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Abstract. Fermi acceleration is a mechanism, first suggested by
Enrico Fermi in 1949, to explain heating of particles in cosmic
rays. Fermi studied charged particles being reflected by the mov-
ing interstellar magnetic field and either gaining or losing energy,
depending on whether the ”magnetic mirror” is approaching or re-
ceding. In a typical environment, Fermi argued, the probability of
a head-on collision is greater than a head-tail collision, so particles
would, on average, be accelerated. Since then Fermi acceleration
has been used to explain a number of natural phenomena and sev-
eral simple mathematical models demonstrating Fermi acceleration
have been proposed. We describe these models and explain why
they do or do not exhibit Fermi acceleration. We also mention
some models where the answer is not known.
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1. Introduction.

Consider a particle moving in a stationary force field. We want to un-
derstand how the particle’s velocity changes with time. Naively one
can expect that, in a stationary environment, the particle gets into
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equilibrium with the environment after some time and so its velocity
(temperature) becomes a stationary process. While this is indeed pos-
sible, especially in a dissipative setting, for Hamiltonian systems there
is another regime. If the size of the system the particle interacts with is
infinite (or very large) it can take particle infinite (or very large) time
to get into equilibrium and its behavior during the transition regime is
of interest. One of the first papers on this subject was work of Enrico
Fermi on the origin of cosmic radiation [22]. Fermi wanted to explain
abundance of high energy particles in the space. He argued that the
particle can gain energy by passing through the non-uniform magnetic
field. Fermi observed that if the particle meets a region of high field in-
tensity moving towards the particle, then the particle accelerates, while
if the fast particle passes a region of high field intensity moving away
from the particle, then the particle decelerates. He concluded

The net result will be the average gain [of energy], pri-
mary for the reason that head-on collisions are more fre-
quent than overtaking collisions since the relative velocity
is larger in the former case.

In other words the particle is more likely to accelerate than decelerate
for the same reason that a motorist driving on a highway sees more
cars going towards him than away from him.

Let us remark that if we consider not only head-on and overtaking
collisions but sideway collisions as well then this mechanism is well
known in mathematics. Namely, consider a simple random walk on
Zd : Xn+1 = Xn + ξn where ξn are independent and take values ±ej,
j = 1 . . . d. Suppose we want to know how far is the walker from the
origin. If the walker is far from the origin the spheres, which are level
sets of the distance function, are well approximated by the tangent
planes and so in this approximation the average distance of the walker
from the origin remains the same:

d(Xn+1, 0) = d(Xn, 0) +
< Xn, ξn >

d(Xn, 0)
+ O

(
1

d(Xn, 0)

)
.

and

E(d(Xn+1, 0)|X0 . . . Xn) = d(Xn, 0) + O

(
1

d(Xn, 0)

)
.

However taking into account the higher order terms shows that the
mean distance from the origin grows with time, because spheres are
convex. More precisely the Central Limit Theorem implies that

E(d(Xn, 0)) ∼ cd

√
n.
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It was quickly realized that the particular features of the problem
studied by Fermi were not essential for his argument and the same
reasoning can be used to explain a wide range of natural phenomena.
The goal of this survey is to discuss mathematical problems related
to Fermi acceleration and to illustrate how it is related to some of
the greatest achievements of the theory of dynamical systems in the
20th century. More specifically, we describe several simple mechanical
models which were proposed to illustrate this phenomenon and explain
why they do or do not exhibit Fermi acceleration. But to do so we first
need to single out essential features of Fermi acceleration mechanism.
In my opinion those features are the following.

• The mechanism is stochastic, that is, different initial conditions
can lead to very different energy growth patterns;

• The acceleration is second order, that is, energy is a non-linear
function of time. Often one can expect anomalous exponents.

On the other hand there are some features of the Fermi’s original model
(for example relativistic effects and magnetic fields) which we will not
touch in this survey since there are simpler models with similar behav-
ior and so most of the mathematical literature does not deal with them.
We just note that often these can be incorporated into the model at
the price of greater technical sophistication and refer the reader to the
surveys [52, 62, 63] for more details.

2. Stochastic models.

Before discussing deterministic systems we describe some stochastic
models which tell us that results can be expected.

Consider the equation ẍ = F (x, t) with

F (x, t) =
∑

j

φj(x− xj, t− tj)

where (xj, tj) is a Poisson process on Rd ×R and φj(x, t) are indepen-
dent functions supported on a cube of side 1 with rotation invariant
distribution. We assume that for any j, ||φj||C2 ≤ K.

Suppose that v(t0) � 1. Would the particle accelerate or decelerate?
Rescale time s = t/ε where ε = 1/v(t0). Then

∂2x

∂s2
= ε2F (x, εs).

