

[
µ µ2κ+1 µ2κ+2

µ µ2κ+1 µ2κ+2

] δL
δG
δg

 .
It follows from (12.6) and (12.19) that

(12.21) B,B′ = O

(
µ
µ

)
⊗O

(
µκ−1, µ2κ−2, 0

)
.

Next, we obtain

(12.22) D = O

 µ2κ µ2κ

µ3κ µ3κ

µ3κ−1 µ3κ−1

 , E = O

(
µκ µ3κ−1 µ3κ

µκ µ3κ−1 µ3κ

)
,

(12.23) F = Id +O

(
µ3κ µκ

µκ µ3κ

)
.

It is a straightforward computation that CA′ dominates DB′, so ADB′ is provides
a small correction to the P in ACA′ = Id + P in (12.8). Therefore

MACA′N +MADB′N
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in (12.18) has the same structure as MACA′N obtained in (12.14) and (12.15).
Next (12.21), (12.22), (12.23) give

BD + F = Id +O

(
µ5κ−1 µκ

µκ µ5κ−1

)
.

Accordingly

(12.24) (BC + E)A′N + (BD + F )B′N =
1

µ
[O(µ2µ)]1×4 ⊗

∂G−

∂(θ, v)−−
+O(µκ).

Finally, we have MAD = [O(µ3κ−1)]3×2.
These estimates of the matrix (12.18) are enough to conclude the Lemma. To
summarize, we get the resulting derivative estimate as
(12.25)

(12.18) =
1

µ
O(µκ1×2, 11×2, µ

2κ
1×4)⊗O

(
11×2, µ

κ
1×2, 01×4

)
+O

(
(O(1))4×4 µ3κ−1

µκ Id4 + µκ

)
.

�

The above proof actually gives us more information. Below we use the Delaunay
variables (L3, `3, G3, g3, G4, g4)± as the orbit parameters outside the sphere |Q−| =
µκ and add a subscript in to the Delaunay variables inside the sphere. We relate C0

estimates of Lemma 10.2 to the C1 estimates obtained above. Namely consider the
following equation which is obtained by discarding the O(µ3κ−1) and O(µκ) errors
in (10.7)

(12.26) Q+
− = 0, v+

− = R(α)v−−, Q+
+ = Q−+, v

+
+ = v−+,

where α is given in (10.8). We have the following corollary saying that dL can be
obtained by taking derivative directly in (12.26).

Corollary 12.1. The derivative of the local map has the following form

(12.27) dL =
1

µ
(û +O(µκ))⊗ l + B̂ +O(µ3κ−1),

where û, l and B̂ are computed from (12.26). In particular,

(12.28)

û =
∂(L3, `3, G3, g3, G4, g4)+

∂(Q3, v3, Q4, v4)+

∂(Q3, v3, Q4, v4)+

∂(Q−, v−, Q+, v+)+

∂(Q−, v−, Q+, v+)+

∂α

(
µ
∂α

∂Gin

)
,

l =
∂Gin

∂(Q−, v−, Q+, v+)−
∂(Q−, v−, Q+, v+)−

∂(Q3, v3, Q4, v4)−
∂(Q3, v3, Q4, v4)−

∂(L3, `3, G3, g3, G4, g4)−
.
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Proof. In (12.28), the derivatives
∂(L3, `3, G3, g3, G4, g4)+

∂(Q3, v3, Q4, v4)+

∂(Q3, v3, Q4, v4)+

∂(Q−, v−, Q+, v+)+
in û

and
∂(Q−, v−, Q+, v+)−

∂(Q3, v3, Q4, v4)−
∂(Q3, v3, Q4, v4)−

∂(L3, `3, G3, g3, G4, g4)−
in l are obvious. We focus on the

remaining part.

We have

∂(Q+, v+)+

∂(Q+, v+)−
= Id4,

∂(Q+, v+)+

∂(Q−, v−)−
=
∂(Q−, v−)+

∂(Q+, v+)−
= 0,

∂(Q+, v+)+

∂α
=

∂Gin
∂(Q+, v+)−

= 0

from (12.26) and (10.8) for Gin, which agrees with the corresponding blocks in

(12.25) up to an o(1) error as µ→ 0. It remains to compare
∂(Q−, v−)+

∂(Q−, v−)−
.

It is easy to see from (12.17) that the expression for l in (12.28) is true.

We take derivative directly in (12.26) to get
∂(Q−, v−)+

∂α
=

(
0,
∂v+
−

∂α

)
. To get the

expression of û in (12.28), it is enough to show the following compared with (12.17)

(12.29)
∂v+
−

∂α

(
∂α

∂Gin

)
=

(
∂v+
−

∂G+
+
∂ arctan G−

µL−

∂G−
∂v+
−

∂g+

)
, Gin = G−,

Actually we have using (10.9) and geometric consideration

v+
− = R (α) v−− +O(e−2|u|) = R (β) (|v−−|, 0) +O(e−2|u|), e−|u| ' µκ, where

α = 2 arctan
Gin
µL

, β = g+arctan
Gin
µL

, g = arctan
Gin
µL

+arctan
p−2
p−1

+O(µ2κ), v− = (p1, p2).

We take the Gin derivative directly and neglect e−2|u| term in the v+
− expression

above to get (12.29). The e−2|u| term is negligible as we did in the proof of Lemma
3.1. In (12.26), v+

− also depends on v− explicitly. When we take partial derivative

with respect to the explicit dependence, we get a O(1) matrix that goes into B̂. We

again compare with (12.17) to show the equivalence of B̂ obtained in two different

ways. However, we will not need any information from B̂ except its boundedness in
the paper. The proof is now complete.

�

Corollary 12.2. Let γ(s) : (−ε, ε)→ R6 be a C1 curve such that Γ = γ′(0) = O(1)

and
∂G−in
∂s

= O(µ) then when taking derivative with respect to s in equations
|v+

3 |2 + |v+
4 |2 = |v−3 |2 + |v−4 |2 + o(1),

v+
3 + v+

4 = v−3 + v−4 + o(1),

Q+
3 +Q+

4 = Q−3 +Q−4 + o(1),

obtained from equation (10.7), the o(1) terms are small in the C1 sense.



70 JINXIN XUE AND DMITRY DOLGOPYAT

Proof. For the motion of the mass center, it follows from Corollary 12.1 that

∂(Q+, v+)+

∂(Q−, v−, Q+, v+)−
=

1

µ

∂(Q+, v+)+

∂α
⊗ l + (04×4, Id4×4) + o(1). We already ob-

tained that
∂(Q+, v+)+

∂α
= O(µ2κ) (see equation (12.24)). Due to Corollary 12.1 our

assumption that
∂G−in
∂s

= O(µ) implies that

(12.30) l · Γ = O(µ)

which suppresses the 1/µ term. This proves the corollary for the last two identities.

