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Abstract. We show that if an infinite measure preserving system is well approx-
imated on most of the phase space by a system satisfying the local limit theorem,
then the original system enjoys mixing with respect to global observables, that is,
the observables which admit an infinite volume average. The systems satisfying our
conditions include the Lorentz gas with Coulomb potential, the Galton board and
piecewise smooth Fermi-Ulam pingpongs.

1. Introduction

Mixing plays a central role in the study of stochastic properties of dynamical systems
preserving a finite measure. Recently, there has been a surge of interest in studying
mixing properties of infinite measure preserving systems ([32, 41, 42, 40, 54, 3, 8, 39,
55, 45, 2, 43, 47, 27, 44, 28]). Contrary to the case of finite measures, there are several
different notions of mixing in the infinite measure preserving case.

A driving force behind the development of ergodic theory and dynamical systems
has always been a desire to understand physical systems. That is why we study here
the question of infinite measure mixing for specific mechanical systems. In many such
systems, it is natural to assume some periodicity or approximate periodicity and to
study the functions whose averages over large boxes stabilize. The notions of global
mixing introduced recently by Marco Lenci [35] (and further studied in [36, 6, 37]) are
particularly suitable for our purposes.

We will approximate our system by a periodic one: a Zd-extension of a map f acting
on a compact space M and preserving a finite measure. Many finite measure preserving
mechanical systems f are hyperbolic and enjoy good mixing properties, such as the local
limit theorem (LLT). It turns out that the notions of LLT and mixing of the extended
system are nicely connected. We have studied this connection (for different notions of
mixing) in our recent work [26, 27]. By further exploiting this relation, we are able to
prove global mixing for several mechanical systems.

Next, we give informal definitions of the notions of global mixing. Let T be a map of
a space X preserving an infinite measure µ. The idea of [35] is to introduce two spaces:
the space of local functions L1 and the space of global functions G ⊂ L∞. The functions
from G are supposed to admit an average value

Φ̄ = lim
µ(V )→∞

1

µ(V )

∫
V

Φdµ
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where the limit has to be understood in an appropriate sense. The map T is called local
global mixing if for each φ ∈ L1(µ) and each Φ ∈ G we have

(1.1) lim
n→∞

∫
φ(x)Φ(T nx)dµ =

(∫
φdµ

)
Φ̄.

T is called global global mixing if for each Φ1,Φ2 ∈ G for large n and large V ,

1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ ≈ Φ̄1Φ̄2.

The rest of the paper consists of two parts: an abstract part and an applied part. In
Section 2, we define an abstract framework and formulate several results implying local
global and global global mixing for periodic or approximately periodic maps preserving
an infinite invariant measure. In Section 3, we prove these results. In Section 4, we
extend the previous results to flows; still in an abstract framework.

The second part of the paper is about explicit examples where the abstract results
can be applied. In the preliminary Section 5 we review theory of hyperbolic dynamical
systems with singularities. We focus on the Sinai billiards and related models. The most
important results of this paper are reported in Section 6. Here, we study local global and
global global mixing of several mechanical systems. Our examples include the following
variants of Lorentz gas: periodic, locally perturbed, confined to a half strip, subject
to an asymptotically vanishing potential field and with Gaussian thermostats. Besides
the Lorentz gas, we study Galton boards, the Fermi Ulam pingpong and bouncing balls
in a gravity field. A reader interested in one of these examples can proceed to the
appropriate subsection of Section 6 after reading the abstract part. In some cases (in
particular, the periodic ones) the application of the abstract results from the first part
is straightforward. In other cases a significant amount of work is required to verify our
abstract assumptions. This turns out to be most difficult in the case of the Lorentz gas
with asymptotically vanishing potential, and we present the most technical step of our
analysis in the separate Section 7. We hope that a similar approach could be used to
analyze other nonuniformly hyperbolic mechanical systems. Section 7 also ontains an
important recurrence-transience dichotomy, which is of independent interest. Finally,
we give a short summary of our results and mention some future research directions in
Section 8.

2. Abstract results

2.1. Periodic systems. Let us start with periodic systems. Let X = M × Zd, x =
(y, z) ∈ X and T (y, z) = (f(y), z + τ(y)) where M is a compact metric space and f
preserves a Borel probability measure ν. We equip X with the measure µ which is the
product of ν and the counting measure on Zd. We write

τn(y) =
n−1∑
j=0

τ(f j(y)).

We now specify our choice of the space of global functions G to provide the rigorous
definition of local-global and global-global mixing. In fact, we consider three classes of



INFINITE MEASURE MIXING FOR SOME MECHANICAL SYSTEMS 3

global functions.

We say that V ⊂ X is a cube if V = M × (z+(−bw/2c, w−bw/2c]d) for some z ∈ Zd
and w ∈ Z+. We also say that z is the center and w is the size of the cube.

Definition 2.1. Let GO be the space of bounded uniformly continuous functions Φ :
X → R for which there exists Φ̄ ∈ R such that for any a1, a2, . . . , ad, b1, b2, ..., bd ∈ R
with ai < bi,

lim
N→∞

1∏
j(bjN − ajN)

∫
x=(y,z):z∈

∏
j [ajN,bjN ]

Φ(x)dµ(x) = Φ̄.

Let GU be the space of bounded uniformly continuous functions Φ : X → R for which
there exists Φ̄ ∈ R such that for each ε there exists N0 such that for each cube V of
size greater than N0 we have

(2.1)

∣∣∣∣ 1

µ(V )

∫
V

Φ(x)dµ(x)− Φ̄

∣∣∣∣ ≤ ε.

We say Φ ∈ GAO if Φ is a uniformly continuous functions from X to R for which there
exists Φ̄ ∈ R such that for every ε > 0 there exists b(ε) ∈ Z+, and B0 = B0(ε) ∈ Z+ so
that for all B > B0 we have

|Gb,B| > (1− ε)Bd,

where Gb,B denotes the set of points z ∈ ((−B/2, B/2]d∩Zd) so that the cube V centered
at z and of size b satisfies (2.1).

We note that GU ⊂ GAO ⊂ GO (the first containment is trivial, the second one fol-
lows from approximating a large rectangular box by a disjoint union of smaller cubes).
The notation ”O” represents that we require closeness to the average on boxes contain-
ing the origin; ”AO” represents approximate closeness to the average near the origin
and ”U” stand for uniform. GO is the largest space of global functions where one
could hope to obtain mixing while GU is the smallest space of interest. It turns out
that GO is too large for limit theorems, see Example 2.6. The intermediate space GAO

has better properties since it captures the notion that the global observables are often
”close to the local equilibrium on mesoscopic scales” (which is represented by b in our
definition). An important class of global observable are provided by functions of a
random environment. Namely, let hz be an ergodic Zd action on a space Ω preserving
a measure P. Given a function Ψ on M × Ω let Φω(x, z) = Ψ(x, hzω). Then it follows
from the ergodic theorem that Φω ∈ GAO for P -a.e. ω. We refer the reader to [21] for
the applications of these ideas to the study of mixing properties of skew products.

With the definitions of GO,GAO,GU , (1.1) furnishes the definition of local-global
mixing with respect to GO,GAO,GU . Next we define global-global mixing.
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Definition 2.2. T is global-global mixing with respect to GO/GAO/GU if for each
Φ1,Φ2 ∈ GO/GAO/GU ,

lim
n→∞

lim sup
V ∈V,µ(V )→∞

1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ =

lim
n→∞

lim inf
V ∈V,µ(V )→∞

1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ = Φ̄1Φ̄2.

Here, V is the collection of cubes containing M × {0} in case of GO and GAO and the
collection of all cubes in case of GU .

Definition 2.3. T satisfies a mixing local limit theorem (MLLT) at scale Ln if there is
a bounded, continuous function p : Rd → [0,∞) such that

(2.2)

∫
p(z)dLeb(z) = 1

and for each φ1, φ2 ∈ C(M) for each Zd-valued sequence z0
n such that z0

n/Ln → 0 and
for each K <∞,

(2.3) lim
n→∞

sup
z∈Rd,|z|<K

∣∣∣∣Ldn ∫ φ1(y)φ2(fn(y))1τn=z0n+bzLncdν − ν(φ1)ν(φ2)p(z)

∣∣∣∣ = 0

where b.c means taking lower integer part coordinate-wise.
T satisfies a shifted mixing local limit theorem at scale Ln if there is a sequence

Dn ∈ Rd and a continuous function p satisfying (2.2), such that for each φ1, φ2 ∈ C(M)

for each Zd-valued sequence z0
n such that

z0
n −Dn

Ln
→ 0, and for each K < ∞, (2.3)

holds.

We remark that the MLLT implies the following useful a priori bound: if φ1, φ2 are
bounded functions, then∣∣∣∣∫ φ1(y)φ2(fn(y))1τn=z0n+bzLncdν

∣∣∣∣ ≤ C||φ1||∞||φ2||∞L−dn .

Now a standard approximation argument shows that the convergence in (2.3) is
uniform for φ1, φ2 in a compact subset of C(M) (w.r.t. the C0 topology). The same
remark applies to all variants of the MLLT considered in this paper, i.e. to the shifted
MLLT, the AMLLT and condition (M4) (the last two are to be defined later).

Theorem 2.4. Suppose that T satisfies MLLT. Then
(a) T is local global mixing with respect to GO;
(b) T is global global mixing with respect to GAO.

For random walks, part (a) is proven in [7]. The proof of Theorem 2.4 follows the
arguments of [7], however, we will provide the proof in §3.1 since our setting is quite
different from that of [7].

Theorem 2.5. Suppose that T satisfies a shifted MLLT. Then
(a) T is local global mixing with respect to GU ;
(b) T is global global mixing with respect to GU .
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In the remaining part of §2.1, we comment on the suitability of the spaces GO,GAO,GU

for our setup. First, we note that GO and GAO are suitable spaces in case the MLLT
holds with zero drift. In case the shifted MLLT holds with non-zero drift, we need to
work with the smaller space GU as suggested by the following example.

Example 2.6. Suppose that d = 1, τ is bounded and the MLLT holds with LN =
√
N

and a Gaussian p. Let Φ(y, z) = (−1)m if m3 ≤ |z| < (m + 1)3 for some non-negative
integer m. One can easily check that Φ ∈ GO and Φ̄ = 0. On the other hand, we claim
that for each N ,

(2.4) lim
V ∈V,µ(V )→∞

1

µ(V )

∫
V

Φ(x)Φ(TNx)dµ = 1,

where V is the collection of boxes containing M × {0}. (2.4) shows that global-global
mixing with respect to GO does not hold. To prove (2.4), note that Φ(y, z)Φ(TN(y, z)) =
1 whenever

m3 +N‖τ‖∞ < |z| < (m+ 1)3 −N‖τ‖∞
for some non-negative integer m and the relative measure of such points (y, z) in large
boxes is close to 1.

Next suppose that T satisfies a shifted LLT with DN = vN for some v > 0, LN =
√
N

and a Gaussian p. Let φ be a compactly supported Lipshitz probability density on X.
For any large positive integer m, there exists another large positive integer N so that

(2.5)

∣∣∣∣DN −
(2m)3 + (2m+ 1)3

2

∣∣∣∣ ≤ v.

Since (2m + 1)3 − (2m)3 � m2 � m3/2 � N1/2, the LLT implies that Φ(TNx) = 1
for most x in the support of φ, and so

(2.6)

∣∣∣∣∫ φ(x)Φ(TNx)dµ− 1

∣∣∣∣ = om(1).

Consequently, T does not satisfy local global mixing with respect to GO.
Next, set mj = 2j and let

Φ(y, z) =

{
1 if (2mj)

3 ≤ z < (2mj + 1)3 for some j

0 otherwise.

One can check that Φ ∈ GAO with Φ̄ = 0, however, taking N given by (2.5) with
m = mj, we get (2.6) showing that the local global mixing fails on GAO as well.

Example 2.6 shows that GO and GAO are too large for global mixing in some cases.
A typical application of mixing is to control the ergodic sums. A more sophisticated
version of Example 2.6 given in [23] shows that the Law of Large Numbers also fails on
those spaces (at least in the context of random walks), so one needs to consider smaller
spaces. One can argue that the space GU is too small for many applications. To address
this issue, [23] introduces larger spaces, where, in the context of random walks, one can
prove local global mixing and the Law of Large Numbers. However the spaces from
[23] involve some additional parameters, so using them would make the present work
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significantly more complicated. We prefer to work on GU in order to highlight the main
ideas of our approach.