Thus

v(T )− v(0) = ε2

(∫ T

0

F (x(s), εs)ds

)
.
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If F was independent of x we could apply the Central Limit Theorem.
Here we use a non-linear version of the Central Limit Theorem called
the diffusion approximation established in [30, 10]. We restate their
results in our original variables.

Theorem 1. Suppose x(0) = x0, v(0) = v0. Denote K(t) = v2(t)
2

. Then
as c →∞ the process

K3/2(cτ)

c

converges weakly to a square Bessel process J(τ) of dimension 2d
3

started
from 0.

Recall that the square Bessel process of dimension n is a solution of
the following stochastic differential equation

(1) dJ = ndτ + 2
√

JdW (τ).

The appearance of square Bessel processes in Theorem 1 is not acci-
dental.

Theorem 2. Let J(τ) be the process with the following properties.

(1) J(τ) is Markov;
(2) J(τ) has continuous paths;
(3) J(cτ) has the same distribution as cJ(τ).

Then J(τ) is a square Bessel process (up to time rescaling).

Proof. Make a change of variables V = ln J, dσ = dτ
J

. Then V (σ) is a
stationary process with continuous paths and independent increments.
By Paul Levi’s Theorem V = aσ + bW (σ). Passing to our original
variables we obtain (1), up to rescaling. �

Remark. If we lift the restriction that J is continuous then more
processes then the set of possible limits becomes larger but these are
well understood [36].

We denote by Bα,n the α-power of the square Bessel process of di-
mension n. Thus Bα,n = Kα, where K satisfies (1).

Our notation is justified by the following formulas
Bα,n(t) ∼ tα,
(Bα,n)β = Bαβ,n

If w1(t), w2(t) . . . wd(t) are independent Brownian Motions then

d∑
j=1

w2
j (t) ∼ B1,d.
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Because they have so much symmetry Bessel processes are studied
extensively. Let us mention some of their properties ([53], Section XI).

Proposition 2.1. (a) J(τ) is recurrent if n ≤ 2 and transient if n > 2.

(b) Px(a ≤ J(τ) ≤ b) =

∫ b

a

p(x, y, τ)dy

where

p(x, y, τ) =

1
2

(
y
x

)n/2−1
e−(x+y)/2τIn/2−1

(√
xy

τ

)
if x 6= 0(

1
2τ

)n/2 1
Γ(n/2)

yn/2−1e−y/2τ if x = 0

and

Iν(z) =
∞∑

k=0

(z

2

)ν+2k 1

k!Γ(ν + k + 1)
.

(c) The measure µ such that µ([0, J ]) = Jn/2α is invariant under Bα,n.

Remark. Since in Theorem 1 n = 2d
3

one can expect that for mechan-
ical systems v(t) →∞ if d > 3 and v(t) oscillates if d ≤ 3.

In our case it is intuitively clear why the limiting process satisfies
properties (1)–(3) of Theorem 2. Indeed since F (x, t) has very short
memory we can expect the limiting process to satisfy (1). Property (2)
is little bit more difficult to justify but still it is not surprising that after
a correct scaling the limiting process does not have large oscillations
at small scales. Finally the meaning of (3) is the following. To derive
Theorem 1 we make change of variables s = t/

√
ε where ε = c−2/3.

However if we let ε = 2c−2/3 we should get the same limit process up
to rescaling.

The case of time independent force field is much more difficult be-
cause in that case it is not true that the asymptotic behavior does not
depend on initial conditions. Indeed whatever (x0, v0) we take there
it is possible that the field near x0 is atypical so that the trajectory
starting from v0 is periodic and explores only small region in the phase
space. However in high dimension where we expect that v(t) → ∞
and so diffusion approximation becomes better and better, it possible
to show that if v0 is large the event that atypical field changes the
character of the dynamics has small probability.

Theorem 3. [17] Consider the equation ẍ = F (x) with

F (x, t) =
∑

j

φj(x− xj)
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where (xj) is a Poisson process on Rd × R and φj(x) are independent
functions supported on a cube of side 1 with rotation invariant distri-
bution. We assume that for any j ||φj||C2 ≤ K. Suppose that d > 3.
Then

(a) The probability of the following events tends to 1 as v0 →∞
(i) ||v(t)|| → ∞.
(ii) x(t) has no near selfintersections1.
(b) There is a set Ωv0 such that P(Ωv0) → 1 and conditioned on Ωv0

the process K(cτ)/c2/3 converges weakly to B2/3,2d/3 started from 0 as
c →∞.

Here (aii) is the crucial property. Indeed it means that our particle
always explores new regions of the space so its dynamics is effectively
the same as in the space-time random case considered above. To derive
(aii) we use rotation invariance in an essential way. A typical result we
use is the following.

Proposition 2.2. Fix R > 0. Then

Px0,v0 (d(x(t), A)) ≤ R) ≤ Const(R) [|v0| sin(Ax0v0)]
2−d .