To derive the first equation we use the fact that the Hamiltonian (10.5) is preserved.
Namely we use the fact that RHS (10.5) is the same in + and − variables. It is

enough to show
d

ds
(|v+
−|2−|v−−|2) = o(1) since we already have the required estimate

for the velocity of the mass center. In (10.5), the terms involving only Q+, v+ are

handled using the result of the previous paragraph. The term − µ

|Q−|
vanishes when

taking derivative since |Q−| = µκ is constant. All the remaining terms have Q−

to the power 2 or higher. We have
∂Q−−
∂s

= O(1) since Γ = O(1). We also have

∂Q+
−

∂s
= O(1) due to (12.30). Therefore after taking the s derivative, any term

involving Q− is of order O(µκ). This completes the proof of the energy conservation
part. �

12.2. Proof of the Lemma 3.8. In this section we work out the O(1/µ) term in
the local map.

Proof. The proof is relies on a numerical computation.

Before collision, l =
∂Gin
∂−

. According to Corollary 12.1 we can differentiate the

asymptotic expression of Lemma 10.2. We have

(
∂Gin

∂G−4
,
∂Gin

∂g−4

)
=

−(v−3 −v
−
4 )×

(
∂

∂G−4
,
∂

∂g−4

)
Q4−(v−3 −v

−
4 )×

(
∂Q4

∂`−4

)
·
(
∂`−4
∂G−4

,
∂`−4
∂g−4

)
+O(µκ+µ1−2κ),

where O(µκ) comes from

(
∂

∂−
(v−3 − v

−
4 )

)
× (Q3 − Q4) and O(µ1−2κ) comes from

∂Q4

∂L−4

∂L−4
∂−

where L4 is solved from the Hamiltonian (9.1) H = 0.

We need to eliminate `4 using the relation |Q3 −Q4| = µκ.(
∂`−4
∂G−4

,
∂`−4
∂g−4

)
= −

(
∂|Q3 −Q4|

∂`−4

)−1(∂|Q3 −Q4|
∂G−4

,
∂|Q3 −Q4|

∂g−4

)
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= −
(Q3 −Q4) ·

(
∂Q4

∂G−4
, ∂Q4

∂g−4

)
(Q3 −Q4) · ∂Q4

∂`−4

= −
(v−3 − v

−
4 ) ·

(
∂Q4

∂G−4
, ∂Q4

∂g−4

)
(v−3 − v

−
4 ) · ∂Q4

∂`−4

+O(µ1−κ).

Here we replaced Q−3 −Q
−
4 by v−3 − v

−
4 using the fact that the two vectors form an

angle of order O(µ1−κ) (see Lemma 10.2(c)). Therefore(
∂Gin

∂G−4
,
∂Gin

∂g−4

)
= −(v−3 − v

−
4 )×

(
∂

∂G−4
,
∂

∂g−4

)
Q4

+(v−3 − v
−
4 )× ∂Q4

∂`−4

(v−3 − v
−
4 ) ·

(
∂Q4

∂G−4
, ∂Q4

∂g−4

)
(v−3 − v

−
4 ) · ∂Q4

∂`−4

+O(µκ + µ1−2κ).

Similarly, we get

∂Gin

∂`−3
= (v−3 − v

−
4 )× ∂Q3

∂`−3
+ (v−3 − v

−
4 )× ∂Q4

∂`−4

(v−3 − v
−
4 ) · ∂Q3

∂`−3

(v−3 − v
−
4 ) · ∂Q4

∂`−4

+O(µκ + µ1−2κ).

We use Mathematica and the data in the Appendix B.2 to work out
∂Gin
∂−

. The

results are : for the first collision, l̂1 = [∗,−0.8, ∗, ∗, 3.42,−2.54], and for the second

collision: l̂2 = [∗,−0.35, ∗, ∗, 3.44,−0.47]. We can check directly that l̂i · w3−i 6= 0

and l̂i · w̃ 6= 0 for i = 1, 2 using (3.3).

After collision, û =
∂−
∂α

. In equation (10.7), we let µ→ 0. Applying the implicit

function theorem to (10.7) with µ = 0 we obtain(
∂(Q+

3 , v
+
3 , Q

+
4 , v

+
4 )

∂(X+, Y +)
+
∂(Q+

3 , v
+
3 , Q

+
4 , v

+
4 )

∂`+4
⊗ ∂`+4
∂(X+, Y +)

)
· ∂(X+, Y +)

∂α

=
1

2

(
0, 0, R

(π
2

+ α
)

(v−3 − v
−
4 ), 0, 0,−R

(π
2

+ α
)

(v−3 − v
−
4 )
)T

=
1

2

(
0, 0, R

(π
2

)
(v+

3 − v
+
4 ), 0, 0,−R

(π
2

)
(v+

3 − v
+
4 )
)T

.

where R(π/2 + α) =
dR(α)

dα
and

∂`+4
∂(X+, Y +)

is given by (9.3). Again we use

Mathematica to work out the
∂−
∂α

. The results are: for the first collision û1 =

[−0.49, ∗, ∗, ∗,−0.20,−0.64] and for the second collision û2 = [−1.00, ∗, ∗, ∗, 0.34,−0.50].
We can check directly that l̄i · ûi 6= 0 for i = 1, 2 using (3.3).

To obtain a symbolic sequence with any order of symbols 3, 4 as claimed in the main
theorem, we notice that the only difference is that the outgoing relative velocity
changes sign (v+

3 − v
+
4 )→ −(v+

3 − v
+
4 ). So we only need to send û→ −û. �
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12.3. Proof of the Lemma 3.9. In this section, we prove Lemma 3.9, which guar-
antees the non degeneracy condition Lemma 3.3 (see the proof of Lemma 3.3). Since

we have already obtained l and u in dL and l̄, ¯̄l, ū, ¯̄u in dG, one way to prove Lemma
3.3 is to work out the matrix B explicitly using Corollary 12.1 on computer. In that
case, the current section is not necessary. However, in this section, we use a dif-
ferent approach, which simplifies the computation and has several advantages. The
first advantage is that this treatment has clear physical and geometrical meaning.
Second, we use the same way to control the shape of the ellipse in Appendix B.3.
Third, this method gives us a way to deal with the singular limit dL as µ→ 0.

