
HYPERBOLIC BILLIARDS AND STATISTICAL

PHYSICS

N. CHERNOV AND D. DOLGOPYAT

Abstract. Mathematical theory of billiards is a fascinating sub-
ject providing a fertile source of new problems as well as conjecture
testing in dynamics, geometry, mathematical physics and spectral
theory. This survey is devoted to planar hyperbolic billiards with
emphasis on their applications in statistical physics, where they
provide many physically interesting and mathematically tractable
models.

1. Introduction

Let D be a bounded domain on a plane or a 2D torus with piecewise
smooth boundary. A billiard system in D is generated by a single par-
ticle moving freely inside D with specular reflections off the boundary
∂D. The phase space of a billiard is a 3D manifold Ω; the corresponding
flow Φt : Ω → Ω preserves the Liouville measure µ (which is uniform on
Ω). The space of all collision points makes a 2D cross-section M ⊂ Ω,
and the corresponding return map F : M → M (called billiard map)
preserves a natural smooth probability measure m.

The billiard is hyperbolic if the flow Φt and the map F have non-
zero Lyapunov exponents. The first class of hyperbolic billiards was
introduced [86] by Sinai in 1970; he proved that if the boundary of D is
convex inward, then the billiard is hyperbolic, ergodic, mixing and K-
mixing. He called such models dispersing billiards, now they are called
Sinai billiards. They are also proven to be Bernoulli [43]. A few years
later Bunimovich discovered [9, 10] that billiards in some domains D
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whose boundary is convex outward are also hyperbolic, due to a special
‘defocusing mechanism’; the most celebrated example of his billiards
is a stadium. More general classes of planar hyperbolic billiards are
described in [95, 96, 63, 41]; we refer to [48, 26] for extensive surveys
on hyperbolic billiards.

Billiards differ from classical smooth hyperbolic systems (Anosov
and Axiom A flows and maps) in several respects. First of all, many
hyperbolic billiards have non-uniform expansion and contraction rates
(for example, if the moving particle is almost tangent to a convex out-
ward arc of the boundary, then it will ‘slide’, and many reflections will
occur in rapid succession during a short interval of time; a similar phe-
nomenon occurs in a cusp on the boundary). Only dispersing billiards
without cusps have uniform expansion and contraction rates.

Second, and most importantly, the billiard dynamics have singular-
ities – phase points where both map F and flow Φt become discon-
tinuous and have unbounded derivatives. Singularities come from two
sources:

(a) Grazing collisions. In this case nearby trajectories can land on
boundary components that lie far apart.

(b) Corners. In this case two nearby trajectories can hit different
boundary pieces converging to a corner and get reflected at substan-
tially different angles.

Moreover, billiards without horizon (where the length of the free
path between collisions is unbounded) have infinitely many singularity
curves in phase space.

Singularities in billiards lead to an unpleasant fragmentation of phase
space. More precisely, any curve in unstable cones gets expanded (lo-
cally), but the singularities may cut its image into many pieces, some
of them shorter than the original curve, which then will have to spend
time on recovering. This makes billiards similar to non-uniformly hy-
perbolic systems such as quadratic maps or Henon attractors.

In [97, 98] Young has proposed two general methods for studying non-
uniformly hyperbolic systems: tower method and coupling method.

The first one generalizes well-known Markov partitions ([85]). The
latter divide phase space into rectangles (‘building blocks’) that have a
direct product structure and being moved under the dynamics intersect
one another in a proper (Markov) way. In the tower method only one
rectangle is used and its images only need to intersect itself in the
Markov way for some (not all) iterations. The tower construction is
thus more flexible than that of Markov partitions, but the symbolic
dynamics it provides is just as good as the one furnished by a Markov
partition.
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The coupling method is designed to directly control the dependence
between the past and the future. Since points with the same past his-
tory form unstable manifolds, one wants to show that the images of any
two curves in unstable cones have asymptotically the same distribution
([84]). To this end one partitions those curves into small subsets and
pairs subsets of the first curve with those of the second one so that the
images of the paired (coupled) points remain close to each other at all
times (i.e. lie on the same stable manifold).

Both methods proved to be very efficient and produced many sharp
results, as we describe below. We observe here that the tower method
allows us to use functional analytic tools, in particular the theory of
transfer operators [3, 71], which provide very precise asymptotic ex-
pansions. However the transfer operator approach requires a suitably
defined space of functions (observables), which is sometimes too re-
strictive and dependent on the model at hand. For this reason the
results obtained by the tower approach are often less explicit and the
dependence on parameters of the model is less transparent. The cou-
pling approach, being more elementary if less sophisticated, gives more
explicit bounds and makes it easier to work with several systems at a
time.

Our survey is organized as follows. Section 2 describes statistical
properties of dispersing billiards. Section 3 is devoted to systems with
slow mixing rates. Section 4 deals with billiards in the presence of ex-
ternal forces and discusses transport coefficients and their dependence
on parameters. Section 5 is devoted to interacting billiard particles,
and Section 6 deals with infinite volume billiards.

We will denote by N (0, σ2) a normal random variable (vector) with
zero mean and variance (covariance matrix) σ2, and by ρσ2 its density
function.

2. Dispersing billiards

Dispersing billiards make the oldest and most extensively studied class
of all chaotic billiards. They, arguably, have the strongest statistical
properties among all billiards. We need to suppose that all corners have
positively measured angles (no cusps) to guarantee uniform expansion
and contraction rates.

The main difficulty in the studies of billiards is to cope with the de-
structive effect of fragmentation caused by singularities (we note that
fragmentation may badly affect even relatively simple expanding maps
so that they would fail to have good statistical properties [93]). In
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billiards, to cope with pathological fragmentation one imposes the fol-
lowing ‘non-degeneracy’ condition: there exist m ∈ N, δ > 0, and
θ0 < 1 such that for any smooth unstable curve W of length less than
δ

(1)
∑

i

λi,m ≤ θ0,

where the sum runs over all smooth components Wi,m ⊂ Fm(W ) and
λi,m is the factor of contraction of Wi,m under F−m. Roughly speaking
(1) says that there no too-degenerate singularities such as multiple
passages through the corners. (1) always holds if there are no corners,
i.e. if ∂D is smooth, because for grazing collisions the expansion factor
approaches infinity on one side of each singularity line, but in it is
unknown if the condition (1) holds in dispersing billiards with corners,
nor if it is really necessary for the results presented below.

Let Bd
α be the space of bounded Rd-valued functions which are uni-

formly α-Hölder continuous on each component of M where the map
F is smooth. We write Bα for B1

α. Let B̄d
α = {A ∈ Bd

α : m(A) = 0}. For
any function A ∈ B̄d

α we denote by σ2(A) the d × d (diffusion) matrix
with components

(2) σ2
ij(A) =

∞
∑

n=−∞
m

(

Ai (Aj ◦ T n)
)

(if this series converges). Denote Sn(x) =
∑n−1

k=0 A(Fkx).

