ASYMPTOTIC WINDINGS OF HOROCYCLES

DMITRY DOLGOPYAT AND OMRI SARIG

ABSTRACT. We analyze the scaling limits of the winding process for horocycles
on non-compact hyperbolic surfaces with finite area. Initial conditions with
pre-compact forward geodesics have scaling limits with gaussian and Cauchy
components. Typical initial conditions have different scaling limits along dif-
ferent subsequences of times, but all such scaling limits can still be described.
Some of our results extend to other unipotent flows.

1. INTRODUCTION

We study the winding of horocycle flows on hyperbolic surfaces of finite area,
extending our earlier work [DS17] which treated the compact case. The winding of
the geodesic flow is described in [GLJ90],[LJ92],[ELJ97], [EFLJO1].

Setup. Let M be a complete, connected, orientable, hyperbolic surface with finite
area, v cusps, and genus g. Equivalently, M is diffeomorphic to a compact connected
Riemannian surface My with genus g, minus a finite, possibly zero, number v of
points p1, ..., p, which we refer to as the “cusps” of M, or the “punctures” in M.
Let T'M := {# € T,M : x € M, ||¥]| = 1}, and let 7 : T*M — M be the projection
which sends a tangent vector to its base point.

The geodesic flow g' : T*M — T M moves a unit tangent vector ¥ at unit speed
along its geodesic, in the direction of . The stable horocycle flow ht : T'M — T'M
moves a unit tangent vector ¥ at unit speed along its stable horocycle

Hor(#) := W**(7) = {i € T"M : dist(g"(2), g (@) —— 0}.

The direction of movement is @ € Ty [W**(¥)] s.t. the ordered basis (&, %) has
positive orientation in oM.

Winding. “Winding” is defined in terms of the singular homology of the projec-
tions of finite orbits to M, after closing them to loops.

Formally, we fix once and for all a Borel family of curves 7., C M (z,y € M)
S.t. Vzy is a length minimizing curve from z to y. Let

Ho (o) = the loop obtained by concatenating the curve
T o t— (7T' o ht)(U) (O <t< T) to Y [hT (7)), (5]

The horocyclic winding class of ¥ at time T is the homology class [Hp(¥)] €

H,(M,Z). It depends on the choice of v,,, but our results do not (Cor. 15).
There is a d s.t. H{(M,Z) = Z%. Once we choose a basis for homology, we

can represent the winding classes by vectors in Z?. This allows to analyze their
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behavior as T" — oo. It is useful to work with a basis which separates “winding
around cusps” from “winding around handles.” Here is such a basis.

It is well-known that Hj(My,Z) = Z?9. Choose a basis of loops o1, ..., 09,
for Hy(My,Z). The “canonical” choice, which associates to each handle of M two
loops 04, 0;41 is depicted pictorially in [Hat02], example 2A.2. If, as we may assume

without loss of generality, o; do not pass through pi,...,p, then o; are loops in
M, and we obtain homology classes

[0’1], ey [Jgg] S Hl(M, Z)
Next, let C,...,C, be disjoint closed embedded discs in My such that C; contains
p; in its interior. Define loops ¢; := —dC;, where the minus indicates that ¢; is
oriented like (M \ C;), or equivalently so that “it sees p; on its right.” Then

lci], ..., [en] € Hi(M,Z).

Notice that [¢;] are not linearly independent: > ;_,[c;] = (M \U;_, C;) = 0. The
proof of the following standard lemma is reproduced in the appendix:

Lemma 1. If v = 0,1, then Hi(M,Z) = Z?9 and {[o1],...,[024]} is a basis for
Hi(M,Z). Ifv > 2, then Hi(M,Z) = 2297~ and {[o1],. .., [o24], [c1], -, [cv—1]}
is a basis for Hy(M,Z).

We call this the canonical basis.
The canonical basis induces an isomorphism Frob : Hy(M,Z) — 79, where
d := max{2g,2g9 + v — 1}. We need the following standard fact (see the appendix):

Lemma 2. There are closed harmonic 1-forms on M of,...,05,;C,..., () s.t.

) [, 05=05, [..¢=0;5./,¢=0, [, of=0forali,j;
(2) |lo¥|| are bounded on M;
(3) |I¢F]| are bounded on compact subsets of M, but not on M.

Then Frob([y]) := (/ O-Tv"w/o';g;/CT?"'v/C:—l)v with the understanding
v v v v

=tFrobep([7]) =iFrobey.p ()
that if v = 0,1 then Frobeys,([Y]) is the empty vector.
Frobeysp([7]) € Z%9 codes the “compact” windings of v around the handles, and
Frobeysp([7]) € Z¥~! codes the “cuspidal” winding around cusps.

Goal. Given ¥ € T'M, we are interested in the behavior of Frob[H(7)] as t — oo.

It turns out that for most vectors ¥, Frob|H:(¥)] is very oscillatory. Therefore,

instead of looking for a simple asymptotic equivalent for Frob[H(%)], we look for

scaling limits for the distribution of Frob[H(v)] (0 <t < T), as T — oc.
Formally, given v, we seek a centering vector fTT € R%, a scaling matriz By €

GL(d,R) , and a random vector Y € R (the “scaling limit”) s.t.
T]M0 <t < T: By (Frob([H,(7)]) — Ar) € B} — Pr(YeE) (1L1)
—00
for all Borel sets E C R s.t. Pr(Y € §E) = 0. Here \ :=Lebesgue’s measure. In

our case, and thanks to the choice of the canonical basis, the matrices By will all
be diagonal. We say that the scaling limit is non-degenerate when || By || = 0
de el

and for every @ # 0, (d@,'Y) #constant random variable.
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In cases when (1.1) holds only on along a subsequence T}, — oo, we'll speak of a
scaling limit along a subsequence.

(1.1) quantifies the oscillations of Frob([H(¥)] for 0 < ¢ < T. It says that for
every E C R% s.t. Pr[Y € E] > 0 and Pr[Y € 9E] = 0, there is a positive fraction
of 0 < ¢ < T such that Frob([H(%)] € Ay + BrE.

It is useful to restate (1.1) in the language of random variables. Recall that a
sequence of R%-valued random variable X, (possibly defined on different probability
spaces) converges in distribution to an R%valued random vector 3?, if one of the
following (equivalent) conditions holds:

(1) Pr[X,, € E] —— Pr[Y € E] for every Borel set E C R% s.t. Pr[Y € 9E] = 0;
n—o0

(2) E[G(X,)] —— E[G(Y)] for every bounded continuous G : R? — R;
n—oo

(3) E[G(X,)] — E[G(Y)] for all G € L' with Fourier transform G € L';

(4) E[ei@)ﬁ(")] —— E[eX@Y >] for every @ € R9.

When this happens, we write X,, —=*5 Y. See [Bre68].
n—oo

Recall that \ denotes the Lebesgue measure. The uniformly distributed random
variable on [0,T] is the random variable t s.t. Pr[t € E] = zA(E N [0,T]) for all
Borel E C R. We write t ~ U[0,7]. Define the Z%-valued random vector

W (7) = Frob([H¢(7)]), where t ~ U[0,T]. (1.2)

Then (1.1) is equivalent to B;l(V_VT(g) _ A’T) _dist N

T—o0

Overview of Main Results. Fix ¢ and break Wr(7) := (W W5*P) where

WP = Frobey ([He(9))), t ~ U[0,T]
WP = Frobeys, ([He (7)), t ~ U[0,7].

V_VCTP " € 729 encodes the distribution of the compact winding for 0 < ¢t < T, and
WP € 7¥=! encodes distribution of the cuspidal winding for 0 < ¢ < T, with the

undersanding that if v = 0,1, then WCTUSP is the empty vector.
Next, recall that ¢° : T*M — T'M denotes the geodesic flow, and define the
(non-random) geodesic winding vector

Gis(5) := Frob([Gs () (13)
where G 5(7) is the loop obtained by closing s +— (70 ¢*)(7)(0 < s < S) with the
CUTVE Vr(yS (7)).m(5)- Decompose Gg(7) = (GZ(7), Gg" (v)) € 229 x 2.

Our first result (Theorem 6) identifies an explicit set of full measure Q; C T M
s.t. for every ¥ € {2y,

WP — GPL(0)  aist N
VInT T—o0

where N is a non-degenerate 2g-dimensional gaussian distribution which only de-
pends on M. M is compact iff Q; = T*M. The compact case was done in [DS17].

(1.4)
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Next (Theorem 7) we identify an explicit set of zero measure Q2 C T*M, which
contains all vectors ¥ whose forward geodesics are pre-compact, s.t. for every v €

Wi — G (@) W™ — G (9) _ais
VInT ’ InT
N € R% is as above, C € R"! is a vector of identically distributed independent

symmetric Cauchy random variables, and N, C are independent. In the special case
when ¥ sits on a closed geodesic o with length £,

(N, C). (1.5)

T—o0

T—o0

<W;pt—éCptlnT W%USp—éCUSplnT) dist (1<I (_j) (1.6)
vVInT ’ InT ’

where (GPt, GeusP) :=average homology= Frob([o]) /L.

Our next collection of results (Theorems 8-12) describes what happens outside
Q9. There are good news and bad news.

The bad news is that if there is more than one cusp, then (1.5) fails on a set of
full measure: For a.e. ¥ one can find two different sequences T, T/, — oo so that
the distributions of W;ZSP (), V_V?[’ZZSP (v) have different scaling limits.

The good news is that there is an explicit set of full measure Q3 C T'M with
the following remarkable property: For every ¢ € g,

(a) Every sequence T,, — oo has an explicit subsequence T;,, — oo with a scaling
limit B! (Wr,, —dr,,) Ii—;> Y:

(b) The scaling Br, , the centering @z, and the limiting distribution Y can be
determined explicitly from the vector g™ Tn (7);

(¢) The family of all possible Y is explicit and small (a finite-parameter family of
explicit distributions). All are equally important: For a.e. ¥, every Y appears

—

along some subsequence T,, — oo (for the same ¥)

Thus while there is no single scaling limit as 7' — oo, the asymptotic distributional
behavior of W1 can still be completely described.

Next we prove a version of (1.4) for unipotent flows. Suppose G is a non-compact,
simple, real-rank one Lie group (see Remark 28), and let I' C G be an irreducible
uniform lattice (so G/T" is compact). Let g denote the Lie algebra of G. Every
Z € g determines a flow %, : G/T' = G/T via ¢ (aT') = exp(tZ)aT.

A unipotent flow is a flow ¢!, generated by a non-zero Y € g s.t. the spectrum
of Ad(Y) equals {0}. As we explain in §7.1, 3X € g s.t. [X,Y] =AY with A > 0,
and the flow % renormalizes } similarly to how the geodesic flow renormlizes
the horocycle flow: Y o ol = ¢l o gog‘/"‘ﬂ. For example, suppose G = PSL(2,R),
Y = ( oo ), X = ( 1/2 —?/2 ) Then ¢ is the geodesic flow and ¢} is the
horocycle flow, see [BM00]. But caution! G/T is the unit tangent bundle of a
hyperbolic surface, not the surface itself.

One can define the winding vectors V_VT(xl") and Gg(zI) as before, but with ot
replacing h' and ¢% replacing g*. Let m denote the measure on G/I" induced from
the Haar measure. Theorem 33 says that for a.e. 2" € G/T,

W1 = Giog , 7(T) it

N,
\/logex T T—o0
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where N is a multivariate gaussian distribution on R%, d = dim H*(G/T,R). How-
ever in this case, N could have degeneracies, see example 7.4.

Our last result deals with almost sure distributional limit theorems in the sense
of [Bro88, CG07]. These are limit theorems as T — oo of the distribution of
Br, 1(WL — /YL) where By, and ffL are calculated at the same random time L as
Wy, and L ~ Log[0,T] (i.e. L has density dz/(zInT) on [1,T].)

Suppose M is a compact hyperbolic surface. Then it follows from [CGO7] that
the coordinates of the winding vector of geodesics satisfy such laws for a.e. initial
condition. We show that this is false for the horocycle orbits of a.e. orbit.

Winding and Ergodic Integrals. We claim that if the horocycle of ¥ is not
closed, then Frob[H(¥)] is an ergodic integral up to “negligible” error:

Frob Ht / f hT dT+€t( ) (17)

Here f == Go R, @ = (0f,...,0553¢}- .. Cioy), B+ T'M — T'M is the
rotation by —90° (needed to rotate (%) to the direction of 4m(h'(7))), and
£1(7) := f,y @. We now explain the sense in which &;(7) is “negligible:”

Lemma 3. Suppose the horocycle of U is not closed. If B, € GL(d,R) satisfy

I BZH| = 0, then By'&y(t) == 0, as t ~ U[0, 7).

w(ht (%)), (¥)

Proof. Let m denote the normalized volume measure on T*M and let A denote
Lebesgue’s measure. We claim that the distribution of & () as t ~ UJ[0,T] is tight:

VedK s.t. limsupT M0 <t < T :|& ()] > K} <e. (1.8)

T—o0

To see this note that ||dJ]| and {(yzy) are bounded on compacts. So for every
compact C C M, there is K(C') s.t. || f w|| < K(C) for all z,y € C. Choose C
compact s.t. m(dr~1C) = 0, C’ > 7 (V), and m(n~1(C)) > 1—e. The condition on &
implies that the horocycle of ¥ is equidistributed [DS84]. So for all T large enough,
TINO<t<T:||&@)|>Ky<T'Mo<t<T:h(®) gr ()} <e.