Recall that Lemmas 3.1 and 3.2 give the following form for the derivatives of local
map and global maps

dL =
1

µ
uj ⊗ lj +B +O(µκ), dG = χ2ūj ⊗ l̄j + χ¯̄uj ⊗ ¯̄lj +O(µ2χ),

where j = 1, 2 standing for the first or second collision. Moreover, in the limit
χ→∞, µ→ 0,

span{ūj , ¯̄uj} → span{wj , w̃}, lj → l̂j , l̄j → l̄j ,
¯̄lj → ¯̄lj , j = 1, 2.

We first prove an abstract lemma that reduces the study of the local map of the
µ > 0 case to µ = 0 case. It shows that we can find a direction in span{ū, ¯̄u}, along
which the directional derivative of dL is not singular.

Lemma 12.3. Suppose the vector Γ̃µ ∈ span{ū3−j , ¯̄u3−j} satisfies l̄j(dLΓ̃µ) = 0

and ‖Γ̃µ‖∞ = 1. Then we have lj(Γ̃µ) = O(µ) as µ → 0 and the following limits
exist

Γ3−j = lim
µ→0

Γ̃µ and lim
µ→0

dLΓ̃µ = ∆j ,

and the ∆j satisfies ˆ̄lj(∆j) = 0.

Proof. Denote Γ′µ = lj(ū3−j)¯̄u3−j − lj(¯̄u3−j)ū3−j ∈ Kerlj and let vµ be a vector in
span(ū3−j , ¯̄u3−j) such that vµ → v as µ→ 0 and lj(vµ) = 1. Suppose that

Γ̃µ = aµvµ + bµΓ′µ

then

(12.31) dL(Γ̃µ) =
aµ
µ

lj(vµ)uj + aµBj(vµ) + bµBjΓ
′
µ + o(1).

So l̄j(dL(Γ̃µ)) = 0 implies that

(12.32) aµ = −µ
bµl̄j(BjΓ

′
µ) + o(1)

lj(vµ)̄lj(uj) + µl̄jBj(vµ)
.

The denominator is not zero since lj(vµ) = 1 and l̄j(uj) using Lemma 3.8. Therefore

aµ = O(µ) and hence Γ̃µ = bµΓ′µ + O(µ) and lj(Γ̃µ) = O(µ). Now the remaining
statements of the lemma follow from equations (12.31) and (12.32). �
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To compute the numerical values it is more convenient for us to work with polar
coordinates. We need the following quantities.

Definition 12.1. • ψ: polar angle, related to u by tan
ψ

2
=

√
1 + e

1− e
tan

u

2
for ellipse. We choose the positive y axis as the axis ψ = 0. E: energy;
e : eccentricity; G: angular momentum, g: argument of periapsis.
• The subscripts 3, 4 stand for Q3 or Q4. The superscript ± refers to before

or after collision. Recall that all quantities are evaluated on the sphere

|Q3 −Q4| = µκ.

Recall the formula r =
G2

1− e cosψ
for conic sections in which the perigee lies on the

axis ψ = π. In our case we have

(12.33)


r±3 =

(G±3 )2

1− e±3 sin(ψ±3 + g±3 )
+ o(1),

r±4 =
(G±4 )2

1− e±4 sin(ψ±4 − g
±
4 )

+ o(1).

o(1) terms are small when µ→ 0 (recall that we always assume that χ� 1/µ).

Lemma 12.4. Under the assumptions of Corollary 12.2 we have

dr+
3

ds
=
dr+

4

ds
+o(1),

dr−3
ds

=
dr−4
ds

+o(1),
dψ+

3

ds
=
dψ+

4

ds
+o(1),

dψ−3
ds

=
dψ−4
ds

+o(1).

Moreover in (12.33) the o(1) terms are also C1 small when taking the s derivative.

Proof. To prove the statement about (12.33), we use the Hamiltonian (4.1). The r3,4

obey the Hamiltonian system (4.1). The estimate (9.2) shows the
−µ

|Q3 −Q4|
gives

small perturbation to the variational equations. The two O(1/χ) terms in (4.1) are
also small. This shows that the perturbations to Kepler motion is C1 small.

Next we consider the derivatives
∂r±3,4
∂s

. We consider first the case of “−”. From the

condition |~r3 − ~r4| = µκ, for the Poincaré section we get

(~r3 − ~r4) · d
ds

(~r3 − ~r4) = 0.

This implies (~r3 − ~r4) ⊥ d

ds
(~r3 − ~r4).

We also know the angular momentum for the relative motion is

Gin = (~̇r3 − ~̇r4)× (~r3 − ~r4) = O(µ),
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which implies ~̇r3− ~̇r4 is almost parallel to ~r3−~r4. The condition
∂G−in
∂s

= O(µ) reads(
d

ds
(~̇r3 − ~̇r4)

)
× (~r3 − ~r4) + (~̇r3 − ~̇r4)×

(
d

ds
(~r3 − ~r4)

)
= O(µ).

Since the first term is O(µκ) due to our choice of the Poincare section we see that

(~̇r3 − ~̇r4)×
(
d

ds
(~r3 − ~r4)

)
= o(1).

Since
d

ds
(~r3−~r4) is almost perpendicular to (~̇r3−~̇r4) by the analysis presented above

we get
d

ds
(~r3−~r4) = o(1). Taking the radial and angular part of this vector identity

and using that r4 = r3 + o(1), ψ4 = ψ3 + o(1) we get ”−” part of the lemma.

To repeat the above argument for “+” variables, we first need to establish
∂G−in
∂s

=

O(µ). Indeed, using equations (12.8) and (12.18) we get

∂G+
in

∂ψ
=

∂G+
in

∂(L, Gin, g,Q+, v+)−
∂(L, Gin, g,Q+, v+)−

∂ψ

= O(µ3κ, 1, µ3κ, µ3κ
1×2, µ

3κ
1×2) ·O(1, µ, 1, 11×2, 11×2) = O(µ).

It remains to show

(
d

ds
(~̇r3 − ~̇r4)

)
= O(1) in the “ + ” case. Since we know it is

true in the “-” case, the “+” case follows, because the directional derivative of the
local map dLΓ is bounded due to our choice of Γ. �

We are now ready to describe the computation of Lemma 3.9. The reader may
notice that the computations in the proofs of Lemmas 3.9 and 2.1 are quite similar.
Note however that Lemma 3.9 describes the subleading term for the derivative of
the local map. By contrast the leading term can not be understood in terms of
the Gerver map since it comes from the possibility of varying the closest distance
between Q3 and Q4 and this distance is assumed to be zero in Gerver’s model.

We will use the following set of equations which follows from (12.26).