Theorem 1. The following four results hold under the condition (1):
(a) (Exponential mixing [97, 18, 20]) There is a constant θ < 1 such
that for every A, B ∈ B̄α there is C > 0 such that for all n ∈ Z

∣

∣m
(

A (B ◦ Fn)
)∣

∣ ≤ Cθ|n|,

which, in particular, implies the convergence of the series (2);
(b) (Functional Central Limit Theorem [11, 12, 20]) For A ∈
B̄d

α define a continuous function Wn(t) by letting Wn(k/n) = Sk/
√

n
and interpolating linearly in between. Then Wn(t) weakly converges,
as n → ∞, to a Brownian motion (Wiener process) with covariance
matrix σ2(A).
(c) (Almost sure invariance principle [66, 20]) There exist λ > 0
such that for any A ∈ B̄α we can find (after possibly enlarging the phase
space) a Brownian motion (Wiener process) w(t) with variance σ2(A)
such that for almost all x there is n0 such that for n ≥ n0

|Sn − w(n)| < n
1

2
−λ
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(d) (Local Limit Theorem [91]) Suppose A ∈ B̄d
α takes values in a

closed subgroup V ⊂ Rd of rank r and that there is no B ∈ L2
m(M)

such that A + B − B ◦ F belongs to a proper closed subgroup of V.
Then for any continuous function G with compact support and for any
sequence {kn} such that kn/

√
n → z ∈ Rd

nr/2m
(

G(Sn − kn)) → ρσ2(A)(z)

∫

F dl

where l is the Haar measure on V.

Parts (a)–(c) of Theorem 1 can be proved by both tower method
and coupling method ([97, 18, 20, 66]). The only known proof of part
(d) uses the tower construction. It would be useful to derive the last
part also by the coupling approach, since then it would be applicable
to systems depending on parameters.

If A is a function on Ω, then standard reduction methods [73, 67]

allow us to extend parts (b) and (c) to St(X) =
∫ t

0
A(ΦsX) ds. The

corresponding covariance matrix σ̃2(A) can be computed as follows.

Consider the function A(x) =
∫ τ(x)

0
A(Φsx) ds on M, where τ(x) is the

length of the free path. Then

(3) σ̃2(A) = σ2(A)/τ̄ ,

where τ̄ = π Area(D)/length(∂D) is the mean free path in the billiard
system [16].

It would be also nice to extend the part (c) to multidimensional ob-
servables, as the almost sure invariance principle readily implies other
limit laws – the law of iterated logarithm, integral tests, etc. [20].

Problem 1. Prove almost sure invariance principle for R
d valued ob-

servables.

The above results can be applied to the Lorentz gas in R2. Consider
a particle moving on the plane between a periodic array of fixed convex
disjoint obstacles (scatterers). The natural phase space of this system
is the unit tangent bundle to the plane minus the scatterers, and the
natural invariant measure is infinite (σ-finite). But since the dynamics
commute with the Z2 action we can factor the latter out and reduce
the system to a dispersing billiard on the unit torus.

Let Sn be the center of the scatterer the particle hits at the nth
collision. Then Sn − Sn−1 factors to a function H(Fn−1x) on the col-
lision space M of the toral billiard. To apply Theorem 1 we need to
assume that this billiard has finite horizon (a uniformly bounded free
path), since otherwise H(x) is unbounded and has infinite second mo-
ment. (This is not a technical restriction, the following result actually
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fails without the horizon assumption, see Section 3.) Let q(t) be the
position of the moving particle at time t.

Theorem 2. The following five results hold for finite horizon Lorentz
gases:
(a) ([11, 12]) Sn/

√
n converges weakly to N (0, σ2) where

(4) σ2
ij =

∞
∑

n=−∞
m

(

Hi (Hj ◦ Fn)
)

.

(b) ([11, 12]) q(t)/
√

t converges to N (0, σ2/τ̄).
(c) ([91]) m(Sn = 0) ∼ 1/(2π det(σ)n).
(d) ([30, 78]) Sn is recurrent.
(e) The Lorentz gas is ergodic with respect to its σ-finite invariant mea-
sure.

Parts (c) and (d) are recent. Part (e) follows from part (d) and [79].
Parts (c) and (d) indicate that Sn behaves like a random walk.

Problem 2. Extend the analogy between Sn and random walks (for
instance, investigate the statistics of returns).

Some results in this direction are obtained in [40]. Results for geo-
desic flows on negatively curved surfaces can be found in [1].

3. Slow mixing and non-standard limit theorems

Here we describe some hyperbolic billiards with non-uniform expan-
sion and contraction rates. Such are billiards with convex outward
boundary components, semidispersing billiards (where the boundary
is convex inward, but at some points its curvature vanishes, i.e. the
boundary ‘flattens’), as well as dispersing billiards with cusps. All
these billiards have one feature in common - there are arbitrarily long
series of reflections without expansion or contraction, which compro-
mise the hyperbolicity.

Such series of ‘idle’ reflections occur in certain well defined regions
in phase space. If M̂ ⊂ M is their complement, then the return map
F̂ : M̂ → M̂ will have uniform expansion and contraction rates, so
Young’s methods will apply. The distribution of return times to M̂
then determines the rates of mixing:

Theorem 3. (a) ([28]) If D is a Bunimovich stadium (a table with C1

boundary consisting of two semicircles and two parallel line segments)
and A, B ∈ B̄α, then

(5)
∣

∣m
(

A (B ◦ Fn)
)∣

∣ ≤ const · (ln |n|)2/|n|.
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The same bound holds for modified stadia bounded by two circular arcs
and two non-parallel line segments.
(b)([28]) If D is a Bunimovich billiard table bounded by several circular
arcs that do not exceed semicircles an A, B ∈ B̄α, then

∣

∣m
(

A (B ◦ Fn)
)∣

∣ ≤ const · (ln |n|)3/|n|2.
(c) ([29]) Let D be a dispersing billiard table except the curvature of
∂D vanishes at two points P, Q ∈ ∂D such that the segment PQ is
a periodic orbit of period two. More precisely let the boundary ∂D
contain two curves y = ±(|x|β + 1), where β > 2, so that P = (0, 1)
and Q = (0,−1). Then for A, B ∈ B̄α,

∣

∣m
(

A (B ◦ Fn)
)∣

∣ ≤ const · (ln |n|)a+1/|n|a where a =
β + 2

β − 2
.