Proof. Foliate Rd by planes orthogonal to v0, foliate each plane by
spheres centered at projection of x0 and observe that the conditional
distribution of x(t) on each sphere is uniform. �

On the other hand Theorem 3 should be true without the assumption
of rotation invariance. However without this assumption the proof
of property (aii) should be much more complicated requiring a local
limit type results for diffusive approximation, extending the results of
[16, 33]. Thus removing rotation invariance assumption in Theorem
3 would make the result more general but it would not add much to
our understanding of this system. Below I list several open questions
which seem to require new ideas.

Problem 1. Estimate the probability of the following events
(a) x(t) is bounded;
(b) v(t) is bounded.
The argument of [17] gives polynomial in 1/v0 estimate for probabil-

ity of these events but it well may be much smaller.

1Property (ii) means the following. Fix R > 0. Then the probability that

∀t > 0 d(x(s), x(t)) > R for s > t +
10

||v(t)||

tends to 1 as v0 tends to ∞.
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Problem 2. What happens for d ≤ 3? It is easy to see that for d = 1
every trajectory is periodic but it is likely that convergence to the
Bessel process still holds if d = 2 and 3.

Related results are obtained in [29, 21, 34] but they appear to fall
short of answering this question.

Problem 3. Describe the limiting motion in the following cases
(a) Force is unbounded (and has a heavy tail);
(b) The interaction is long range (e.g. φj(x) = cj

x
||x||α ).

In case (a) the limiting process need not be continuous so the clas-
sification of [36] can be useful. Some results about the motion in the
field with long-range correlations is obtained in [35].

3. One and a half degree of freedom.

In the previous section we saw that simple heuristic arguments based
on dimensional analysis and decorrelation estimates allow to obtain
very precise predictions about energy evolution. Unfortunately very
often mechanical systems do not conform with those predictions. To
see what can go wrong we consider several examples.

The first example is so-called Ulam ping-pong. Consider two periodic
infinitely heavy walls and a ball bouncing between them with elastic
collisions. We may assume that the wall moves perpendicularly to the
walls since the ball’s parallel velocity stays constant. This model has
been proposed by Ulam as a limiting case of the motion of the charged
particle in the strong potential.

Theorem 4. [50, 52] All ping-pong trajectories have bounded velocities.

In the hindsight we see that the highway analogy described in the
introduction works poorly in this case because the ball keeps colliding
with the same walls all the time rather than encounter different walls.

Of course one can argue that the assumption that the walls move
periodically does not reflect the dynamics of cosmic particles.

Problem 4. What happens for more general, in particular random
motion of the walls?

The proof of Theorem 4 relies on the famous KAM theory about
the stability of quasiperiodic motions (see [44, 45, 24, 55, 56, 46]). In
particular the result relevant for our problem is Moser’s Small Twist
Theorem.
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Proposition 3.1 (Moser Small Twist Theorem). Let Q : R+ → R+

be a C5-function. Then for any numbers a, b such that Q′(r) 6= 0 for
r ∈ [a, b] for any K there is ε0 such that if Fε are exact mappings of
the annulus R+ × S1 of the form

Fε(r, φ) = (r + ε1+δP (r, φ), φ + εQ(r) + ε1+δR(r, φ))

where
||P ||C5([a,b]×S1) ≤ K, ||R||C5([a,b]×S1) ≤ K

then for ε ≤ ε0 Fε has (many) invariant curve(s) separating [a, b]× S1

into two parts.

For the ping-pong system in the case velocity is large is a small
perturbation of the system where the walls stay fixed and the ball
moves periodically between them with period proportional to 1/v. This
explains the twist condition required by Moser’s theorem.

The second example is a modification of the previous one but the
results are different. We have only one wall and ball’s return is ensured
by gravity force. That is, the motion between collisions with the wall
is given by ḧ = −g. Let

E = {(v0, t0) : vn →∞}
denotes the set of points whose energy tends to ∞.

Theorem 5. ([50]) There is an open set of wall motions f(t) (in the
space of analytic functions admitting an analytic continuation to to a
given strip |=t| ≤ ε) such that mes(E) = ∞.

Thus in this case ball can accelerate but this does not happen for all
trajectories because the system is not ergodic, different orbits explore
different regions in the phase space and so the averaged calculations of
the Section 2 do not work.

Quite surprisingly the proof of this result also relies on KAM theory.
Namely it is easy to arrange parameters so that there is an orbit where
the ball always hits the wall at the same height and the wall moves
up at the moments of collisions. To prove Theorem 5 one linearizes
around this orbit and uses a non-stationary version of KAM theorem.

Problem 5. How large is the set of parameters where mes(E) = ∞?
In particular, is it open and dense?

Some related results are obtained in [20].
Contrasting the last two examples shows how subtle this problem is.