(12.34) E+
3 + E+

4 = E−3 + E−4 ,

(12.35) G+
3 +G+

4 = G−3 +G−4 ,

(12.36)
e+

3

G+
3

cos(ψ+
3 +g+

3 )+
e+

4

G+
4

cos(ψ−4 −g
−
4 ) =

e−3
G−3

cos(ψ−3 +g−3 )+
e−4
G−4

cos(ψ−4 −g
−
4 ),

(12.37)
(G+

3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
,
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(12.38) ψ+
3 = ψ−3

(12.39)
(G+

3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G+

4 )2

1− e+
4 sin(ψ+

4 − g
+
4 )
,

(12.40)
(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
=

(G−4 )2

1− e−4 sin(ψ−4 − g
−
4 )
,

(12.41) ψ−4 = ψ−3

(12.42) ψ+
4 = ψ+

3

In the above equations we have dropped o(1) terms for brevity. We would like to
emphasize that the above approximations hold not only in C0 sense but also in C1

sense when we take the derivatives along the directions satisfying the conditions of
Corollary 12.2. (12.34) is the approximate conservation of the energy, (12.35) is the
approximate conservation of the angular momentum and (12.36) follows from the
approximate momentum conservation (see the derivation of (B.2) in Appendix B.3).
The possibility of differentiating these equations is justified in Corollary 12.2. The
remaining equations reflect the fact that Q±3 and Q±4 are all close to each other. The
possibility of differentiating these equations is justified by Lemma 12.4.

We set the total energy to be zero. So we get E±4 = −E±3 . This eliminates E±4 .
Then we also eliminate ψ±4 by setting them to be equal ψ±3 .

Proof of the Lemma 3.9. Lemma 12.3 and Corollary 12.1 show that the assumption
of Lemma 3.9 implies that the direction Γ along which we take the directional

derivative satisfies
∂Gin
∂Γ

= O(µ). So we can directly take derivatives in equations

(12.34)-(12.34). Recall that we need to compute dE+
3 (dLΓ) where Γ ∈ Kerlj ∩

span{w3−j , w̃}. (3.3) tells us that in in Delaunay coordinates we have

(12.43) w̃ = (0, 1, 0, 0, 0, 0), w = (0, 0, 0, 0, 1, a) where a =
−L−4

(L−4 )2 + (G−4 )2
.

The formula tan
ψ

2
=

√
1 + e

1− e
tan

u

2
which relates ψ to ` through u shows that

(12.43) also holds if we use (L3, ψ3, G3, g3, G4, g4) as coordinates. Hence Γ has the
form (0, 1, 0, 0, c, ca). To find the constant c we use (12.40).

Note that the expression dE+
3 (dLΓ) does not involve dψ+

3 . Therefore we can elim-
inate ψ+

3 from consideration by setting ψ+
3 = ψ−3 = ψ (see (12.38)). Let L denote

the projection of our map to (L3, G3, g3, G4, g4) variables. Thus we need to find
dE+

3 (dLΓ). To this end write the remaining equations ((12.35), (12.36), (12.37),
and (12.39)) formally as F(Z+, Z−) = 0, where in Z+ = (E+

3 , G
+
3 , g

+
3 , G

+
4 , g

+
4 ) and

Z− = (E−3 , ψ,G
−
3 , g

−
3 , G

−
4 , g

−
4 ).
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We have
∂F

∂Z+
dLΓ +

∂F

∂Z−
Γ = 0.

However,
∂F

∂Z+
is not invertible since F involves only four equations of F while

Z+ has 5 variables. To resolve this problem we use that by definition of Γ we have

l̄· ∂Z
+

∂ψ
= 0, where l̄ =

(
G+

4 /L
+
4

(L+
4 )2 + (G+

4 )2
, 0, 0, 0,

−1

(L+
4 )2 + (G+

4 )2
,

1

L+
4

)
by (3.3). Thus

we get [
l̄
∂F

∂Z+

]
dLΓ = −

[
0

∂F

∂Z−
Γ

]
and so

dLΓ = −

[
l̄
∂F

∂Z+

]−1 [
0

∂F

∂Z−
Γ

]
.

We use computer to complete the computation. We only need the entry
∂E+

3

∂ψ
to

prove Lemma 3.9. It turns out this number is 1.855 for the first collision and −1.608
for the second collision. Both are nonzero as needed. �

Appendix A. Delaunay coordinates

A.1. Elliptic motion. The material of this section could be found in [Al]. Consider
the two-body problem with Hamiltonian

H(P,Q) =
|P |2

2m
− k

|Q|
, (P,Q) ∈ R4.

This system is integrable in the Liouville-Arnold sense when H < 0. So we can
introduce the action-angle variables (L, `,G, g) in which the Hamiltonian can be
written as

H(L, `,G, g) = −mk
2

2L2
, (L, `,G, g) ∈ T ∗T2.

The Hamiltonian equations are

L̇ = Ġ = ġ = 0, ˙̀ =
mk2

L3
.

We introduce the following notation E-energy, M -angular momentum, e-eccentricity,
a-semimajor axis, b-semiminor axis. Then we have the following relations which ex-
plain the physical and geometrical meaning of the Delaunay coordinates.

a =
L2

mk
, b =

LG

mk
, E = − k

2a
, M = G, e =

√
1−

(
G

L

)2

.



SINGULARITIES IN THE PLANAR TWO-CENTER-TWO-BODY PROBLEM 77

Moreover, g is the argument of periapsis and ` is called the mean anomaly, and `
can be related to the polar angle ψ through the equations

tan
ψ

2
=

√
1 + e

1− e
· tan

u

2
, u− e sinu = `.

We also have the Kepler’s law
a3

T 2
=

1

(2π)2
which relates the semimajor axis a and

the period T of the ellipse.

Denoting particle’s position by (q1, q2) and its momentum (p1, p2) we have the fol-
lowing formulas in case g = 0.

{
q1 = a(cosu− e),
q2 = a

√
1− e2 sinu,


p1 = −

√
mka−1/2 sinu

1− e cosu
,

p2 =
√
mka−1/2

√
1− e2 cosu

1− e cosu
,

where u and l are related by u− e sinu = `.

Expressing e and a in terms of Delaunay coordinates we obtain the following

(A.1)

q1 =
L2

mk

(
cosu−

√
1− G2

L2

)
, q2 =

LG

mk
sinu.

p1 = −mk
L

sinu

1−
√

1− G2

L2
cosu

, p2 =
mk

L2

G cosu

1−
√

1− G2

L2
cosu

.

Here g does not enter because the argument of perihelion is chosen to be zero. In gen-

eral case, we need to rotate the (q1, q2) and (p1, p2) using the matrix

[
cos g − sin g
sin g cos g

]
.