The logarithmic factors here are an artifact of the method used;
they can presumably be removed [22] by approximating the map F on

M\M̂ with a Markov chain (the region M\M̂ consists of countably
many ‘cells’ that make almost a Markov partition). The bound (5) is
expected for dispersing billiards with cusps [61], but this case turns out
to be much harder; it is currently under investigation [27].

If correlations decay like O(1/n), as in Bunimovich stadia, the se-
ries (2) is likely to diverge, so the central limit theorem is likely to
fail. This happens because the main contribution to the sum Sn comes
from long series of (highly correlated) reflections without expansion or

contraction. Again, we can employ the return map F̂ : M̂ → M̂ and
replace the given observable A with its ‘cumulative’ version

(6) Ā(x) =

R(x)−1
∑

n=0

A(Fnx),

where F̂(x) = FR(x)(x), i.e. R(x) is the first return time (to M̂), but
such Ā will usually be unbounded and have heavy tails.

First studies of limit laws for observables with heavy tails were un-
dertaken by Aaronson and Denker [2] for systems with Markov parti-
tions. Their results were extended to non-uniformly hyperbolic maps
with Young towers by Balint and Gouezel [4]; they gave an abstract
criterion for convergence to a Gaussian law under a non-classical nor-
malization (the case which is most relevant for billiards).

Balint and Gouezel [4] redefined R(x) in (6) to be the first return time
to the only rectangle in Young’s tower and proved a limit theorem under
the assumption that Ā has a distribution in a non-standard domain of
attraction of Gaussian law. They applied this criterion to a Bunimovich
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stadium bounded by two semicircles of radius 1 and two line segments
Γ1 and Γ2 of length L > 0 each: given a Hölder continuous observable
A ∈ Cα(M), denote by

I(A) =
1

2L

∫

Γ1∪Γ2

A(s,n) ds

its average value on the set of normal vectors n attached to Γ1 and
Γ2. (A slower decay of correlations for the stadium, compared to other
Bunimovich billiards, is caused by trajectories bouncing between two
flat sides of D and I(A) represents the contribution of such trajecto-
ries.)

Theorem 4. The following results hold for Bunimovich stadia:
(a) If I(A) 6= 0 then Sn/

√
n lnn → N (0, σ2(A)), where

(7) σ2(A) =
4 + 3 ln 3

4 − 3 ln 3
× [I(A)]2L2

4(π + L)
.

(b) If I(A) = 0, then there is σ2
0 > 0 such that Sn/

√
n → N (0, σ2

0).

As before, the approach of [67] allows us to extend this result to
flows.

The abstract criterion of [4] should be applicable to a large number
of systems. One of them is a periodic Lorentz gas without horizon
[92]. In this case orbits which never collide with the scatterers lie in
a finite number of families of corridors Πi ⊂ R2. The projection of
each corridor onto the torus is a strip bounded by two periodic orbits
(which in general case correspond to fixed points of the collision map
F). Let wi denote the vector joining the successive collisions along the
bounding orbits for the corridor Πi (we call it a flight vector). Let also
fi denote a vector parallel to wi but whose length equals the width of
Πi. Consider a nonnegative quadratic form

Q(v) =
1

length(∂D)

∑

i

|wi| 〈fi, v〉2,

it corresponds to a 2 × 2 symmetric positive semidefinite matrix σ2.

Theorem 5 ([92]). Suppose there are at least two non-parallel corridors
in a Lorentz gas without horizon. Then σ2 > 0 and
(a) Sn/

√
n ln n → N (0, σ2).

(b) If kn/
√

n ln n → z then n lnn · m(Sn = kn) → ρσ2(z).
(c) Sn is recurrent.
(d) The Lorentz gas is ergodic with respect to its σ-finite invariant
measure.
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Problem 3. Prove a functional central limit theorem in the setting of
[4].

Solving this problem would lead to a complete asymptotic description
of the flight process in Lorentz gases without horizon.

4. Transport coefficients

Here we begin the discussion of billiard-related models of mathematical
physics. The simplest one is a billiard D where the particle moves under
an external force

(8) v̇ = F (q, v).

Such systems were investigated in [19] under the assumptions that D
is the torus with a finite number of disjoint convex scatterers and finite
horizon. To prevent unlimited acceleration or deceleration of the par-
ticle, it was assumed that there was an integral of motion (“energy”)
E(q, v) such that each ray (q, αv), α ∈ R+ intersects each level surface
{E = c} in exactly one point. To preserve hyperbolicity, it was assumed
that ‖F‖C1 is small.

Such forces include potential forces (F = −∇U), magnetic forces
(F = B(q) × v) and electrical forces with the so called Gaussian ther-
mostat:

(9) F = E(q) − 〈E(q), v〉
‖v‖2

v.

Fix an energy surface {E(q, v) = const} containing a point with unit
speed. Under our assumptions on E this level surface is is diffeomorphic
to the unit tangent bundle Ω over D and the collision space MF is
diffeomorphic to M. Denote by FF : MF → MF the corresponding
return map.

Theorem 6 ([19]). FF has a unique SRB (Sinai-Ruelle-Bowen) mea-
sure mF , i.e. for Lebesgue almost every x ∈ MF and all A ∈ C(MF )

1

n

n−1
∑

i=0

A(F i
Fx) →

∫

MF

A dmF .

The map FF is exponentially mixing and satisfies the Central Limit
Theorem (cf. Theorem 1).

As usual one can derive from this the existence (and uniqueness) of
the SRB measure µF for the continuous time system.

Another interesting modification of billiard dynamics results from
replacing the “hard core” collisions with the boundary by interaction
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with a“soft” potential near the boundary. We do not describe such
systems here for the lack of space referring the reader to [60].

Theorem 6 implies the existence of various transport coefficients for
planar Lorentz gas with finite horizon. For example, consider a ther-
mostated electrical force (9) with a constant field E(q) = E = const,
and let mE denote the SRB measure on the {E = 1/2} energy surface.

Theorem 7 ([24]). There is a bilinear form ω such that for A ∈
Cα(M)

mE(A) = m(A) + ω(A, E) + o(‖E‖).
To illustrate these results, let qn denote the location of the particle

on the plane at its nth collision, then Theorem 6 implies for almost all
x the average displacement (qn − q0)/n converges to a limit, J(E), i.e.
the system exhibits an electrical current. Theorem 7 implies

J(E) = ME + o(‖E‖) (Ohm’s Law).

where M is a 2 × 2 matrix, see below.
One interesting open problem is to study the dependence of the mea-

sure mF of the force F , for example the smoothness of mE as a function
of the electrical field E. For hyperbolic maps without singularities SRB
measure depends smoothly on parameters [51, 76, 77]. For systems with
singularities the results and methods of [24] demonstrate that the SRB
measure is differentiable at points where it has smooth densities (e.g.
E = 0 in the previous example).