2.2. Almost periodic systems. The main results of this paper concern systems that
are close to periodic in some sense but not exactly periodic. Let us now consider a map
T̃ acting on the space

X̃ = [∪z∈B (Dz × {z})] ∪
[
∪
z∈Zd1+ ×Zd2\B

(M × {z})
]

where d1 and d2 are non-negative integers, M and Dz, z ∈ B are compact metric spaces.
This setup is more general than the one in §2.1: on the one hand we allow Z+ in the
phase space to model systems with global reflections and on the other hand we allow
some drastic departure from perodicity: whenever z ∈ B, the phase space Dz can be
different from M .

We assume that B is small in the following sense. For every η > 0 there is ξ = ξ(η)
and Q0 = Q0(η) so that for Q ≥ Q0

(2.7)

∣∣∣{k ∈ [0, Q]d1 ×
[
−Q

2
, Q

2

]d2 ∩ Zd1+d2 : dist(k,B) ≤ ξQ
}∣∣∣

Qd1+d2
< η.

Furthermore, we assume that T̃ preserves a σ-finite measure

µ =
∑

z∈Zd1+ ×Zd2

νz

where there is some probability measure ν supported on M so that νz(y, w) = 1w=zν(y)
for all z /∈ B, and there is a constant A > 1 so that νz is a finite measure of mass

(2.8) |νz| < A,

supported on Dz for all z ∈ B.

Let

(y(x), z(x)) =

{
(y, z) if x = (y, z),y ∈M, z ∈ (Zd1+ × Zd2)\B
(∞,∞) if z(x) ∈ B.

Here, ∞ is to be thought of as a label for the bad part of the phase space.

Definition 2.7. T̃ satisfies the almost mixing LLT (AMLLT) if there is a bounded
continuous function p : Rd1

+ ×Rd2 → [0,∞) satisfying (2.2) such that properties (a) and
(b) below hold.

(a) Let ν̄φ,w denote the measure defined by

(2.9) dν̄φ,w(y, z) = φ(y)1z=wdν(y),

where w ∈ Zd1+ × Zd2 \ B and φ : M → R is a Lipschitz function. Then for every ε > 0
and every R ∈ R,

(2.10) lim
n→∞

sup
AR,ε

∣∣∣Ld1+d2
n ν̄φ,w

(
ψ(y(T̃ nx))1z(T̃nx)=dzLne−w

)
− p(z− w/Ln)ν(ψ)ν(φ)

∣∣∣ = 0
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where the supremum in AR,ε is taken over all quadruples (φ, ψ, w, z) where φ and ψ are
Lipschitz functions on M satisfying

‖φ‖Lip ≤ R, ‖ψ‖Lip ≤ R, w ∈
(
Zd1+ × Zd2

)
\ B, z ∈ [0,∞)d1 × Rd2 ,∣∣∣∣z− w

Ln

∣∣∣∣ < R, dist(Lnz,B) > εLn.

(b) Let ν̄φ,w denote the measure defined by

(2.11) dν̄φ,w(y, z) = φ(y)1z=wdνw

where w ∈ B, φ : Dw → R is a Lipschitz function. Then for and every w ∈ B, every
Lipschitz function φ : Dw → R, every ε > 0, every R ∈ R,

(2.12) lim
n→∞

sup
BR,ε

∣∣∣Ld1+d2
n ν̄φ,w

(
ψ(y(T̃ nx))1z(T̃nx)=dzLne

)
− p(z)ν(ψ)νw(φ)

∣∣∣ = 0

where the supremum in BR,ε is taken over all pairs (ψ, z) where ψ is Lipschitz functions
on M satisfying

‖ψ‖Lip ≤ R, z ∈ [0,∞)d1 × Rd2 , |z| < R, dist(Lnz,B) > εLn.

The AMLLT is the first version of our approximate periodic assumptions and it
deserves some commentary. The reader should think of ”non-periodic part” ∪z∈B(Dz×
{z}) as being ”negligible” compared to the ”periodic part” ∪

z∈Zd1+ ×Zd2\B
(M × {z}).

The condition (2.7) implies that most cubes of size ξQ in the cube of size Q centered
at origin are disjoint from B. In fact, in all of our applications, either B is a single
point (local perturbations of a periodic system) or d1 = d2 = 1 and B = {1} × Z
(systems with boundary conditions). In these examples, it is immediate to check (2.7).
However, we present the general condition (2.7) because the proof of the forthcoming
Theorem 2.8 is not easier in the special cases of B as above and we want to allow for
more general framework to accomodate systems with boundary conditions and with
sparse local impurities which might be a subject of a future work.

Note that in (2.10), one observable is encoded in the density of ν̄ (as compared with
the formulation of the MLLT). We also observe that while we require the convergence
in (2.10) to be uniform in the initial position w and the initial density φ, we do not
require this uniformity in (2.12). Consequently (2.12) is simpler: we may assume that
n is so large that ‖w‖ � Ln). This is because (2.12) is only used in the proof of local
global mixing where the initial density is fixed while (2.10) is needed for global global
mixing and in the latter case one needs to decompose global observables as a sum of
local ones, which requires the uniformity of the convergence. See Section 3 for more
details.

Using X̃ instead of X and µ̃ instead of µ, we can define GU ,GO,GAO as before with
d = d1 + d2. Namely, in the case d1 = 0, the definition is the same with d = d2. If
d1 > 0, we just need to accommodate for the fact that certain coordinates need to be
positive. That is, in the definition of GO, a1, ..., ad1 are assumed to be non-negative. In
the definition of GU , we consider cubes V = M× (z+(−bw/2c, w−bw/2c]d) where z ∈
Zd1+d2 , z1, ..., zd1 > 0 and w ∈ Z+ satisfies w < z1, ..., w < zd1 . Finally, in the definition
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of GAO, Gb,B denotes the set of points z ∈ ((−b/2, B − b/2]d1 × (−B/2, B/2]d2 ∪ Zd) so
that the cube centered at z and of size b satisfies (2.1).

The definition of global-global mixing is the same as before, using the measure µ̃. In
the definition of local-global mixing (1.1), we allow any function φ which is in L1(µ̃)

We think about B as ”small” , as exemplified by (2.7) and by the following observa-
tion. The definitions of GO and GAO only depend on the ”periodic part” of X̃ in the
sense that if we change a function Φ on the set ∪z∈BDz×{z} (so as the new function is
still bounded and uniformly continuous), then it will not affect whether Φ ∈ GO/GAO

holds or not. This follows from the condition (2.7).
We have the following result.

Theorem 2.8. (a) If T̃ satisfies the AMLLT, then it enjoys local global mixing with
respect to GO.

(b) If T̃ satisfies the AMLLT, then it enjoys global global mixing with respect to GAO.

2.3. Approximately periodic systems. Next we study global mixing for maps
which are asymptotically periodic at infinity. Thus we consider a periodic map T
on the set X preserving the periodic measure µ as in §2.1. In the setup of the next the-
orem, global-global mixing of T̃ is defined using the averages with respect to µ, which
need not be preserved by T̃ .

Proposition 2.9. If T is a periodic map of a space X preserving an infinite measure
µ which is global global mixing with respect to either GAO or GU and if T̃ equals to T
away from a finite µ-measure set, then T̃ is also global global mixing with respect to the
same space.

In the remaining part of Section 2, we discuss more drastic perturbations. The
statements in this part of this section are unavoidably more technical. In fact, in our
formulations we had two (somewhat conflicting) goals. First we wanted to facilitate
the verifications of our abstract conditions for specific models of Section 6. Secondly,
we wanted to emphasize that the proofs of our more technical results are very similar
to the proofs for simpler periodic models. We advise the reader to consult Sections
3.3 and 6 for a complete understanding of the role of the technical conditions imposed
below.

Definition 2.10. Let T be a periodic map on the set X = M × Zd preserving the
periodic measure µ as in Section 2.1. Let T̃ be a map on X. We say that T̃ is very well
approximated by T at infinity if T̃ preserves µ and

(i) For each ε > 0 there exists R such that for each |z| > R there is a set Az,ε ⊂ M
such that µ(Az,ε) < ε and for all y 6∈ Az,

(2.13) d(T̃ (y, z), T (y, z)) < ε.

Definition 2.11. Let T be as in Definition 2.10 and T̃ be a map on X̃ = D ∪ (M ×
Zd1+ × Zd2), where D is a compact metric space.

We say that T̃ is well approximated by T at infinity if T̃ preserves a measure µ̃ such
that µ̃(D) < ∞ and for any ε > 0 there is δ = δ(ε) > 0 which satisfies the following:
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if V is a box centered at z ∈ Zd1+ × Zd2 of size w ∈ Z+ so that for all i = 1, ..., d1 + d2,
w < |zi|δ, then

(2.14) sup
V

dµ̃

dµ
≤ (1 + ε) inf

V

dµ̃

dµ

and moreover either (i) or (ii) holds, where
(i) is as in Definition 2.10 (in particular d1 = 0, d2 = d) and
(ii) d1 > 0, (2.13) holds for |z1| > R.

Observe that if the measure µ̃ satisfies (2.14) then the spaces of the global observables
defined with respect to µ and µ̃ coincide (and the infinite volume averages Φ̄ are the
same). Therefore we will suppose in that follows that the spaces GU and GAO below
are defined using the invariant measure of the system as a reference measure.

Theorem 2.12. Suppose that τ is bounded and both τ and T are almost everywhere
continuous.

(a) If T̃ is very well approximated by T at infinity and T is global global mixing with
respect to either GAO or GU , then T̃ is global global mixing with respect to the same
space.

(b) If T̃ is well approximated by T at infinity and T is global global mixing with respect
to GU , then so is T̃ .

Note that in case of more general perturbations as in Theorem 2.12, we can only
guarantee global global mixing. See the beginning of §6.2 for a counterexample to local
global mixing in the same setting.

Next we provide sufficient conditions for local global mixing. Let T be a periodic
map on the set X = M × Zd preserving the periodic measure µ as in Section 2.1 and
let T̃ be a map on X preserving a measure µ̃ satisfying (2.14). The notion of global
function is, as discussed above, the same whether using µ or µ̃ in the definition. Now
we study local-global mixing with respect to µ̃, that is, µ is replaced by µ̃ in (1.1). We
assume that there is a class M of probability measures on X and for each ε > 0 there
is a class Mε of probability measures on M such that

(M1) (Invariance) T̃ preserves M.
(M2) (Density) For each compactly supported Lipschitz function φ and for each

ε > 0 there is a finite set of functions φ1, . . . , φk ∈ L∞(X)∩L1(µ̃) supported on the unit

neighborhood of the support of φ and constants c1, . . . ck such that

∥∥∥∥∥φ−
(

k∑
j=1

cjφj

)∥∥∥∥∥
∞

≤

ε and φjµ̃ ∈M.
(M3) (Approximation) For each ε > 0 and n ∈ N there exists R > 0 such that for

each m ∈M
m(x : |z(x)| ≥ R and d(T nx, T̃ nx) ≥ ε) ≤ ε.

(M4) (Uniform LLT) The measures from Mε satisfy uniform LLT in the sense that
for each φ ∈ C(M), for each K and for each zn,

Ldnm
(
φ(fnx)1z(Tnx)=zn

)
− p(zn/Ln)ν(φ)→ 0

and the convergence is uniform for m ∈Mε and |zn|/Ln ≤ K.
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(M5) (Regularity Improvement) There is a constant C < ∞ such that for each
m ∈ M and each ε > 0 there exists n0 = n0(m, ε) such that for all n ≥ n0 there is a
decomposition T̃ n∗ m =

∑
j(c
′
jm
′
j + c′′jm

′′
j ) where m′j,m

′′
j are supported on M × {z = j}.

Furthermore, for all j, m′j, when viewed as a measure on M (with z = j fixed), is in
the set Mε and

∑
j c
′′
j ≤ Cε.

(M6) (Dissipation) For each m ∈M and for each R > 0,

m(|z(T̃ nx)| ≤ R)→ 0 as n→∞.
We observe that while conditions (M1)–(M6) are logically independent of well ap-

proximation property (Definition 2.11), condition (M3) has the same flavor as properties
(i) and (ii) in that definition.