Notice that the equation (A.1) describes an ellipse with one focus at the origin and
the other focus on the negative x-axis. We want to be consistent with [G2], i.e. we
want g = π/2 to correspond to the “vertical” ellipse with one focus at the origin
and the other focus on the positive y-axis (see Appendix B.2). Therefore we rotate
the picture clockwise. So we use the Delaunay coordinates which are related to the
Cartesian ones through the equation

(A.2)

q1 =
1

mk

(
L2

(
cosu−

√
1− G2

L2

)
cos g + LG sinu sin g

)
,

q2 =
1

mk

(
−L2

(
cosu−

√
1− G2

L2

)
sin g + LG sinu cos g

)
.
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A.2. Hyperbolic motion. The above formulas can also be used to describe hy-
perbolic motion, where we need to replace “sin → sinh, cos → cosh”(c.f.[Al, F]).
Namely, we have

(A.3)

q1 =
L2

mk

(
coshu−

√
1 +

G2

L2

)
, q2 =

LG

mk
sinhu,

p1 = −mk
L

sinhu

1−
√

1 + G2

L2 coshu
, p2 = −mk

L2

G coshu

1−
√

1 + G2

L2 coshu
.

where u and l are related by

(A.4) u− e sinhu = `, where e =

√
1 +

(
G

L

)2

.

This hyperbola is symmetric w.r.t. the x-axis, opens to the right and the particle
moves clockwise on it when u increases (` decreases). When the particle moves to the

right of x = −χ
2

line we have a hyperbola opening to the left and the particle moves

anti-clockwise. To achieve this we first reflect (q1, q2) around the y-axis, then rotate
it by an angle g. If we restrict |g| < π/2, then the particle moves anti-clockwise on
the hyperbola as u increases (` decreases) due to the reflection. Thus we have

(A.5)

q1 =− 1

mk

(
cos gL2(coshu− e) + sin gLG sinhu

)
,

q2 =
1

mk

(
− sin gL2(coshu− e) + cos gLG sinhu

)
,

P =
mk

1− e coshu

(
1

L
sinhu cos g +

G

L2
sin g coshu,

1

L
sinhu sin g − G

L2
cos g coshu

)
.

If the incoming asymptote is horizontal, (see the arrows in Figure 1 for “incoming”
and “outgoing”), then the particle comes from the left, and as u tends to −∞,
the y-coordinate is bounded and x-coordinate is negative. In this case we have

tan g = −G
L

, g ∈ (−π/2, 0).

If the outgoing asymptote is horizontal, then the particle escapes to the left, and as
u tends to +∞, the y-coordinate is bounded and x-coordinate is negative. In this

case we have tan g = +
G

L
, g ∈ (0, π/2).

When the particle Q4 is moving to the left of the section {x = −χ/2}, we treat
the motion as hyperbolic motion focused at Q1. We move the origin to Q1. The
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hyperbola opens to the right. The orbit has the following parametrization

(A.6)
q1 =

1

mk

(
cos gL2(coshu− e)− sin gLG sinhu

)
,

q2 =
1

mk
(sin gL2(coshu− e) + cos gLG sinhu).

A.3. Large ` asymptotics: auxiliary results. In the remaining part of Appen-
dix A we study the first and second order derivatives of Q w.r.t. the hyperbolic
Delaunay variables (L, `,G, g). These computations are used in our proof. The
next lemma allows us to simplify the computations. Since the hyperbolic motion
approaches a linear motion, this lemma shows that, we can replace u by ln(∓`/e)
when taking first and second order derivatives.

Lemma A.1. Let u be the function of `,G and L given by (A.4). Then we can
approximate u by ln(∓`/e) in the following sense.

u∓ ln
∓`
e

= O(ln |`|/`), ∂u

∂`
= ±1/`+O(1/`2),(

∂

∂L
,
∂

∂G

)
(u± ln e) = O(1/|`|),

(
∂

∂L
,
∂

∂G

)2

(u± ln e) = O(1/|`|),

Here the first sign is taken if u > 0 and the second sign is taken then u < 0. The
estimates above are uniform as long as |G| ≤ K, 1/K ≤ L ≤ K, ` > `0 and the
implied constants in O(·) depend only on K and `0.

Proof. We see from formula (A.4) that sinhu ' coshu = − `
e

+O(ln |`|) when u > 0

and sinhu ' − coshu ' − `
e

+ O(ln |`|) when u < 0 and |u| large enough. This

proves C0 estimate.

Now we consider the first order derivatives. We assume that u > 0 to fix the
notation. Differentiating (A.4) with respect to ` we get

∂u

∂`
− e coshu

∂u

∂`
= 1,

∂u

∂`
= 1/`+O(1/`2).

Next, we differentiate (A.4) with respect to L to obtain

∂u

∂L
− ∂e

∂L
sinhu− e coshu

∂u

∂L
= 0.

Therefore,

∂u

∂L
=

sinhu

1− e coshu

∂e

∂L
= −1

e

∂e

∂L
+O(e−|u|) = − ∂

∂L
ln(e) +O(1/|`|).

The same argument holds for
∂

∂G
. This proves C1 part of the Lemma.
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Now we consider second order derivatives. We take
∂2

∂L2
as example. Combining

∂2u

∂L2
− ∂2e

∂L2
sinhu− 2 coshu

∂e

∂L

∂u

∂L
− e coshu

∂2u

∂L2
− e sinhu

(
∂u

∂L

)2

= 0.

with C1 estimate proven above we get

∂2u

∂L2
= −1

e

∂2e

∂L2
− 2∂e

e∂L

∂u

∂L
+

(
∂u

∂L

)2

+O

(
1

`

)

= −1

e

∂2e

∂L2
+

(
1

e

∂e

∂L

)2

+O

(
1

`

)
=

∂2

∂L2
ln e+O

(
1

`

)
.

This concludes the C2 part of the lemma. �

In the estimate of the derivatives presented in the next two subsections we shall
often use the following facts. Let f = ln e. Then

(A.7) fG =
G

L2 +G2
, fL = − G2

L(L2 +G2)
,

(A.8) (f)GG =
L2 −G2

(L2 +G2)2
, fLG = − 2GL

(L2 +G2)2
.

A.4. First order derivatives. In the following computations, we assume for sim-
plicity that m = k = 1. To get the general case we only need to divide positions by
mk.