In fact there is an explicit expression for the derivative (Kawasaki
formula). To state it let Fε be a one-parameter family of maps such
that F0 = F has a smooth SRB measure and for small ε the map Fε

has an SRB measure mε, too, and the convergence to the steady state
mε, in the sense that if ν is a smooth probability measure on M and
A ∈ Cα(M) then ν(A◦Fn

ε ) → mε(A), is exponential in n and uniform
in ε. Let X = d

dε

∣

∣

ε=0
(Fε ◦ F−1). Then

(10)
d

dε

∣

∣

∣

ε=0
mε(A) = −

∞
∑

n=0

∫

M
divm(X) A(Fnx) dm(x).

For the constant electrical field E the Kawasaki formula reads d
dE

∣

∣

E=0
J(E) =

1
2
σ2, where σ2 is defined by (4). Hence

(11) J =
1

2
σ2E + o(‖E‖),

which is known in physics as Einstein relation.
On the other hand numerical experiments [8] seem to indicate that

J(E) is not smooth for E 6= 0. Similar lack of smoothness is observed
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in ([44, 45, 47]) for expanding interval maps, but the billiard case seems
to be more complicated. Indeed the smoothness of SRB measures (or
the lack thereof) seems to be intimately related to the dynamics of the
singularity set. For 1D maps the singularity set is finite whereas for
2D maps the singularity set is one-dimensional, and so one can expect
some statistics for the evolution of that set.

Problem 4. Prove that the SRB measure, as a function of parame-
ters, is not smooth (generically). Derive relations between its Hölder
exponent near a given parameter value and other dynamical invariants,
such as Lyapunov exponents, entropy, etc.

A related issue is the dependence of infinite correlation sums, such
as the one in (10), on the geometry of the billiard table. This issue
was addressed in [23]. Given a domain D ⊂ T2, an additional round
scatterer is placed in D with a fixed radius R > 0 and a (variable)
center Q; then one gets a family of billiard maps FQ acting on the same
collision space M and having a common smooth invariant measure m.
For any smooth functions A, B on M let

(12) σ2
A,B(Q) =

∞
∑

n=−∞
m

(

A (B ◦ Fn
Q)

)

It is proven in [23] that σ2
A,B(Q) is a log-Lipschitz continuous function

of Q:
(13)
∣

∣σ2
A,B(Q1) − σ2

A,B(Q2)
∣

∣ ≤ const ∆ ln(1/∆), where ∆ = ‖Q1 − Q2‖.
Problem 5. Is (13) an optimal bound?

Problem 6. Extend the analysis of [23] to dissipative systems studied
in [19].

In particular is it true that the dependence on parameters is typically
more regular for conservative systems?

Problem 7. Consider the class S of all Sinai billiard tables on T2 and
deform a given table D continuously in C4 so that it approaches the
natural boundary of S. Investigate the limit behavior of the diffusion
matrix σ2(D).

If we only consider generic boundary points of S, then this problem
splits into three subproblems:

(a) What happens when two scatterers nearly touch each other?
(b) What happens when the boundary flattens so that a periodic

trajectory with nearly zero curvature appears?
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(c) What happens when one of the scatterers shrinks to a point?
Analogues of Problem 7 were investigated for expanding maps [38]

and for geodesic flows on negatively curved surfaces [13]. For Sinai
billiards, only problem (c) has been tackled in [23], see Theorem 9(a)
below. The first step towards problem (a) is to establish mixing bounds
for billiards with cusps (for problem (b) this task has been accomplished
in [29], see Theorem 3(c)).

One can also study the behavior of other dynamical invariants, such
as entropy and Lyapunov exponents, see [16, 32, 48, 14].

5. Interacting particles

One may hope that after so many results have been obtained for one
particle dynamics in dispersing billiards, a comparable analysis could
be done for multi-particle systems, including models of statistical me-
chanics where the number of particles grows to infinity. However not
much has been achieved up to now. Recently there has been a signifi-
cant progress in the study of stochastically interacting particles [52, 94],
but the problems involving deterministic systems appear to be much
more difficult. One notable result is [70] where Euler equation is de-
rived for Hamiltonian systems with a weak noise, however that particu-
lar noise is of a very special form, and its choice remains to be justified
by microscopic considerations.

Regarding models with finitely many particles, the most celebrated
one is a gas of hard balls in a box with periodic boundary conditions
(i.e. on a torus Td). The ergodicity of this system is a classical hy-
pothesis in statistical mechanics attributed to L. Boltzmann and first
mathematically studied by Sinai [83, 86], see a survey [90]. The hy-
perbolicity and ergodicity for this system have been proven in fairly
general cases only recently [80, 81], but a proof in full generality is not
yet available.

Problem 8. Prove the ergodicity of N hard balls on a torus Td for
every N ≥ 3 and d ≥ 2 and for arbitrary masses m1, . . . , mN of the
balls.

The existing proofs [80, 81] cover ‘generic’ mass vectors {m1, . . . , mN}
(apart from unspecified submanifolds of codimension one in RN). Be-
sides, the existing proofs heavily rely on abstract algebraic-geometric
considerations, and it would be important to find more explicit and
dynamical arguments.

A system of N hard balls on Td can be reduced to semi-dispersing
billiards in a Nd-dimensional torus with a number of multidimensional
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cylinders removed. Now the considerations of Section 3 suggest that
the rate of mixing for gases of hard balls is quite slow. Physicists
estimated that correlation functions for the flow decay as O(t−d/2), see
[42, 72].

Problem 9. Investigate mixing rate for gases of N hard balls in Td or
N hard disks on a Sinai billiard table.

An important feature of systems considered in statistical mechan-
ics is that there are several different scales in space and time. This
can complicate the study since the problem of interest tend to involve
several ‘levels’ of parameters, but on the other hand one can expect cer-
tain simplifications; for example, Hamiltonian systems of N particles
which are not ergodic (and this is, generically, the case due to the KAM
theory) may behave as ergodic in the thermodynamical limit N → ∞
(see e.g. [31], Chapter 9). Another example is that some pathologies
slowing the mixing rates can be suppressed on large time-space scales,
thus the system may behave as strongly chaotic.

A significant progress in the study of multi-scale systems with chaotic
fast motion has been achieved recently, see [39] and references wherein.
In this section we describe the first rigorous result on multi-scale billiard
systems [23].

Consider a system of two particles moving on a 2D torus with a finite
number of fixed convex scatterers (we assume that the resulting region
D ⊂ T

2 has finite horizon). Particles collide with the scatterers and
with each other elastically. The first particle called P is a heavy disk
of mass M ≫ 1 and radius R ∼ 1. The second particle called p is a
dimensionless point of unit mass.