In fact, despite a large number of papers devoted to related problems
where are still several modifications for which expected behavior is
unclear.
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Problem 6. What happens if the wall is not straight but is a graph
of periodic function h(x, t) = φ(x− g(t)) + f(t) (x can be multidimen-
sional)?

The second question what happens for non-constant force fields. As-
sume that between the collision the particle moves in the potential
U(h). The case U(h) = gh is covered by Theorem 5. Another inter-

esting example is impact oscillator U = gh2

2
(it corresponds to the case

a ball is attached to some point by an ideal spring). This system has
been investigated by Ortega.

Theorem 6. ([47, 48]) (a) If 2
√

g 6∈ Q and
∫ 2π

0
f(t)dt 6= 0 then E = ∅.

(b) If 2
√

g = p/q, let Φ(τ) =
∑2q−1

j=0 f(τ+πj). Then if Φ changes sign
and zeroes of Φ are non-degenerate then all solutions with sufficiently
large energy belong to E . If Φ does not change sign, then E = ∅.

There is a beautiful relation between impact oscillators and outer bil-
liards which we describe next following [3]. Recall that an outer billiard
map is defined outside a closed convex curve Γ. If z is a point outside
of Γ then its image under outer billiard map Φ(z) is the reflection of z
about an orienting supporting line to Γ. We now consider an auxiliary
system. Let z = (x, v) be such that x lies to the right of the projection
of Γ to x-axis. Rotate both z and Γ counter clockwise with angular
velocity

√
g until the time t1 when the projections of the images of z

and Γ meet. Then we reflect the image of z(t1) around the rightmost
point of Γ(t1) to get a new point z1. Since rotations preserve support-
ing lines (z1, Γ(t1)) is obtained from (Φ(z), Γ) by a rotation by angle√

gt1. Continue this procedure inductively we obtain (zn, Γ(tn)) which
differ by rotation from (Φnz, Γ). On the other hand between collisions
the motion of z is given by ẍ + gx = 0 and at the point of collision
x+ = x−, v+ = 2v(t1)− v− where (x(t),v(t)) is the rightmost point of
the image of Γ. It turns out that the motion of x is given by

(2) ẋ = v, v̇ + gx = r(x)

where r is the radius of curvature. Hence this system is equivalent to
impact oscillator where f is given by f̈ + gf = r. Thus to every outer
billiard there corresponds an impact oscillator but the converse is not
true. Indeed given f we can try to define curvature κ(t) = 1/(f̈ + f)
but we can not ensure that the curve with this curvature will be closed
and convex.

In fact for outer billiards with (C7-)smooth boundary all trajecto-
ries are bounded [19]. An interesting question what happens if Γ is
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only piecewise smooth. The most degenerate case is then Γ is a poly-
gon in which case Φ(z) is obtained from z by reflection around a ver-
tex. [61, 32, 23] prove boundedness of trajectories for so called quasi-
rational polygons, a class including rational polygons as well as regular
n-gones. Since affine equivalent curves have conjugated outer billiards
all triangular outer billiards have bounded (in fact, periodic) orbits.
[57, 58] consider kites–quadrangles with vertices (−1, 0), (0, 1), (A, 0)
and (0,−1) and establishes that for all irrational A there exists an un-
bounded orbit (if A ∈ Q then all orbits are periodic by the results cited
above).

Problem 7. Is it true what almost any n-gone, n > 3 has unbounded
orbits for outer billiard? The same question can be asked about typical
piecewise smooth non-smooth curves and typical curves consisting of
smooth arcs and line segments.

For example, numerical simulations given in [60] indicate that there
are unbounded orbits for the semicircle.

Problem 7 is a special case of the following more general question.

Problem 8. Make a general theory for small piecewise smooth pertur-
bations of integrable systems.

Apart from impact oscillators and outer billiards another well studied
example is a nonlinear oscillator with piecewise smooth forcing [39, 37,
64]. The fact that the above mentioned systems exhibit a rich array of
different behaviors shows that the theory requested in problem 8 could
be interesting.

We now return to the bouncing ball in a nonlinear potential. Con-
sider a general power potential U(h) = hα. For simplicity we assume
that the wall’s motion is harmonic h(t) = B+A sin t where 0 < A < B.
KAM approach extends with little difficulty to the case of strong po-
tentials.

Theorem 7. [15] If α > 1, α 6= 2 then all trajectories are bounded.

By contrast, in case of weak potentials, it is easy to construct accel-
erating orbits. In fact it is shown in [12] that if α < 1 then E has full
Hausdorff dimension. However this set is likely to be small from the
measure theoretic point of view.

Theorem 8. [15] If α < 1/3 then mes(E) = 0.

Problem 9. Is the same true for all α < 1?

