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Abstract. We consider excited random walk on a strip. We assume that the
cookies are positive and that the total expected drift per site is less than 1/L where
L is the width of the strip. We prove a quenched limit theorem claiming that
the position of the walker converges after the diffusive rescaling to a perturbed
Brownian Motion.

Let Y =Z x (Z/LZ), where L > 1 is an integer, G = {—e1, e1, —ea, €2} where e,
are coordinate vectors. We denote the coordinates of points y € Y by (x(y), s(y)).
Consider a cookie environment on ), that is, for each y € ), j € N, there is a
probability distribution w(y, j,e) on G. Consider an excited random walk Y, =
(Xn, Sp) that is

P(Yn+1 — Yn = €|§/17 N ,Yn> = w(Yn, ln, 6)

where [,, is the number of visits to Y;, by time n. (We denote by P and E the
quenched probability and expectation with fixed w and by P and E the annealed
probability and expectation.) Y, is called (multi-)ezcited random walk (ERW). We
make the following assumptions:
(A) 0(y,j) == w(y,j, e1) —w(y, j, —e1) 2 0,
(B) There exists k£ > 0 such that w(y, j,e) > &,
(C) w is stationary with respect to G-shifts and ergodic.
(D) Let d(y) = 3272, d(y,j) then
1
§:=E((y)) < I
(E) For each € > 0 there exists N(e,y) such that for each j > N, for eache € G
lw(y,j,e) — 1| < e. Moreover E(N(e,y)) < oo
The quantity § introduced in (D) plays a crucial role in description of the be-
havior of ERW. In particular Y;, is recurrent in the sense that every site is visited
infinitely often iff 6L < 1, see Zerner (2005, 2006); Aschenbrenner (2010). (In case

2000 Mathematics Subject Classification. 60K35, 60F05.

Key words and phrases. Excited random walk, perturbed Brownian Motion.

I thank Elena Kosygina for her comments on the preliminary version of this paper. I am also
grateful to the referee for useful comments on the preliminary version of this work. The author
was partially supported by the NSF.

1


http://alea.impa.br/english/index_v8.htm
http://www-users.math.umd.edu/~dmitry

2 Dmitry Dolgopyat

6L < 1 which is a subject of the our work recurrence also follows from Lemma &
of the present paper.) Several papers addressed the limiting behavior of the ERW
in the transient regime Mountford et al. (2006); Basdevant and Singh (2008a,b);
Kosygina and Zerner (2008); Kosygina and Mountford (2011). Our paper deals
with recurrent ERW.

Let B(t) denote the Brownian motion with variance §. Recall (Chaumont and
Doney (1999)) that for all a, 8 < 1 and for almost every realization of B there exists
a unique solution W(¢) of the equation

W(t) = B(t) + arf%aic W(s) + ﬁr{gir}lW(s) (1)
) ,t
which is called («, §8)-perturbed Brownian Motion.
Define W, (t) by setting W, (m/n) = )\(/% and interpolating linearly in between.

Theorem 1. For almost every w, W, converges weakly as n — oo to (a,f3)-
perturbed Brownian Motion where o = —(3 = § L.

Remark 2. A similar result is valid for ERW on Z with obvious modifications.
Namely, G = {—e, +e¢}, condition (E) becomes |w(y, j,e) — | < € and the variance
of the limiting Brownian Motion equals ¢.

Remark 3. Our result leaves open the critical case §L = 1. (Observe that (1) is not
well posed if o =1.)

We divide the proof into several steps. Fix T > 0.

Lemma 4. For any m there is a constant vy, such that for any w, for any stopping
time o, for any numbers R € Ry, N € N we have

. Y
P (lg%%(xﬁk - X,) < —RW) < o

In particular

. Ym
P W) < —R ) <
(%%W (t) < R> < fom

where 4, = TM~,.
Proof: Denote
n—1 n—1
Co=Y_ Ar, B.=) [Ar—A.
k=0 k=0
By assumption (A), Xo41—Xs > Boqr— B, Since My, = B, — B, is a martingale
with respect to the o-algebra generated by Ay, ..., As4+r—1 and the quadratic vari-

ation of M grows at most linearly, it follows from Hall and Heyde (1980), Theorem
2.11 that that for each m € N there is a constant «,, such that

m < — M
E((max [M])™) < 9

and so by Markov inequality

’Ym
> < .
P(I]gg |My| > Ry/n) < Toam (2)

which implies the result we need. (|
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Denote
- 24 0L
Apy = w: Z 5(y)<(+7)nforalln2no
w(y)=— ="
Note that by the Ergodic Theorem
P(A,,) — 1 as ng — 0. (3)