Theorem 2.13. If T and T̃ satisfy (M1)-(M6), then T̃ is local global mixing with
respect to GU .

3. Proofs

Let L be the space of compactly supported Lipschitz functions on X. Note that L
is dense in L1(µ) so a standard approximation argument shows that it suffices to prove
(1.1) for φ ∈ L. Henceforth we will suppose that all local functions are in L.

3.1. Periodic and almost periodic systems.

Proof of Theorem 2.4(a). Let φ ∈ L, Φ ∈ GO. Since φ is compactly supported, we
have φ(y, z) =

∑
k φk(y)1z=zk with a finite sum. Thus it suffices to prove the statement

for the function (y, z) 7→ φk(y)1z=k, which for brevity is denoted by φ in the sequel.
By the definition of GO, for every given ε > 0, R and δ, there exists K0 such that the
following property holds for all K > K0:

(H) for any cube V of size δK whose center is within RK from the origin, we have

(3.1)

∣∣∣∣ 1

µ(V )

∫
V

Φdµ− Φ̄

∣∣∣∣ ≤ ε.

Now choose R such that

(3.2)

∫
|z|≥R

p(z)dz < ε.

Then for large n, the MLLT implies

ν(y : |τn(y)| ≥ LnR) < 2ε.

Thus ∣∣∣∣∫ φ(x)Φ(T nx)dµ−
∫
φ(x)Φ̂(T nx)dµ

∣∣∣∣ ≤ 2||φ||∞||Φ||∞ε,

where Φ̂ = Φ1|z|≤RLn . Let Φm = Φ1z=m for m ∈ Zd. By the foregoing discussion,

(3.3)

∣∣∣∣∣∣
∫
φ(x)Φ(T nx)dµ−

∑
|m|≤RLn

∫
φ(x)Φm(T nx)dµ

∣∣∣∣∣∣ ≤ 2||φ||∞||Φ||∞ε.
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By the MLLT, there exists a sequence of positive real numbers ξn → 0 so that for every
m ∈ Zd with |m| < RLn,∣∣∣∣∫ φ(x)Φm(T nx)− L−dn µ(φ)µ(Φm)p(m/Ln)

∣∣∣∣ ≤ ξnL
−d
n .

Summing this estimate for all m as above and combining with (3.3), we obtain∣∣∣∣∣∣
∫
φ(x)Φ(T nx)dµ−

∑
|m|≤RLn

L−dn µ(φ)µ(Φm)p(m/Ln)

∣∣∣∣∣∣
≤ 2||φ||∞||Φ||∞ε+Rdξn.

Hence in order to prove Theorem 2.4(a), it suffices to verify that

(3.4) lim sup
n→∞

∣∣∣∣∣∣L−dn
∑

|m|≤RLn

µ(Φm)p(m/Ln)− Φ̄

∣∣∣∣∣∣ ≤ ε(2Rd + 2Φ̄).

To this end, divide {z ∈ Zd : |z| ≤ RLn} into boxes Cj of size δLn. Let zj be the center
of Cj. First, since p is uniformly continuous on the ball of radius R, we can choose δ
small so that for every j,

(3.5)

∣∣∣∣∣∣
∑
m∈Cj

µ(Φm)p(m/Ln)−
∑
m∈Cj

µ(Φm)p(zj/Ln)

∣∣∣∣∣∣ ≤ εµ(M × Cj).

Next, by property (H), we have

(3.6)

∣∣∣∣∣∣
∑
m∈Cj

µ(Φm)p(zj/Ln)

− p(zj/Ln)Φ̄µ(M × Cj)

∣∣∣∣∣∣ ≤ εµ(M × Cj)

Combining (3.5) and (3.6) and summing over j, we obtain

(3.7)

∣∣∣∣∣∣L−dn
∑

|m|≤RLn

µ(Φm)p(m/Ln)− Φ̄
∑
j

p(zj/Ln)δd

∣∣∣∣∣∣ ≤ 2εRd.

Since (3.7) holds for an arbitrary small δ (provided that n is large enough) we can let
δ → 0 thus replacing the second sum by a Riemann integral. Using (3.2), we obtain
(3.4) completing the proof of Theorem 2.4(a). �

Proof of Theorem 2.4(b). In part (b) we prove a slightly stronger result, namely we
only assume that Φ1 ∈ GO. Let us fix Φ1 ∈ GO, Φ2 ∈ GAO and ε > 0. We will show
that there exists n0 and B0 so that for all n > n0 and B > B0, we have

(3.8)

∣∣∣∣ 1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ− Φ̄1Φ̄2

∣∣∣∣ < ε

for any cube V of size B containing M × {0}. In fact, we will choose some aux-
iliary parameters R = R(Φ1,Φ2, ε) and ε′ = ε′(Φ1,Φ2, R, ε) before choosing n0 =
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n0(Φ1,Φ2, ε, R, ε
′) and B0 = B0(Φ1,Φ2, ε, R, ε

′). To simplify notation, let us write
z ∈ V ′ if z ∈ Zd and M × {z} ⊂ V. To prove (3.8), we use the decomposition

(3.9)
1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ(x)

=
1

µ(V )

∑
z∈V ′

∑
w∈Zd

∫
M

Φ1(y, z)Φ2(fny, w)1τn(y)=w−zdν(y).

We analyise the right hand side of (3.9) in 6 steps.

Step 1. Take R so large that for n sufficiently large, the probability that |τn| > RLn

is smaller than
ε

10‖Φ1‖∞‖Φ2‖∞
. Such R exists as in the proof of Theorem 2.4(a). Then

we can restrict the sum in (3.9) to pairs such that |w − z| ≤ RLn with an error which
is at most ε

10
.

Step 2. Since f satisfies the MLLT, we can replace the terms with |w − z| ≤ RLn
by

1

Ldn

(∫
M

Φ1(y, z)dν(y)

)(∫
M

Φ2(y, w)dν(y)

)
p

(
w − z
Ln

)
so that the total error we make in the sum (3.9) does not exceed ε

10
. Indeed, by the

MLLT the error for any pair w, z with |w − z| ≤ RLn is less than ε
10RdLdn

for n large.

So far we derived

(3.10)

∣∣∣∣ 1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ(x)−

1

µ(V )

∑
|w−z|≤RLn

1

Ldn

(∫
M

Φ1(y, z)dν(y)

)(∫
M

Φ2(y, w)dν(y)

)
p

(
w − z
Ln

) ∣∣∣∣ < 2ε

10
.

Step 3. Let Ṽ be the cube with the same center as V such that the size of Ṽ equals
to the size of V plus 2LnR. Denote

ε′ =
ε

10× 2d+1Rd(‖Φ1‖∞ + 1)(‖Φ2‖∞ + 1)(‖p‖∞ + 1)
.

Recall now the definition of GAO with the corresponding functions b(.), B0(.) and set
Gb,B. First, we let U be the cube centered at 0 and size b(ε′/2). Next, assume that the
size of V is bigger than B0 := B0(ε′/2). Given z̃ ∈ U let

Lz̃ = {w ∈ V : wi ≡ z̃i (mod b) ∀i = 1, ..., d}.

Since the average proportion of G := Gb(ε′/2), size (V )(Φ2) in
⋃
z̃∈U Lz̃ is greater than

1− ε′/2 there exists z̄ such that the proportion of G in Lz̄ is greater than 1− ε′/2. Let
{Uj} be the collection of cubes of size b whose centers are congruent to z̄ mod b and

which intersect Ṽ . Note that Uj’s are disjoint and their union contains Ṽ . Let G be
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the union of Uj which are completely contained in V such that

(3.11)

∣∣∣∣∣ 1

µ(Uj)

∫
Uj

Φ2(x)dµ(x)− Φ̄2

∣∣∣∣∣ ≤ ε′

2

and B be the complement of G in Ṽ (G and B stand for ”good” and ”bad”). Since
the size of V is larger than B0, we have

(3.12) µ(B) ≤ ε′µ(V )

(we replaced ε′/2 by ε′ in the RHS to account for boundary effects, that is, the cubes
which are not completely contained in V ).

Step 4. If n is sufficiently large, then the oscillation of p on the boxes of size
b(ε′/2)/Ln is smaller than ε′. Let us denote by uj the centers of Uj. Then by the
definition of ε′, we can replace (3.10) by

1

µ(V )Ldn

∑
z∈V ′

∫
M

Φ1(y, z)dν(y)
∑

j:d(z,uj)≤RLn

p

(
uj − z
Ln

) ∑
w∈Uj

∫
Φ2(y, w)dν(y) =

(3.13)
1

µ(V )Ldn

∑
z∈V ′

∫
M

Φ1(y, z)dν(y)
∑

j:d(z,uj)≤RLn

p

(
uj − z
Ln

)∫
Uj

Φ2(x)dµ(x)

with an error smaller than ε
10
.

Step 5. Next, we estimate the error made when replacing
∫
Uj

Φ2(x)dµ(x) in (3.13)

by µ(Uj)Φ̄2 for all z and j. First, the error introduced by all j, z so that Uj ⊂ G is at
most

1

µ(V )Ldn

∑
z∈V ′
‖Φ1‖∞

∑
j:d(z,uj)≤RLn,Uj⊂G

‖p‖∞
ε′

2
≤ ε

10
,

where we used (3.11) and the definition of ε′. Secondly, the error introduced by all j, z
so that Uj ⊂ B is at most

1

µ(V )Ldn

∑
z∈V ′
‖Φ1‖∞

∑
j:d(z,uj)≤RLn,Uj⊂B

‖p‖∞2µ(Uj)‖Φ2‖∞

≤ 2‖Φ1‖∞‖p‖∞‖Φ2‖∞
µ(V )Ldn

∑
j:Uj⊂B

µ(Uj)
∑

z∈V ′:d(z,uj)≤RLn

1

≤ 2d+1Rd‖Φ1‖∞‖p‖∞‖Φ2‖∞
µ(V )

µ(B) ≤ ε

10
,

where the penultimate inequality uses that there are at most (2RLn)d points z with
d(z, uj) ≤ RLn and the last inequality follows from (3.12) and the definition of ε′.
Recalling steps 2 and 4, we arrive at

(3.14)

∣∣∣∣ 1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ(x)−
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1

µ(V )Ldn

∑
z∈V ′

∫
M

Φ1(y, z)dν(y)
∑

j:d(z,uj)≤RLn

p

(
uj − z
Ln

)
µ(Uj)Φ̄2

∣∣∣∣ < 5ε

10
.

Step 6. Noting that µ(Uj) = bd, it remains to evaluate

bd

µ(V )Ldn

∑
z∈V ′

∫
M

Φ1(y, z)dν(y)
∑

j:d(z,uj)≤RLn

p

(
uj − z
Ln

)
Φ̄2.

For large n, the Riemann sum
bd

Ldn

∑
j:d(z,uj)≤RLn

p

(
uj − z
Ln

)
can be replaced by the

integral

∫
|t|<R

p(t)dt with an error smaller than

ε

10‖Φ1‖∞‖Φ2‖∞
.

The last integral is in the interval (1 − ε
10‖Φ1‖∞‖Φ2‖∞ , 1] by our choice of R. Thus we

arrive at ∣∣∣∣∣ 1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ(x)− 1

µ(V )

∑
z∈V ′

∫
Φ1(y, z)dν(y)Φ̄2

∣∣∣∣∣ ≤ 7ε

10
.

Finally, since Φ1 ∈ GO, we have∣∣∣∣ 1

µ(V )

∫
V

Φ1(x)dµ(x)− Φ̄1

∣∣∣∣ < ε

10‖Φ2‖∞
.

The last two displays imply (3.8). Theorem 2.4 (b) follows. �

The proof of Theorem 2.5 is similar to the proof of Theorem 2.4 (a) except that we
need to consider boxes around Dn rather than around the origin. In fact, the proof of
Theorem 2.5 (b) is simpler than the proof of Theorem 2.4 (b) because all points w are
good and we don’t need the set B.

Proof of Theorem 2.8. The proof of Theorem 2.8 is similar to that of Theorem 2.4.
Recall that in the proof of Theorem 2.4 (a), we used the MLLT for m ∈ Cj, where Cj is
a box of size δLn within distance RLn from the origin. We could treat the contribution
of m with |m| ≥ LnR as an error term by (3.2).