Consider the random variable & (7), t ~ UJ[0,T]. By tightness, for every § > 0
Pr(||B;'&(9)|| > 6) < Pr(||&(@)] > §/I1B:) = 0. The lemma follows. O

Discussion and Related Results. By (1.7) and Lemma 3, our results are equiv-
alent to scaling limits for the temporal distribution of the ergodic integrals

I,(7) = /th ydr, for f =

We compare our results to known results on I;(7). Write I,(7) = (IfP (%), ;P ()
where If?" is the ergodic integral of (fi,..., fo,) and If"*" is the ergodic integral
of (fog+1,- .., fog+v—1). The following is known:

(1) For1<i< 2g, fi = 0} o R is a bounded continuous function on T'M. Since
[i(=0) = —fi(¥), [ fi = 0. Therefore, by the Dani-Smillie Theorem [DS84], for
every ¥ whose horocycle is not closed, I:7*(7) = o(t).

(2) If M is compact, then If” (%) = O(log t) for a.e. ¥ [FF03, BF14].1

1[FF037 BF14] provide much sharper asymptotic information on ergodic integrals of smooth
functions which (unlike f;) are not in the kernel of all invariant distributions of the horocycle flow.
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Our results give the following additional information:

(3) There are initial conditions ¥ with t; — oo s.t. ||Itcft(17)\| > constlogty. Any
¥ which sits on a closed geodesic with non-zero homology is like that. This is
because of (1.6).

(4) The asymptotic behavior of I;(¥) is very sensitive to ¥. This is because of
the exponential sensitivity to initial conditions of the geodesic flow, and the
formula (1.3) for the centering term G, (%) in (1.4),(1.5),(1.6).

(5) The behavior of (%) is oscillatory. The oscillations of I{P*(7) for 0 < t < T
are of order vInT. The oscillations of I;"*" () for 0 < t < T are of order InT.
This is because the scaling limits Y are not degenerate.

(6) For a.e. ¥, the asymptotic shape of the distribution of the oscillations of I;(?)
falls into a finite parameter family of explicit shapes. This is because of the
description of the limiting random variables given in the next section.

The last point should be contrasted with what happens to the geodesic flow on
compact hyperbolic surfaces. There is no limit on the asymptotic shape of the
oscillations of the ergodic integrals in this case, even for a single initial value: For
a.e. ¥, for all 1 < i < 2g, for every random variable Y, there is T} T oo s.t.

F fo fi(g°v)ds —> Y, as t ~ U[0,T;]. See [DS17, §3].

The results of thls paper belong to what we called in [DS17] temporal distribu-
tional limit theorems: distributional limits of the form

(/ f(R™(T dT—AT> &Y as t ~ U[0,T). (1.9)

For more on temporal DLT in dynamical systems, see [DS17].
A spatial distributional limit theorem for a flow T : X — X with respect to a
probability measure p on X is a scaling limit of the form

T
. </ f(Ttx)dt—AT> %Y as X ~ [i. (1.10)
0
This means that u{z € X : B;! (fo AT> € LB} = Pr(Y € E) for
—00

all Borel set F s.t. Pr(Y € OF) = 0.

It is interesting to note that although we have temporal DLT for the windings
of the horocycle flow, it is still not known whether there are spatial DLT for such
windings. The work done on compact surfaces in [FF03, BF14] shows that if such
limit theorems exist, then the limiting distributions have compact support. In
particular, they are not gaussian as in the temporal DLT in the compact case.

The situation with the geodesic flow is the exact opposite. Spatial DLT for the
winding of geodesics on compact and finite area hyperbolic surfaces are provided
in [GLJ90, LJ92, LJ94, EFLJ01, ELJ97, LS08]. The limit Y is exactly the (N, C)
appearing in (1.5), although the scaling is different and there is no need to center.
But as we already mentioned, the temporal DLT fails for a.e. orbit, and all possible
random variables appear as scaling limits along some subsequence even for one
single initial condition [DS17, §3].

Open Problem: In [Becl0, Becll], J. Beck studied I;(x) := ZE;]:_OI f(T*z) for
the irrational translation 7" : [0,1) — [0,1), T(z) = z + amod 1 and the function
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C; is lifted to {z : Im(2) > 1} so that ¢g>(¢) = 0. C; is the
projection of any of the regions above Re(z) = % and between
Re(z) = n and Re(z) = n+ 1 (n € Z). 9C; is the horizontal
line Im(z) = 3, and ¢; is oriented to the left. The curved arrow
indicates the direction of the horocycle flow

FIGURE 1. Cuspidal excursions: (a) Ascending, (b) Descending.
1
2

f(z) = 10,0)({x}) — a. He showed that if a is a quadratic irrational, a € Q and
x = 0, then there are A € R, B > 0 s.t.

I;(0) — Alog T aist

By/logT T—o0

where N is the standard gaussian distribution. Is there a limitation on the possible
scaling limits along subsequences for typical a7

N, as t ~ U[0,T],

2. PRECISE STATEMENTS OF RESULTS ON HOROCYCLE FLOWS

2.1. Cuspidal excursions. Recall that M is isometric to My \ {p1,...,p,} with
the induced hyperbolic metric, where M is a compact surface and pi,...,p, are
the “cusps.” The collar lemma (see e.g. [Hub06, Prop 3.8.9]) says that p; have a
decreasing system of open neighborhoods C;(n) (n > 1) in My s.t. 9C;(n) is a closed
horocycle of length 1/n, C;(n)\{p;} is isometric to {z € H : Im(z) > n}/{z > z+1),
and C;(n) | {p;}. Moreover, C; := C;(3) are disjoint.

If the geodesic ray of ¥ enters C; and never leaves it, then ¢°(?) P 2 in the

sense that for every 7 there is an s s.t. ¢°(v) € C;(n) for all s > sq.

In all other cases, the geodesic of ¥ must leave every cusp it enters, and the
time it spends in U;Zl C; is naturally divided into time intervals (ax, bx) such that
g°(¥) € Cy, for s € (ag,br) ; ¢°(¥) € IC;, when s = ay, by (except perhaps when
s = 0); and ¢°(?¥) & U;=1 C; when s & (J(ak,br). We call {g7(¥) : 7 € (ag,bi)}
cuspidal geodesic excursions.

Similarly, if the geodesic ray of ¢ does not tend to a cusp, then the stable
horocycle of ¥ leaves every collar it enters, and the time it spends in collars can be
naturally divided into cuspidal horocyclic excursions.

A cuspidal horocyclic excursion is called ascending, if for small positive € h*v
is further from OC; than ¢ and descending, if for small positive £ he¥ is closer to
0C; than . Note that if ¥ belongs to the ascending excursion then the same is
true for g*¢. Notice that the horocyclic cuspidal excursion containing a vector @ is
ascending, iff the the geodesic cuspidal excursion of @ moves in the direction of ¢;
(the parametrization of —9C; which “sees p; on its right”, see Figure 1).

Fix ¥ whose geodesic ray does not tend to a cusp. We will see below that
the asymptotic distributional winding of the horocycle of ' depends on whether
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4 e?wi [dxtedy?
— 5 I\ ‘—\%/7
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7 1 & . 33 §(T)eo 250D —p(M
"ocy h \

FIGURE 2. The parameters of a cuspidal excursion (ascending
case). C; is lifted to {z : Im(z) > 1} so that ¢°°(¥) = 0 and
g~>(¥) > 0. OC; is the horizontal line Im(z) = %, oriented to
the right, and ¢; is oriented to the left. C; is the projection of
any of the regions above Re(z) = 3 and between Re(z) = n and
Re(z) =n+1(neZ).
g T (@) € U'_,Ci, and in case ¢™7(7) € Cy, on certain characteristics of the
cuspidal geodesic and horocyclic excursions of g™ 7 (%) in C; . These are:
o i=1i(T)€{l,...,v}, the index of the cusp containing g™ (%),
o o = o(T) defined to be +1 when the horocyclic cuspidal excursion of g7 (%) is
ascending, and (—1) when it is descending,
o § = §(T) s.t. the geodesic excursion of g7 (%) begins at time InT — §(T),
o s = §(T) :=maximal distance of the cuspidal geodesic excursion containing
g™ T (%) from AC;, or zero if g7 (%) ¢ Ui, C;
o p = p(T) :=maximal distance of the cuspidal horocyclic excursion containing
g T (%) from 9C;.
See Figure 2.

Lemma 4. If "7 (7) € C;, then §(T) = 2s(T) — p(T) +1n4 + O(e=2(D)). In
particular, p(T) < 2s(T) 4+ O(1), and O(1) < 2s(T) — p(T) <InT + O(1).

Proof. Draw the picture as in figure 2. The isometry z — —% maps the horocycle of
g™ T () to the line Im(z) = 2¢=7(T), the geodesic of ¥ to the line Re(z) = —e=5(T),
and 9C; to the circle [z —i| = 1. Re(z) = —e ) intersects |z — i| = 1 at
z1:= —e ¥ +i(l+v1—e"2%) and Im(z) = 2e 7 at 2o : = —e ° + 2~ Pi. Except
possibly for first cuspidal geodesic excursion, z; = —e™* + (1 — V1 — e72%) and

Im(z) < Im(zz). So § = dist(z1, 22) = In 1_5% =2s—p+Ind+0(e?%). O

Lemma 5. Assume there are cusps. For a.e. v € T'M, limsup 12(1:)7“ =1. So for
)

a.e. Ts(T)=0(nlnT) and limsup(hf;(ﬁ = o0 for alle > 0.

Proof. We use Sullivan’s “Logarithm Law” [Sul82]: If M is a non-compact hyper-
bolic surface of finite area, then for every po € M, limsup M =1 a.e

T
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It follows that 37}, — oo s.t. lim %T;iﬁ)]’po) = 1. Suppose py & Ui’ 1 Ci, then

dist(m(g™ T* (%), po) < s(Tk) + O(1), so lim inf ?(Tk)) > 1, and limsup 5 s(T )T > 1.

Next, suppose ¢ T (%) € J;_, C;. Let (Tbeg<T), Tend(T)) be the time interval of
the cuspidal geodesic excursion of g7 (%). Let 7(T) € (Tpey(T), Tena(T)) be the
time when dist(g7(") (), 0C;) = s(T). By figure 2 and Lemma 4,

T(T) < Tena(T) <InT + p(T) <InT +2s(T) + O(1).

Fix some py &€ |J;_, C;, then for every £ > 0, for every T large enough,

: +(T) (3
Necesarily s(T) = o(InT): Otherwise, 3k, 1 oo s.t. h(lT:ﬁ”) > ¢ for all n, whence by
(2.1), % < 2, which is impossible because s(T},,) > elnTy, — oco. So
?1(17:;2 — 0. Substituting this in (2.1) gives lim sup - §n>T <1. O

2.2. Statements of Main Results. Recall that M is a complete, connected,
orientable, hyperbolic surface with finite area, genus g and v > 0 cusps. Let m
denote the area measure of M. As always, d := max{2¢g + v — 1,2¢}. Define a
d-dimensional random vector Z := (ZPt, Ze"sP) as follows:

(1) Zert = (Z5P', .. Zcm) has the Gaussian distribution s.t. E(ei@zcm>) [

(60 € R?9) where |0]|2,; = m(lM) Jour Z?il 0;0%(|2dm, | - || is measured in T* M,
and o} are given by Lemma 2.
(2) Zewsp .= (ZS"*P ... Z°"*P) are independent, identically distributed, symmetric,

Cauchy random variables s.t. E(e%:"™") = ¢~101/m(M) (9 ¢ R).
(3) Z°P* and Z°sP are independent.

Given ¥, define s(T) as in Figure 2 when g™ 7 (%) is in the collar of some cusp,
and let s(T') := 0 otherwise. Recall the definitions of W (%) = (WP*, WP and
Gs() = (GL',G¢P) from (1.2) and (1.3). Given @, W (@) is a random whereas
Gs(7) is deterministic.

Theorem 6. Suppose U satisfies s(T) = O(InlnT) (almost every vector is like

W pt Gf}f’T(v) dist 7
that), then T P Zp:.

Theorem 7. Suppose ¥ satisfies e*T) = o(v/InT) (all vectors with pre-compact

2rcpt  Scpt [ cusp cuép . -
forward geodesics are like that), then (W \/% (0 ), Wi hli (v)> dist 7.

T—o0

Whereas Theorem 6 applies to a.e. ¥/, Theorem 7 does not, because if M is not
compact then e*(7) #£ o(v/InT) for a.e. ¥ (Lemma 5).

The following theorems describe the asymptotic distributional behavior of Wr
under the weaker condition $(T) = O(InlnT') which does hold almost everywhere.
As explained in the introduction, the behavior is complicated, with different scaling
along different subsequences. Our strategy is to identify “good” classes of subse-
quences s.t. (a) every good subsequence has an explicit scaling limit which depends
on the class, and (b) every sequence has a “good” subsequence.
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Fix ¥ € T*M and T, T co. We call {g™*T (%)} monochromatic if {g"™ T (¥)},>1
is precompact, or if for some 0 < i < v, g™ 7 (%) ——cusp 4, and the horocyclic
n—oo
cuspidal excursions of ¢ 7 (%) in C; are all ascending, or all descending.

Every sequence has a monochromatic subsequence, and every monochromatic
sequence has a subsequence of one of the following types (cf. Figure 2):

TypE I: {g"7"(¥) : n € N} is pre-compact in M
Type II: g T () ——cusp p;, {g"™ T (¥)} is monochromatic, and
n—oo
eS(Tn)

p(Tn) = s(Tn) — > ko €R —— a, €0,00].

" In T, n—oo
Type II1: g T () —cusp p;, {g"™ T (¥)} is monochromatic, and
n—roo

S(T0)

o(T,) — s(Ty) as € [0, 00].

n—o0 o0 2InT,, n—oo
TypE IV: g™ T () ——cusp p;, {g™ 7 (¥)} is monochromatic, and
n— oo

p(Tn)
p(T,) — s(T,) —0, =

n— o0 21nTn n—roo

Theorem 8. Suppose v € T'M. If T, 1 oo is of type I, then

(V_V;pt Cpt () W;“Sp—éf;‘;p(ﬁ)) dist Z’
m J T :

Next we discuss the limiting behavior along monochromatic sequences of types
ITI-TV. We assume w.l.o.g. that g™ 7" (%) —cusp i with 0 < i < v — 1. The case
i = v > 2 is complicated to write down in the coordinates of the canonical basis,
and it is better to handle it by relabeling of the cusps.