A more difficult question is the following. Call an orbit oscillatory if
lim sup vn = ∞, lim inf vn < ∞.
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Problem 10. Is it true that for α < 1 the set of oscillatory trajectories
has infinite measure?

Let us describe the idea behind the proof of Theorem 8. Consider
a successor map (vn, tn) → (vn+1, tn+1). One defines a critical set C
as a small (of order v−β where β = α−1 − 1) neighborhood of the set
where the collides with the wall during the the time the latter has zero
acceleration. If α is small then

(3) mes(C) < ∞.

The key technical tool in proving Theorem 8 is the following.

Proposition 3.2. Almost every orbit passes through C.

Proof of Theorem 8. By Proposition 3.2 it suffices to show that
mes(E

⋂
C) = 0. Let T : C → C denote the first return map (which is

well defined due to Lemma 3.2). Denote (v(j), t(j)) = T j(v, t). Due to
(3) we can apply Poincare Recurrence Theorem which tells us that for
almost every point there are infinitely many j such that v(j) < v + 1.
In particular v(j) 6→ ∞. �

The idea of the proof of Proposition 3.2 is the following. Assume
the set A of orbits avoiding C has positive measure. One constructs a
family of invariant cones outside C. This implies that A is hyperbolic.
Using the theory of chaotic systems one shows that the trajectory of
vn is well approximated by a one-dimensional Brownian Motion. Since
the one-dimensional Brownian Motion is recurrent one obtains the re-
currence of the velocity process. In particular almost every orbit in A
infinitely many times visits the region of moderate height where C has
a definite size and so during every visit an orbit has a definite prob-
ability to fall into C. This allows to obtain a contradiction with the
assumption that A has positive measure.

We observe that the behavior of orbits inside C can be quite compli-
cated. [12] considers the so called static wall approximation commonly
used in physics literature. He is interested in elliptic islands –the re-
gions around elliptic periodic points filled with the invariant curve (the
existence of such regions near elliptic periodic points is guaranteed by
the KAM theory [45]). Let I2 = {(A, B) such that there are infinitely
many elliptic islands of period 2}.
Theorem 9. (a) For all α < 1, I2 contains a Gδ subset of parameters.

(b) For all α < 1 the complement of I2 has zero area.
(c) If 2

3
< α < 1 then all allowable parameters belong to I2.

Thus for a typical parameter the motion inside C is likely to be very
complex with elliptic islands separated by chaotic sea. However this
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complexity does not enter the proof of the fact that E has zero measure
since C is small (finite measure). However for answering problem 10
the study of the dynamics inside C is probably needed making problem
10 much less accessible.

4. Several degrees of freedom.

The previous section shows that for one and a half degrees of freedom
even the question of existence of orbits with unbounded energy is quite
non-trivial. Now we are going to consider the same question for higher
dimensional systems. A model problem here is Mather acceleration
problem.

Let (M, g) be a compact Riemannian manifold. Consider a particle
moving in M with periodic potential U(q, t).

H(q, v) =
1

2
g(q)(v, v) + U(q, t).

Theorem 10 (Geodesic Acceleration Theorem.). [42, 2, 11] Let E =
{E(t) → ∞}. If g has a hyperbolic closed geodesic γ1 and transverse
geodesic γ2 homoclinic to γ1 (limt→±∞ d(γ2(t), γ1) = 0) then for generic
U(q, t) E 6= ∅.

The assumptions of Theorem 10 hold in the following cases (see
e.g. [31])

• Surfaces of genus greater than 1;
• Generic metrics on T2 and S2;
• Manifolds of negative sectional curvature.

Under the assumptions of Theorem 10 [49] shows that there exists
an orbit such that E(t) ≥ c1t− c2.

Problem 11. Prove Geodesic Acceleration Theorem for generic per-
turbation of generic metric on any manifold.

There are several approaches to Theorem 10. Variational method
was developed by Mather. It is based on the fact that our system is
Lagrangian and the change of Lagrangian

L → L+ < ω, v >

where dω = 0 does not change the dynamics whereas it does change the
set of minimal trajectories. A very sophisticated variational problem
is constructed whose solutions lie in E .

By contrast a starting point of geometric methods [2, 11] is to observe
that for U = 0 the system has an invariant set which is a product of
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Smale horseshoe and R2. The horseshoe has symbolic dynamics. Now
normal hyperbolicity theory [25] guarantees that the product structure
persist for large energies even then U 6= 0. One then uses the symbolic
dynamics to prescribe the orbits with energy gain.

Problem 12. Does the set of the accelerating orbits have positive
(=infinite) measure?

We observe that both variational and geometric methods produce
orbits with fast energy growth. While in many applications it is im-
portant to have an optimal growth, for the problem at hand it is actu-
ally a drawback since the typical (in the measure theory) sense orbit
probably enjoys a slower growth.