We start the proof of Theorem 2.8 (a) by assuming without loss of generality that φ
is supported on Dk × {k} for some k ∈ Zd1+ × Zd2 as in the beginning of the proof of
Theorem 2.4 (a). Note that now we will have to study both cases of k ∈ B and k /∈ B.
We again choose R as in (3.2) except that we replace ε by

ε′ =
ε

3A(1 + ‖Φ‖∞)(1 + ‖φ‖∞)
,

where A is defined by (2.8). Then the contribution of points m with |m| > RLn is
negligible. Then we again partition the set m ∈ Zd1+ × Zd2 with |m| ≤ RLn, into boxes
Cj of size δLn. Let us write j ∈ J1 if dist(Cj,B) ≥ δLn and j ∈ J2 otherwise. Let us
also write d = d1 + d2.
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First we prove that the contribution of boxes Cj, j ∈ J2 is negligible. To this end,
apply (2.7) with

η =
ε′

Rd‖p‖∞
.

This gives us ξ and Q0. Now we choose δ < ξR/(d + 1) and n big so that RLn > Q0.
Then by (2.7),∑

j∈J2

|Cj| ≤ |{k ∈ Zd1+ × Zd2 , |k| ≤ RLn : dist(k,B) < (d+ 1)δLn}|

≤ η(RLn)d.(3.15)

Let B∗ =
⋃
j∈J2

Cj be δLn neighborhood of B in the box of size RLn around the origin

and G∗ =
⋃
j∈J1

Cj. We have

∣∣∣∣∣∑
j∈J2

∫
Dk×{k}

φ(x)Φ1(T nx)1z(Tn(x))∈Cjdµ(x)

∣∣∣∣∣ ≤ ‖φ‖∞‖Φ‖∞νk(T nx ∈ B∗)
(3.16) ≤ ‖φ‖∞‖Φ‖∞[νk(Dk)− νk(T nx ∈ G∗)]

Applying the AMLLT (specifically, using (2.10) with φ = ψ = 1 in case k /∈ B and
(2.12) with φ = 1/νk(Dk), ψ = 1 in case k ∈ B), we obtain that for large n large

νk(T
nx ∈ G∗)
νk(Dk)

= L−dn
∑
j∈J2

(δLn)d [p(zj/Ln) + κj,n] =
∑
j∈J2

δd [p(zj/Ln) + κj,n]

where zj are the centers of Cj and the error term
∑
j∈J2

κj,n can be made as small as we

wish by taking n large. Making δ small we can make the last sum arbitrarily close to∫
G∗/Ln

p(z)dz = 1−
∫
|z|≥R

p(z)dz −
∫
B∗/Ln

p(z)dz.

Both integrals on the right hand side of the last display are smaller than
ε

3A‖φ‖∞‖Φ‖∞
:

the first one due to our choice of R, and the second one due to our choice of ε′, η and
(3.15). Now combining the last two displays, we obtain

νk(Dk)− νk(T nx ∈ G∗) ≤
3ε

3‖φ‖∞‖Φ‖∞
which combined with (3.16) shows that the contribution of J2 is indeed negligible.

The computation of the main term, namely the contribution of boxes Cj, j ∈ J1 is
done along the lines of the proof of Theorem 2.4 (a). Indeed, the AMLLT is applicable
on those boxes. Theorem 2.8 (a) follows.



16 DMITRY DOLGOPYAT AND PÉTER NÁNDORI

The proof of Theorem 2.8 (b) is again similar to the proof of Theorem 2.4 (b) so we
only explain the differences and use the same notations as there. In fact, in this proof
we only use (2.10) and won’t need (2.12).

We still prove (3.8), but now we allow B0 to depend on n, which is allowed by
Definition 2.2. Now (3.9) reads

1

µ(V )

∫
V

Φ1(x)Φ2(T nx)dµ(x)

=
1

µ(V )

∑
z∈V ′

∑
w∈Zd

∫
Dz

Φ1(y, z)Φ2(fny, w)1τn(y)=w−zdνz(y).(3.17)

First we show that the sum over z that are close to the set B is negligible. To this
end, we first apply (2.7) with

η =
ε

20A2d‖Φ1‖∞‖Φ2‖∞
.

This gives us ξ and Q0. Now for an n, we will choose B0 so large that B0 > Q0 and
B0ξ > 2RLn + b.

Now let V be a cube of size B ≥ B0 containing M × {0}. Then V is contained in

another box V̂ of size at most 2B centered at the origin. The contribution of z ∈ V ′
with dist(z,B) < ξB to the sum in (3.17) is now bounded by

1

µ(V )

∑
z∈V ′,dist(z,B)<ξB

νz(Dz)‖Φ1‖∞‖Φ2‖∞

≤ A

µ(V )
‖Φ1‖∞‖Φ2‖∞|{z ∈ Zd1+ × Zd2 : Dz × {z} ⊂ V̂ , dist(z,B) < ξB}|

≤ A

µ(V )
‖Φ1‖∞‖Φ2‖∞η(2B)d ≤ ε

10
,

where the first inequality in the last line follows from (2.7) applied to the box V̂ and

the last inequality follows from the estimate µ(V ) ≥ Bd

2
and the definition of η.

Thus the sum for z with dist(z,B) < ξB is negligible and instead of (3.17) it is
sufficient to study

1

µ(V )

∑
z∈V ′,dist(z,B)≥ξB

∑
w∈Zd

∫
M

Φ1(y, z)Φ2(fny, w)1τn(y)=w−zdν(y)

(note that if dist(z,B) ≥ ξB, then in particular Dz = M , νz = ν).
Now we repeat Steps 1–6 of the proof of Theorem 2.4 (b) with two minor changes.

First, in Step 1, we use the AMLLT instead of the MLLT. Indeed, the AMLLT is
applicable because if |w − z| < RLn, then recalling the inequality Bξ > 2RLn + b, we
also have dist(w,B) ≥ RLn. Second, in all of Steps 1–6, each sum over z is replaced by
sum over z with dist(z,B) ≥ ξB. Since the sum over z with dist(z,B) ≥ ξB is negligible
as shown above, this change introduces negligible additional errors to the estimates of
Steps 1–6. This completes the proof of Theorem 2.8 (b). �
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3.2. Global global mixing for approximations.

Proof of Proposition 2.9: Let A = {x : Tx 6= T̃ x}. Then

(3.18)

∣∣∣∣∫
V

Φ1(x)[Φ2(T nx)− Φ2(T̃ nx)]dµ

∣∣∣∣
≤ 2||Φ1||∞||Φ2||∞µ(x : ∃0 ≤ k < n : T kx 6= T̃ kx) ≤ 2||Φ1||∞||Φ2||∞nµ(A).

Since the last expression does not grow as µ(V )→∞ we obtain the result. �

Proof of Theorem 2.12. (a) We will show that for each n

(3.19) lim
µ(V )→∞

1

µ(V )

[∫
V

Φ1(x)Φ2(T̃ nx)dµ−
∫
V

Φ1(x)Φ2(T nx)dµ

]
= 0.

Note that for each n, T n is continuous almost everywhere. Fix an arbitrary n ∈ N and
ε > 0. An induction on n shows that for ν a.e. y there exists δ = δ(y, ε) such that if
{y′k}nk=0 is a sequence such that d(y′0, y) < δ and d(f(y′k), y

′
k+1) ≤ δ, then

d(fn(y), y′n) ≤ ε and τn(y) =
n−1∑
k=0

τ(y′k).

We will say that y is (δ, ε)-good. Let Bn,δ,ε be the set of not (δ, ε)-good points. Choose
δ = δ(ε) so small that the measure of Bn,δ,ε is less than ε (such δ exists by the continuity
of the measure as ν(∩δ>0Bn,δ,ε) = 0). Next, choose R = R(ε) such that for |z| > R we
have µ(Az,δ) ≤ ε.

We are now ready to establish (3.19). To fix ideas let us suppose that V is a cube of
size L. We split V into two parts. Let V1 be the set of points x = (y, z) ∈ V for which

• there is some k ≤ n so that the absolute value of the z-coordinate of T̃ kx is less
than R, or
• there is some k ≤ n so that T̃ kx ∈ ∪zAz,δ, or
• y ∈ Bn,δ,ε.

Denote V2 = V − V1. Assume |τ | ≤ r. Then the orbit of points from V are within
distance nr from V. It follows that

µ(V1) ≤ (R + r)d + 2(L+ nr)dnε+ ε,

where the three summands above corresponds to the three cases in the definition of V1

above. Thus the contribution of V1 to (3.19) is less than[
(R + nr)d + 2(L+ nr)dnε+ε

]
||Φ1||∞||Φ2||∞.

On the other hand if (x, z) ∈ V2 then d(T n(x, z), T̃ n(x, z)) ≤ ε and so the contribution
of V2 is less µ(V )||Φ1||∞Osc(Φ2, ε) where

Osc(Φ, ε) = sup
d(x′,x′′)≤ε

|Φ(x′)− Φ(x′′)|.

It follows that for large L

1

µ(V )

∣∣∣∣∫
V

Φ1(x)
[
Φ2(T̃ nx)− Φ2(T nx)

]
dµ

∣∣∣∣
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≤ 3nε||Φ1||∞||Φ2||∞ + ||Φ1||∞Osc(Φ2, ε).

Since ε is arbitrary, we can take the limit ε → 0 obtaining (3.19). This completes the
proof of part (a).

To prove part (b) we may assume that V is such that supV z ≤ (1 + δ(ε)) infV z.
If this does not hold, we subdivide V into smaller boxes and remove the central part
(which has small relative measure). Next we use (2.14) to replace

1

µ̃(V )

[∫
V

Φ1(x)Φ2(T̃ nx)dµ̃

]
by

1

µ(V )

[∫
V

Φ1(x)Φ2(T̃ nx)dµ

]
and then conclude as before using (3.19). �

3.3. Local global mixing for approximations.

Proof of Theorem 2.13. Due to (M2), it suffices to show that for each m ∈ M and for
each Φ ∈ GU , we have m(Φ(T̃ nx))→ Φ̄ as n→∞.

Let us fix some m ∈M, Φ ∈ GU and ε > 0. We will show that for n large enough,

(3.20) |m(Φ(T̃ nx))− Φ̄| ≤ (4 + C + ‖Φ‖∞)ε,

where C is the constant in (M5). To do so, we will choose a small parameter δ =
δ(ε) > 0 and large numbers n̄ = n̄(ε), R = R(δ, n̄), n = n(ε, δ, n̄, R)� n̄. We will apply
T̃ for n − n̄ iterations. Then we will show that during the remaining time n̄, we can
well approximate T̃ by T .

First, we prove the following preliminary estimate: for the already fixed ε > 0 there
is n̄ so that for all m′ ∈Mε and all z ∈ Zd

(3.21)

∣∣∣∣∫ Φ(f n̄y, z + τn̄(y))dm′(y)− Φ̄

∣∣∣∣ ≤ ε.

Indeed, (3.21) follows from (M4) and precompactness of the set {Φl} (where Φl(x) =
Φ(x, l)), as in to the proof of Theorem 2.4(a).

Next, by equicontinuity of {Φl}, there exists δ = δ(ε) ≤ ε such that if d(x′, x′′) < δ,
then |Φ(x′)− Φ(x′′)| < ε.

Let us now define m̃ = T̃ n−n̄∗ m. We claim that if n is large enough, then

(3.22) |m̃(Φ(T n̄x))−m(Φ(T̃ nx))| = |m̃(Φ(T n̄x))− m̃(Φ(T̃ n̄x))| ≤ 3ε.

The equation in (3.22) follows from the definition of m̃. To prove the inequality, let us
write

|m̃(Φ(T n̄x)− Φ(T̃ n̄x))|

≤ m̃
[
1|z(x)>R|

∣∣∣Φ(T n̄x)− Φ(T̃ n̄x)
∣∣∣](3.23)

+ m̃
[
1|z(x)≤R|

∣∣∣Φ(T n̄x)− Φ(T̃ n̄x)
∣∣∣] .(3.24)

Here, R = R(δ, n̄) is chosen so that

m̃(x : |z(x)| > R and d(T̃ n̄x, T n̄x) > δ) < δ

(such R exists by (M3)).
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By the choice of δ and R, (3.23) is bounded above by

2||Φ||∞m̃(x : |z(x)| > R, d(T̃ n̄x, T n̄x) > δ) + ε ≤ 2||Φ||∞δ + ε≤ 2ε

(note that we can assume without loss of generality that δ < ε/(2||Φ||∞)). Next, (M6)
implies that (3.24) is smaller than ε if n is large enough. We have verified (3.22).