Suppose 1 < i < v — 1. For every vector ¥ € R297"~1 Jet 2 € R denote
the i-th coordinate of Z, and let Z°%*?\ € R¥~2 denote the vector obtained from
2P ¢ R¥~! by removing its i-th coordinate, or the empty vector if v = 0, 1.

If X,Y are two random variables, then X @Y denotes the independent sum, i.e.
the random variable with characteristic function E(e??X®Y)) = E(e*X)E(eY).

Let In T,f (¥) :=beginning time for the cuspidal geodesic excursion of ¢ 7*(%). Set
Ginr, (5) 1= Frob™*?[G,_ #(0)] = Mo (Ty).

a, € [0,00].

T—o0

Theorem 9. If T, 1 oo is of type II and s(T,,) = O(InlnT,,), then there is a real
valued random variable Y, independent of Z, s.t.

Wit =G, () Wi -GN (8) Wiy, ~Glyr, (0)
— n n n n Ty n n
(1) Ifas = 0, then ( T, 5 In T, ) InT,

dist (ZCpt Zcusp\l Zcusp)

n—)oo

PE-Grrh (5) WP\ -Grit\ (@) Wi~ Gl g (D)
vInT, ’ InT, ) es(Tn)

(2) If as = oo, then ( To 1T

dist (Zcpt Zcusp\z Y)

n—)oo

Wit —Givn, (1) WGPV @) Wi, ~Giu, (9)
InT), ’ InT, ’ InT),

(3) If 0 < as < 00, then ( In__InThn

dist (Zcpt Zcusp\z Zcusp D ag Y)

n—>oo
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The random variable Y has probability density function (1/ fA %") on
(-1, —mﬁ] {g" 7% ()} is descending
s [1, =] {g"™Tx (%)} is ascending, ko > In2
[1,00) {g"Te (%)} is ascending, ko = In2
( (V)

—5=) UL,00)  {g"™ (D)} is ascending, ko < In2.

U
Theorem 10. If T, 1 oo is of type III and s(T,,) = O(lnlnT,), then:

WR7ept _ Gept (@) WcuSP\i_chsp\1(~) Wi, _Gi (1—;),€S(Tn)g(T )
(1) If as =0, then ( 7y S, T, In T T = Cn Ty, il
InT,, ’ In Ty, ’ InT,,
dist (Zcpt Zcusp\l Zcusp)
n—)oo
wcpiiccpt (17) Wcusp\iié‘uusp\i(a) Wi 7@1‘ (1_).)765(7*71)0_(,1.‘ )
_ Ty InTp Ty In Tp, Tn, In Tp, n
(2) Ifa5 = 00, then < InT, ’ InT), ? %e“Tﬂ)
dist

—L s (Zert, Zevse\ YY), where Y ~ U0, 1] is independent of Z.

7L—)O<>

WEPI_Girt (8) WPV —GRirN (@) W =Gl (0)—e* T o(T,)
(8) If 0 < as < oo, < Tt ) T, ) InT,

d o .
ot (ZCpt Zicusp\i Z;"P @ asY), where Y ~ U[0,1] is independent of Z.

n—)oo

Theorem 11. If T,, T oo is of type IV and s(T,,) = O(InlnT,,), then there is a real
valued random variable Y, independent of Z, s.t.

wept cpt g Rreusp\i  Acusp\i i A =
(1) Ifa, =0 then< & =G, () W™V -GN (@) Wi~ (9)
P \/111 Ty ’ InT, ’ InT,
dist (Zq)t Zcuép\z Zcusp)
n—)oo
wcpt GLp (’U) Wcusp\iiécusp\i(l—;) Wi _éz (17)
— Ty In Ty, Th, In T, Thn In Tp,
(2) If ap = 00, then < T, ’ InT), ) %e‘“Tﬂ)
dist

(Zcpt Zcu sp\i Y)

n—)oo

(3) If0 < a, < oo, then (

W =Gt (@) WV —Giiir\i() w;n—@fm(a) dist

\/ln Ty ) InT,, ’ InT,, n—soo

(2cpt Zcusp\i Z?’U«SP D GPY)
Y has probability density function di on (—oo, —1].

We see that different scaling limits occur for different types of subsequences. The
question remains, which types occur for typical orbits. As the following theorem
shows, the answer is: “All of them.”

Theorem 12. For a.e. ¥ € T'M, for every a € [0,0], k € [~00,00], 1 <i < v
and o = £1

(1) 3T, 1 < of type I;

(2) 3T, T oo of type II s.t. o(T,) = o, i(T,) =1, as = «, and p(T,) — s(Ty) — K;
(3) 3T, 1 oo of type Il s.t. o(T),) = o, i(T,) =i and as = «;

(4) 3T, 1 oo of type IV s.t. o(Ty,) =0, i(T,) =1 and a, = .

3. REDUCTION TO A PROBLEM ON THE HoMoLOGY COVER

3.1. Homology cover. Every complete connected orientable hyperbolic surface
M has a regular cover M, called the homology cover, whose group of deck transfor-
mations is isomorphic to Hy(M,Z). This cover can be constructed as follows.
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Let H denote the hyperbolic plane: {z € C : Im(z) > 0} with the metric ds =
|dz|/Im(z). It is well-known that the group of orientation preserving isometries
of H equals Mob(H) = {z — gj_ts s a,b,c,d € Riad — be = 1}. By the Killing-
Hopf Theorem, the universal cover of M is isometric to H, and there is discrete
subgroup I' € Mob(H), without elements of finite order, such that M is isometric to
I'\D:={T'z: z € D}. T is isomorphic the fundamental group 71 (M, pg) (po € M).

Let I := (ghg='h™' : g,h € ). This is a normal subgroup of I'. Since H; (M, Z)

is the abelianization of (M), Hy(M,Z) = T/T. The homology cover of M is
M:=T \ H

with the covering map 7 : I' \ H — T'\ H, #('2) := I'z. Every coset I'q € I'/T
determines a well-defined isometry of Dy, : M — M through Dy (I'z) = I'g(z).
Let D :={Df, : g € I/T}, then D = T/T = H,(M,Z) and M /D = M.

3.2. Frobenius elements. Fix a point py € M and some lift pg € M. Since M is
connected, every class in Hy(M,Z) is represented by a loop o passing through po.
Lift o at py to a path ¢ in M. There is a unique deck transformation D, € D s.t.
the endpoint of & equals D, (pg). D, is called the Frobenius element of o.

Since homotopic loops have the same lifts, D, is determined by the homotopy
class of o, and o — D, is a homomorphism from 71 (M, pg) to D. Since D is abelian,
this homomorphism vanishes on the commutator group of 71 (M, pg). Consequently,
D, only depends on the homology class of . We obtain a homomorphism

frob: H1(M,Z) — D, frob[o] = D,.

It is easy to see that frob is onto: every D € D equals froblo] for o :=projection of
the geodesic from py to D(py). Since Hy(M,Z) = D = Z¢, frob is an isomorphism.

The Frobenius element does not depend on the choice of pg and py, because
changing py changes o into a conjugate of o, and changing py changes D, into a
conjugate of D,. Since Hy(M,Z) and D are abelian, nothing changes.

By Lemma 1, d = 2g when v = 0 and d = 29 + v — 1 when v > 1. We can use
the Frobenius isomorphism to enumerate D in such a way that

D:={D,:a€Z%, DyoDy=Dyip.
To do this take the basis for H1(M,Z) found in Lemma 1, and set

2g v—1
D, := frob (Z ailo;] + Z ai[g}]).
i=1 i=1
With this enumeration, we have the identity
frob[o] = DFrob[a] (3.1)

with Frob([o]) := ([ o7,..., [ 05, [ ¢y - oy [ ¢5—1), the isomorphism we defined
after Lemma 2.

3.3. Z%-coordinates. Since M = I' \ H has finite area, I' is a lattice in M&b(H).
Choose a fundamental domain F' C H for I" such that: F' is a geodesically convex
hyperbolic polygon; either all the vertices of F' are in OH or no vertex of F'is in OH;
F has finite even number of sides; these sides are identified in pairs by I'-elements.
Remove “half” of the sides of F' to obtain a non-closed non-open hyperbolic polygon
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Fo st. H=,crg(Fo) = H (pairwise disjoint union). Let Fy:={Tz:z € Ry},
then M = {Tz: 2z € H} = {Tg(2) : 2 € Fo,g € T} = Wpep D(Fo) = Waezu Dal(Fo).
The Z%-coordinate of p € M is the unique § € Z% s.t. Dé(ﬁo) > p. The Z%-

coordinate of U € T@/ is the Z%coordinate of the base point of 7. We get maps
E:M— VAR [ T'M — 72 called the Z—coordinate maps.

Lemma 13. Fiz v € TLM and let W e TM be a lift of U to T*M. The random
variables X = ||[Frob[Hy(9)] — £(h*(w))||, when t ~ U0, T], are tight as T — occ.

Proof. In this proof we identify M with the orbit space I' \ H. Let F; denote the
fundamental domain for I' we used to define the Z%-coordinate function &. Every
x,y € M equal I'z,T'w for unique z,w € Fy. Since Fj is geodesically convex, the
geodesic segment from z to w lies in Fy. Let 7, denote the I'-projection of this
segment to M. (This is not always a length minimizing curve in M.) Let

ﬁt (@) = < the loop obtained by concatenating the curve ) .
T (7‘(‘ o hT)( ) (0 <7< t) to ’yw[ht(-‘)]m[v]
We deduce the lemma from the following claims:
(1) (Rt (i) = &(@) + Frob[H,(7)] for all ¢ > 0.
(2) ZT(ﬁ) = ||£‘r0b[ﬁt( 7)] — Frob[Hy (#)]||, where t ~ U[0, T}, are tight as T — occ.

PROOF OF (1). H, (%) lifts at ] to the concatenation 7, - 3, where 3, is 7 —
n[h7 ()] (0 < 7 < t) and 7 is the lift of Y (4-(5)),x(5) at 7[A7(7)]. Clearly

o 71 starts at @ € Dg(u) (Fp)

o 1 ends at w(h'(i)) € D () (Fo)

o 9 stays inside Df(h‘r(uj))(ﬁo) (because Y (n (#)),x(w) C I'Fo).

So 41 - 72 starts in De(a) (Fp) and ends in Dg(ht (@) —£() ( o). It follows that
trob[H,(#)] = De(nt () —¢(a)- By (3.1), Frob[H, (#)] = £(h! (i) — £().

PROOF OF (2). By construction [H (%)) — [Hy(7)] = [y] where v is the concatena-
tion Yr(nt (), (7] 7 L[] and 7! is the time reversal of 7. Define F : T'M — 74

ﬁ(a’) = Frob([’y({[)]), where ¥(@) = Yx[a),»[a) -’/7\7:[17],71”[17]'

Then A4(?¥) := Frob[H(7)] — Frob[ﬁt(ﬁ)] = F(h(D)).

Let N := {T'z: z € 0Fy}, a finite union of geodesics. We claim that there is a
function G : T*M — RY s.t. |[F(@)| < G(@) for all 4 € T*M and such that G is
continuous outside T N. Here is the reason:

F<ﬁ>:</ o/ o;g,/ </ &)
(@) ~ (@) (@) ~(@)

where o, ¢} are the 1-forms in Lemma 2. Now

(a) The length of (@) is at most L(@) := distps (7[v], 7[4d]) + (7[7], w[d]), where
distys is the hyperbolic distance on M and ¢(z,y) := distg, (2, w) where distg,
is the hyperbolic distance on Fy and z,w € Fy satisfy x =T'z,y = T'w.

(b) v(@) C K(@) :={x € M : distp (w[v],z) < L(©)}, a compact set.

(¢) M(i@) =max{||o] |z, [(fllz -z € K(d),i=1,...,2¢;j=1,...,v— 1} < oo.
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Thus, ||F(@)|| < G(@) where G(@) := VdL(@)M (). G is continuous outside T' N,
because L(#) is continuous outside T'N := {# € T} M : x € N}.

According to the Dani- Smillie Theorem [DS84], the horocycle of ¥ equidistributes
to a measure u (equal to = fo dp~ (yd if the horocycle of ¥ is periodic with period
To, or to the normalized volume measure when the horocycle is not periodic).

Fix ¢ > 0 and open sets U,V st. V D> U D U D T'N and p(V) < /4,
w(0V) = 0. For every a > 0, [G > a] \ U is closed, therefore there is a continuous
function H s.t. ligsqv < H < 1pe and [ Hdp < plG > a] + 5. As t ~ U[0,T],

Prob[Ar > a] = Prob|[||F (bt (D)) > a] < Prob[G(h*()) > a
< Prob([G(h*(¥)) = a] N [A*(¥) & V]) + Prob[h*(7) € V]

=E[Ligzapv (h°(9)) + 1v (h*(9))] < E[H (h"(9)) + 1v (h*(7))]
=4 [ B0 @)+ 10 @ir o [ F ) v =0
<plG>al+ 54 7.
Choosing a s.t. p[G > a] < &, we see that Prob[Ar > a] < ¢ for all T large

3
enough, proving the tightness of Ap. O

Corollary 14. Let W € T'M be a lift of v € T*M. For every Ar € R?, By €
GL(d,R) s.t. |B3'|| = 0, and every random variable Z € R?,

dist

By (Wr(7) — A )%YzﬁB Lt (@) — Ap) =255 Y, as t ~ U0, T).

T—00

Corollary 15. If ||B;'|| — 0, then the validity of the scaling limit By (W (7) —
Ar) dL> Y is independent of the choice of the closing paths {4y} used to define

the horocyclzc winding classes.