Lemma A.2. Under the same conditions as in Lemma A.1 we have the following
result for the first order derivatives

(a)

∣∣∣∣∂Q∂`
∣∣∣∣ = O(1),

∣∣∣∣ ∂Q

∂(L,G, g)

∣∣∣∣ = O(`),
∂Q

∂g
·Q = 0,

∂Q

∂G
·Q = OC2(L,G,g)(`).

(b) If in addition we have

∣∣∣∣g ∓ arctan
G

L

∣∣∣∣ ≤ C/` where − sign is taken for u > 0

and + sign is taken for u < 0 then we have the following bounds for (A.5)

∂Q

∂G
= sinhu

(
0,

L2

√
L2 +G2

)
+O(1),

∂Q

∂L
= − sinhu

(
2
√
L2 +G2,

GL√
L2 +G2

)
+O(1).

(c) If in addition to the conditions of Lemma A.1 we have G, g = O(1/χ) and
` = O(χ), then we have the following bounds for (A.6)

∂Q

∂G
= sinhu(0, 1) +O(1),

∂Q

∂L
= sinhu(2, 0) +O(1).
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Remark A.1. The assumptions of the lemma and the next lemma hold in our
situation due to Lemma 4.7.

Proof. We consider only the case u > 0. We have

(A.9) Q = O(1)− sinhu(cos gL2 + sin gLG, sin gL2 − cos gLG), as `→∞.

Now the first three estimates of part (a) follow easily. Next
∂Q

∂G
=

−(coshu)u′G(cos gL2 + sin gLG, sin gL2− cos gLG)− sinhu(sin gL,− cos gL) +O(1).

Using Lemma A.1 we obtain

Q · ∂Q
∂G

=
1

2
(sinh 2u)u′G|(cos gL2 + sin gLG, sin gL2 − cos gLG)|2+

(sinhu)2(sin gL,− cos gL) · (cos gL2 + sin gLG, sin gL2 − cos gLG) +O(`)

=
1

2
(sinh 2u)(− ln e)′G(L4 + L2G2) + L2G(sinhu)2 +O(`) = O(`)

where the last equality relies on (A.7).

We prove (b) in the + case, the - case being similar. Assume first that g is exactly

equal to arctan
G

L
. Using (A.9) and (A.7) we obtain

∂Q

∂G
= (coshu)fG(cos gL2 + sin gLG, sin gL2 − cos gLG)

− sinhu(sin gL,− cos gL) +O(1)

= sinhu

(
G

L2 +G2

(
L3 + LG2

√
L2 +G2

, 0

)
−
(

GL√
L2 +G2

,− L2

√
L2 +G2

))
+O(1)

= sinhu

(
0,

L2

√
L2 +G2

)
+O(1).

(A.10)
∂Q

∂L
= (coshu)fL(cos gL2 + sin gLG, sin gL2 − cos gLG)

− sinhu(2 cos gL+ sin gG, 2 sin gL− cos gG) +O(1)

= − sinhu

(
G2/L

L2 +G2

(
L3 + LG2

√
L2 +G2

, 0

)
+

(
2L2 +G2

√
L2 +G2

,
GL√
L2 +G2

))
+O(1)

= − sinhu

(
2
√
L2 +G2,

GL√
L2 +G2

)
+O(1).

This proves (b) under the assumption g = arctan
G

L
. If

∣∣∣∣g − arctan
G

L

∣∣∣∣ < C

|`|
then

we get an additional O(1) error in the above computation which does not change
the final result.
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Part (c) follows from part (b) since both g and arctan
G

L
are O(1/`). �

A.5. Second order derivatives. The following estimates of the second order deriva-
tives are used in integrating the variational equation.

Lemma A.3. We have the following information for the second order derivatives
of Q4 w.r.t. the Delaunay variables.

(a) Under the conditions of Lemma A.2(a) we have

∂2Q

∂g2
= −Q, ∂2Q

∂g∂G
⊥ ∂Q

∂G
,

(
∂

∂G
,
∂

∂g

)(
∂|Q|2

∂g

)
= (0, 0),

∂2Q

∂G2
= O(`),

∂2Q

∂L2
= O(`).

(b) Under the conditions of Lemma A.2(b) we have we have

∂2Q

∂G2
=

L2

(L2 +G2)3/2
(L coshu,−2G sinhu) +O(1),

∂2Q

∂g∂G
=

(
− L2 sinhu√

L2 +G2
, 0

)
+O(1),

∂2Q

∂g∂L
=

(
GL sinhu√
L2 +G2

,−2
√
L2 +G2 coshu

)
+O(1),

∂2Q

∂G∂L
=

L

(L2 +G2)3/2

(
−LG coshu, (L2 + 3G2) sinhu

)
+O(1).

(c) Under the conditions of Lemma A.2(c) we have

∂2Q

∂G2
= − coshu(1, 0) +O(1),

∂2Q

∂g∂G
= −L sinhu(1, 0) +O(1),

∂2Q

∂g∂L
= L sinhu(0, 2) +O(1),

∂2Q

∂G∂L
= coshu(0, 1) +O(1).

Proof. The estimate
∂2Q

∂G2
= O(`) follows immediately from Lemma A.2. The esti-

mate
∂2Q

∂L2
= O(`) follows immediately from (A.5) (or (A.6)).

The estimates of the derivatives involving g are relatively easy since the dependence

ofQ on g is through a rotation. We consider
∂2Q

∂L∂g
, for example, the other derivatives
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are similar. Differentiating (A.10) with respect to g and using (A.7) we get

∂2Q

∂L∂g
= coshufL(−L2 sin g + LG cos g, L2 cos g + LG sin g)

− sinhu(−2L sin g +G cos g, 2L cos g +G sinG) +O(1)

= − sinhu
G2

L(L2 +G2)

(
−L2G+ L2G√

L2 +G2
,
L3 + LG2

√
L2 +G2

)
− sinhu

(
−2LG+ LG√

L2 +G2
,

2L2 +G2

√
L2 +G2

)
+O(1)

= − sinhu

(
0,

G2

√
L2 +G2

)
− sinhu

(
− LG√

L2 +G2
,

2L2 +G2

√
L2 +G2

)
+O(1)

= sinhu

(
LG√
L2 +G2

,−2
√
L2 +G2

)
+O(1).

Next, we compute
∂2Q

∂G∂L
and

∂2Q

∂G2
. We consider only the case u > 0 and take the

+ sign. The other cases are similar.