By (3.22), it remains to estimate m̃(Φ(T n̄x)). Assuming that n− n̄ > n0(m, ε), where
n0 is defined in property (M5), we have

m̃(Φ(T n̄x)) =
∑
j

(c′jm
′
j(Φ(T n̄x)) + c′′jm

′′
j (Φ(T n̄x)))

=
∑
j

c′jm
′
j(Φ(T n̄x))+E ,

where E is an error term satisfying |E| < Cε. By (M5) and (3.21), for each j

|m′j(Φ(T n̄x))− Φ̄| ≤ ε.

Next, by (M5),

1 ≥
∑
j

c′j = 1−
∑
j

c′′j ≥ 1− ε.

Combining the last three displays, we derive

|m̃(Φ(T n̄x))− Φ̄| ≤ (1 + ‖Φ‖∞ + C)ε,

which togather with (3.22) implies (3.20). The theorem follows. �

4. Mixing for flows.

The results of Section 2 can be extended to flows. Here, we briefly summarize the
necessary changes in the definitions and theorems.

Let X = M × Zd, x = (y, z) ∈ X and Gt(y, z) = (gt(y), z + τ t(y)) for t ≥ 0 (or for
t ∈ R) where X is as before, and gt preserves a probability measure κ. We equip X
with the measure λ which is the product of κ and the counting measure on Zd. We
define the spaces L,GO,GAO,GU as before.

The definition of local-global and global-global mixing is analogous, we just need to
replace T n by Gt and let t→∞ instead of n→∞. Noting that the second coordinate
of X is still discrete, we can extend the definition of MLLT and shifted MLLT by simply
replacing fn, τn, z0

n ∈ Zd, Ln, Dn and n → ∞ by gt, τt, z
0
t ∈ Zd, Lt, Dt and t → ∞

respectively. Similarly, we define AMLLT by replacing T̃ n, z0
n, LN and limn by G̃t, z0

t ,
Lt and limt respectively. With these adjustments, one can extend Theorems 2.4–2.8 as
well as their proofs to the case of flows.

In the remaining results, the map T̃ was approximated by a periodic map T . In case
of flows, we can define similar approximations by, say, comparing the two flows up to
time 1. First, the following analogue of Proposition 2.9 holds:

Proposition 4.1. If Gt is a flow on a space X preserving an infinite measure κ which
is global global mixing with respect to either GAO or GU and if G̃t(x) equals to Gt(x)
for all t ∈ [0, 1] and all x away from a finite measure set, then G̃ is global global
mixing.
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We can obtain a proof of Proposition 4.1 from the proof of Proposition 2.9 by re-
placing A = {x : Tx 6= T̃ x} by A = {x : ∃t ∈ [0, 1] : Gt(x) 6= G̃t(x)}, and n by t in
(3.18).

Similarly, in the definition of good and very good approximation, besides the obvious
changes, we require that for all y /∈ Az and for all t ∈ [0, 1], d(G̃t(y, z), Gt(y, z)) < ε.
Then we have

Theorem 4.2. Suppose that {τt(y) : y ∈M, t ∈ [0, 1]} is bounded and the set

{y ∈M : gt(y) and τt(y) are continuous at y}

has full measure for any fixed t.
(a) If G̃ is very well approximated by G at infinity and G is global global mixing with

respect to either GAO or GU , then G̃ is global global mixing with respect to the same
space.

(b) If G̃ is well approximated by G at infinity and G is global global mixing with
respect to GU , then so is G̃.

The proof of Theorem 4.2 is similar to that of Theorem 2.12 with minor changes as
before. We leave the details to the reader.

Finally, the assumptions (M1)–(M6) can analogously be formulated for flows. Namely,
(M1) claims that G̃t preserves M for every t, (M2) is unchanged and all changes in
(M3)–(M6) amount to replacing T, T̃ by G, G̃ are as before. With these changes, and
with a similar proof, we can derive the analogue of Theorem 2.13.

5. Preliminaries on Lorentz gas and related systems.

In the remaining part of the paper, we give several examples of systems satisfying
the assumptions of Section 2. In those examples we have a point mass moving in Rd

with a number of scatterers removed and having elastic reflections from the boundary.
The motion between the collisions will be either free (such as in case of Lorentz gas) or
subject to a field. In this case the most interesting question from physical point of view
is to study mixing properties of the continuous time system, however, mathematically
one could also study the mixing properties of the collision map, too. We will also use
natural examples below to illustrate several subtleties associated to the notions of local
global and global global mixing.

In our examples, the system having approximate symmetry will be denoted by T̃ while
its symmetric approximation will be denoted by T. In the continuous time setting, the
corresponding systems will be denoted by G̃t and Gt, respectively.

For the reader’s convenience, we summarize some basic facts about Lorentz gas in
this section. We will focus on the notions and results that are most important for
studying global mixing properties. Everything in this section (as well as many other
important results) can be found in [16]. Thus we do not give more references. Much of
the theory presented in this section has been extended to billiards subject to external
fields (see [10, 11, 17]). Additional references will be given later when we discuss specific
examples.
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Let O1, . . . , OJ be disjoint convex subsets of the 2-torus T2 with C3 boundary with
non-vanishing curvature. These sets are also called scatterers. Let us consider a point
particle that flies freely (with speed 1) in the interior of D0 = T2 \ ∪Oj, and, upon
reaching the boundary, undergoes specular reflection (angle of incidence equals angle of
reflection). This dynamics is called the Sinai billiard flow (gt). It preserves the Lebesgue
measure on D0 × S1 (position and velocity). Let κ be the invariant Lebesgue measure
normalized so as it is a probability measure. Identifying the torus with [0, 1]2, and
extending the scatterer configuration periodically to the plane, we define the billiard
flow on D = R2 \ ∪`∈Z2 ∪Jj=1 (Oj + `) as before. We call the billiard flow in this infinite
domain Lorentz gas and denote it by Gt. It preserves λ, the product of κ and the
counting measure on Z2. We assume that the scatterer configuration is such that the
free flight is bounded (a.k.a. finite horizon condition).

The billiard flow induces a billiard map (or collision map) by the Poincaré section
taken at collisions. Namely, the phase space of the billiard map is

M = {(q, v) ∈ ∂D0 × S1, 〈v, n〉 ≥ 0},

where n is the inward normal vector of ∂D at q (that is, q is the point of collision and
v is the post-collisional velocity). The standard coordinates on M are r: arc length
parameter for q and φ: the angle between n and v (φ ∈ [−π/2, π/2] with clockwise
orientation). The billiard map is denoted by f : M → M. It preserves the invariant
measure ν = c cosφ drdφ, where c is a normalizing constant. Similarly, the billiard map
of the Lorentz gas is T : X → X, where X = M × Z2, T (y, z) = (f(y), z + τ(y)) and
τ ∈ Z2 is the vector connecting the center of the cells where two consecutive collisions
take place. It preserves the invariant measure

(5.1) µ = ν × counting.

The map f is hyperbolic: there are stable and unstable conefields, Csy, Cuy ⊂ TyM
such that Df(Csy) ⊂ Csf(y), Df

−1(Cuy ) ⊂ Cuf−1(y). The cones are transversal, that is the

angle between any stable vector (an element of Csy for some y) and any unstable vector
is uniformly bounded below by a positive number. (In fact there exist some constants
0 < c1 < c2 so that Cu can be defined as

(5.2) c1 ≤ dφ/dr ≤ c2

Cs can be defined as −c2 ≤ dφ/dr ≤ −c1 for all y ∈M .)
The map f is piecewise smooth with singularities at grazing collisions. Furthermore,

as the expansion and the distortion are unbounded near grazing collisions, it is common
to introduce artificial singularities

Hk = {(r, φ) : φ = ±π/2∓ k−2},

for k ≥ k0. We call a smooth curve of uniformly bounded curvature (un)stable if at
each point its tangent vector belongs to the (un)stable cone. An (un)stable curve is
homogeneous if it does not cross any singularity, genuine or artificial. We call W a local
stable (unstable) manifold if fn(W ) is a stable (unstable) curve for any n ≥ 0 (n ≤ 0,
respectively).
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For any unstable curve W and point y ∈ W , we define the Jacobian of fn on W
at y by JWfn(y) = ‖Dxf

n(dy)‖/‖dy‖ with dy ∈ TyW . The uniform hyperbolicity
implies that there are constants Λ > 1 and C so that JWfn(y) ≥ CΛn for n > 0 (and
similarly for stable curves and n < 0). Furthermore, after the above extra partitioning
of the phase space, one has the following distortion bounds. Let W be a homogenenous
unstable curve, such that f−n(W ) is also homogeneous unstable for n = 1, ..., N − 1.
Then for any y1, y2 ∈ W and n = 1, ..., N − 1 we have

(5.3) e−C|W |
1/3 ≤ JWf

−n(y1)

JWf−n(y2)
≤ eC|W |

1/3

.

Here, as well as in the sequel, C denotes some finite number depending only on the
dynamical system (and not on the curve W or n). Furthermore, the value of C is not
important and may change from line to line.

Given x ∈ M, the homogenous stable (unstable) manifold of x is the set of points
y such that fny and fnx belong to the same continuity component for all n ≥ 0
(respectively, for n ≤ 0). (Here, in the definition of the continuity component, both
genuine and articifial singulairies are accounted for.) The homogenous stable (unstable)
manifold of x will be denoted by W s(x) (W u(x)). It is known that W s(x) is homogenous
stable curve and W u(x) is homogenous unstable curve.

For any point y ∈ M , we denote by ru(y) (rs(y)) the distance between y and the
singularity set, measured along the unstable (stable) manifold. More generally, given
an unstable curve W and y ∈ W , there is a homogenenous unstable curve W ′ ⊂ fn(W )
that contains fn(y). W ′ is cut by fn(y) into two pieces, the length of the shorter piece
is denoted by rn(y).

The measure of points y such that ru(y) = 0 or rs(y) = 0 is zero. It is also true that
the measure of points having short (un)stable manifolds is small, namely

(5.4) ν(y : min{ru(y), rs(y)} < ε) ≤ Cε.

A pair ` = (W, ρ) is called a standard pair, if W is a homogeneous unstable curve
and ρ is a probability measure on W satisfying∣∣∣∣ log

dρ

dmes
(y1)− log

dρ

dmes
(y2)

∣∣∣∣ ≤ C
|W (y1, y2)|
|W |2/3

,

where |W (y1, y2)| is the length of the segment of W bounded by y1 and y2. Here, and
also in the sequel, mes stands for the Lebesgue measure.

The image of a standard pair by the dynamics is a weighted sum of standard pairs
(the image of a homogeneous unstable curve is a family of homogeneous unstable curves
and the regularity of the density of ρ is preserved). A weighted sum of standard pairs
is called a standard family. Namely, a standard family is a (possibly uncountable)
collection of standard pairs G = {(Wa, νa)}a∈A and a probability measure η = ηG on A.
Such a standard family G induces a measure on M by

(5.5) νG(.) =

∫
A

νa(. ∩Wa)dηG(a).
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For standard families, the Z-function is defined as

ZG = sup
ε>0

1

ε

∫
A

νa(r0 < ε)dηA(a).

Important special cases are standard pairs (A has a single element `, in which case we
simply write νG = ν`) or the decomposition of the invariant measure ν into conditional
measures on unstable manifolds. It can be shown that the conditional measures have
the required regularity and the Z-function of this family is finite.

Standard pairs are stretched by the dynamics due to expansion and are cut by sin-
gularities. The next result tells us that ”the expansion wins over fragmentation”, that
is, most of the weight is carried by long curves.

Lemma 5.1 (Growth Lemma). There are constants θ < 1, C1, C2 such that for a
standard family G = {(Wa, νa)}, a ∈ A, and Gn = fn(G), we have

ZGn < C1θ
nZG + C2.