Proof. §(h*(w)) does not depend on {,y}. O

Corollary 14 reduces the analysis of Wy (%) = Frob[Hy(%)] with t ~ U[0,T]
to the study of {(h*(w)) with t ~ U[0,T], where @ is a tangent vector on the

homology cover M s.t. 7(w) = .

4. PROOF OF SCALING LIMIT ALONG SEQUENCES OF TYPE I

Recall the notation 7 : M — M for “the homology cover M of M. We will use the
same symbol 7 for the projection 7 T'M — Tll\{\,/ and we will denote the geodesic
and stable horocycle flows on T*M by g,h: T*M — M.

Lemma 16. Let K be a compact subset of T* M, then for every a > 0

sup {lla™ 1) - @) S 2L I < M=o and B o
Proof. Let F' denote the geodes1ca11y convex hyperbolic polygon we used to define
the Z%coordinate, and let FO be its lift to the homology cover M (see page 13).
Lift K to a compact subset K c M.

No(K) := {z € M : dist(z, K) < 3a} is a compact set, and since T' acts dis-
continuously on H, N, (K ) intersects at most a finite number of images of FO by
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deck transformations. So N, (K) C UZ 1 D, ( Fp) for some finite collection of deck
transformations Dy , ..., Dy .
In particular, for any [z[,|y| < a and @ s.t. 7(g*(@)), T(g°h? (W) € K, the
geodesic arc {g°TThY (W) : 0 < T <z} C UZ 1 Dy +£(gshy(u;))(F0) So
1€(g" " hY (@) — £(g°h* (W) [| < 2max{|a, |, - ., lax|}-
It follows that sup{||£(¢g*ThY(w)) — £(g°h¥ (D)) : T(W), 7T (g°h¥ (W) € K, |z| <
a,|y| < a,s >0} < oo, and it remains to show that

sup{[|£(g°h? (@) — £(g° (@) : 7 (@), 7(¢°h¥ (@) € K, |y| < a,s >0} < o0

Let &* = (57,...,55,,0,...,0) and {* = (0,...,0,{},...,(;_,) where 5} =

oo, zj* := (j o are the lifts of the 1-forms o7, (] in Lemma 2 to M.

CrAIM: There is a constant C which only depends on K such that for every w € M
st m(W) € K, |yl < a, and s >0 s.t. w(g°h¥(W)) € K,

1€(g°h* (@) — gw||</|\ g7 h? (@) — 5% (g"w)||dr

(g"h¥ (@) — C* (g™ D)dr | + C.

Proof. Let U := (W) and let v be the loop v = 41 - 72 C M where 73 =
{m[g"h¥(7)]}o<r<s and 7o =shortest geodesic from 7r[ *h¥ (V)] to w[h¥ (V)]

Lift 71 to a path 71 C M starting at h¥(w). Lift 75 to a path 7o C M starting
at the endpoint of 77, g*hY(w). Since 7, is the shortest p0851ble path between

—

7 (W), T(g°hWWW) € K, and |s| < a, the curve 7, is contained in Ny (K). So

[€[end(72)] — €[beginning(72)]|| < max{[la,||,.. ., [lay|}.
By (3.1), Frob[y] = €(end(72)) — £(h¥(@)) = [£(end(72)) — £(beginning(72))] +
[£(g°hvW) — E(hY(W))] = £(g°hY W) — E(RY(W)) + O(1). Tt follows that

£(g°h¥d) — §(h¥ (@) = Frob[y] + O(1) = /~ (3" + ¢ +0(1),

where [[O(1)|| < C1 == max{][a,|],. IIaN||}+diam( ) max 1?)(||5*||+||5*||)~ So
E(g°hY (@) — E(h¥ (W) = [ &% (g Thy( )dr + [ ¢*(g7hY(@))dr + O(1). Similarly,

§ﬂ®%§®=/ m+/< @))dr + 0(1)
£(h () — £(F) = O(1)

with similar bounds for O(1) terms. The claim follows by taking a suitable linear
combination of these inequalities, and rearranging terms.

The claim reduces the Lemma to uniform bounds for [; |6 (97 kY (w))—&* (g™ w)||dT
(“first integral”) and || [; C¥(gmhY () — C*(g™®)dr]| (“second integral”).

The first integral is easy to bound, as follows. The 1-forms o7, ..., 03, extend

smoothly to My := M U {cusps}, therefore o7,...,03, are Lipschitz on T'M.
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Let L denote the Lipschitz constant of *. Since hY is the stable horocycle flow,
dist(g™h¥ (@), g7 (@) < [yle™". So

/ 16" (g™ h¥ () — 6" (g™ d)||dr < / Lac~"dr = La = O(1).
0 0

The second integral is more complicated because ¢; explode at the cusps. Still,
¢i,...,¢s_; are Lipschitz away from the cusps of M. Recall the definition of the
n-collars C;(n), and fix 7 so large that N, (K)NT'C;(n) = & for all cusps.

Let {g'(7wW) : t € (ar,br)}, k=1,..., N, be the cuspidal geodesic excursions of
{g'(7@0) : 0 < t < s} in the n-collars of cusps of M, ordered so that a; < by < as <
by < ---. Since w(w), 7(g°h¥(w)) € K all cuspidal excursions to n-collars begin and
end on 9C;(n).

The contribution to the second integral from (0, ) \U,i\f:1 (ak, bx) can be bounded
above as before by La, where L is the Lipschitz constant of (; outside Ule Ci(n).

To bound the contribution of the cuspidal excursions (ag, b;) we argue as follows.
First observe that b;11 — a; > 21n 27, because at the moment that we leave C;(n)
we need to travel distance > In 2 to leave C;(4), and then another In 25 to re-enter
another 7n-collar (there is no way to backtrack inside a collar once you are on your
way out). Thus by > ar > ¢(k — 1), with ¢ = 21In2n. It follows that for all |y| < a,

dist (g hY (i7), g** (0)) < af*~!

, where 6 := e~ ¢ 4.1
dist(gb hY (), g°* (@) < af* 1. 4.1)

Consider the closed loop v =71 - 72 - 3 - 4 where 71 (1) = ¢"h¥ (@) (ax < 7 < by),

v3(1) = ¢"* (@) (0 < T < by — ag), and where 72,74 are curves connecting

g% hY (%) to gb (W) and g% (1) to g®*h¥(w). By (4.1), 42,74 can be chosen to be

exponentially short, and exponentially close to dC;(n).

o Since v is a closed loop in the homology cover of M, frob[w o 4] = 0, whence
Frob([7 0 4]) = 0, whence ¢ = Loy (005G, Gy = 0.

o Since v = 71 - Y2 * V3 - Y4, and 79,74 are exponentially short curves lying in a
bl T/ ria bl Ta o1l

[ (g (@))dr — [ E (g7 (a))dr | =

= 0(6%).

region where 5 * is uniformly bounded,

fvl ¢ +f’ys &= ’ _f'm ¢ _f'm ¢

Summing over all cuspidal geodesic excursions, and recalling that the contribution
of the time intervals outside cusps is bounded, we find that

uniformly in o,y s.t. 7(W) € K, 7(¢°h¥(w)) € K and |y| < a. O

N
<La+» O(0")=0(1)
k=1

A?wwwm—&wwm

; = 17 = . [&(W) §24 (W) , &2941 (W) §2g+v—1 (W)
Given S >0, W e T M7let§5(w) = ( 1\/5 S 2\/§ R et )
where £ is the Z%coordinate on the homology cover. Let m denote the volume
measure on T M, normalized so that m({w € T'M : £(wW) = 0}) = 1. Recall the

definition of Z from §2.2.
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Theorem 17. For every 0 < ¢ € L™ (T1 ) with compact support s.t. [ @dm =1
and G € L*(R?Y) with Fourier transform Ge LY(RY),
lim | G(£, o g*)pdin = E[G(Z)].

S§— 00

As stated, this is Prop. 2 in [LS08], but the roots of this result go much further back.

The theorem implies that £ (g°0) % Z as w is chosen randomly uniformly from

Fy. That %gcmogs — Z%* and £ Pogd — Z<us? is due to Le Jan [LJ92],[LJ94],
see also [ELJ97, EFLJ01]. The distributional convergence §g 0 g% — Z for the
modular surface is due to Guivarc’h & Le Jan [GLJ90].

Lemma 18. Suppose [A, B] C (0,00), K C T*M is compact, and G € L*(RY) has
Fourier transform G € L*(R?). For every ¢ > 0, there is an Sp > 0 s.t. for every

ve€ K, ac A, B], and s > Sy such that g°(V) € K, if @ is a lift of g°(7) to M with
zero Z%-coordinate, then

é /a G(&(g~°h™(@)))dr — E[G(Z)]| < ¢
0

Remark: Here it is important that h is the stable horocycle flow.

Proof. If g°(¥) —Socusp, then the statement is empty, because ¢*(¢) ¢ K for all

s large enough. From now on, assume that ¢*(¢) does not tend to a cusp.
Fix some § > 0 small and K5 C T'M compact s.t. Ks D K, —Ks = K,
mo(Ks) >1— 6 and mo(0Ks) = 0 where

mg := normalized volume measure on T M.

By the Dani-Smillie Theorem [D884] the horocycle of ¥ is equidistributed. So
there is Ty s.t. for all T > Tp, 7 fo ke hT_')dT < 26. If s > In(Tp/A), then

léofalKg(g_Sth NG(E (g7 (@))dr| = | L f L (THG(E, (g~ (@) dr| <

26]|G||co- (G is bounded because its Fourier transform is in L'.) Using the identity
(97°h7g%) (V) = (g °h" (@)), we deduce that

L[ ate oo @nar = 1 [ i (Rl @) Gl (o7 (@) dr£25]Gl .
0 0

Let h = hg, h,, be the stable and unstable horocycle flows. Using the identities
g7 (U) = —g° (=), h (@) = —h 7 (=), {(—u) = (i), we find that,
I1€,(g7h7 (@) — € (g~ "huRT (@) = [I€ (9" (@) — € (9" "h ¥ (@),

where & := —h7(@). Thus, by Lemma 16, there is a constant C' which only de-
pends on Kj and [A, B] s.t. for every 0 < 7 < a, |z|,|y| < a, s > 0, and ¥ s.t.
m(—hTu), 7(g*(=h"1)) € Ks,

1€, (97" (@) — € (9~ F"hyhT (@) <

%\Q

The condition 7(—h7#) € Ks can be replaced by the condition 7(—i) € Ks at the
price of increasing K. Notice that m(—u) € Ks iff 7(@) € K; iff ¢°(¥) € K.
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G is uniformly continuous, so 351 > 0 s.t. for all s > S, ||z —y[| < =

|G(z) = G(y)] < 3||Glloo- If s > max{S1,In(R)}, ¢°(7) € Ks, then

é/aG(g (9 °h"™(@)))dr = %/a 1k, (7(g ShT"))G(gs(g*ShT(ﬂ')))dTﬂ:2(5HG||OO
0 0

S

= a3/ / / 1K5 ShTH))G(ﬁs(gfsﬂhghT(ﬁ)))d:cdydT:I:3§HG’||OO
7 —Ss+T Y LT (7
a3/0 /0 /0 G(§S(9 h¥h (u)))dxdydT:l:55HG||oo.

For every @ € Kj, the map ¥z : (z,y,2) — (¢°h¥Yh*)(@W) is a finite-to-one
smooth map. Let fz, = %, where mg o = Q%Lebesgue\[oﬂ]s o 1951. Then for

every s > max{Sl7ln(%)} s.t. g°(v) € K,

1 [ SO
5/0 G(& (g°h(u dT—/G (9750)) fa.0 (W) dm (W) £ 56| G| -

={faa:7(0) € Ks,&(u) = 0,a € [A, B]} is pre-compact in L*(m), because K
is compact in T*M and [A, B] is compact in (0,00). So there is a finite collection
of non-negative bounded measurable functions 1, ..., N with integral one s.t. for
every f € F,3j € {l,...,N} st. |[|[f —¢jlli < |G|l In particular, for every s
there is a j(s) € {1,..., N} s.t. for every s > max{S;,In(£2)} s.t. g°(?) € K

L/ sk (@) dr = ~548)) fo o () A (T
2 [ Gl @) = [ 6 (o @) faa@im @) 50161

- / G(E,(9))9(s) (@) (i) % 6]/ .
By Lemma 17, 355 s.t. for all s > Sy, j € {1,...,N}, fG(gS 0 g %) p;dm ——

S5— 00
E(G(Z)). The lemma follows with Sy := max{5, S, In Lo} and §:= O

_e
61GTo -
Proof of Theorem 8. Let ¥ be a vector and T}, 1 0o be a sequence s.t. for some
compact set K, g 7x(7) € K for all k. Fix G € L'(R%) with Fourier transform
G € LY(R?), and let @ be a lift of ¥ to the homology cover.

I InT,

ﬁ G[§1n T (hTw> - éln Ty (g kw)]dT =

1T
—1In T}y hT/Tkgh'l T’“lf)) - éln - (gln Ty IF))]dT

= ?k G[ﬁlnT (g
/ G[¢ lnTk(g lnT’“hTﬁk)]dT where 4, := lift of glnT’“( U) to M s.t. E(y) = 0.

—— E[G(Z)], by Lemma 18 with a = 1.

k—o0
It follows that if t ~ U[0, Ty, then ¢, (h@)—¢, . (¢"T+) :—t> Z. By Lemma
n —00

13, By (Wr, (5) — g(glmw»ﬂ)Zf@B (z) = (cimz™, phraesr).

It remains to observe that (g i T’f( 7)) = Frob[Gin 1, (¥)] + O(1). To see this lift

the loop G, 1, (7) to M at @ and notice that since g™ 7 (¥) € K, the effect of the
closing path 7, (jin 7y (7)) =[5 On the Z%-coordinate of the endpoint is bounded. [
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5. PROOF OF SCALING LIMITS ALONG SEQUENCES OF TYPES II, IIl AND IV

5.1. The Master Decomposition. Throughout this section, we fix ¥ be a unit
tangent vector such that ¢°(?) chsp, and let

Ar ={h"(0): 0<7 <T}.
Suppose T}, 1 0o is a monochromatic subsequence such that g™ 7k (%) —>cusp Di.