As in the proof of Lemma A.2 it suffices to consider the case g = arctan
G

L
. Differ-

entiating the expression for
∂Q

∂G
and using Lemma A.1, (A.7) and (A.8) we obtain

∂2Q

∂G2
= −L(sinhu((ln e)G)2 − coshu(ln e)GG)(cos gL+ sin gG, sin gL− cos gG)

+ 2L coshu(ln e)G(sin g,− cos g) +O(1)

= L sinhu

(
L2 − 2G2

(L2 +G2)2

)(
L2

(L2 +G2)1/2
+

G2

(L2 +G2)1/2
, 0

)
,

+ 2L sinhu
G

L2 +G2

(
G

(L2 +G2)1/2
,− L

(L2 +G2)1/2

)
+O(1)

=
L2

(L2 +G2)3/2
sinhu(L,−2G) +O(1)

proving the estimate for
∂2Q

∂G2
. Next,
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∂2Q

∂G∂L
= −(sinhu)LG(cos gL2 + sin gLG, sin gL2 − cos gLG)

− (sinhu)L(sin gL,− cos gL)− (sinhu)G(2 cos gL+ sin gG, 2 sin gL− cos gG)

− sinhu(sin g,− cos g) +O(1)

= −(sinhu(ln e)L(ln e)G − coshu(ln e)GL)(L(L2 +G2)1/2, 0)

+ coshu(ln e)L

(
GL

(L2 +G2)1/2
,− L2

(L2 +G2)1/2

)
+ coshu(ln e)G

·
(

2L2 +G2

(L2 +G2)1/2
,

GL

(L2 +G2)1/2

)
− sinhu

(
G

(L2 +G2)1/2
,− L

(L2 +G2)1/2

)
+O(1)

=
L

(L2 +G2)3/2
sinhu

(
−LG,L2 + 3G2

)
+O(1).

Part (c) follows from part (b) as in Lemma A.2. �

Appendix B. Gerver’s mechanism

B.1. Gerver’s result in [G2]. We summarize the result of [G2] in the following
table. Recall that the Gerver scenario deals with the limiting case χ → ∞, µ → 0.
Accordingly Q1 disappears at infinity and there is no interaction between Q3 and
Q4. Hence both particles perform Kepler motions. The shape of each Kepler orbit
is characterized by energy, angular momentum and the argument of periapsis. In
Gerver’s scenario, the incoming and outgoing asymptotes of the hyperbola are always
horizontal and the semimajor of the ellipse is always vertical. So we only need to
describe on the energy and angular momentum.

1st collision @(−ε0ε1, ε0 + ε1) 2nd collision @(ε2
0, 0)

Q3 Q4 Q3 Q4

energy −1
2

1
2 −1

2 → −
ε21
2ε20

1
2 →

ε21
2ε20

angular momentum ε1 → −ε0 p1 → −p2 −ε0

√
2ε0

eccentricity ε0 → ε1 ε1 → ε0

semimajor 1 −1 1→
(
ε0
ε1

)2
1→ − ε21

ε20

semiminor ε1 → ε0 p1 → p2 ε0 →
ε20
ε1

√
2ε0 →

√
2ε1

Here

p1,2 =
−Y ±

√
Y 2 + 4(X +R)

2
, R =

√
X2 + Y 2.

and (X,Y ) stands for the point where collision occurs (the parenthesis after @ in
the table). We will call the two points the Gerver’s collision points.

In the above table ε0 is a free parameter and ε1 =
√

1− ε2
0.
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At the collision points, the velocities of the particles are the following.

For the first collision,

v−3 =

(
−ε2

1

ε0ε1 + 1
,
−ε0

ε0ε1 + 1

)
, v−4 =

(
1− Y

Rp1
,

1

Rp1

)
.

v+
3 =

(
ε2

0

ε0ε1 + 1
,

ε1

ε0ε1 + 1

)
, v+

4 =

(
−1 +

Y

Rp2
,− 1

Rp2

)
.

For the second collision,

v−3 =

(
−ε1

ε0
,
−1

ε0

)
, v−4 =

(
1,

√
2

ε0

)
, v+

3 =

(
1,
−1

ε0

)
, v+

4 =

(
−ε1

ε0
,

√
2

ε0

)
.

B.2. Numerical information for a particularly chosen ε0 = 1/2. For the first

collision e3 :
1

2
→
√

3

2
.

We want to figure out the Delaunay coordinates (L, u,G, g) for both Q3 and Q4.
(Here we replace ` by u for convenience.) The first collision point is

(X,Y ) = (−ε0ε1, ε0 + ε1) =

(
−
√

3

4
,
1 +
√

3

2

)
.

Before collision

(L, u,G, g)−3 =

(
1,−5π

6
,

√
3

2
, π/2

)
, (L, u,G, g)−4 = (1, 1.40034, p1,− arctan p1),

v−3 =

(
−3√
3 + 4

,
−2√
3 + 4

)
' −(0.523, 0.349),

v−4 =

(
1− 2(1 +

√
3)

(4 +
√

3)p1

,
4

(4 +
√

3)p1

)
' (−0.805, 1.322),

where

p1 =
−Y +

√
Y 2 + 4(X +R)

2
=
−(ε0 + ε1) +

√
5 + 2ε0ε1

2
= 0.52798125.

After collision

(L, u,G, g)+
3 =

(
1,

2π

3
,−1

2
, π/2

)
, (L, u,G, g)+

4 = (1, 0.515747,−p2,− arctan p2),

v+
3 =

(
1√

3 + 4
,

2
√

3√
3 + 4

)
' (0.174, 0.604),

v+
4 =

(
−1 +

2(1 +
√

3)

(4 +
√

3)p2

,− 4

(4 +
√

3)p2

)
' (−1.503, 0.368)
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where

p2 =
−Y −

√
Y 2 + 4(X +R)

2
=
−(ε0 + ε1)−

√
5 + 2ε0ε1

2
= −1.894006654.

For the second collision e3 :

√
3

2
→ 1

2
.

The collision point is (X,Y ) = (ε2
0, 0) =

(
1

4
, 0

)
.

Before collision

(L, u,G, g)−3 =

(
1,−π

6
,−1

2
, π/2

)
, (L, u,G, g)−4 =

(
1, 0.20273,

√
2/2,− arctan

√
2

2

)
,

v−3 =
(
−
√

3,−2
)
, v−4 =

(
1, 2
√

2
)
.

After collision

(L, u,G, g)+
3 =

(
1√
3
,
π

3
,−1

2
,−π

2

)
, (L, u,G, g)+

4 =

(
1√
3
,−0.45815,

√
2

2
, arctan

√
6

2

)
,

v+
3 = (1,−2) , v+

4 =
(
−
√

3, 2
√

2
)
.

B.3. Control the shape of the ellipse. As it was mentioned before Lemma 2.1
was stated by Gerver in [G2]. There is a detailed proof of part (a) of our Lemma
2.1 in [G2]. However since no details of the proof of part (b) were given in [G2] we
go other main steps here for the reader’s convenience even though computations are
quite straightforward.