We also consider standard pairs on the phase space of the Lorentz gas, by shifting
W with a vector m ∈ Z2, where ` = (W, ρ) is a standard pair for the Sinai billiard. In
this case, we write [`] = m.

The Growth Lemma implies that for any unstable curve W and for any n ≥ 0,

mes(y ∈ W : rn(y) < ε) < Cε,

where mes denotes the Lebesgue measure on W .
We will also use the following important consequence of the Growth Lemma (which

is a local version of (5.4) see [16, §5.12] as well as the a proof of (7.12) in §7.2). Given
an unstable curve γ and a positive number δ, let γδ = {x ∈ γ : rs(x) ≥ δ}. Then there
is a constant K∗ such that

(5.6) mes(γ − γδ) ≤ K∗δ.

Another application of the Growth Lemma requires an extra definition. Fix a large
constant Z̄. In particular we require that Z̄ ≥ 2C2 where C2 is the constant from the
Growth Lemma. In practice it is convenient to choose Z̄ so large that there is a standard
family G with ZG < Z̄ such that νG is the invariant measure ν. We say that a standard
family G is proper if ZG ≤ Z̄. Then the Growth Lemma implies that there exists n0

such that for any n ≥ n0 and for any measure ν̄ defined by a proper standard family G,
the measure ν̄n(φ) = ν̄(φ ◦ fn) also corresponds to a proper standard family (namely
fnG).

Another crucial property of partition of (M, ν) into stable (unstable) manifolds is
absolute continuity. We refer the reader to [5, §8.6] for a comprehensive overview of
absolute continuity of stable and unstable laminations. Here we just summarize the
results for dispersive billiards we are going to use. Let W1 and W2 be two unstable
curves which are close to each other. Let

W̃j = {x ∈ Wj : W s(x) ∩W3−j}
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and let πs : W̃1 → W̃2 be the stable holonomy πs(x) = W s(x)∩W2. Then πs is absolutely
continuous and its Jacobian equals to J(x, πsx) where ([16, Equation (5.23)])

(5.7) J(x, πsx) =
∞∏
n=0

JfnW1(f
nx)

JfnW2(f
nπsx)

.

Next, [16, Theorem 5.42] tells us that there is a constant C such that

(5.8) e−C(d1/3(x,πsx)+β) ≤ J(x, πsx) ≤ eC(d1/3(x,πsx)+β),

where β is the angle between the tangent vector to W1 at x and the tangent vector to
W2 at πsx.

A similar statements hold for the unstable holonomy.
Let us list several standard consequences of this fact ([5]).
Given an unstable curve γ and a positive number δ, consider the Hopf brush Λδ =⋃

x∈γδ

W s(x). Consider the measure ν̂ defined by

ν̂(A) =

∫
γδ

mesW s (W s(x) ∩ A) dmesγ(x).

Let νΛδ denote the restriction of ν to Λδ. Suppose that |γ| ≥ 2K∗δ so that (5.6) implies
that Λδ 6= ∅. Then there is a constant κ1 = κ1(δ) such that

(5.9) κ1 ≤
dν̂

dνΛδ

≤ κ−1
1 .

From the foregoing discussion it is not difficult to see that there is a constant κ2 = κ2(δ)
such that for each γ of length at least 2K∗δ,

(5.10) ν(Λδ(γ)) ≥ κ2.

Another consequence of (5.9) is that if A is a set of measure zero, then

(5.11) for ν almost every x, mes(W s(x) ∩ A) = mes(W u(x) ∩ A) = 0.

We finish this section by commenting on the case of unbounded free flight (infinite
horizon). The preliminaries discussed in this section extend to that case, too. The
billiard map is local-global and global-global mixing just like in the case of finite horizon
(see Section 6.1) as the MLLT holds with scaling Ln =

√
n log n [53]. We have little

doubt that the same holds in continuous time, too, but we are not aware of any explicit
proof of the MLLT in the literature. To study the perturbed models as in §§6.2–6.5 one
would need a more serious departure from the case of finite horizon (but see [14, 49]
for some results in these directions). In the rest of this paper, we only study the case
of finite horizon.

6. Examples

Here we describe several examples satisfying the assumptions of Section 2. Each time
we use the MLLT or its variants (shifted MLLT, AMLLT), we choose Ln =

√
n and,

unless noted otherwise, p a centered Gaussian density. We formulated the results of
Section 2 with general Ln and p because there are other natural examples (e.g. the
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infinite horizon Lorentz gas or interacting particle systems studied e.g. in [46]) whose
global mixing properties could be approachable by our methods.

6.1. Lorentz gas. The mixing local limit theorem holds for Lorentz gas with finite
horizon in both discrete [52] and continuous setting [24]. Accordingly Theorem 2.4
applies to both Lorentz collision map and Lorentz flow, and so, both systems enjoy
both local global mixing with respect to GO and global global mixing with respect to
GAO.

One can also consider a Lorentz tube, where instead of motion on the plane the
particle moves on the strip with a periodic configuration of convex scatterers removed.
As before [52, 24] give MLLT in both discrete and continuous setting and so the system
enjoys both local global and global global mixing with respect to GO.

6.2. Local Perturbations of Lorentz gas. Consider a billiard in a domain which is
periodic outside of some ball. If the limiting periodic configuration has finite horizon
(or equivalently, the perturbed configuration has finite horizon) then the conditions of
Propositions 2.9 and 4.1 are satisfied and so the system enjoys global global mixing.
On the other hand, local perturbations of the Lorentz gas do not have to be local
global mixing. Indeed, we can trap particles in a bounded part of the phase space.
For example, by allowing non-convex scatterers, one can arrange that the system has a
stable elliptic orbit, so that the set B of bounded orbits has positive measure. Let BL
be the set of orbits which always stay within distance L from the origin. Take φ such
that

∫
BL
φdµ > 0. Take two functions Φ1,Φ2 ∈ G such that

(i) Φ2 > Φ1 and moreover
(ii) Φ2 − Φ1 ≥ 1 inside the ball of radius L;
(iii) Φ̄2 = Φ̄1.
In this case ∫

φ[(Φ2 − Φ1) ◦ T̃ n]dµ ≥
∫
BL
φdµ

does not tend to 0, so it is impossible that both∫
φ(x)Φ2(T̃ nx)dµ(x)→ µ(φ)Φ̄2 and

∫
φ(x)Φ1(T̃ nx)dµ(x)→ µ(φ)Φ̄1.

However, the system remains local global mixing if the configuration is a finite per-
turbation (i.e. finitely many scatterers discarded, finitely many new ones included) of
a periodic Lorentz gas such that the scatterers in the entire configuration (including
the perturbed part) are strictly convex, disjoint and have C3 boundary. We call such a
perturbation a mild perturbation. Without loss of generality, we can assume that the
fundamental domain is large enough so that outside the cell at the origin, the system
is periodic. Thus we are in the setup of §2.2, with d1 = 0, d2 = 2, B = {0}, M the
phase space of the billiard map on any cell but zero, D0 the phase space of the billiard
map in the zeroth cell and the measures ν and ν0 are the usual measures on M and
D0, as defined in Section 5 (in condinuous time, we need to define M and D0 as the
phase space of the flow, restricted to the same cells as before and consider the invariant
physical measures on them, denoted by κ in Section 5).
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Mildly perturbed Lorentz gases are local global mixing with respect to GO and global
global mixing with respect to GAO as implied by Theorem 2.8 and the following.

Theorem 6.1. The mildly perturbed periodic Lorentz gas satisfies the AMLLT.

Proof. The proof is similar to (but easier than) the proof of Proposition 3.8 in [24] so
we provide only a sketch of the argument.

We begin with discrete time. In the proof we will use letters with tildes to denote
the objects associated to the mildly perturbed Lorentz gas, and the same letter without
tildes will refer to periodic (unperturbed) system.

Let ν̄φ,w be the measure defined by either (2.9) or (2.11). The global central limit
theorem for mildly perturbed periodic Lorentz gas is proved in [30, Theorem 1]. Thus
there is a positive definite matrix D such that

ν̄φ,w

(
τ̃n√
n
∈ Ω +

w√
n

)
→ ν(φ)

∫∫
Ω

g(u)du

as n→∞, where g is the density of the centered Gaussian distribution with covariance
matrix D and Ω ⊂ R2 is a set whose boundary has zero Lebesgue measure and the
convergence is uniform for φ with bounded Lipschitz norm.

We need to evaluate
In = ν̄φ,w

(
ψ(x̃n)1τ̃n=bz

√
nc−w

)
.

To simplify the notation, we drop the subscript of ν̄ and write zn = bz
√
nc − w. Take

δt � 1 and denote n2 = δtn, n1 = n− n2.
Let the measure ν z̄ be the normalized version of the restriction of T̃ n1∗ν̄ to the cell

z̄. That is, if pn1(z̄) = ν̄(z ◦ T̃ n1 = z̄) and A ⊂M , then

ν z̄(A) =
1

pn1(z̄)
ν̄
(
x̃ : T̃ n1(x̃) ∈ (A× {z = z̄})

)
.

Then we have the decomposition

In =
∑

z̄∈Z2−{0}

pn1(z̄)ν z̄(ψ(x̃n2)1τ̃n2=zn−z̄) + ε̂1

where ε̂1 is an error term corresponding to the set of points x̃ so that z ◦ T̃ n1(x̃) = 0
and we assumed that all perturbations are in the zeroth cell.

Choose K � 1 and consider the following approximation

(6.1) In =
∑

|z̄−zn|≤K
√
n2

pn1(z̄)ν z̄(ψ(xn2)1τn2=zn−z̄) + ε̂1 + ε̂2

where ε̂2 is an error term. Note that there are no tildes inside ν z̄(·). That is we pretend
that the particle moves in the unperturbed environment for the last n2 collisions. The
error ε̂ = ε̂1 + ε̂2 comes from two sources:

(A) There is a contributions from the cells with |z̄ − zn| > K
√
n2 and

(B) the particle may visit the perturbed region for some k ∈ [n1, n].
Given ε we can choose δt so small and K so large that both (A) and (B) have

contributions which is less than ε
n

similarly to [24, §6.2]. Note that [24, Lemma 2.8(b)],
which is extensively used in this step, is formulated for the Lorentz tube and thus is
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not directly applicable here. However, we can replace it by [26, Lemma 4.8(b)], which
is valid in a much more general setting, including the Lorentz gas.

Returning to the main term in (6.1) we can use the MLLT for the periodic Lorentz
gas to conclude that

(6.2) ν z̄(ψ(xn2)1τn2=zn−z̄) ≈
1

n2

g

(
zn − z̄√
n2

)
ν(ψ).

Let us divide the set {z : |z − zn| ≤ K
√
n2} into boxes Bj of size δs

√
n where δs � δt.

Then, ∑
|z̄−zn|≤K

√
n2

pn1(z̄)ν z̄(ψ(xn2)1τn2=zn−z̄)

(6.3) ≈ ν(ψ)

δtn

∑
j

∑
z̄∈Bj

pn1(z̄)g

(
z̄ − zn√
n2

)
.

Since the oscillation of g

(
z̄ − zn√
n2

)
on Bj is small, we can replace it by g

(
z(j) − zn√

n2

)
where z(j) is the center of Bj. Accordingly

∑
z̄∈Bj

pn1(z̄)g

(
z̄ − zn√
n2

)
≈ g

(
z(j) − zn√

n2

)∑
z̄∈Bj

pn1(z̄) =

(6.4) g

(
z(j) − zn√

n2

)
ν̄(τ̃n1 ∈ Bj).

The global CLT for the mildly perturbed Lorentz gas and the fact that z(j) are close to
zn for all j imply that

(6.5) ν̄(τ̃n1 ∈ Bj) ≈ δ2
sg(z)

Combining (6.1)–(6.5) we obtain

In =
g(z)ν(ψ)

n

∑
j

δ2
s

δt
g

(
z(j) − zn√

n2

)
.

The last sum is the Riemann sum of the integral of a Gaussian density over the set {|z| <
K}. Accordingly taking K large and choosing δs small to make the mesh sufficiently
fine, we can make the last sum as close to 1 as we wish. This completes the sketch of
proof of the AMLLT in the discrete time case.