Since g Tk (A7, ) has length one, g™ T+ (A7, ) C C; =collar of p; for all k: large.

Lift g™ Tk (¥') to the upper half plane as in Figure 2. Suppose the geodesic cuspidal
excursion of g™ 7 (%) in C; beginb at a1 + 14, and the geodesic cuspidal excursion
of g™ Tk (hTs (7)) begins at as + 34, and let

aq O'(Tk) =1
(6%) O’(Tk) =-1

(6%) O'(Tk) =1

and £ = £*(k) == {Oq o(Ty) = 1.

et
(Recall that o(T;) = %1 signifies whether the cuspidal horocylic excursion of
g Tk () is ascending (+1) or descending (-1).)

Divide g7k (Ar, ) into sub-arcs A; = A;(k) as in Figure 3, by intersecting the
part of g"™T*(Ar,) to the right of the y-axis by the geodesics «v; which are forward
asymptotic to v := {g*(¥) : s > 0} and which intersect 9C; = {z : Im(z) = 1} at
i+ %i, j € €+ Z%, and by intersecting the part of g7k (Ag,) to the left of the
y-axis by the geodesics 7 which are forward asymptotic to v, and intersect 0C; at
j+3i, j €& —ZT (Figure 3).

Let Ji denote the collection of all j’s which participate in this decomposition.
Since |g"™Tx(Ar, )| = 1,

> JA; (k)] =1 for all k.
J€Jk
More information on J; and Aj(k) is given in the following lemma:

Lemma 19. For every § > 0, for all k large enough, |A;(k)| = e*° - ep( k) for all
but one j € Ji. The possibilities for Ji, are as follows (s = s(Ty), p = p(Tk))

(i) if the cuspidal horocyclic excursion of g™ T+ (¥) is descending, then

T = 1= — {0+, L%J}

(i1) if the cuspidal horocyclic excursion of g™ Tk (¥) is ascending and 2e°~F < 1,
then Jy = * +{0,..., [ 252 |}

(#i1) if the cuspidal horocyclzc excursion of g™k (¥) is ascending and 2e°F = 1,
then J, =e*+{0,1,2,...}

(iv) if the cuspidal horocyclic excursion of g™ ™% (%) is ascending and 2e5~° > 1,
then Jy, = (—5=%— +{0,-1,-2,...}) U (e’ + {0,1,2,...}).

Proof. Throughout this proof, we let s = s(T%), p = p(Tx),0 = 0(T}k).

Suppose first o(T}) = +1, and lift the picture to the upper half plane as in
Figure 2(a). C; lifts to {z : Im(z) > £}, the geodesic of ¥ lifts to the upper half of
the circle |z — 2e®| = Le®, and the horocycle of g™ T (%) lifts to |z — Leri| = Ler.

The geodesic of th( ) lifts to a half-circle |z — a| = %a for some a > 0 which
we will now determine.

Call the geodesms of 7 and hT* (%), v and v* respectlvely The hyperbolic isome-
try z — — maps 7, 7* to the vertical lines Re(z) = —e~* and Re(z) = —a™!, and
the horocycle of g7 (%) to the horizontal line Im(z) = 2e~".
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\ Fl (\/ "
E(kJ gy Eb+2,

[
1l

¥

o2 W 2 o)

FIGURE 3. The division of g"™T*(Ar,) in the ascending case (top)
and descending case (bottom). The top picture is misldeading:
g Tx(Ar,) extends beyond the the y-axis iff g™ Tk (%) is above the
center of the horocycle.

Thus g7+ (Ag,) is mapped to the horizontal segment [—e~% + 2e~Pi, —a~1 +
2e7*i]. Since |¢™ T+ (Ag,)| =1 and z — —1 is an isometry, |e™* —a7![/(2¢77) = 1,
whence |e™% —a~!| = 2e7, and a = e*(1 & 2e*~?)~!. Since o(Ty) = +1, the
horocycle of g 7% (%) is ascending, and either a > e*, or a < 0. It follows that
a=e*(1-2e""")"!, whence a — e* = 125", Cases (ii),(iii),(iv) are when the
denominator is positive, zero, or negative.

The case o(T;) = —1 is similar. Lift the picture to the upper half plane as in
Figures 1(b) or 3(bottom). Now the geodesic of 7 lifts to the half-circle |z + 2e®| =
e, and the geodesic of h”k (7) lifts to the half-circle |z + 3a| = Fa for some a > 0.
As before |[e™* — a~!| = 2e*, which leads to a = e*(1 £ 2¢*~?)~!, but now the
horocycle of g™ Tk (%) is descending, so 0 < a < e*, whence a = e*(1 + 2e*~P)~L,
and the geodesics between «,~* begin at points in [—e®, —a] . This is case (i).

We estimate of |A;(k)|. Let z; = z; + iy; be the intersection point of ~; with
g Tk (A7), and let j' denote the euclidean diameter of the half-circle ;. The
hyperbolic isometry z — —% maps 7; to the vertical lines Re(z) = —ji,. So for

all but one j € Jy (equal to minJj in case (i) and max Jj in case (ii)), A;(k) is

mapped to the horizontal segment with endpoints —ji, + 2e~ P4, —j,ﬁ + 2e~?4. For
such ja |Aj(k)| = %ep(ji/ - j'}‘rl)'
By the first part of the proof, min{|j| : j € Jx} > min{e®, |a|}. Using the

o o
247 2B J>

estimates AJFLB > min{ ﬁ‘ > min {%, % valid for positive A, B,
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e5(Tk)  or(Tk)
2 0 4

and C we obtain that |a| > min{ } and hence min{|j| : j € Ji} >

min{#, eP(ZW}. Since g' 7T (%) —oreusp, s(Tx), p(T,) — oo, so min{|j| :
J € Jr} —— oo. From figure 3, we see that sup,.q|j" — j| —— 0, whence
k—ro00 k—o0

[A;j (k)] =

Llop

m ~ %2 uniformly as k — oo, for all but one j € J,. O

Write A;(k) = {h"(¢™T(¥)) : 7; < 7 < Tj41}, and define 6; = 0;(k) by the
equation g =% [h77 (g T+ (7))] = j+ 3i. Equivalently, g~%[h™ (g™ T*(%))] is the point
of entry of v; into C;. Let B; = B;(k) := g~% [ A;(k)] (Figure 3).

Lemma 20. For every § > 0, the following holds for all k large enough,

(B1) For all but at most one j € Ji, |B;(k )\ € [2e79,2€%;

(B2) For every j € Jy, dist(B;(k),0C;) <

(B3) Lift ¥ to a vector @ in the homology cover. Let ¢; := Froblc]. Let gj(k)
denote the lift of Bj(k) to M induced by lifting v to W. Then

sup sup sup Hf(ﬁ) - (gk +Jj-G)|| < oo,
koi€JkieB;(k)
f(glnTk—eg(k)(k)( W) —&(k) - ¢ ascending

h B =42
where By, {g(glnTkeﬁ”k)(k (thw)) *(k’) - & descending;

(B4) For all but at most one j € Jy, €% (*) = e*9 . 4e=r(Tk) j2,

Proof. Since g7k (%) —cusp p;, s(T)) (defined in figure 2) —— oco. The
k— o0 k—r 00

radius of the half-circles representing +y; in figure 3 is at least %es(Tk), and therefore
tends to infinity uniformly in j. So if L := {z : Im(z) = 1}, then £(v;, L) k—)
—r 00

% uniformly in j. Since B; L v;, B; is nearly tangent to L at z; := ({ +j) +
The convergence g™ Tk( 0) TToveusp pi also implies that p(Ty) PR (ﬁgure

2). Since B, is an arc of a euchdean circle with radius bigger than 1 exp p(Tx) (the
radius of g7%(Az,)), the euclidean curvature of B; is less than 4e~(T%) and tends
to zero uniformly in j. Thus the second derivative of the function whose graph
represents B; tends uniformly to zero as k — oo.

It follows that for all but at most one j € Ji, Bj(k) converges uniformly in C?
as k — oo to the horizontal segment {7 4+ 1i: j < 7 < j + 1}. This segment has
hyperbolic length 2. (B1) and (B2) immediately follow. (B3) is immediate from
figure 3. (B4) follows from the identity |B;(k)| = |g% (A;(k))| = €% ®)|A4;(k)| and
the uniform asymptotics |B;| — 2, |A;] - 2¢77(Tk)j2 — 1. O

5.2. Two random variables. Let ®; be the random variable which takes the
value 6,(k) with probability p;(k) := |A;(k)| (j € Jk) (these probabilities sum up
to one because g7+ (A7,)| = 1).

Lemma 21. Suppose s(Tj,) = O(InlnT}), then 1@’“ ilst—) 0.

Proof. By (B4), for all but at most one j € Jy, 0;(k) =2Inj—p(Ty) +Ind+o(1) =
[25(Tx) — p(Tk)] + 2In(je=5T%)) + In4 + o(1), where o(1) - 0 uniformly. So
:—00
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?le(Tkk) _ 2S(Tﬁq);f(Tk) _,_O(ln(e;;?)j))—l—o(l) uniformly in j € J, as k — oo. By Lem-

mas 4 and 5 and the assumption s(Tj) = O(InlnT}), 23(ng ;S(Tk) - 0. It is thus
— 00

enough to prove that for every € > 0, Py(€) := > 10T jysen 1, Pi(K) —— 0.
: k k—o0
By Lemma 19, p;(k) = |A;(k)| ~ e/T¥) /(252) uniformly in j as k — oo. So

eP(Tk)

(Ty)
Pi(e) = Zj>es(Tk)T§ p;j(k) < const Zj>es(Tk)T§ 7 = O(efgka’: ). By Lemma 4,

p(T) < 25(Ti) + O(1), s0 Pr(e) = O(£0) = O(<X2) —— 0. O

k—o0

Let Y be the integer valued random variable which takes the value j with
probability p;(k) (j € Ji).

Lemma 22. Suppose g™ T« (7)) Toeusp pi and {g™ T (%)} is monochromatic (as-
—00

cending or descending), then

(1) TYPE II: If p(T}) — s(Tk) T o € R, then e=*Tk)Y}, —>kdi5t Y where Y is
— —00
distributed with probability density function const(i—g) on the set
(1, — =5 ] the horocyclic excursion of g™ T+ (%) is descending
[1, =] ascending, ko > In 2
[1,00) ascending, ko = In 2
(=00, —g=i—] U [1,00)  ascending, ko < In2.
(2) Tyee 1L If p(T)) —s(T}) o O then 2e=°T%) (Y}, —e3(T) o (T},)) kd“t .Y,
— 00 —00

where Y is uniformly distributed on [0, 1].
dist
(3) TYPE IV: Suppose p(T},) — s(Ty) — —o0, then 2 P TR)Y, 225 Y where
k—o0 k—o0
Y has probability density function i—‘g on (—oo, —1J.

Proof. We divide the proof into the cases (i)—(iv) listed in Lemma 19.

Case (i): Ji = _1-%26% —Ao,..., Lff;%]}, descending.

(1) Ifp—s = fos then e*(TWYy, € e™J, C [-1 + o(l),—mﬁ + o(1)],
and for all (a,b) C [~1, —35=r5), Probla < e *Y), < b] ~ feis: %dy =
f; 62:; dx ~ f; S%dw, proving that e *(Tk) Y, kd_i)—s;> ([-1, —H_Qﬁ], S%dm)

(2) Ifp—s o then ;ij; € ;:;f,) C [0,1] + o(1). Since g™ T* (%) tends to
a cusp, 2s(Ty) — p(Ty) — oo, (Figure 2). So V[a,b] C [0,1] Probla < ;{;"sz <
b~ fyantes ey = [} et = [ ety —— [V do, and

s dist _
X ﬁ U[0, 1]. By Lemma 4, 2e27° ~ £9(Tk),

(3) p—s % then (2¢=?(T¥))Y}, € (=00, —140(1)], and V[a, b] C (—o0, —1],
—00

1 .
Prob[a <2 PY} < b] ~ f12€pb efdy _ fb dz oo 2Yy ﬁ) (—(1,00), dm).

1 2 2 T, 2
sefa 2y a x eP(Tk) k—so00 T

2e257°
1—-2es—r

Case (ii): Jp =€* +1{0,..., | |}, ascending, and 2e57° < 1.
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(1) If p—s = fo then kg > In2 and e %Yy € [1 + o(1)] when

1
» T=2e—"0
ko > In2 and e *Y} € [1,00) when ko = In2. For every [a,b] in this do-
main, Probla < e=*Y), < b ~ [©"<d — fab S fb eldz Qo

esa 2y? 22 b—s 00 a 2z2

e Yy - (A, c(%%)) with A = [1, 7—2=] (ko > In2) or [1,00) (ko = In2).
— 00

(2) Ifp—s - 00, g(e’g;e; kdiSt UJ[0,1] as in case (i)(2).
— 00 — 00
(3) p—=s k—) —o0 cannot happen, because 2e57° < 1.
— 00

Case (iii): J, =€+ {0,1,2,...}, ascending, and 2e°~? =1 (so p — s — In2).
e Yy, € e ®J, C [1,00). For all [a,b] C [1,00), Probla < e °Y; < b ~

be b ot b o b _ di
fa; e;;Qy — fa (’;ezs;igc _ fa ep2m2dx — fa dx .80 e SYk ist ([1 OO) dac).

Case (iv): Jp = (155 —10,1,2,...})U(e*+{0,1,2,.. ., }), ascending, 2¢*~* > 1.

(1) Ifp—s —> Ko, then necessarily kg < In2. Suppose first that kg = In 2, then

Prob(Y;C < O) < const [ “/(A-2eT) % = 0(e”)(=2=)) — 1535;:() = 0.