In equilibrium, the kinetic energies of P and p are comparable, and
then P will move practically with constant velocity, without noticing
p. A more interesting development occurs if the initial velocity of P

is zero. Assume that the initial speed of p is 1 and that its initial
state is chosen randomly from the unit tangent bundle over D. Then
the position Q of P at time t becomes a random process QM(t). We
want to describe the motion of P in the interior of D (before it has
chance to reach ∂D), so we fix a small δ > 0 and stop P once it comes
within distance δ from ∂D. Under a non-degeneracy condition on D,
see below, the following is proved:

Theorem 8 ([23]). As M → ∞, the process QM(τM2/3) converges
weakly to the solution of the following stochastic differential equation

(14) Q̈ = σ̃(Q) ẇ
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where ẇ is the white noise and the 2 × 2 matrix σ̃(Q) is the positive
square root of

σ̃2(Q) = σ2(Q)/τ̄ ,

compare this to (3); here

τ̄ = π(Area(D) − Area(P))/(length(∂D) + length(∂P))

is the mean free path for the fast particle p and

σ2(Q) =

∞
∑

n=−∞
m

(

A (A ◦ Fn
Q)T

)

where FQ is defined before Eq. (12) and A ∈ B
2 is defined by (18)

below.

The non-degeneracy condition mentioned above is σ2(Q) > 0 for all
Q. This condition allows us to ‘promote’ the log-Lipschitz continuity
of σ2 given by (13) to the log-Lipschitz continuity of σ̃ and then show
that the equation (14) is well posed. This illustrates the importance of
Problems 5 and 6 for homogenization theory. The fact that σ2(Q) is
non-degenerate, apart from a codimension infinity subset of S, follows
from [12].

To understand (14) observe that when P collides with p the tan-
gential component of its velocity remains unchanged while the normal
component changes as follows

(15) V ⊥
new =

M − 1

M + 1
V ⊥

old +
2

M + 1
v⊥
old = V ⊥

old +
2

M
v⊥
old + O

( 1

M3/2

)

where v⊥
old is the normal component of the velocity of p (the estimate on

the remainder term uses the fact that due to the energy conservation
M‖V ‖2 + ‖v‖2 = 1 the speed of P never exceeds 1/

√
M). Hence

velocity of P after n collisions equals

(16) Vn =
2

M

n
∑

i=1

v⊥
i + O

( n

M3/2

)

there v⊥
i is the normal component of the velocity of p before the i-th

collision of P with p. As we need to count all the collisions of p, both
with P and ∂D, then (16) takes form

(17) Vn =
2

M

n
∑

i=1

A ◦ F i + O
( n

M3/2

)

where F is the collision map in our system of two particles and

(18) A = 2v⊥ if p collides with P and 0 otherwise.
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As M → ∞, our system approaches the limit where P does not move
(Q ≡ const) and p bounces off ∂D∪P elastically, thus its collision map
is FQ. For this limiting system, Theorem 1(c) says that if n = Mαdτ ,
then

(19)
n

∑

i=1

A ◦ F i
Q ∼ Mα/2 σ(Q) dw(τ)

where w(τ) is the standard Brownian motion. Since Q =
∫

V dt and
the integral of the Brownian motion grows as t3/2, it is natural to take
α = 2/3 in (19), so that M3α/2/M ∼ 1, cf. (16), and expect the limiting
process to satisfy (14).

In the proof of Theorem 8 we had to show that the two-particle
collision map F in (17) could be well approximated by the limiting
billiard map FQ in (19). While the trajectories of individual points
under these two maps tend to diverge exponentially fast, the images of
curves in unstable cones tend to stay close together, and we proved this
by a probabilistic version of the shadowing lemma developed in [37].
Then we decomposed the initial smooth measure into one-dimensional
measures on unstable curves (each curve W with a smooth measure ν
on it was called a standard pair) and adapted Young’s coupling method
to relate the image of each standard pair (W, ν) under the map Fn and
that under Fn

Q, as n grows.
The system described above is a very simplified version of the clas-

sical Brownian motion where a macroscopic particle is submerged into
a liquid consisting of many small molecules. In our model the liquid
is represented by a single particle, but its chaotic scattering off the
walls effectively replaced the chaotic motion of the molecules coming
presumably from inter-particle interactions.

One feature of Theorem 8 which may be surprising at first glance
is that the diffusion matrix σ2 is position dependent – the feature one
does not expect for the classical Brownian particle. The reason is that
the size of P is comparable to the size of the container D, so that
typical time between successive collisions of p with P is of order one,
hence p has memory of the previous collisions with P giving rise to a
location dependent diffusion matrix. This dependence disappears if P

is macroscopically small (but microscopically large!):

Theorem 9 ([23]). As R → 0 we have

(20) σ̃2(Q) =
8R

3Area(D)
I + P(Q) R2 + o(R2),
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where P(Q) is a weighted Poincaré series. Furthermore, there is a
function M0(R) such that if M → ∞ and R → 0 with M > M0(R),
then Q(τR−1/3M2/3) converges weakly to the process

√

8

3Area(D)

∫ τ

0

w(s) ds

where w(s) is the standard Brownian Motion.

Observe that the formula (20) would easily follow if the collisions
between p and P made a random Poisson process with intensity pro-
portional to 2R/Area(D) (the inverse of the mean intercollison time).

We remark that since we have a single fast particle p, its collisions
with the boundary ∂D are the only source of chaos. If D is a convex
smooth table, for example, then due to the presence of caustics [53]
there is a positive probability that p and P will never meet, so Theorem
8 fails in that case.

Problem 10. Prove Theorems 8 and 9 for two particles in a square
box.

In a square box, the fast particle may bounce off between two parallel
sides for a long time without running into the disk, so the dynamics
has slow mixing rates, cf. Section 3. According to the results of [4],
see Theorem 4, one expects a non-standard normalization for most
observables. However the observable given by (18) vanishes on ∂D
(since the velocity of P does not change during the collisions of p with
the walls), so we are actually in the context of Theorem 4(b), hence
Central Limit Theorem may hold despite the overall slow mixing rates.

The extension of Theorem 9 to a square box leads (by using a stan-
dard reflection of the box across its boundary) to a new model – a fast
particle moving on a plane with a periodic configuration of identical
circular scatterers of radius R → 0. This system is interesting in its
own rights, but not much is known about its asymptotic properties as
R → 0. A lot of work has been done on the case where scatters are
placed at random (see [7, 82] and references wherein) but the periodic
case is much more complicated, see [46]. Even the distribution of the
free path is a non-trivial task accomplished only recently [6].

The results of [23] extend, without much changes, to systems with
several heavy disks and one fast particle, as long as the disks do not
collide with each other or with the boundary of the table (of course
this restricts the analysis to a fairly short interval of time). Let us,
for example, formulate an analogue of Theorem 8 in this situation.
Let k be the number of heavy disks which are initially at rest. Then,
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after rescaling time by τ = M−2/3t, the velocity of the limiting process
satisfies

d

dτ





V1
...