The continuous time case is similar but we need to use the MLLT for flows proven
in [26]. �
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6.3. Lorenz gas in a half strip. Consider a Lorentz gas in a half strip, i.e. in
R+ × [0, 1] with a periodic configuration of convex scatterers removed. (By periodicity
we mean that if S is a scatterer in our configuration and S± := S ± (1, 0), then S+ is
in the scatterer configuration and if S− ⊂ (R+ × [0, 1]), then S− also belongs to the
configuration).

Similarly to the mildly perturbed Lorentz gas, we are in the setup of §2.2, now with
d1 = 1, d2 = 0, B = {1}. Using [30, Theorem 2] and proceeding as in the proof of
Theorem 6.1, we have

Theorem 6.2. Lorentz gases in half strips satisfy the AMLLT with p being the prob-
ability density of the absolute value of a centered Gaussian random variable.

Thus by Theorem 2.8, the Lorentz gas in a half strip satisfies both local global mixing
with respect to GO and global global mixing with respect to GAO.

6.4. Lorenz gas in a half plane. Consider a Lorentz gas in a half plane, i.e. in
R+ × R with a periodic configuration of convex scatterers removed. (By periodicity
we mean that if S is a scatterer in our configuration, then S + (1, 0), S ± (0, 1) are
also in the configuration. If S − (1, 0) ⊂ (R+ × R), then S − (1, 0) also belongs to the
configuration).

Similarly to the mildly perturbed Lorentz gas and to the Lorentz gas in a half strip,
we are in the setup of Section 2.2, now with d1 = 1, d2 = 1, B = {1} × Z. Using [30,
Theorem 4] and proceeding as in the proof of Theorem 6.1, we have

Theorem 6.3. Lorentz gases in the half plane satisfy the AMLLT with p being the
density at time 1 of the Brownian motion with diffusion matrix of the Lorentz process
reflected from the y axis.

Thus by Theorem 2.8, the Lorentz gas in a half plane satisfies both local global
mixing with respect to GO and global global mixing with respect to GAO.

6.5. Lorentz gas with external fields.

6.5.1. Lorentz gas in asymptotically vanishing potential fields. In this example we con-
sider the same configuration of scatterers as in Example 6.1 but assume that the motion
between collisions is subject to the potential

q̈ = −∇U.
We suppose that the first three derivatives of U are uniformly bounded and that

(6.6) lim
|q|→∞

U(q) = 0, lim
|q|→∞

∇U(q) = 0.

An example of such system is given by the Coulomb potential

(6.7) U(q) =
e

|q|
.

For the Coulomb potential it is natural to assume that the origin is contained in the
center of one of the scatterers. In this case U is bounded.

In any case our system is Hamiltonian preserving the energy H = 1
2
v2 +U(q). Sinai

billiards with external fields were studied in [10, 11]. First, note that the phase space
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of both the map and the flow is the same as in case of no external field. Next, we note
that the flow G̃ preserves the Lebesgue measure and the collision map T̃ preserves the
measure µ defined in (5.1) (see e.g. the Remark on page 201 of [10]).

Theorem 6.4. Under assumption (6.6) both the collision map T̃ and the continuous
time system G̃t enjoy global global mixing with respect to GAO.

Proof. We claim that both T̃ and G̃t are very well approximated by the Lorentz gas
and so by Theorems 2.12 and 4.2 the result will follow. To prove the above claim, it is
sufficient to check condition (i) of Definition 2.10 (and its continuous time counterpart).
In continuous time, we can choose Az,ε = ∅ as the flow G̃t is continuous and for R large,
is uniformly close to the unperturbed billiard flow Gt up to time 1 by condition (6.6).
To check condition (i) for the map, choose Az,ε as the δ neighborhood of the primary
singularity set of the unperturbed billiard map T . By choosing δ sufficiently small, we
clearly have µ(Az,ε) < ε and now choosing R large (and consequently the field small),
we have (2.13). �

Similarly to §6.2, the assumption (6.6) is insufficient to ensure hyperbolicity close to
the origin. In particular the system could have elliptic islands in the bounded part of
the space (cf. [51]) and so it may fail to be local global mixing. On the other hand, our
next result gives local global mixing under the extra assumption that the field is small
everywhere.

Theorem 6.5. Assume besides (6.6) that ||U ||C3 is sufficently small (e.g. in the
Coulomb potential case the charge e is small). Then both the collision map T̃ and
the continuous time system G̃t enjoy local global mixing with respect to GU .

Proof. By Theorem 2.13, it suffices to check conditions (M1)-(M6).
We begin with the discrete time system. Much of the theory discussed in Section 5

has been extended to the Sinai billiards on compact phase space with external fields in
[10, 11]. Several of these results can be used in our non-compact setup, too, since the
proofs do not rely on the compactness of the phase space. For example, standard pairs
are defined in [11]. In fact, standard pairs for T̃ are exactly the same as standard pairs
for T (of course, unstable manifolds are different but the unstable cone can be chosen
the same). Using the notation of Section 5, we say that a standard family is compactly
supported if there is a finite set A ⊂ Z2 so that for all standard pairs ` in the family,
[`] ∈ A.

Let M to be the set of all compactly supported proper standard families. Specifically,
we require that m ∈M satisfies

(6.8) m(x : r(x) < ε) ≤ Kε,

where K is a sufficiently large constant only depending on the system. Then (M1)
is checked in [11]. To check (M2), let φ be a Lipschitz function supported on a single
scatterer Ω. (Note that it suffices to check the local global mixing for Lipschitz functions
φ as the set of Lipschitz functions is dense in L. The condition that φ is supported
on a single scatter is also not restrictive since a function supported on a finite set of
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scatterers is a finite linear combination of functions supported on a single scatterer.) We
first observe that for each δ there exists K(δ) such that if φ has the following properties:

(6.9) δ ≤ φ ≤ δ−1, µ(φ) = 1, Lip(φ) ≤ 2,

then φµ ∈ M where M is defined by (6.8) with K = K(δ), see e.g. [10, Proposition
5.6]. Pick a large R� δ−1 We have the following decomposition: φ = R1Ω− (R−φ)1Ω.
Thus φ = c1φ1 − c2φ2 where c1 and c2 are constants and

(6.10) φ1 =
1Ω

µ(Ω)
, φ2 =

1Ω − φ
R

µ(Ω)− 1
R

.

Note that as R → ∞, φ2 → 1Ω/µ(Ω) in the space of Lipschitz functions, so if R
is sufficiently large then φ1, φ2 satisfy (6.9) with constant δ depending only on the
minimal perimeter of the scatterers in our configuration. By the foregoing discussion,
φ1µ, φ2µ ∈M.

To prove (M3), we use the transversality of the unstable curves to singularities of
the system (see [12, Section 4.5] for a similar argument). Specifically, given ε and n,
we choose some δ � ε. Then for the given ε, n, δ, we choose R so large so that for
every x with |z(x)| > R and for any s ∈ [0, n(τmax + 1)], d(Gs(x), G̃s(x)) < δ. Such an
R exists since for small field, the trajectories are uniformly close to the unperturbed
ones (here, τmax is the maximum free flight time of the unperturbed system and conse-
quently the maximum free flight time of the perturbed system is bounded by τmax + 1.)
Thus choosing δ small, we can ensure that the singularity curves of T̃ n are in the ε2

neighborhood of those of T n. Furthermore, the singularity curves of T̃ n are transversal
to the unstable cones by [10, Lemma 3.10]. Let m ∈M, ` = (W, ρ) a standard pair in m

and x ∈ W . If |z(x)| > R and d(T nx, T̃ nx) ≥ ε, then by the foregoing discussion, x is
necessarily Cε2 close to an endpoint of W (here C is a geometric constant coming from
the transversality). By (6.8), the m measure of such points is bounded by KCε2. For ε
small enough, KCε2 < ε and so (M3) follows (clearly, it is sufficient to prove (M3) for
ε small enough).

Next, let Mε be the set of standard families on M such that all standard pairs in m
is longer than ε. The local limit theorem for standard families follows from the mixing
LLT for T [24, Lemma 2.8]. Thus (M4) holds.

Next, in our system a stronger variant of (M5) holds, namely n0 is uniform in m ∈M.
Indeed, for m in M let m′j is the measure corresponding to the standard pairs from T̃ nm
which belong to {z = j} and have length greater than ε. The desired inequality of (M5)
follows from the growth lemma (see [10, Lemma 5.3] and the discussion on page 95 of
[11]).

Since checking (M6) requires more effort, we postpone it to Section 7.
The continuous time case can be handled similarly. We refer the reader to [25, 4] for

the Growth Lemma and related results in the continuous time setting. �

6.5.2. Lorentz gas in external field and Gaussian thermostat. Suppose that the system
moves in the same domain as the Lorentz gas but the motion between the collisions is
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not free but rather satisfies

q̈ = E(q)− 〈q̇, E(q)〉
||q̇||2

where E(q) is a periodic field and the second term models energy dissipation. This
system is a Z2-cover of a Sinai billiard in external field which we will denote by f .
There are two important differences between this model and the one studied in §6.5.1:
this one is easier in the sense that it is periodic but more difficult in the sense that
the Lebesgue measure is no longer invariant. However, [10] implies that f has unique
SRB measure µE if ||E||C1 is sufficiently small. Furthermore, a Young tower can be
constructed by the results of [10, 11] (see also [9]). Thus the (shifted) MLLT holds
for (f, µE) by [26, Lemma 4.3] The shifted MLLT for continuous time system also
follows from [26, Theorem 4.1]. Accordingly by Theorem 2.5, we have local global and
global global mixing with respect to (L,GU). We note that for typical E (including the
constant field) the drift in the CLT is not equal to zero ([15]). We also note that in the
presence of the drift, the system is dissipative in the sense of ergodic theory, that is,
almost every particle tends to infinity. This gives a physical example of a system which
enjoys both local global and global global mixing but is not ergodic.

6.6. Galton board. This model is similar to Example 6.5.1, however, we do not as-
sume that the potential is vanishing at infinity. Namely we consider a particle moving
in a half plane q1 > 0 with a periodic configuration of convex scatterers removed (we
confine the particle to the half plane by adding the vertical axis q1 = 0 to the boundary
of our domain). The motion between collisions is subject to a constant force field which
corresponds to a linear potential U = −gq1. This system preserves the energy

H = v2/2− gq1.

It is convenient to use the following coordinates: q ∈ R2 is the position of the particle
and θ is the polar angle of the velocity vector tan θ = q̇1/q̇2. Then the speed could be

recovered using the equation |v| =
√

2(H + gq1). In Lemma 6.7 below we will see that
the evolution of q and θ coordinates is well approximated by the Lorentz gas. Therefore
the appropriate space of observables are functions which are uniformly continuous in
(q, θ) coordinates and admit the averages on large cubes. Namely given q = (q1, q2) ∈
[0,∞)×R and R > 0 such that q1 > R consider the cube Ωq,R = {(q, θ) : |q−q|∞ ≤ R}
and let

GU = {Φ : Φ is uniformly continuous in (q, θ) variables and for each ε there is R0

such that if R ≥ R0 then for each Ωq,R as above∣∣∣∣∣ 1

µ(Ωq,R)

∫
Ωq,R

Φ(q, θ)dµ− Φ̄

∣∣∣∣∣ ≤ ε

}
.

The main result of this section is

Theorem 6.6. There exists H0 such that if H ≥ H0, then both the collision map T̃
and the continuous flow G̃t enjoy global global mixing with respect to GAO and local
global mixing with respect to GU .
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In order to prove Theorem 6.6 we need to recall several results from [13].

Lemma 6.7. The collision map T̃ for Galton board is well approximated for large
kinetic energy by the collision map T of the Lorentz gas. More precisely, the following
condition holds

(M3) For each ε > 0 and n ∈ N there exists R > 0 such that if m is a measure
corresponding1 to a proper standard family, then

m(x : q1(x) ≥ R and d(T nx, T̃ nx) ≥ ε) ≤ ε.

Note that the condition (M3) above is different from the condition (M3) imposed in
Section 2. Namely, we replace the requirement
q2

1 + q2
2 ≥ R2 by a stronger requirement q1 > R. Lemma 6.7 is proven in [13, Section 3],

however we recall the argument since it plays an important role in the analysis below.