SoY € e*4+{0,1,2,...} with probability tending to one. The same calculation
we did in case (iii) shows that e *Y}y jist—) ([1,00), %), If kg < In2, these

) 22
calculations give e™*Yy & ((—o0, _ﬁ) U1, o0), e;‘;glm)

(2) p—s PR cannot happen because 2e*7” > 1.

B)Ifp—s — > —0o0, then Prob(Y;, > 0) = O(f> e;;gy) = 0(eP=) — 0,
so 2e Y} € (—oo,—1) with probability— 1. For every [a,b] C (—o0,—1],
Prob(a < 2% < b) ~ [0 G = [, 50 27 ¥4 12 ((—00,~1), ). O

5.3. The Master Equation. We assume throughout that v = 0,1, or v > 2
and 0 < i < v—1. Given z € R29t~1 Jet x = (2!, 2%P) € R?9 x RV !
and z¢P\' ;= z°USP with the i-th coordinated removed (a vector in R¥~2), with
the agreement that these vectors are empty when not defined. Given T}, i T oo,
1 <i<t—1, define A} :R% x R¥~1 — R29 x R¥~! by

Tr kT

— cpt .cusp\ __ 1 cpt 1 cusp\i _1 ,.cusp
ATk ozk'L(x y L )7(«/1nTk£ ’InTkg ’akxi )

Suppose {g™ T+ (%)} is a monochromatic sequence s.t. g™k (%) —cusp p;. Fix a
lift @ of ¥ to the homology cover M. Let G : R29+7=1 5 R be a function in L!
with Fourier transform in L. Let ¢; := Frob[c;] = ¢;, and recall the definition of
B from (B3). Given a sequence (di)k>1, let

N

Iy = I(G; T, o, dy, 1) = T*k/ G(AL, o, i (E(W7 ) — B — di&))dr.  (5.1)
0

Corollary 14 reduces scaling limits for W (7) to a scaling limits for {(h*(w)) as

t ~ UJ[0,T], or equivalently to finding oy 1 oo, (di)r>1, and a non-degenerate

random variable L (all independent of G) s.t. I — E[G(L)] for all G as above.



24 DMITRY DOLGOPYAT AND OMRI SARIG

In what follows, a tilde signifies the lift to the homology cover such that ' lifts
to w. For example, Ay, = {h7 (W) : 0 <7 < T}}. Decompose

Ar, gl“T’“(H-J -’Zj(k)> [ OB (k) =[] oDy L B (R)

J€Jk JE€Jk JEJk

where gg(k) = Dﬁ_?:ﬂei(gj(k))' By (B3), supysup;¢, SUPe 5o (k) I£(@)] < oo,

therefore ;o U, e s, B(k) is pre-compact.
This leads to the following identity for I(G; Ty, ar, dg, i) (here p;j(k) = |A;(k)|,

A A;k a,.i» L =hyperbolic length measure):
Tk
I(G; Ty, o, di, 1) = T G(AL (E(h™0) — By — di€i))dr
= ~1 O G(AN (- Br — dre;))dl (- & =Froble;] = ¢, for 1 <i<wv—1)
|ATk‘ -ATk B

N / G Eog T — By — diey))de, because Lo g™ Tk =T (5.2)
g™ e (Ary)

=> / 0g™ "k — fi — dye;))d

JEJ
1 —
i€ ( ) A (k)
- Z A | ( )| /B; (k)(A_l(ﬁogej(k)ilnTk - Ek —dye;))dl, le = g% (gj)

JEJk J

1 B o
ij G(Ak1<§0991(k) 1 Tk) (]_dk)Ak Q)dﬂ
= 1BO(k)] JBo 0

1 3 —in T -
Z p] |Bo(k)| Bo(k) [Ak 1(§o gej(k) 1 T,) + (%)QV_I]dé (53)
j€Jk 7

We call (5.3) the master equation.

Lemma 23. Suppose 1 <i <v—1 and {g™T*} is a monochromatic sequence s.t.

" T (¥) —cusp p; and s(Ty,) = O(InlnTy). Suppose there are v, — oo, {di}, and

a non-atomic random variable Y s.t. (Y, —dg)/ vk % Y. Fir G :RY = R s.t.

G, G e LY(R29+v=1) " and let Iy, := I(G; Ty, o, dg, 1) wzth ay, defined below.

(2) If gy ———> 0. then I —— E[G(ZP*, ZewsP\i | ZEP)] | with ay, = In T,
Bk koo k—o0 . R .

(b) If & % then I, —— E[G(Z°Pt, Z°"*P\' ) Y)]| where oy, = v and Y
Nk koo k—o0

is independent of Z.
(c) If b ——rac (0,00), then I - E[G(ZePt, ZeusP\t ZS*P @ aY')] where

ap =InTy, Y is independent on' and & = independent sum.

Proof. Fix ¢ > 0. Since G € L', G is Lipschitz. Fix 6 > 0s.t. lz —y| < =
G(z) - G(y) <e.
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Case (a). In this case (Y —di)/InTy kdi> 0, so there is Ky s.t. for all k > K,
—00
> lj—dp|>s 01 Pi (k) < €/[|Glloo- If o = InT}, then we have by (5.3)

JEJk
p;(k) -1 0;(k)—InT, d
Iy = o _ G[A(§oyg” )+ (5 ~e,1]dl xe
jdk%lnT;JB?(k)l BY (k) - T
JE€JK
1 ~ -
= Y pk) = G (Eogh BT drL2e. (5.4)
li—dp| <6 In Ty ‘Bj(k” B (k)
JE€Jk

pept xcusp\z (ZL’

\/71117Tk771nTk Y InTy )
This will allow us to

cugp)

We wish to replace the normalization A} ' (2P, 2°5P) = (

by A3 @™,2) = (b= Whenm R
apply Lemma 18 to the integrals in (5.4).
Here is how to do this. Fix R > 0 so large that Prob(||Z]| > R) < ¢/||G]|c-
Choose ¢’ so small that for all k&
16;(k)| < 6" InTy _ _
zeR AT @) <k § 1A AD@I <

cpt cusp\i cuspy .

The existence of such §’ is obvious from the definition of A,;l, A;}.
By Lemma 21, ©/InTj, & 0. Choose S(d’) so large that for all k > S(¢'),
20, (ky>6' 1y, Pi(K) = Pr[@k > (5’ InTy] < €/||G|s- For such k,

1 _ o
I, = > pj(k) - = GIAL (€0 g Ti)dr + 3. (5.5)
lj—d |85 (F)| /B3 )
j—di|<éInTy
JEJTR,0; (k)< In Ty,

Next choose H € L'(R%) s.t. He L', 0 < H <1, and H(z) =1 on {z € R? :
|lz|| < R}. We apply Lemma 18 to H, €/||G||, and

A = inf{|B;(k)| : j € Ji, k € N} (positive by (B1))
B :=sup{|B,(k)| : j € Ji, k € N} (finite by (B1))
K := {beginning points of B;(k),j € Ji, k € N} (compact by (B2))

=InTj —0;(k) PR uniformly in j (because g™ 7k (%) —cusp).

The result is Sy s.t. for all k£ > Sy, for all j € Jg,

1 2
LEogh®™Tiyge 1) < =2

1B (k) B‘?(k>H( i O ECHE) ~11 < eio)-

It follows that t{a € BY(k) - [, (€0 g tR=InTi) || > RY < 3¢ /(|G |oo-

IB0 (k)]
This allows us to replace the integrals over g?(k:) in (5.5) by integrals over
go( k)N [HA;({ o g% (R)=InT)|| < R] with total error at most 3¢. By our choice of

9,0’, on this domain of mtegratlon the operator A~ can be changed to A, p L with
total error less than €. Then we “pay” additional 35 to return to integrals over all
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of gg’, and then additional 2¢ to increase the range of the outer sum to all of Jj.
The result is that for all & > max{Sy, S(¢')}

I = G(A; L (€0 g Te)qp + O(e
k ];pj |B°( 1 e (A 5(€og ) (e)
k

uniformly in k.
We now apply Lemma 18 to the averages Igﬁﬁ fg?(k) and the function G'(z) =

G(zPt, zeusP\E x7%P) to find that for all k large enough, I, = die p; (K)E[G'(Z)]+
O(e) = E[G(ZePt, ZesP\i, ZE"*P)] + O(e). Since ¢ is arbitrary, this proves case (a)

Case (b). Let ¢, 6 be as before. Define [t]5 := d[t/d], then [t]s € 6Z, |t — [t]s]| < 0.
By the master equation and the choice of §

Z PJ 0 G(Akl(go ng(k)flnTk) + [j%,(jk]ts 'ey_l)df +e.
JEJk | ‘

dist

Fix M € 0Z s.t. Prob(|Y| > M) < &/(2]|Gllw)- Since (Yy, — di)/vs ~—— Y, for

all k large enough, 3., pj(k) <¢&/[|Gll, sO
|7=dil/v>M

M/o

_ p;(k) —1 0,;(k)—InT,
I, = — Gm.s(A o g% k))de .
k Z Z |B]0| /E? 75( k (é g )) te (5 6)

m==M/3 je, [152]s=ms

where G, s(z) := G(z + dm - e,_;). Notice that the range of m is finite, and does
not Change as k — oo.

cpt  .cusp z
Let A ( , L ) (\/lnTk 9 (k)’ lnTk 9 (k)7 Yk

in (5.6) by Ak’}. Then we will apply Lemma 18 to the integrals in (5.6).
Fix m. Choose R > 0 and ¢’ as in case (a). Applying Lemma 18 to G, s, we
see that for for all k large enough, for all j s.t. 0;(k) < ¢’ InTy,

cpt cuap\z mtu‘ﬁp

. -1
). We wish to replace A

mé{u €BY Ao Ty e {z e R : |zl < R, |wa| < 0'}} > 1 e

Here d = 2g+v—1, and the control of |z4| = [(2°**F),—1] is because A, normahzes
(°*P); by & > InT), — 0;(k) and moves it to position d.

This, and the choice of 4,6’ allows us to argue as in case (a) and obtain the
following estimate for all k£ large enough:

M/s

I, = Z Z M /~ Gin,é (A;;.(éo gej(k)*lnTk))df + O(e),
g

0
m——M/éjeJ [J k] —ms |B]|

where G:w(g) =Gms(x1,...,24-1,0).
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Working with L' approximations of G5 with absolutely integrable Fourier
transforms we see by Lemma 18 that for all k& large enough

M/§
Ie= > > pi(R)E[Gy, 5(Z7", Z°**"\, 0)] + O(e)

m=—M/$ je.J [ 152 ]s=ms

M/§

Z Prob(% € [md, (m + 1)5))E[G(20pt, ZeP\E )] + O(e)
m=—M/§

M/S

> Prob(Y € [md, (m + 1)0))E[G(Z*, Z7***\' md)] + O(e) + o(1)
m=—M/§

Here we used the non-atomicity of Y and (Y — di)/vk kdi> Y. Thus
—00

I, = Z Prob(Y € [md, (m + 1)6))E[G(20pt, Ze PN md)] + O(e) + o(1)

meZ

= E[G(ZP, Z**P\' ) Y)] + O(e) + o(1).

Here Y is independent of Z and o(1) means here and below that the corresponding
quantity can be made arbitrary small provided 4 is sufficiently small and k& > k(J).
Since ¢ is arbitrary, this proves case (b).

Case (c). Let ¢, 6, []5 be as before. Set A, ' (zP!, 2°u*P) := (\/&%7 £;:;Dk\iv (zl;uTZ)’ ).
Choose M so large that Prob(Y > aM) < ¢/(2||G|ls). In case (c), (Y —

di)/ InTy, - 1Y, so for all k large Y jedlj—del>m Ty Pi (k) < &/[|Glloc-

As in case (b), we can use the master equation and the choice of §, M to write

M/s

I = Z Z pjf\(/kf') ‘/~ Gm,& (Aljl(éo 903(k)—1nTk))d£ +e
BO

P . j—d i
m= M/(S]eJk7[J11)T:]6:m6 !

where G, 5(z) := G(z + dme,_;).

E4:;9t zcusp\i (ﬁuusp)i
VInT,’ InTy ° alnTy
cpt £cusp\'i (zcusp),

T e W6, al Ti=g, @) ) PY applying

Again, we can replace A;l(ff’t,f“s?) = (

)) by the nor-

malization A,:} (2P, 2P = (
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the argument of case (a) to each m. The result is that for all & large enough

M/s

I, = Z Z p]A(,k) /~ Gm,é (A;7§(§099j(k)71nTk))d€+ O(E)
g

0
- j—d ‘B|
m=m MU0 gk ls=me T

M/s
Z Z pj(k)E[Gmﬁ(ZCpt, Zeusp\i, Z;"*")] 4+ O(e), by Lemma 18
—M/é [J ”k]é —ms

M/§
- Z Prob (Y5525 € [md, (m + 1)0))E[G(Z", Z°"*P\', Z5*P + md)] + O(e)
—M/s
- Z Prob(aY € [md, (m + 1)8))E[G(ZP*, Z°P\1, ZEP + mé)] + O(e) + o(1)
meZ

— RB[G(ZP, ZP\' 2P @ aY)] 4+ O(e) 4 o(1), where Y is independent of Z.
Since € was arbitrary, this proves case (c). O

5.4. Proofs of Theorems 9,10 and 11. Suppose {g"7*(%)} is a monochromatic
sequence of one of the types II, III, IV. Fix a lift w0 of ¥ to M.