We now restrict our attention to the case where the geodesic flow
is chaotic. Namely, following [18] we consider metric of negative cur-
vature. Here we encounter first examples of deterministic systems ex-
hibiting Fermi acceleration.

Before presenting our results in the potential force let us analyze an
easier case of time independent non-potential forces.

Let µR be the uniform measure on the set {R ≤ K ≤ R + 1}.

Theorem 11. Let x be distributed according to µR. Then as R → ∞
K(x, τR3/2)/R converges to B 2

3
, 2d

3
.

Recall Proposition 2.1. Denote ν = d
3
− 1.

Corollary 4.1. (a)If d ≥ 4 then µR(K(x, t) → ∞) → 1. Moreover
define I(x) = mint≥0 K(x, t) then

µR

(
I

R
< z

)
→ z3ν/2.

(b)If d ≥ 4 then ∀ζ < 3ν
2

µR(I < R0) ≤
CR0

Rζ
.

(c) Let d ≥ 4. Take tR � R3/2. Then

µR

(
K(x, tR)3/2

σ2tR
< z

)
→ 1

2d/3Γ(d/3)

∫ z

0

yνe−y/2dy.

(d) Fix R0 � 1. Let τ be the first moment K(x, τ) = R0. If d = 2 then
as R →∞ the µR distribution of σ2τ/R3/2 converges to the distribution
of the time it takes B1,4/3 started at 1 to reach 0.

Let
B± = {x : lim sup

t→±∞
K(x, t) < ∞},
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O± = {x : lim inf
t→±∞

K(x, t) < ∞, lim sup
t→±∞

K(x, t) = ∞},

E± = {x : lim inf
t→±∞

K(x, t) = ∞}2.

Denote B = B−
⋂

B+, O = O−
⋂

O+, E = E−
⋂

E+. Using speci-
fication property of the geodesic flow it is not difficult to show that
X−

⋂
Y+ 6= ∅. On the other hand Poincare recurrence theorem implies

(see [38]) that

mes(Eα

⋂
Bβ) = 0 mes(Oα

⋂
Bβ) = 0.

Theorem 11 allows to obtain several new estimates.

Theorem 12. (a) If d = 2 then mes(E±) = 0.
(b) If d ≥ 4 then mes(E) = ∞.
(c) If d ≥ 16 then mes(O±) < ∞ and mes(B±) < ∞.

Consider now a particle moving on a negatively curved manifold in
the presence of periodic potential U(x, τ).

Theorem 13. Let x be distributed according to µR. (a) As R → ∞
K(x, τR5/2)/cR converges to B 2

5
, 2d

5
.

(b) µR(E) → 1 as R →∞ if d > 5 and µR(E) = 0 if d < 5.

5. Galton board.

Here we describe a simple mechanical system exhibiting Fermi acceler-
ation.

Galton board, also known as quincunx or bean machine, is one of the
simplest mechanical devices exhibiting stochastic behavior. It consists
of a vertical (or inclined) board with interleaved rows of pegs. A ball
thrown into the Galton board moves under gravitation and bounces off
the pegs on its way down. If many balls are thrown into the quincunx,
then one can observe a normal distribution of balls coming to rest on
the machine floor.

Consider an idealized infinite Galton board, that is, a ball moving in
a bean machine of infinite length under a constant external field. We
neglect friction and the spin of the ball. Our pegs are convex obstacles
(scatterers) positioned periodically on the board and satisfying the fi-
nite horizon condition (the latter means that the ball cannot move in
any direction indefinitely without meeting a scatterer).

2E+ is denoted by E elsewhere in the paper
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x

x=0

g

Figure 1. A trajectory of the Galton particle under an
external field g.

Our ball starts on the line x = 0, its y coordinate has a smooth
distribution with a compact support, and its initial velocity is uniformly
distributed in a sector

(4) SV,α = {v(0) : c1V ≤ ‖v(0)‖ ≤ c2V, |∠(v(0),g)| ≤ α}.
Here 0 < c1 < c2 are two constants whose values are irrelevant, and we
assume that V is large enough and α is small enough.

We distinguish between the ‘open’ board D where the ball coming
back to the line x = 0 escapes from D and the ‘closed’ one where the
line x = 0 acts as a mirror reflecting the ball back into D.

Theorem 14. (a) In the open board the ball escapes from the board
with probability one.

(b) For the closed board there are constants c̃, V0 such that if V ≥ V0,
then c̃ t−1/3v(t) converges, as t →∞, to a random variable with density

3z

Γ(2/3)
exp

[
−z3

]
, z ≥ 0.

Accordingly, 2gc̃2t−2/3x(t) converges to a random variable with density

3

2Γ(2/3)
exp

[
−z3/2

]
, z ≥ 0.