Let T denote the space shift (T*w)((z, s), j,e) = w((z + k, 5), j, €)

Lemma 5. There is a constant v, such that for any ng € N, for any w such
that T*w € A,, for any stopping time o such that X, = x, for any numbers
R e R4, N €N such that RV N > ng we have

+
Tm
— > < —.
P (glga]%((Xngk X,) > R\/N) < Bm
In particular for almost every w we have

~t

Tm

P <
(%1’3{3]( Wh(t) > R) < 7™

provided that n is large enough, where 4, = T™t.
Proof: Denote
Xi = Xmin(oths) — Xoy My = Munin(k.6—0)
where M is the martingale from the proof of Lemma 4 and ¢ is the first time after

o when Xz = X, — [R\/N%} . In view of Lemma 4 it suffices to show that given

m there is a constant 7,, such that

P (maxf(k > Rm) < Jm

- R2m’
By the definition of A,, we have X, > M, + Rm% so if X, > RV/N then
My > R\/N%. Now the statement of the lemma follows from (2). O

Let r, = maxg<y(Xy) — ming<,(Xx) denote the range of the walk. Define B, (t)
by setting B, (%) = 5% and interpolating linearly in between.

Lemma 6. For almost every w B, converges weakly to B as n — oo.

Proof: Since B,, is a martingale it suffices, due to Hall and Heyde (1980), Theorem
4.4, to show that for almost every w

Vi t

sup R R N probability as n — oo

tefo, )| M 2

where V,, is the quadratic variation of B,,. For the discrete time process it is enough
to show that for almost every w

v
max |-~ 2 L 0in probability as n — oo.
o<m<n| n 2n
Fix ¢ > 0. Choose Ny such that

E([N(e,y) — Nol") < (4)
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where N(g,y) is a constant from condition (E). Split V,,, = V.. + VI where

m—1

V, =Y E ([Ak — AP .Yk> I, < No),
k=0
m—1 B )

vi=N"E ([Ak A ..Yk) I(1, > No).

m
V,i:EJre;nJre;;L

e;n = ; (IE ([Ak - Akf [Yi... Yk) - ;) I(ly > max(N (e, Yx), No)),

~ 1
6;; = (E ([Ak — Ak]2 ‘Yl .. Yk) — 2) I(No <l < N(E,Yk))
k
Observe that on I, > N(e,Y;) we have

‘E([AkAk]2|Y1-..Yk> _ ;‘ _

1
{W(Yk, li,e1) + w(Ye, b, —e1) — 2} — [w (Y Uy €1) — w (Y, I, —61)12' < 264 (2)?

and so [e]l,| < (2¢ + (2¢)?) n. On the other hand

lem| < D [N(e,y) = Nol, ()
where the summation in (*) runs over y with

1 < < .
min(X) < o(y) < max(Xy)

So (4) and the ergodic theorem ensure that €]/ | is less than 2¢Lr,, provided that
ry, is large enough (if r, is small then our claim that |/ | < n is obvious). This
concludes the proof of Lemma 6. O

Lemma 7. {W,} is tight.

Proof: Since Xo = 0 Billingsley (1999), Lemma 8.3 implies that in order to prove
tightness it suffices to show that for almost all w given positive constants ¢, 7 there
exists a positive constant d such that if n is sufficiently large then for all t < T

1
<P sup [Wy(s) = Wy(t)| >¢ ] <n.
SE[t 4]

Without rescaling this amounts to showing that for all n; < nT we have

1
EP ( max | Xp, — Xp,| > m/ﬁ) <.

ni1<nz<ni+din

Take § such that N

V2 0 V3 0

PRy < n and PRy <n (6)
(%) (%)
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By Lemmas 4 and 5 given 7, there exists R such that
on
> < —
P (ggaT>;|Xk| > R\/ﬁ) <3
so it suffices to show that
1 2
5P ( max | Xp, — Xo,| > evnand [X,,,| < R\/ﬁ> <

n;<na<ni+dn

We shall show that

1 n
SP <n1<7glg%{1+5n Xn2 = an * 6\/5 and |an‘ = R\/{E> = g’ (7)
the lower bound on X, is similar. Take ng such that P(A;, ) < 1555+ Then by the