Proof of Lemma 2.1. Recall that Gerver’s map depends on a free parameter e4 (or
equivalently G4). In the computations below however it is more convenient to use
the polar angle ψ of the intersection point as the free parameter. It is easy to see that
as G4 changes from large negative to large positive value the point of intersection
covers the whole orbit of Q3 so it can be used as the free parameter. Our goal is to
show that by changing the angles ψ1 and ψ2 of the first and second collision we can
prescribe the values of ¯̄e3 and ¯̄g3 arbitrarily. Due to the Implicit Function Theorem
it suffices to show that

det


∂ ¯̄e3

∂ψ1

∂ ¯̄g3

∂ψ1
∂ ¯̄e3

∂ψ2

∂ ¯̄g3

∂ψ2

 6= 0.

To this end we use the following set of equations

(B.1) G+
3 +G+

4 = G−3 +G−4 ,

(B.2)
e+

3

G+
3

cos(ψ + g+
3 ) +

e+
4

G+
4

cos(ψ − g−4 ) =
e−3
G−3

cos(ψ + g−3 ) +
e−4
G−4

cos(ψ − g−4 ),
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(B.3)
(G+

3 )2

1− e+
3 sin(ψ + g+

3 )
=

(G−3 )2

1− e−3 sin(ψ + g−3 )
,

(B.4)
(G+

3 )2

1− e+
3 sin(ψ + g+

3 )
=

(G+
4 )2

1− e+
4 sin(ψ − g+

4 )
,

(B.5) g+
4 = arctan

G+
4

L+
4

.

Here e3, e4 and L4 are functions of the other variables according to the formulas of
Appendix A.

(B.1)–(B.5) are obtained as follows. (B.1) is the angular momentum conservation,
(B.3) means that the position of Q3 does not change during the collision, (B.4)
means that Q3 and Q4 are at the same point immediately after the collision and
(B.5) says that after the collision the outgoing asymptote of Q4 is horizontal.

It remains to derive (B.2). Represent the position vector as ~r = rêr. Then the

velocity is ~̇r = ṙêr + rψ̇êψ. The momentum conservation gives

(~̇r3)− + (~̇r4)− = (~̇r3)+ + (~̇r4)+.

Taking the angular component of the velocity we get

(B.6) r−3 ψ̇
−
3 + r−4 ψ̇

−
4 = r+

3 ψ̇
+
3 + r+

4 ψ̇
+
4 .

In our notation the polar representation of the ellipse takes form r =
G2

1− e sin(ψ + g)
.

Differentiating this equation we obtain the following relation for the radial compo-
nent of the Kepler motion

ṙ =
G2

(1− e sin(ψ + g))2
e cos(ψ + g)ψ̇ =

r2

G2
e cos(ψ + g)

G

r2
=

e

G
cos(ψ + g).

Plugging this into (B.6) we obtain (B.2).

We can write (B.1)–(B.5) in the form

F(Z−, Z̃, Z+) = 0

where Z− = (E−3 , G
−
3 , g

−
3 , ψ), Z+ = (E+

3 , G
+
3 , g

+
3 , G

+
4 , g

+
4 ), and Z̃ = (G−4 , g

−
4 ) are

considered as functions Z−.

By the Implicit Function Theorem we have

∂Z+

∂Z−
= −

(
∂F
∂Z+

)−1
(
∂F
∂Z−

+
∂F
∂Z̃

∂Z̃

∂Z−

)
.
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Thus to complete the computation we need to know
∂Z̃

∂Z−
. In order to compute this

expression we use the equations

(B.7) g−4 = − arctan
G−4
L−4

which means that the incoming asymptote of Q4 is horizontal and

(B.8)
(G−3 )2

1− e−3 sin(ψ + g−3 )
=

(G−4 )2

1− e−4 sin(ψ − g−4 )
,

which means that Q3 and Q4 are at the same place immediately before the collision.
Writing these equations as I(Z−, Z̃) = 0 we get by the Implicit Function Theorem

∂Z̃

∂Z−
= −

(
∂I
∂Z̃

)−1 ∂I
∂Z−

so that the required derivative equals to

(B.9)
∂Z+

∂Z−
= −

(
∂F
∂Z+

)−1
(
∂F
∂Z−

− ∂F
∂Z̃

(
∂I
∂Z̃

)−1 ∂I
∂Z−

)
.

Combining (B.9) with the formula

de3 = −2G3E3dG3 +G2
3dE3√

1− 2G2
3E3

which follows from the relation e3 =
√

1− 2G2
3E3 we obtain the two entries

∂ ¯̄e3

∂ψ2
= −0.158494 and

∂ ¯̄g3

∂ψ2
= 0.369599.

The meanings of these two entries are the changes of the eccentricity and argument
of periapsis after the second collision if we vary the phase of the second collision.

We need more work to figure out the two entries
∂ ¯̄e3

∂ψ1
and

∂ ¯̄g3

∂ψ1
, which are the

changes of the eccentricity and argument of periapsis after the second collision if we
vary the phase of the first collision. We describe the computation of the first entry,
the second one is similar. We use the relation

∂ ¯̄e3

∂ψ1
=

∂ ¯̄e3

∂Ē+
3

∂Ē+
3

∂ψ1
+

∂ ¯̄e3

∂Ḡ+
3

∂Ḡ+
3

∂ψ1
+
∂ ¯̄e3

∂ḡ+
3

∂ḡ+
3

∂ψ1
.

Now

(
∂Ē+

3

∂ψ1
,
∂Ḡ+

3

∂ψ1
,
∂ḡ+

3

∂ψ1

)
is computed using (B.9) and the data for the first collision.

Noticing that the quantities E3, G3, g3 after the first collision are the same as those

before the second collision, we replace

(
∂ ¯̄e3

∂Ē+
3

,
∂ ¯̄e3

∂Ḡ+
3

,
∂ ¯̄e3

∂ḡ+
3

)
by

(
∂ ¯̄e3

∂ ¯̄E−3
,
∂ ¯̄e3

∂ ¯̄G−3
,
∂ ¯̄e3

∂ ¯̄g−3

)
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and compute it using (B.9) and the data for the second collision. It turns out that
the resulting matrix is

∂ ¯̄e3

∂ψ1

∂ ¯̄g3

∂ψ1
∂ ¯̄e3

∂ψ2

∂ ¯̄g3

∂ψ2

 =

[
0.620725 2.9253
−0.158494 0

]
,

which is obviously nondegenerate. �
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