Vk



 = σQ1...Qk

˙w(τ),

where ẇ is a standard k-dimensional white noise. Note that even
though the heavy disks are not allowed to interact with each other
directly, each one “feels” the presence of the others through the diffu-
sion matrix σQ1...Qk

, which depends on the positions of all the disks.
A much more difficult problem arises if there are several fast particles.

Problem 11. Extend Theorems 8 and 9 to systems with several fast
particles.

In this case the limiting (M → ∞) system consists of several non-
interacting particles moving on the same dispersing billiard table (the
heavy disk(s) will be “frozen” as M = ∞). Such a system can be
reduced to a semidispersing billiard in a higher dimensional container,
however that billiard will have very poor statistical properties. In fact,
it will not be even fully hyperbolic – several of its Lyapunov exponents
corresponding to the flow directions of the particles will vanish.

A more promising strategy for this case is to deal directly with the
continuous time dynamics. Then the limiting system of several non-
interacting fast particles is a direct product of one-particle billiard
flows. To extend the results of [23] to this model we need to gener-
alize their methods to the continuous time setting, and we also need
good estimates for mixing rates of dispersing billiard flows.

Problem 12. Estimate the decay of correlations for dispersing billiard
flows.

The studies of flow correlations are notoriously difficult (the main
reason is that there is no expansion or contraction in the flow direc-
tion). Even for classical Anosov flows no estimates on correlations were
available until the late 1990s. Only recently various estimates were ob-
tained on the decay of correlations for smooth uniformly hyperbolic
flows [17, 35, 59]. Some of them were just extended to nonuniformly
hyperbolic flows [65], including Sinai billiards: it was shown [65] that
for a ‘prevalent’ set of Sinai billiards with finite horizon, flow correla-
tions decay faster than any polynomial function.

We expect that the flow correlations for Sinai billiards with finite
horizon actually decay exponentially fast. Moreover, it appears that a
sub-optimal (‘stretched exponential’) bound developed in [17] can be
extended to billiard flows, and this is our work in progress. With some
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of these estimates, albeit less than optimal, we might be able to handle
the above system of several fast particles.

Interestingly, the mixing rates of the billiard flow may not match
those of the billiard map. For instance, in Sinai billiards without hori-
zon the billiard map has fast (exponential) decay of correlations [18],
but the flow is apparently very slowly mixing due to long flights without
collisions [5]. On the contrary, in Sinai tables with cusps, the billiard
map appears to have polynomial mixing rates, see Section 3, but the
flow may very well be exponentially mixing, as the particle can only
spend a limited time in a cusp. The same happens in Bunimovich
billiards bounded only by circular arcs that do not exceed semicircles
– the billiard map has slow mixing rates (Theorem 3), but the flow
is possibly fast mixing, as sliding along arcs (which slows down the
collision map) does not take much flow time.

The next step toward a more realistic model of Brownian motion
would be to study several light particles of a positive radius r > 0.
(If there is only one light particle, such an extension is immediate
since ‘fattening’ the light particle is equivalent to ‘fattening’ the disk
P and the scatterers by the same width r.) It is however reasonable to
assume that the light particles are much smaller than the heavy one,
i.e. r ≪ R. In this case one can presumably treat consecutive collisions
as independent, so that in the limit r → 0 the collision process becomes
Markovian. An intermediate step in this project would be

Problem 13. Consider a system of k identical particles of radius r ≪ 1
moving on a dispersing billiard table D. Let Ei(t) denote the energy of
the ith particle at time t. Prove that the vector

{

E1(τ/r), E2(τ/r), . . . Ek(τ/r)
}

converges, as r → 0, to a Markov process with transition probability
density given by the Boltzmann collision kernel [15]. This means that
if particles i and j collide so that the angles between their velocities
and the normal are in the intervals [φi, φi + dφi] and [φj , φj + dφj],
respectively, with intensity

∣

∣

√
2Ei cos φi −

√

2Ej cos φj

∣

∣ dφi dφj

4π2Area(D)
,

and then the particle i transfers energy Ei cos2 φi − Ej cos2 φj to the
particle j.

The proof should proceed as follows. As long as the particles do not
interact, the evolution of the system is a direct product of dynamics
of individual particles. This holds true whenever the particle centers
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q1, . . . , qk are > 2r units of length apart. Hence we need to investigate
the statistics of visits of phase orbits to

∆r = {min
i6=j

‖qi − qj‖ ≤ 2r},

which is a set of small measure. Visits of orbits of (weakly) hyperbolic
systems to small measure sets have been studied in many papers, see
[36, 50] and the references wherein We observe that Theorem 9(a) is
the first step in the direction of Problem 13.

Next, recall that in Theorem 8 we did not allow the disk P to come
too close to the boundary ∂D; this restricted our analysis to intervals
of time t = O(M2/3). During these times the speed of P remains
small, ‖V ‖ = O(M−2/3), thus the system is still far from equilibrium,
as M‖V ‖2 = O(M−1/3) ≪ 1.

Problem 14. Investigate the system of two particles P and p beyond
the time of the first collision of P with ∂D. In particular, how long
does it take this system to approach equilibrium (where the energies of
the particles become equal)?

There are two difficulties here. First, when P comes too close to
the wall ∂D, the mixing properties of the limiting (M → ∞) billiard
system deteriorate, because a narrow channel forms between P and the
wall. Once the fast particle p is trapped in that channel, it will bounce
between P and the wall for quite a while before getting out; thus many
highly correlated collisions between our particles occur, all pushing P in
the same direction (off the wall). Thus we expect ‖σ(Q)‖ → ∞ as the
channel narrows. The precise rate of growth of ‖σ(Q)‖ is important for
the boundary conditions for equation (14), hence Problem 7 is relevant
here.

The second difficulty is related to the accuracy of our approxima-
tions. The two particle system in Theorem 8 can be put in a fairly
standard slow-fast format. Namely let (q, v) denote the position and

velocity of p and (Q, V ) those of P. Put ε = 1/
√

M and denote
x = (q, v/‖v‖) and y = (Q, V ) (note that ‖v‖ can be recovered from x
and y due to the energy conservation). Then x and y transform at the
nth collision by

xn+1 = Tyn
(xn) + O(ε)

yn+1 = yn + B(xn, yn) + O(ε2)
(21)

If Ty(x) is a smooth hyperbolic map, the following averaging theorem
holds [39]. Let W ∋ (x0, y0) be a submanifold in the unstable cone,
almost parallel to the x-coordinate space (i.e. y ≈ y0 on W ), and
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such that dim W equals the dimension unstable subspace. Then for
| ln ε| ≪ n ≪ 1/ε and any smooth observable A we have

(22)

∫

W

A(xn, yn) dx0 =

∫

A(x, y) dmy0(x) + ε ω(A, y0) + o(ε),

where my0 denotes the SRB measure of the map Ty0
(x). This result is a

local version of Theorem 7 (consider the case yn ≡ y0!). In the presence
of singularities, however, only a weaker estimate is obtained in [23]:

(23)

∫

W

A(xn, yn) dx0 −
∫

A(x, y) dmy0(x) = O(ε | ln ε|).