Furthermore, the rescaled kinetic energy K(τR3/2)/c̃R weakly converges,
as R →∞, to B2/3,4/3.
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(c) There are constants a, b, c such that the vector
(

x(t)

ct2/3 ,
y(t)

ct2/3

)
con-

verges weakly to a random vector

(X, Y) =

K(1), aK(1) + bN

√∫ 1

0

√
K(χ)dχ


where K ∼ B2/3,4/3 and N be a Gaussian random variable with zero
mean and unit variance independent of K.

It is interesting to compare the Galton board with two related sys-
tems. First one is Lorentz gas corresponding to the case where g = 0.
The second is Lorentz gas with Gaussian thermostat introduced in [43].
Here we add to the Galton system an extra term modeling the dissipa-
tion of energy. Thus the motion between collisions is

q̈ = g − 〈g,v〉
〈v,v〉

v.

In both cases the unit speed surface is preserved. For Lorentz gas the
motion is diffusive and for the thermostated particle it is ballistic.

Theorem 15. (a) [4, 5] For Lorentz gas there exists a matrix D such
that

q(t)√
t
⇒ N (0,D).

(b) [6] Consider the thermostated system with small field εg then there
exist a(ε),D(ε) such that

q(t)− a(ε)t√
t

⇒ N (0,D(ε)).

(c) [9] As ε → 0, D(ε) → D and

a(ε)

ε
→ Dg (Ohm law).

Thus, as expected, the Galton particle moves faster than if we do
not pump the energy into the system, however, quite surprisingly, it
moves even faster if it shares the energy with the environment!

Part (c) of Theorem 15 is a special case of Kawasaki formula which
we explain next. Kawasaki formula allows to determine the dimension
of the limiting Bessel process. Other applications of this formula can
be found in [54].

Consider a one-parameter family of flows φε(t) having SRB measures
µε. That is, we assume that for any smooth measure ν

ν(A ◦ φε(t)) → µε(A)
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sufficiently quickly. Suppose further that µ0 is smooth. Let X(x) =
d
dε

∣∣
ε=0

d
dt
|t=0φε(t)x. We wish to compute d

dε
|ε=0µε(A). To this end ob-

serve that

µε(A)−µ0(A) = lim
t→∞

[µ0(A ◦ φε(t))− µ0(A)] = lim
t→∞

∫ t

0

d

ds
µε(A◦φε(s))ds.

To compare

∫
A(φε(s+h)x)dµ0(x) with

∫
A(φε(s)x)dµ0(x) make the

change of variables y = φε(h)x in the first integral. Since φ0 pre-
serves µ0

dµ0(y)

dµ0(x)
= 1 + εhdivµ0X + . . .

Thus∫
A(φε(s+h)x)dµ0(x)−

∫
A(φε(s)x)dµ0(x) = −εh

∫
A(φε(s)x)[divµ0X](x)dµ0(x)+. . .

Letting ε → 0, h → 0 we obtain

d

dε
|ε=0µε(A) = −

∫ ∞

0

[∫
A(φε(s)x)[divµ0X](x)dµ0(x)

]
ds

To derive the Ohm law observe that A = v, divX(q,v) = −〈g,v〉.
Hence∫

vdµε ∼ ε

∫ ∞

0

µ0〈v,g〉(x)v(φ0(s)x)ds =
ε

2

∫ ∞

−∞
µ0〈v,g〉(x)v(φ0(s)x)ds.

The last integral gives a well-known expression for the diffusion matrix.
Next we give an informal derivation of Theorem 14 which has much

in common with proof of other Fermi acceleration results mentioned in
the survey.

Pick a moment t0 > 0 and a small ε > 0. We will use a new (fast)
time variable s = (t− t0)/

√
ε, in which the particle’s velocity is

(5) ṽ(s) = dq/ds = ε1/2v(t(s))

and its kinetic energy is

(6) K̃(s) = 1
2
‖ṽ(s)‖2 = εK(t(s)).

We will call this ε-rescaled dynamics. The equations of motion now
read

(7) dq/ds = ṽ, dṽ/ds = εg

i.e. the particle moves with slower speed in a weaker field. In particular,
choosing ε ∼ K−1 brings our system to the form in which the speed
ṽ = ‖ṽ‖, and hence the times between collisions, are of order one.
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In other words, we get a so called slow-fast system, with a slow
variable K̃ and a pair of fast variables X = (q, ω), where ω = v/v
denotes the particle direction. In these variables, equations (7), to the
leading order, read

(8) q̇ =
√

2K̃ω, ω̇ =
ε√
2K̃

[
g − 〈g, ω〉ω

]
+O(ε2)

˙̃K = ε
√

2K̃〈g, ω〉.
Now we approximate (8) by the system3

(9) q̇ =
√

2Kω, ω̇ =
ε√
2K

[
g − 〈g, ω〉ω

]
, K̇ = 0.