Let 7, (7) denote the random variable E(ht(wW)), t ~ U[0,T;]. Lemma 22 and
Lemma 23 together imply the existence of 5 € R?9tv=1 d, € R, o, — oo and a
random variable L € R297*~! such that

E_:cpt(q—}') _ B’gpt écusp\i(ﬁ*) . B’;usp\l éfu‘?p(m —( ;usp) —d, dist 7
< VinT, In Ty, ’ Qg ) '
o The centering constant f is defined in Lemma 20 and dj, is e*(T")o(T},) (type
III) or O (all other cases)
o The scaling constant ay, equals e*T%) (type II, a;, = o0), or $e°T%) (type III,
as = 00), or 2e”(T%) (type IV, a, = 00), or InT}, (all other cases).

k—o0

o The limiting distribution L is precisely what Theorems 8-11 predict.

W ept [ ﬁCpt WCUSP\L Cuép\l W;:usp =\ g’cusp i—d dist —
By Corollary 14, ( \/(lz)—Tk ) liv;)pk ) @ a(kk ) k) k_l:)o L.

This is the assertion we wanted to prove, except for the centering terms: Theo-
rems 811 use Gch;lth (¥), Gf:fsTi\z, fnT ( U)+dy, instead ofﬂCpt, Geusp\i ) ( C“Sp) +dj,.
Wo show that % = %, (8)+0(1), A = G2 0) (1), B = Gy, () +
O(1). Since ap — oo whenever g™ 7Tk (7 ) —cusp, this will allow us to change the
centering terms to those specified in theorems 8-11.

Ascending case: By definition, Bk = é(gln e (W) — &(k)E;, where In T,fﬁ =InTy—
Oc(xy (k) is the time the cuspidal geodesic excursion of g™ T*(¥) begins. Since 7 is
fixed (a lift of & to M) and {g™T¥ (¥) : k € N} is precompact (a subset of dC;),

Br = [6(g™ ¥ (@) — £()] — (k)G + &(F) = Frob[Gy, 1+ ()] — £(k)&; + O(1),

because the closing curve v | %
w[g" "k (T)],7[7]

can only have a bounded effect on the Z%-coordinate.

(a geodesic from ¥ to a pre-compact set)
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So B = Frob™ (G, 7 (0)]) + O(1), By = Frob®"*\([Gy, 74 (9)]) + O(1).
It is not difficult to see that

(G, (9)] =[Gy 7 (0)] = [paa] + [Yeusp]

where Ypqq C M \U;=1 int(C;) has bounded length, and [Yeusp] C C;. Like all loops
in Ci, [Yeusp] = n[0Cy] for some n € Z. So (5, _’;uSp\i) = (Frob™® ([Gn 1, (¥)]) +
O(1), Frob®*™ [Ga 1, (5)]) + O(1)) = (G24, (7) + O(1), GtV (7)) + O(1)).

Next, (6;7“*"); = Frob{"**[G,, ;+(7)] — X (Ty) + O(1) = G, 1, (), because
7 ,
in the ascending case £(k) = e*(T")g(T},) by Lemma 19 (ii)—(iv), and Figure 3.

Descending case: Now fj, = E(g™ Tk (WTew)) — €*(k)E;, where InTy = InT), —
Oc- () (k) is the time the cuspidal geodesic excursion of g7+ (h'*) begins. So

2 nT# [ = — n T} — nT# /- * — —
B = [E(g"™ % (@) = £(@)] + [E(g"™ T (WT+@)) — E(g™ ¥ (@))] — & (k)& + £(D)

= Frob[G| (V)] + £c; — £ (k)¢ + O(1), for some £ € Z.
k

This is because the base points of g7 (hTx7), g™ e (W) can be connected by a
lift of a path in C;, with endpoints in 9C;, so £(g"™Tr (hTrw)) — £(g™ ¢ (W) =
£¢; + O(1). The first summand is the same we had in the ascending case, which

—

leads to (B, A"\ = (Git, (8) + O(1), GtV (8) + 0(1)).

Let us look more carefully into ¢. The base points of g™ 7r (hTkw), glnT:& )
mark the beginnings of the geodesic cuspidal excursions of ¢ 7+ (%), hTx (g™ Tk (7).
Looking at Figure 3, we see that the path connecting them along 0C; can be
extended by a bounded amount to a loop whose length is the diameter of the set

Ji appearing in Lemma 19. By case (i) in that lemma,

2¢28(Tk)—p(Tk) e5(Tk)

(= Taemo—emy T OW and &(k) = == S5y

+ O(1),

whence £ —£*(k) = e*T¥) 4+ O(1). So (H;uSp)i = Frob{"*P[G, ;+ (0)] — e T o (T}) +
0(1) = Gj, 1, () + O(1). O

Proof of Theorem 6. If M is compact, then every vector ¥ satisfies s(T) = 0 =
O(InlnT), and every sequence is of type I, so the theorem follows from Theorem 8.
For M of finite area, we argue by contradiction: If (W (%) — GP,) /VInT A ZPt
then there is a Borel set E s.t. Pr[Z°?* € E] = 0 and there is a sequence T}, — 0o
s.t. Pr[% € E] 4 Pr[Z°’* € FE]. Every T,, T oo has a monochro-
matic subsequence T,,, T oo of one of the types I-IV. But for such sequences
WPt (7)-GiPt

ok —= =T ¢ E] — Pr[Z?" € E] by Theorems 8-11, a contradiction. [

n

il

Proof of Theorem 7. If ¢*(T) = o(v/InT) then /") = o(InT) and e*™) = o(InT)
(lemma 4). So as = a, = as = 0 and the theorem follows from Theorems 8-11. O
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6. PROOF OF THEOREM 12 ON THE MONOCHROMATIC SUBSEQUENCES WHICH
APPEAR FOR LEBESGUE A.E. ¥

For k € [—00,400], a € [0,00], o € {ascending, descending} and 1 < i < v we
say that ¥ € L(k,«,0,1) if there is a monochromatic sequence T,, — oo such that

g™ Tnip — cusp i, g™ Tr ¥ is ascending or descending according to o, and
p(Th) — s(Ty) = k (6.1)
d es(Tn)
< —
|| < oo an T, «
e8(Tn)
or K = 400 and -« (6.2)
InT,
eP(Tn)
or kK = —oo and T, — .

Theorem 12 is says that a.e. ¥ € M belongs to every L(k, «, 0,1).

Proof. The proposition follows from the analysis of [Sul82] as we will now show.
We consider the ascending case, the descending one being similar. We note that

it suffices to show that almost every ¥ belongs to every L(k,a, ascending,i) with

k| < oo. Indeed if (6.1) and (6.2) hold then <~

InT),
§(Tp) . .
e _ . . .
T 4ae™". Thus taking cuspidal excursions approximating ki = k, ap =

Sert sufficiently well we obtain that ¥ € £(400, @, ascending,i) while taking ex-
cursions approximating xp = —k, «p = ae "* sufficiently well we obtain that
U € L(—00, @, ascending,i). Likewise we can and will assume that 0 < a < 0.

Next consider a sequence of excursions starting at times ¢,,, ending at times £,
and reaching maximal height s,. One can check as in Lemma 4 that ¢, — t,, =
2s, + O(1). If et—" — « then ¢, — t,, = O(sy,) < &, and so % — o for any choice
of tn €[t En].

On the other hand, by Lemma 4, p(t,) — 8, = s, — 0(t,) + In4d 4 o(1) so when
8(t,) changes from 0 to t, — ¢, = 2s, + O(1) the expression p(t,) — s, changes
from s, + O(1) to —s, + O(1). Thus to prove the theorem it suffices to show that
for almost every ¥, for every 1 < i < v, for every « there is a sequence of ascending

e’n

geodesic cuspidal excursions at cusp ¢ with <= — a.

It suffices to show that for every interval 7[7&, b] there is a sequence of ascending
geodesic cuspidal excursions at cusp ¢ which enter C; at time t,, and whose maximal

distance from 90C; is s, s.t.

— ae” and, by Lemma 4,

Sn

all limit points of belong to [a, b]. (6.3)

=N
Since the set of ¥ where (6.3) holds is invariant with respect to the geodesic flow,
it suffices to show that this set has positive measure.
Let (2, #,Pr) be a probability space. A sequence of events A, € % is called
quasi-independent if there is a constant ¢ such that for all n, m

Pr(A, NA,) <cPr(A,)Pr(A,).
Lemma 24. [Sul82, Sect. 2] If {A,} are quasi-independent measurable events with

positive measure s.t. Y P(A;) = oo, then there is positive probability that infinitely
many of them occur: P((o_y Up—,, Am) > 0.
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Fix constants a,b, 1 < ¢ < v, and §. Let A, (a,d,i) be the set of ¢ such that
there is a cuspidal geodesic excursion at cusp i starting at time ¢ € [nd, (n + 1)d)
and reaching the maximal height s with e® > at. Let A, (a,b,d,i) be the subset of
Ay (a,d,1) consisting of those ¥ satisfying the additional requirement that that e® <
bt and A%(a,b,d, %) be the subset of A, (a,b,d,) consisting of ascending excursions.

Lemma 25. [Sul82, Sect. 8 and 9] For each a,d,i the events A, (a,d,i) are quasi-
independent with positive measure with respect to the normalized volume measure
on T'M.

We will show below that
Prob(A%(a,b, ¥, b—
im ro ( ’I'L(a7 ) ’Z)) — a. (6.4)
n—oo Prob(A,(a,d,1)) 2b
Thus by Lemma 25 {A%(a,b,d,7)} are quasi-independent and hence by Lemma 24
the set where (6.3) occurs infinitely many times has a positive measure as needed.
We obtain (6.4) from the inequalities (6.5) and (6.6) below:

Prob(A,(a,b,6,i)) b—a

A o (An (@ 0.0) b (6:5)
. Prob(A%(a,b,0,1)) 1
A Brob(Ay (@, 5,0,7)) 2" (6:6)

To prove (6.5) consider a geodesic which enters 0C; at some time ¢ € [nd, (n+ 1)0)
pointing inside. Denote the entrance point by x—i—% and 6 be the angle this geodesic
makes with the vertical axis at time . Recall that hyperbolic geodesics are euclidean
circles centered at the real axis. The radius R of the circle is related to the maximal
height of the excursion by R = e®. Elementary geometric considerations show that
sinf = ﬁ. So conditioned on having a cuspidal excursion with starting time ¢t and
entrance point p € 9C;, the probability that at < e® < bt equals

2/ oy 111 i
= (arcsm(g) - arcsm(z—bi)) = <a - b) (14+0(t™7)), ast — oc.
1

Similarly, the conditional probability that e® > at is ——(1 + O(t?)), ast — oo.
Together, this proves (6.5). (6.6) holds since half of the excursions are ascending

and half are descending. (]

I+

7. UNIPOTENT FLOWS

7.1. Setup. Suppose M = G/T where G is a simple non compact Lie group of real
rank 1 (see Remark 28). Let I' C G be an irreducible uniform lattice in G (so G/T
is compact). Let u denote the unique probability measure on G/T" which lifts to a
Haar measure on G. Let g denote the Lie algebra of G.

Every Z € g determines a flow ¢, on M, via ¢4 (2') = exp(tZ)zl. Y € g is
called unipotent, if the spectrum of Ad(Y") equals {0}. A wnipotent flow is a flow
generated by a non-zero unipotent Y € g.

In this case by the Jacobson-Morozov Theorem there exists X € g s.t. [X,Y] =
MY for some A > 0. This implies exp(tX)exp(uY) = exp(ue*Y)exp(tX).? If

2Fix t. Et(u) := exp(tX) exp(uY) exp(—tX) is a one-parameter subgroup, so 3Z; s.t. Fz(u) =
exp(uZi). Necessarily Zg =Y and Z; = %|u:0Gt(u) = Ad(exp(tX))(Y), so Z; = ad(X)(Z:) =
[X, Zt]. The ODE Zs = [X, Zt], Zo = Y has a unique solution. Since e*Y is a solution, Z; = e Y.
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ht = ¢4 and ¢' = ¢’ is the flow generated by X, then
h*og =gt oh" (7.1)
We will analyze the winding of unipotent flows on G/T.

7.2. Winding. Choose a basis [o1],...,[0q4] for Hi(G/T,Z), and a dual basis of
closed 1-forms wy, ..., wg € H'(G/T,R) such that [ w; = ;5. Choose a measur-
able family of length minimizing paths 7,, connecting x to y (z,y € G/T). Since
G/T is compact, the lengths of v, , are uniformly bounded, and their choice will
not affect our asymptotic results.

Fix Z € g. For every x € M, let vr(x,Z) denote the loop obtained by concate-
nating the orbits {¢%(z)}o<u<r and v,z

(2),0 Let [yr(x, Z)] € Hi(G/T',Z) denote

the homology class of this loop, and decompose [yr(z, Z)] = Zle a;(t, z)[o;]. The
winding vector of x at time ¢ is (aq (¢, x),. .., aq(t, z)).

It is convenient to replace this vector by a vector of ergodic integrals, which
equals it up to a bounded error. Let Z denote the vector field of the flow .
Equivalently, Z is the projection to G/I" of the unique right-invariant vector field
on G which equals Z at e € G. For every 1-form w, let

AZ(2) = w(Z(2)) , Wilw, Z,2) = / w( ())ds = / AZ (g3 (2))ds.  (1.2)

Note that if @ is another form in the same cohomology class, that is ©® = w + dFE
for some continuously differentiable function E : G/T — R, then Wy(w, Z,z) =
Wi(@, Z,2)+E (oY (z))— E(z) = Wi(@, Z,2)+0(1), so Wi(w, Z, X ) and Wi (@, Z, x)
have the same rate of growth. G/T" is compact, 7, have bounded length and Afi
are uniformly bounded, so a;(t,x) = fg AZ (¢35 (x))ds + O(1). Thus

Wi(Z.2) = ( / AZ (o3 (@) ds, ... / AZ (3 (x))ds) (7.3)

equals the winding vector up to uniformly bounded error.

7.3. The result. Let Y be a non-zero unipotent element of g, and let X be a Lie
algebra element s.t. [X,Y] =AY where A > 0.