Ergodic Theorem for large n
2RVA
S L (T7w) < 2=
0 - 25
z=—2R\/n
where I denotes the indicator function. Hence there exists x such that X,,, <z <

Xn, + g—g n such that 7w € A,,,. Let o be the first time after n; when X, = x.
Applying Lemma 5 with m = 2 we get

1 23¢ Yoo
SHD <X0'+k - X5 > 25\/ﬁ> < (235)4 <n
25
where the last inequality follows from (6). This proves (7) and completes the proof
of Lemma 7. O

Let
Z(a,b) = Z d(x, s)
(z,8):a<z<b
denote the total amount of cookies stored between a and b. We shall denote by 7,
the first time X, = x. Let

@, M) Tegnm ifx >0
Fx, M) = i )
Te—m ifax <0

The next lemma is a quantitative version of the recurrence results of Zerner
(2005, 2006).

Lemma 8. For each N, ¢ there exists a number M and a set Qpr such that P(Qp) >
1 — ¢ and for each © € Z, for each w such that T*w € Qyy, for each s € Z)LZ we
have

P(Y,, visits (z,s) at least N times before 7(x,M)) > 1 —e. (8)

Proof: To fix our ideas consider the case x > 0. Thus 7(z, M) = T4 0.
By ellipticity (condition (B)) it is enough to prove the result with (8) replaced
by
P(X,, visits « at least N times before 7,,2/) > 1 —e.
Let 7,, be the first time strictly greater than 7, when either |X; — 2| = m or
X5 = x. Pick two numbers p, p’ such that L < p’ < p < 1. We claim that if m; is
large enough then for most environments

P(X:; =z)>1-p. 9)

Tmy
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There are two cases to consider: X, 11 = ¢+ 1 and X, 1 = = — 1 (the case
X, +1 = x is trivial). We consider the first case (the second case is easier).
By Optional Stopping Theorem

]E(C%ml _CTz)+1 < Z(xax+m1) +1

P(X: <

my

=r+m| X p1=c+1) =
mq mi

So (9) holds if Z(z,z 4+ m1) < m1p’ (observe that we need not impose any restric-
tions in case X, 41 =z —1). Next

P(X5 E(C5,., = Cry) < Z(x,x+mgy) + mi

mo

= x+mso|X

Ty

mo mo
Thus if % < p%ﬂ and Z(z,z + ma) < p'msg then

P(X;

m2

Thus if both Z(z,z + m1) < p'my and Z(z,x + mg) < p'ma then
P(X;

mo

=z +ma|lXz, =z +mi)<p.
=2+ mg) < p*.

Inductively let my be the smallest number such that

my > SM—1-

Then on ﬂ?zl{Z(gc, x4+ mj) < p'm;} we have
P(Xz,, =z +mg) < pr.
Thus on this set
P(X returns to z before 7,1, ) > 1 —p".

Since the amount of cookies between x and x + m; only decreases between the
returns the same argument shows that

P(X returns to z at least N times before 7,4, ) > (1 — p™)V.
Choose k so that (1—p*)N > 1—¢. Let M = my, and Qy; = ﬂ?zl{Z(O,mj) <p'm,}.

Then the Ergodic Theorem implies that if m, is large enough then P(Q,,) >
1—e. (]

Lemma 9. For almost all w, c”;i:‘” — 0 in probability.

Proof: Let € > 0. Take N such that

oo

S E(6(y.j)) <

J=N+1
Split C,, = C,; + C;F', where

Cr = Al <N), Cf =Y Apl(ly>N).
k k

1o

By ergodicity we have C;I < 2er,, for large n so the main contribution comes from
C,, . Next

* N
Co =222 3w NIQy, jm))
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where Q(y, j,n) is the event that Y visits y at least j times before time n and the
*

meaning of Z is the same as in (5). Take a large number M (the precise conditions
on M will be given in equations (15) and (17) below) and split C;; = C?4C? where
C9 contains the terms y = (z, s) where x is within distance M from either maximum
or minimum of X}, k < n and C?, contains the remaining terms. Then C2 < 2LM N
since there are 2LM sites within distance M from either maximum or minimum of