The advantage of this approximation is that the particle moves at con-
stant speed. Furthermore, the dynamics on any energy surfaces can be
reduced to that on the unit speed surface. Namely, the solution to (9)
with initial condition (q0, ω0, K0) takes the form

K(t) = K0, (q, ω)(t, ε,q0, ω0, K0) = (q̂, ω̂)(t
√

2K0, ε/2K0,q0, ω0)

where (q̂, ω̂)(t, ε,q0, ω0) denotes the solution of

(10) ˙̂q = ω̂, ˙̂ω = ε [g − 〈g, ω̂〉 ω̂] .

with initial condition (q0, ω0). Equations (10) describe a particle in a
periodic Lorentz gas under a constant external field εg moving at unit
speed due to a Gaussian thermostat.

Let T = δε−2 with a small δ > 0; then approximations (8)–(10) give

K̃(T )− K̃(0) ≈ ε
√

2K̄

∫ T

0

〈g, ω〉 dt ≈ ε

∫ T̂

0

〈g, ω̂〉 dt,

where T̂ = T
√

2K̄. Using parts (b) and (c) of Theorem 15 we obtain

K̃(T )− K̃(0) ≈ 〈g,Dg〉δ
2
√

2K̄
+ (2K̄)1/4

√
δ 〈g, σ0(ω̂)Z(2)〉,

=
〈g,Dg〉δ
2
√

2K̄
+ (2K̄)1/4

√
δ 〈g,Dg〉1/2Z,

where Z,Z(2) denote standard 1D and 2D normal vectors. Likewise,
if we divide a longer time interval (0, τε−2) into segments of size δε−2,
we obtain

(11) K̃j+1 − K̃j ≈
σ2δ

2
√

2K̃j

+ (2K̃j)
1/4σ

√
δZj

3A rigorous justification of this approximation relies on Shadowing Lemma, see
[13, 14] for more details.
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where
σ2 = 〈Dg,g〉,

K̃j = K̃(jδε−2) and Zj are independent. (11) is a discrete approxima-
tion to

dK =
σ2

2
√

2K
dτ + (2K)1/4σ dWτ ,

whose solution is B2/3,4/3, up to rescaling.
We note that if we want just to determine a dimension of the Bessel

process than a simpler derivation is available. Namely, by Proposi-
tion 2.1, B2/3,n has invariant measure µ([0,K]) = cK 3n

4 . On the other
hand our system is Hamiltonian, it preserves a Liouville measure m
and

lim
ε→0

εm

(
εv2

2
≤ K

)
= cK.

Thus 3n/4 = 1/2 so n = 4/3.
We observe that the fact that the associated billiard system has fi-

nite horizon plays an important role here. Indeed for the infinite hori-
zon Galton board requires a nonstandard normalization in the Central
Limit Theorem [1, 59]. Hence the derivation given above does not work.
In other words we expect a different limit process since condition (2)
of Theorem 2 probably fails.

Problem 13. (a) Obtain an analogue of the Ohm Law for infinite
horizon Lorentz gas.

(b) Obtain an analogue of Theorem 14 for infinite horizon Lorentz gas.

So far in this section we considered perturbations of the billiard
motion by a force. Another interesting class of perturbations is given
by billiards with moving boundaries (breathing billiards). One example
of the breathing billiard is given by Ulam ping-pong where all orbits are
bounded. [28] considers billiard in a moving circle x2+y2 = R2(t). They
show that if R is a C7 periodic function then all orbits are bounded.
[26] extends this result to a moving elliptic billiard where the axis are
moving with constant angular velocity ω and the sizes of the axis change
periodically so that the eccentricity remains constant.

Problem 14. Show that in a typical periodic elliptic billiard there are
accelerating orbits.

[26] gives an example of resonant orbits where the energy increases
by a constant factor but the possibility of larger oscillations remains
open. [27] contains a similar study of perturbation of another integrable
system–oscillating rectangular billiards.

On the other end of the spectrum we have the following question.
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Problem 15. Describe the motion in oscillating dispersing billiards.

Heuristic arguments similar to those presented above for Galton
board suggest that the energy behaves like B2,4 but the rigorous proof
of this result has to overcome a number of technical difficulties (cf. the
discussion in [7], Section 5).

We refer the reader to [41, 40] for numerical studies of various classes
of breathing billiards.

6. Conclusions.

For mechanical systems there are two well understood regimes. One
is KAM regime where the phase space is filled with invariant curves
preventing acceleration. Another is hyperbolic regime where Lyapunov
exponents are positive and Fermi acceleration mechanism works.

An outstanding open problem is to understand systems with mixed
behavior (like bouncing ball in a gravity field). There are some beauti-
ful partial results, however, the general problem is but little understood
and the author hopes that specific problems mentioned in this survey
can lead to a progress in this field.
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