Set gt := ¢h and ht := ¢!, and let Gy(z) = Wy(=X,z), Wi(z) := W(Y,z)
obtained by substituting Z = —X or Z =Y in (7.3). Define a d x d matrix X2 by

= [ [ AX@AS (6 @)duterds
—oo J M

We will see below that the integrals converge and that X? is positive semi-definite.
Let N be the d-dimensional Gaussian random variable with mean zero and covari-
ance matrix 3?. Let Wz (Y, z) denote the random vector W (Y, x), t ~ UJ0, 1].

WT(Y,1)7@A,1 o (x)  dist N‘.
VA—1InT T—00 ’

Theorem 26. For a.e. x,

7.4. Example: The horocycle flow can be presented as the unipotent flow on
SL(2,R)/T generated by Y = ( o o ) € sl(2,R), see [BMOO].

But in this presentation G /T is the unit tangent bundle of the hyperbolic surface,
not the surface itself, so (7.2) measures winding in 7'M, not M. Let w = df where 0
is given locally by the NAK decomposition g = ( R ) ( o9 ) ( cosh  —sinf )I‘

0 « sin 0 cos 0
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of gT" € G/T. The definition is proper because I" acts conformally on the upper half
plane. Clearly, w is closed, but it is not exact because fa w # 0 for the closed curve

o :[0,21] = TYG/T), o(0) = ( &g ey’ )T which rotates the unit tangent
vector I' a full circle around its base point.
Clearly Wy(w,Y,z) = 0 for all ¢, so there is no homological growth in direction

w = df, X2 is not strictly positive definite and N has degeneracies.

8. PROOF OF THEOREM 26 ON UNIPOTENT FLOWS

The proof relies on several statements of independent interest, which we now
discuss. We assume throughout that G is a semi-simple Lie group without compact
factors, I is a uniform lattice in G, and p is the probability measure on G/T" which
lifts to a Haar measure on G.

8.1. A spatial DLT. Recall the definition of a spatial DLT from (1.10). The
following is a special case of [Dol04, Corollary 4] or [LB02, Theorem A].

Theorem 27. Suppose Z € g, and the spectrum of Ad(Z) is not contained in the
imaginary axis. For every C' closed 1-form w there is a constant o > 0 such that

VVT(W,)(7 X) dist
\/T T—o00

The asymptotic variance o2 is given by the Green-Kubo formula
= [ [ AZ@alieh)aua

Proof. First we show that [ AZdu = 0. This is because of the following fact:

CLAIM: Suppose w is a closed 1-form on G/T', and Z € g. Let Z denote the vector
field of the flow ¢!, on G/T, then [w(Z)dp = 0.

Proof of the claim: Fix Z1,7Z5 € g, and let <ptZi and Z; be the flows and vector
fields they define on G/I'. The identity iz, z,w = Lz,iz,w —iz,Lz w and the
assumption that w is closed imply that for every « € G/T,

9 (@t @) — (B (65 @)] = wll21, 2(@)).

Since gptZ preserve u, the left hand side has zero average with respect to p. Hence
w(w([Z1, Z2])) = 0. In other words u(w(Z)) = 0 whenever Z € [g, g].

Since G is a semi-simple Lie group, g is a finite direct sum of simple Lie algebras
g;. By simplicity, [g;, ;] = g; for every 4, proving that every Z € g is a finite sum
of commutators. So p(w(Z)) =0 for every Z € g.

With the claim proved, the theorem follows from [Dol04, Corollary 4] or [LB02,
Theorem A]. Namely, to apply the above results one needs to verify the integrability
of the correlation function. In the present case [KM99, Theorem 3.4] shows that
the correlation function decays as ¢1 exp(—ca dist(exp(tZ),id)) while the assump-
tion that spec[Ad(Z)] ¢ iR gurantees that || exp(tZ)|| grows exponentially and so
dist(exp(tZ),id) grows linearly. O

Remark 28. Using the mizing bounds of [KM99] the results of [Dol04] and [LB02]
imply the Central Limit Theorem for ergodic integrals of smooth observables for
partially hyperbolic flows on a more general class of semisimple Lie groups with-
out compact factors. However in the higher rank case Margulis Normal Subgroup

N(0,02), as X ~ .
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Theorem ([Mar91, page 4]) shows that G/T does not admit any abelian covers, so
windings are only interesting in rank 1 case.

8.2. An almost sure central limit theorem. The following result is proved in
[DFV17, Theorem 8]. Let g(t) = exp(tX), h(u) = exp(uY).

Theorem 29. Let B : G/T' = R b a smooth bounded function with zero mean,
then for a.e. x € GJT, for every L > 0,

1 = dist
— Y B(g(n)h(t)z) -~ N(0,0?), as t ~ U0, L],
m; g

N—o00

where o2 = Y °° Sy B(z)B(g(n)x)dp(x). Moreover if t ~ U0, L], and N ~
L (;c . Zléﬁ P (Zg_ol B(g(n)h(t)x)

)< &
VN =N

N(0,0?), then for each e,r there is a constant C' such that
Also C' can be chosen uniformly when L varies over compact subsets of (0,00).

Sz) —P(N <2)

8.3. A temporal DLT for 1-forms. Given a smooth 1-form w on G/T" and x €
G/T, define Wi(w,Y, z) and Wy(w, —X, x) by setting Z =Y, —X in (7.2). We start
with the following general estimate

Lemma 30. There is a constant C' such that for every closed 1-form w and for
every x,t, [Wi(w,Y,2z)| < CInT.

Proof. By (7.1), and since w is closed, we have
Wt(wv Y, I) = Wy lnt(wv -X, 1‘) + W (wa Y, y) + Wi lnt(wv X, h(l)y)a

where y = g(—Int)z. Since for each 7, Z, z we have |W,(w, Z, z)| < 7|w||||Z] the
result follows. 0

Corollary 31. L~et T be the subgroup of T such that I‘/f‘ ~ 7% Then the flow
x — h(u)z on G/T is conservative.

This result is an immediate consequence of Lemma 30 and the following fact.

Lemma 32. [CC09, Lemma 1.1] Let (Q, .#,v) be a probability space and f : @ — Q
a probability preserving map. Let f(x,2) = (fr,z + 7(z)), a map on Q x Z¢. If
there are a strictly increasing sequence ky, € N and a sequence 0, = 0 (nl/d) s.t.

kn—1
tm e 1 A0l z 0.} =0
j:

then f is conservative with respect to v X counting measure.

To derive Corollary 31, take f and f to be the translations by exp(Y) on G/T°
and G/T respectively and 7 being the corresponding Frobenius function.

Conjecture 8.3.1. The flow of Corollary 31 is ergodic.

By [BL98] Conjecture 8.3.1 is true for G = SL(R) (see also [Kai00, Pol00,
Sol01]). See [LSO08], [SS08] for more information on the behavior of ergodic averages
in that case and [Cou03, Sch05] for other infinite area hyperbolic surfaces. Much
less is known in higher dimensions. See [MO15] for some results in dimension 3.
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Theorem 33. Let a = exp \. If w is closed, then for almost every x € G/T,
Wt(w7y, 1') - GlogaT(wvl') dist
A /loga T T—o00

where Gy(w, z) := Wy(—X,w,z) and o = [T [u AX (2)AX (g(t)x)dp(x)dt.

N(0,0(w)?), ast ~ U[0,T],

Proof. Given T' > 0, let t denote the random variable which is uniformly dis-
tributed in [0,T]. Let T}, = ek Since Trv1/Tx — 1, for every Ty, < T < Tgy1,
—00

sup |Pr(Wip(w,Y,z) € E)—Pr (WtTk (w,Y,z) € E) — 0.

ECR Borel k—o0

Wi (w,Y,z2)—W 7 (w,—X,x) dist
\/Eﬁ kjoo N(0,0(w)?), as t ~ U0, Ty].

Denote h(u) = exp(uY), g(t) = exp(tX), nx = [VEk|, y = g(—nx)z, and
consider the loop 7(t,ni) obtained by concatenating {g~%(x)}5%,, {h*(y )}g;g’“t,
{g*(h(e )y} * ), and the reversal of the path {h*(x)},_,. This loop closes be-
cause of (7.1), and it is contractible (send (¢,n;) — (0,0)). Since w is closed, we

have for every t

Wi(w,Y,z) = Wy, (w, =X, 2) + W_xny  (w, Y, y) + Wy, (w, X, h(e” 2 t)y).

So it suffices to show that

Let Ly = exp{ink) and Vi = %, and note that Vj is uniformly distributed

on [0, Li]. Randomizing t ~ UJ[0, Tj], we find that
Wer, (w,Y,2) = Wy, (w, =X, z) = Wy, (w, X, h(Vy)y) + O(1).

Note that W, (w, X, h(Vi)y) = 375" B(g(j)h(V)y) where B(-) = Wi (w, X, -).
NS

Hence Theorem 29 implies that for each € > 0
W, (w, X, h(V
u{x: Pr< aC ( k)y)<z>—Pr(N<z) >5}
decays faster than any power of k, with N ~ N(0, 0 (w)?).
Theorem 33 now follows by Borel-Cantelli Lemma. O

8.4. A temporal DLT for winding vectors (Proof of Theorem 26). Re-
call that W, (Y, z) := (Wi(w1,Y,2),...,Wi(wq,Y,x)), where [w;] are a basis for
Hy(G/T,Z). Let Wr(x) := We(Y,z), where t ~ U[0,T]. Let G¢(x) := Wt( ,T).

T(z) CYVloga (:E)

\/log, T

is asymptotically normal, whence tight. Applying Theorem 33 again, and using
Fubini, we conclude that for almost every x the following statement holds: For
almost every vector @ = (a1, ...,aq)

<6 W (x) - G*logaT<x>> _ Wa(Z awi, V@) = Wiog, (3 aiws, —X, @)

By Theorem 33, for a.e. x every coordinate of the random vector

\1og, T \/1og, T

it N(0,0 Z aiw;)?) = N(0, (@, 2?a)), by the formula for o(w).
T—o0
Since the set of @ for which this convergence takes place is closed (see e.g. [CAFRO7,
Corollary 2.2]), this convergence holds for all @ € R%. Theorem 26 now follows from

the Cramér-Wold Theorem. O
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9. NO ALMOST SURE DLT FOR UNIPOTENT WINDINGS.

Theorem 34. Wi (w,Y, x) does not satisfy an almost sure DLT. In fact, for almost
every x the following holds. For every random variable ) there is a sequence T,
such that

Wt (wv Y7 l’) dist
Vint n— 00

Proof. The result follows from Theorem 33, [DS17, Theorem 5.11] and the fact that
G (w, ) satisfies an almost sure invarinace principle due to [Dol04, Theorem 3]. O

2) @ N(0,0%(w)) where t ~ Log[1,T]

APPENDIX A. PROOF OF LEMMAS 1 AND 2

Proof of Lemma 1. If v = 0, there is nothing to prove, so suppose v > 0. Fix
some complex structure on My, turning it into a compact Riemann surface of genus
g. A classical result on Riemann surfaces states that for every wy,...,w, € C s.t.
wy + -+ + w, = 0 there exists a meromorophic differentials with simple poles
D1, .,y with residues wy, ..., w,, and no other poles [Sch14, Thm 6.28].

Let w} (1 <k <v—1) be a meromorphic differential with exactly two singular-
ities: a pole at py with residue 277, and a pole at p, with residue —2mi. Since wj;

is holomorphic on My \ {p1,...,pv}, wi restricts to a closed (complex) 1-form on
M. By construction [ wj = ;. So [e1],...,[c,—1] are independent over Z.
J
In fact the entire family [o1],...,[o2],[c1],...,[cv—1] is independent over Z,

because if > n;o; + > mjc; is the boundary of a 2-cycle in M, then it is the
boundary of a 2-cycle in My whence Y n;[o;]' + > m;c;]’ = 0 in Hq(My, Z), where

[-]" denotes the homology class in My. But [¢;]’ = —[0C,] = 0, so > n;[o;]’ = 0.
Since, by construction, o1,...,02, determine a basis for Hy(My,Z), n; = 0 for all
i. It now follows from the independence of [¢;] that m; are also all zero.

It remains to show that [o1],. .., [o24], [c1],- .., [cv—1] span H1(M,Z) over Z. We

use the following part of the Mayer-Vietoris exact sequence for the decomposition
My=MU{UC;):

H(Mn|JCiz) % Hy(M,2) & Hi(| Ti,Z) 2 Hi(Mo,2)
where a = (i, —j«) and B = k,+{, wherei: MNJC; — M, j: MnJC; — JC;,

k:M < My,and ¢ :|JC; — My are the natural embeddings induced by viewing
My =M U{p1,...,p,}. Since C; are disks, this simplifies into

Spang{[c1],- .., [e ]} = Hi(M,Z) LN Spany{[o1],...,[o24]'} is exact.
Fix an arbitrary 1-cycle o in M, then In; € Z s.t. k.([o]) = D nilo]’ = k(O ni[oi]).
So [o] = Y n,[o;] € Ker(ky) = Im(ix) = Spang{[o1],...,[o24],[c1],...,[c]}. Since
Yolei) =0, [o] € Spang{[o1], ..., [o24];[c1],- .., [cv-1]}. O
Proof of Lemma 2. By construction, o1, ..., 02, generate a basis for Hy (Mo, Z),
where My = M U {punctures}. M is a compact smooth surface. By De Rham’s
Theorem, there are closed 1-forms o7, ..., 05, on My s.t. fa_ o; = ;5. These forms

are bounded on My, whence on M. Since ¢; = dD; and O‘; are closed, fci of =0.
There are also closed 1-forms wy,...,w;_; on M s.t. fci wi = d;; for all 4, j, see
the proof of Lemma 1. Suitable linear combinations with ¢} give 1-forms c; s.t.
fci c¢; = i and foi ¢ = 0foralli,j. Since w; are holomorphic on Mo\{p1,...,p},
lex || are bounded on compact subsets of M. O
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