Xk, k < n and for each site only the first NV visits give a non-zero contribution to
C, . On the other hand

*x N % N
j=1 j=1

where the summation in (**) runs over y with

i < < —
r,glglg(Xk) + M < a(y) < rlggg(Xk) M

Due to ergodicity for large n

N

sx N
D27 6(.3) — (LY B, 0)lra| < era

Jj=1

and by the choice of N, L Zj\;l E(4(y, 7)) within € from «. The second term in (10)
is less than

én = ZZI(Q(?JJ;M))

where Q((z,s),j, M) is the event that the j-th visit to (z,s) occurs after time
7(x, M). Therefore to complete the proof of Lemma 9 it remains to show that for
almost every w given € there exists M such that for large n we have

P(C, > ery,) < e. (11)
To this end we show that there exists n such that

P(r, < nyv/n) < % (12)

Indeed X,, = B, + C,, and by the Ergodic Theorem for almost every w there is a
constant K (w) such that for all n we have

0<Cp<ry+ KWw).

Since we also have | X,,| < r,, the inequality r, < ny/n implies that |B,| < 2ny/n +
K (w) but by Lemma 6 P(|B,,| < 2nv/n + K(w)) can be made as small as we wish
by taking n small. This proves (12).
Next, by Lemmas 4 and 5
P(r, > Ry/n) < % (13)
in R, n are sufficiently large. Combining (12) and (13) we get

C, Z|I(y)|<R\/a Zjvﬂ I(Q(ymja M)) 2e
P <7“n < i <3 (14)




8 Dmitry Dolgopyat

Observe that by Lemma 8 we can choose M so large that
2

~ . e“n
P M) < —— + I(Q5,(T*w)). 1
(Q((,9), . M) < T==br 4 T(05,(Tw)) (15)
Therefore
e n T
el Y S rQuaan) SN N Y renae). (o)
lz(y)|<Rv/n j=1 |z|<Rv/m
By Lemma 8 we can take M so large that
e2n
P(QS,) < . 1
() < 300RN (7

Then by ergodicity the last term in (16) is less than = "f provided that n is
sufficiently large. Hence

e2ny/n
E < .
Z ZI yj’ - 25
lz(y)|<Ryn j=1

Therefore by Markov inequality

3
P N
> ZI (y:4: M)) > env/n | < o

o (y)| <Ry §=1

In view of (14) this completes the proof of (11). Lemma 9 follows. O

Proof of Theorem 1: We have
Wi (t) = By (t) + Cu(t) (18)

where B, (t) and C,(t) are rescaled versions of the martingale and compensator
parts of X,, respectively. By Lemma 7 {W,} is tight, by Lemma 6 {B,} is tight.
Since C,, is a difference of two tight processes it is tight. Accordingly the triple
{(Wn,Bn,Cp)} considered as a family of R? valued processes is tight. Let (W, B,C)
denote a weak limit of W, B,,,C,).

By Lemma 6 B(t) = B(t). By (18) we have

W(t) = B(t) + C(t).

Therefore it remains to show that

C(t) = W(s) — min W 19
0 = g io) - ig o) 8
since this implies that W(t) satisfies (1) and we will be done by Chaumont and
Doney (1999).
Hence given € > 0 there exists N such that
P max Cn(ta) = Cnr(t1)] > ¢ ) <e.
(, o fenltn) — Calen)] 2 €) <
Consequently to establish (19) it is enough to show that for each N, e

P <E|j < NT such that ‘Cn <J) -« { max W, (s) — min Wn(s)] ‘ > 5) — 0.
N [0.3/N] [0,/N]
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Before rescaling this amounts to showing that
IP’(|C’mj —armj| <eynforj=1...N)—1
where m; = nj/N. Notice that r,,, < r, and by Lemmas 4 and 5 P(r, > R\/n)

can be made as small as we wish by choosing R and n large. Hence it suffices to
check that

P(|Cm].—armj < Erm, forjzl...N)—>1. (20)
However for fixed N, m; runs over a set of finite cardinality N and so (20) follows
from Lemma 9. This concludes the proof of (19). Theorem 1 is established. O
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