The extra factor | ln ε| appears because we have to wait O(| ln ε|) it-
erates before the image of W under the unperturbed (billiard) map
becomes sufficiently uniformly distributed in the collision space, and
at each iteration we have to throw away a subset of measure O(ε) in
the vicinity of singularities where the shadowing is impossible. The
weak estimate (23) was sufficient for time intervals O(M2/3) consid-
ered in [23] since the corresponding error term in the expression for Vn,
see (17), is

O
(

n

M
× lnM√

M

)

= O
(

ln M

M5/6

)

because n = O(M2/3). This error term is much smaller than the typical
value of the velocity, Vn ∼ M−2/3.

However for n ∼ M the above estimate is not good as the error term
would far exceeds the velocity itself. To improve the estimate (23) we
have to incorporate the vicinity of singularities into our analysis. As
the singularities are one-dimensional curves, we expect points falling
into their vicinities to have a limit distribution, as ε → 0, whose density
is smooth on each singularity curve. Finding this distribution requires
an accurate counting of billiard orbits passing near singularities. Such
counting techniques have been applied to negatively curved manifolds
[62], and we hope to extend them to billiards.

Another interesting model involving large mass ratio is so-called pis-
ton problem. In that model a container is divided into two compart-
ments by a heavy insulating piston, and these compartments contain
particles at different temperatures. If the piston were infinitely heavy,
it would not move and the temperature in each compartment would
remain constant. However, if the mass of the piston M is finite the
temperatures would change slowly due to the energy and momenta ex-
changes between the particles and the piston. There are several results
about infinite particle case (see [21] and references wherein) but the
case when the number of particles is finite but grows with M is much



HYPERBOLIC BILLIARDS AND STATISTICAL PHYSICS 21

more complicated (see [54]). On the other hand if the number of parti-
cles is fixed and M tends to infinity then it was shown in [88, 69] under
the assumption of ergodicity of billiard in each half of the container
that after rescaling time by 1/

√
M the motion of the piston converges

to the Hamiltonian system

Q̈ = ∆P :=
K−ℓ

2πArea(D−)
− K+ℓ

2πArea(D+)

where D−(D+) is the part of the container to the left(right) of the
piston K−(K+) is the energy of the particles in D−(D+) and ℓ is the
length of the piston so that ∆P is the pressure difference. In particular
if ∆P = 0 and piston is initially at rest then the system does not move
significantly during the time

√
M and the question is what happens

on a longer time scale. For the infinite system it was shown in [21]
that the motion converges to a diffusion process with the drift in the
direction of the hotter gas. In the finite system (for example in a
stadium container) this process will be accompanied by simultaneous
heating of the piston so that the system may develop rapid (Q̇ ∼ 1√

M
)

oscillations. A similar phenomenon was observed numerically in [25]
for a system of M2/3 particles in a 3D container. Those oscillations
may be responsible for the fact that the system of [25] approaches its
thermal equilibrium in t ∼ Ma units of time with some 1 < a < 2
(computer experiments showed that a ≈ 1.7).

In our model of two particles the formula (17) suggests that the time
of relaxation to equilibrium is of order M , as in n ∼ M collisions the
heavy disk will reach its maximum velocity ‖Vn‖ ∼ √

n/M = 1/
√

M ;
to prove this we need to improve our approximations along the above
lines.

6. Infinite measure systems

Here we discuss several systems with infinite invariant measure, which
can serve as tractable models of some non-equilibrium phenomena.

In ergodic theory, systems with infinite (σ-finite) invariant measure
are often regarded as exotic and attract little attention. However, hy-
perbolic and expanding maps with infinite invariant measure appear,
more and more often, in various applications. Recently Lenci [55, 56]
extended Pesin theory and Sinai’s (fundamental) ergodic theorem to
unbounded dispersing billiard tables (regions under the graph of a pos-
itive monotonically decreasing function y = f(x) for 0 ≤ x < ∞),
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where the collision map, and often the flow as well, have infinite invari-
ant measures.

Another example that we already mentioned is the periodic Lorentz
gas with a diffusive particle, but this one can be reduced, because of its
symmetries, to a finite measure system by factoring out the Z2 action
(Section 2). The simplest way to destroy the symmetry is to modify
the location (or shape) of finitely many scatterers in R2. We call these
finite modifications of periodic Lorentz gases.

Theorem 10. Consider a periodic Lorentz gas with finite horizon.
Then
(a) ([57]) Its finite modifications are ergodic.
(b) ([40]) Its finite modifications satisfy Central Limit Theorem with
the same covariance matrix as the original periodic gas does.

The proof of part (a) is surprisingly short. Every finite modification
is recurrent, because if it was not, then the particle would not come
back to the modified scatterers after some time, so it would move as
if in a periodic domain, but every periodic Lorentz gas is recurrent
(Theorem 2). Ergodicity then follows by [79].

The proof of (b) uses an analogy with a simple random walk (already
observed in Section 2). Recall the proof of Central Limit Theorem for
finite modifications of simple random walks [89]. Let ξn be a simple
random walk on Z2 whose transition probabilities are modified at one
site (the origin). Define ξ̃n as follows: initially we set ξ̃0 = ξ0 = 0, for
every n ≥ 0 we put

ξ̃n+1 − ξ̃n =

{

ξn+1 − ξn if ξn 6= 0

Xn if ξn = 0

where Xn = ±ei, i = 1, 2, is a random unit step independent of every-
thing else. Then ξ̃n is a simple random walk and

(24) |ξn − ξ̃n| ≤ Card{k ≤ n : ξk = 0}.
Since the number of visit to the origin depends only on the behavior
of the walk outside of the origin the RHS of (24) is O(ln n) (see e.g.

[33]) so Central Limit Theorem for ξ̃n implies Central Limit Theorem
for ξn.

Let B̃α denote the space of α Hölder continuous functions on the
collision space of our periodic Lorentz gas with a finite modification,
such that every A ∈ B̃α differs from a periodic function only on a
compact set and the periodic part has zero mean. Then if xn = (qn, vn)
denotes the position and velocity of the particle after the nth collision
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and x0 has a smooth distribution ν with compact support, then for
A ∈ B̃α
∣

∣E(A(xn))
∣

∣ ≤ c ν
(

∃k ∈ [n−c ln n, n] : qk is on a modified scatterer
)

+O(n−100),

where c > 0 is a constant. The proof of Theorem 1(d) given in [91]
allows us to estimate the first term here by O(lnβ n/n) for some β > 0.
The lnn factor is perhaps an artifact of the proof; on the other hand
even for the much simpler case of a modified random walk one has
E
(

A(ξn)
)

∼ c(A)/n. This implies E
(

A(ξ0)A(ξn)
)

∼ c̄(A)/n. Also there
is a quadratic form q(A) such that

(25) E
(

A(ξm)A(ξm+n)
)

∼ q̄(A)/n, m, n → ∞.

Here we see a new feature of non-stationary systems which does not
happen in finite ergodic theory. The correlation series

∑∞
n=1 E(A(ξm)A(ξm+n))

diverges for all m but Central Limit Theorem still holds, since the con-
tribution of the off-diagonal terms to E(ξ2

n) is much smaller than the
contribution of near diagonal terms.

Finite modifications of periodic Lorentz gases are among the simplest
billiards with infinite invariant measures, so we hope to move further
in their analysis:

Problem 15. Extend (25) to finite modifications of periodic Lorentz
gases (with finite horizon).

The reason for this simplicity is that finite modifications are re-
stricted to a ‘codimension two’ subset of R2. The particle runs into
modified scatterer very rarely, so that its limit distribution is the same
as for the unperturbed periodic gas. The situation appears to be dif-
ferent for ‘codimension one’ modifications.

For example, consider a periodic Lorentz gas and make the particle
move in the N × N box bouncing off its sides and off the scatterers in
the box. Denote by qN(t) the position of the particle at time t.

Problem 16. Prove that qN(τN2)/N converges, as N → ∞, to the
Brownian motion on the unit square with mirror reflections at its bound-
ary.

If the box boundaries are symmetry axis of the Lorentz gas then the
result follows easily from Theorem 1(b) but the general case appears
more difficult. In fact if the boundaries of the box are not straight
lines (so called rough boundaries) then one can expect the limit to be
different due to trapping and it is an interesting problem to construct
such counterexample.

As a more sophisticated example, consider a ‘one-dimensional’ Lorentz
gas – a particle moving in an infinite strip I = {(x, y) : 0 ≤ y ≤ 1}
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(with identification (x, 0) = (x, 1)) and a periodic (in x) configuration
of scatterers in I. Suppose a small external force F acts by (8) in a
compact domain xmin ≤ x ≤ xmax. Denote by qF (t) the position of the
moving particle at time t.

Problem 17. Find the limit distribution of qF (τN)/
√

N as N → ∞.

The analogy with the random walk [89] suggests that qF (τN)/
√

N
should converge to |ζ |η where ζ and η are independent, ζ is a one-
dimensional normal distribution N (0, σ2) where σ2 is the same as for
the system without the field, and η takes values ±1, so that P(η = 1) ∼
P(qn > 0) depends on the evolution in the region xmin ≤ x ≤ xmax.
One can further conjecture a functional limit theorem, namely that
qF (τN)/

√
N converges to the so-called skew Brownian motion [49].

While the problems described above could be attacked along the
lines of [40], the situation becomes much more difficult if modifications
are less regular. In particular very little is known if the location of all
scatterers is purely random (if there are infinitely many independent
particles in a random Lorentz gas, ergodicity was proven by Sinai [87]).

Problem 18. Do results of Theorem 10 hold for random Lorentz gas?

The key question is the recurrence of the random Lorentz gas (this
issue is irrelevant for infinite particle systems since if one particle won-
ders to infinity then another one comes to replace it, cf. [31], Chapter
9).

Lenci [58] uses Theorem 10 to show that recurrence holds for an
‘open dense set’ of Lorentz gases, but this remains to be shown for
‘almost every’ gas in any measure-theoretic sense.

Problem 17 brings us back to billiards with external forces, see
Section 4. We assumed that (8) had an integral of motion. With-
out this assumption, the system would typically heat up (the parti-
cle accelerates indefinitely) or cool down (the particle slows down and
stalls). It is interesting to determine which scenario occurs. Denote by
K(t) = ‖v(t)‖2/2 the particle’s kinetic energy at time t.

Problem 19. Consider a Sinai billiards with a velocity-independent
external force v̇ = F (q). Is lim inf t→∞ K(t) finite or infinite for most
initial conditions?

The particular case of a constant force F = const is long discussed
in physics literature, see [74] and the references therein, but it is yet to
be solved mathematically. This model is known in physics as Galton
board – a titled plane with a periodic array of pins (scatterers) and a
ball rolling on it under a constant (gravitational) force and bouncing
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off the pins. Due to the conservation of the total energy, the particle
accelerates as it goes down the board. Physicists are interested in
finding the limit distribution of its position (in a proper time-space
scale). Heuristic arguments [68] indicate that ‖q(t) − q(0)‖ ∼ t2/3 and
‖v(t)‖ ∼ t1/3.

To address this problem observe that if we have a fast particle, i.e.
K(0) = 1

2ε
, then by rescaling the time variable by s = t/

√
ε and de-

noting the rescaled velocity by u = dx/ds we obtain a new equation of
motion

(26)
du

ds
= εF (q).

This system is of type (21) with fast variables (q, u/‖u‖) and a slow
variable T = ‖u‖2/2. For random Lorentz gases heuristic arguments
[74] suggests that in a new time variable τ = const · ε−2s the limit
evolution of T will be given by

(27) Ṫ =
1

2
√

2T
+ (2T )1/4ẇ

where ẇ is a white noise. The same conclusion is reached in [34] for
the geodesic flow on a negatively curved surface in the presence of a
weak external force.

As a side remark, observe that the fast motion is obtained here by
projecting the right hand side of (26) onto the energy surface, which
gives us a thermostated force. In particular (11) plays an important
role in the derivation of (27). This shows that the Gaussian thermostat
(9), even though regarded as ‘artificial’ by some physicists, appears
naturally in the analysis of weakly forced systems.

We return to the conjecture (27). In terms of our original variables,
equation (27) says that [K(t)]3/2 is the so called Bessel square process
of index 4/3, see [75, Chapter XI]. Since this process is recurrent, it
is natural to further conjecture that there is a threshold K0 > 0 such
that for almost all initial conditions lim inft→∞ K(t) ≤ K0. This con-
clusion apparently contradicts a common belief that the particle on the
Galton board, see above, generally goes down and accelerates. Rather
paradoxically, it will come back up (and hence slow down) infinitely
many times! It appears that rigorous mathematics may disagree here
with physical intuition, in a spectacular way.

The first step in solving this startling paradox would be to extend
the averaging theorem (22) to billiards.
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