Proof. Let (qn, θn, Kn) denote the position, direction and kinetic energy of the Galton
particle after n collisions. The motion until the next collision is obtained by solving the
following ODE

d2q

dt2
= ge1, q(0) = qn,

dq

dt
(0) =

√
2Kn(cos θn, sin θn).

Making the time change

(6.11) s =
t√

2Kn

(note that changing the time does not change the place of the next collision) we get

(6.12)
d2q

dt2
=

g

2Kn

e1, q(0) = qn,
dq

dt
(0) = (cos θn, sin θn).

Note that Kn = H + g(qn)1, where H is the particle’s energy. Therefore by taking
R large enough we can make the RHS of the ODE in (6.12) as small as we wish if
(qn)1 ≥ R. Accordingly the solution to (6.12) can be made as close as we wish to the
solution of

d2q

dt2
= 0, q(0) = qn,

dq

dt
(0) = (cos θn, sin θn).

Since the last equation describes the flow of the Lorentz gas without external field
between two collisions, the lemma follows. �

Since the Lorentz gas is hyperbolic, we have that the Galton board dynamics is also
hyperbolic for large kinetic energies. The condition that the total energy is large ensures
that the kinetic energy is large as well, so the hyperbolicity persists in all of the phase
space.

Proposition 6.8. There are constants σ and σ̄ such that the following holds.
Suppose that (q(0), v(0)) is distributed according to some standard family.

1in the sense of (5.5)
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(a) Let Kn denote the kinetic energy of the particle after n collisions. Then the
random process Kn(t) = 1√

n
Ktn converges in law, as n → ∞ to K(t) which is the

solution to the following stochastic differential equation:

(6.13) dK =
σ̄2

4K
dt+ σ̄dW , K(0) = 0.

(b) Let K(t) denote the kinetic energy of the particle at time t. Then the random

process K̂T (t) =
K(tT )

T 2/3
converges in law, as T → ∞ to K̂(t) which is the solution to

the following stochastic differential equation:

(6.14) dK̂ =
σ2

2
√

2K̂
dt+ (2K̂)1/4σdW , K̂(0) = 0.

Note that the equations (6.13) and (6.14) are well posed despite the singular coeffi-
cients as discussed in [13].

Proof. Part (b) is a restatement of Theorem 3 in [13]. Namely [13] uses the rescaled

time s = t
T 1/3 (cf. (6.11)). In the rescaled time the part (b) states that K(sT 4/3)

T 2/3 ⇒ K̂(t)

as T →∞. Denoting ε = T−2/3 we can rewrite the last statement as εK(sε−2)⇒ K̂(t)
as ε→ 0 which exactly the statement of Theorem 3 in [13].

Next we discuss the part (a). In the case we start away from 0 and the process Kn
is stopped when it reaches too high or too low values, (6.13) is proven in [13, Theorem
4]. The removal of those cutoffs can be done in the same way as in the continuous time
case, see the proof of Theorem 3 in [13] (note that this theorem assumes that the total
energy H is large enough). �

We mention that the explicit formulas for σ and σ̄ are the following (cf. [13, page
839]). Let σ̃ be the diffusion coefficient of q1 for the Lorentz gas with respect to the
discrete time. That is

σ̃2 = lim
n→∞

ν

(
(q0,n)2

1

n

)
where q0,n is the position of the particle after the n-th collision in the Lorentz gas and
ν is any smooth compactly supported measure. Then σ̄ = σ̃g and σ = σ̄/

√
τ̄ where τ̄

is the free path length. However, we do not need the explicit values of σ and σ̄ in the
proof of Theorem 6.6.

Proof of Theorem 6.6. Given the background presented above, the proof proceeds sim-
ilarly to the arguments of Section 3 with minor modifications described below.

Global global mixing for T̃ . Given Lemma 6.7, the proof of the global global
mixing is the same as the proof of Theorem 2.12 (a) with d1 = d2 = 1, except instead
of the fact that z(T̃ k) is large for all k ≤ n for most initial conditions in our cube, we
use that q1(T kx) (and, hence, K(T kx)) is large for all k ≤ n for most initial conditions
in our cube.

Local global mixing for T̃ . We check (slightly modified) conditions (M1)–(M6).
We choose M and Mε in the same way as in Example 6.5.1. (M2) and (M4) are checked
in the same way as in that example. (M1) and (M5) follow from [13, Lemma 2.1]. We
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already checked (M3), which is an analogue of (M3), in Lemma 6.7. Since (M3) is
weaker than (M3), we need to replace (M6) by a stronger condition, namely

(M6) For each m ∈M and for each R > 0, m(|K(T̃ nx)| ≤ R)→ 0 as n→∞ where
K denotes the kinetic energy.

Similarly to Theorem 2.13, local global mixing is implied by (M1), (M2) (M3), (M4),

(M5) (M6). It remains to verify (M6). To this end, we note that by Proposition 6.8(a),
Kn√
n

converges to K(1), where K(·) is the solution to (6.13). Note that K(t) is a power

of the square Bessel process, so its density can be computed explicitly (cf. [20]). In

particular, P(Z = 0) = 0 proving (M6).

Local global mixing for G̃t. In this case, we also need to modify (M1)–(M6). Note
that if q(t) ∼ Q � 1, then v(t) ∼

√
Q so the particle will travel distance of order

√
Q

during a unit time interval. This distance is too large for Lorentz particle to serve as
a good approximation to the Galton particle. The good news is that a much shorter
time is sufficient to observe the LLT on Galton board.

Note that Lemma 6.7 does not tell us that G̃t is well approximated by Gt. Instead
Gt approximates the rescaled flow. Namely, let Ĝs be obtained from G̃t by the time

change
ds

dt
= (2Kn(t))

−1/2, where n(t) is the number of collisions before time t. Then

the proof of Lemma 6.7 shows that Ĝs is well approximated by Gs for large values of
the kinetic energy.

Accordingly we replace Mε by the family Mε,t consisting of the measures m such that
(i) all standard pairs m are longer than ε and;
(ii) m is supported on the set {x : ε̂ ≤ K(x)/t2/3 < 1/ε̂} where ε̂ is chosen so that

P

(
2ε̂ <

K̂(u)

t2/3
<

1

2ε̂
for all u ∈ [t/2, t]

)
≥ 1− ε

100
,

where K̂ is the solution of (6.14).
Next we replace (M3) by

(̃M3): For all m ∈M ∀τ ∃T : ∀t ≥ T

m

(
x : ε̂ <

K(x)

t2/3
<

1

ε̂
but sup

s∈[0,τ ]

d(G̃s/
√

2K(x)x,Gs(x)) > ε

)
≤ ε.

and replace by (M5) by

(̃M5) For each m ∈ M for each ε > 0 and s≥0 there exists T such that for t ≥ T we
can decompose

G̃t−s/t1/3
∗ m =

[∑
j

cjmj

]
+ cerrmerr,

where for all j, mj ∈Mε,t and there is some κj such that mj is supported on {|K(x)−
κj| ≤ 1}. Furthermore, cerr ≤ ε.
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The verification of (M1), (M2), (̃M3), (M4), (̃M5), (M6) is similar to the verification

of (M1), (M2), (M3), (M4), (M5), (M6) for the collision map T̃ .
Next, we explain what adjustments are needed in the proof of Theorem 2.13 (and its

continuous time counterpart) to verify that (̃M3), (̃M5), can be used in lieu of (M3)
and (M5) to infer local global mixing.

First, given Φ ∈ GU , m ∈ M, δ > 0, and s > 0, we choose ε > 0 small and apply

(̃M5) to conclude that for all sufficiently large t∣∣∣∣∣m(Φ ◦ G̃t
)
−
∑
j

cjmj

(
Φ ◦ G̃s/t1/3

)∣∣∣∣∣ ≤ δ.

Further increasing t if necessary, the bounded oscillation of K(.) on mj ∈Mε,t becomes
negligible compared to t: specifically, for sufficiently large t, we have∣∣∣mj

(
Φ ◦ G̃s/t1/3

)
−mj

(
Φ ◦ G̃sρj/

√
2K(x)

)∣∣∣ ≤ δ,

for all j, where ρj =

√
2κj

t1/3
. Next, by the definition of Mε,t, we have 2

√
ε̂ ≤ ρj ≤ 2/

√
ε̂.

Thus we can use (̃M3) with τ replaced by 2τ/
√
ε̂ to conclude that∣∣∣mj

(
Φ ◦ G̃sρj/

√
2K(x)

)
−mj (Φ ◦Gsρj)

∣∣∣ ≤ δ

Combining the last three displays, we get

(6.15)

∣∣∣∣∣m(Φ ◦ G̃t
)
−
∑
j

cjmj (Φ ◦Gsρj)

∣∣∣∣∣ ≤ 3δ

As in the proof of Theorem 2.13, it is sufficient to verify that

lim
t→∞

m
(

Φ ◦ G̃t
)

= Φ̄.

Thus by (6.15), it suffices to verify that

|mj (Φ ◦Gsρj)− Φ̄| < δ

for all j. This can be done by choosing s = s(δ) large and using the MLLT for G. This
completes the proof of the local global mixing of G̃.

Global global mixing for G̃t. The proof is a simplified version of the proof of
Theorem 2.4(b) because we have now Φ1,Φ2 ∈ GU . Namely, we decompose∫

Ωq,R

Φ1(x)Φ2(G̃tx)dµ(x) =
∑
z

∫
Ωq,R

Φ1(x)1z(x)=zΦ2(G̃tx)dµ(x)

where z(x) is the label of the fundamental domain containing x. We claim that if R is
sufficiently large, then there is a set Ω̄ ⊂ Ωq,R which is a union of fundamental domains,

such that
µ
(
Ωq,R \ Ω̄

)
µ(Ωq,R)

= O(R−1/5) and for x ∈ Ω̄, min
u≤t

q1(G̃ux) ≥ R1/10. Indeed suppose

that R > t50 and let Ω̄ be the union of fundamental domains such that q1(x) > R1/5
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everywhere on the domain. Using the fact that the speed of the particle is O(R1/10) to
the left in the strip 0 ≤ q1 ≤ R1/5, we conclude that for x ∈ Ω̄

min
u≤t

q1(G̃ux) ≥ R1/5 − CR1/10t ≥ R0.2 − CR0.12 ≥ R1/10

for R large, which proves the claim.
Arguing the same way as in the proof of local global mixing, we conclude that for

the fundamental domains in Ω̄∫
Φ1(x)1z(x)=zΦ2(G̃tx)dµ(x) =

[∫
Φ1(x)1z(x)=zdµ(x)

]
Φ̄2 + ot→∞,R→∞(1).

Since Φ1 ∈ GU , we obtain

1

µ(Ωq,R)

∑
z

∫
Ωq,R

Φ1(x)1z(x)=zdµ(x)

=
1

µ(Ωq,R)

∫
Ωq,R

Φ1(x)dµ(x) = Φ̄1 + oR→∞(1)

completing the proof of global-global mixing. �

6.7. Fermi-Ulam pingpong. Consider the following one-dimensional system: a unit
point mass moves horizontally between two infinite mass walls. Between collisions, the
motion is free so that the kinetic energy is conserved, collisions between the particle and
the walls are elastic. The left wall moves periodically, while the right one is fixed. The
distance between the two walls at time t is denoted by `(t). We assume that ` is strictly
positive, continuous and periodic of period 1. Moreover we suppose that the restriction
of ` to the open interval (0, 1) is C5 but ˙̀(1−) 6= ˙̀(1+), where ˙̀(1+) = limt↓0 ˙̀(t)

and ˙̀(1−) = limt↑0 ˙̀(t). Thus ` is piecewise smooth with singularities only at integers.

Let T̃ be the map defined as follows. Let the particle move until the the next integer
moment of time and then stop it after the first collision with the moving wall. Note
that T̃ is conjugated to G-the time 1 map of the system. Namely for T̃ it is natural
to use the following coordinates: the time of collision (taken modulo Z) and the post
collisional velocity at the moment of collision. For G it is natural to use velocity and
height. To pass from the first coordinate set to the second one, we replace the post
collisional velocity with the precollisional one and then let the particle move backward
until the first time it becomes an integer.

It is shown in [18] that T̃ is well approximated at infinity by the following map of
the cylinder T× R :

(6.16) T (τ, I) = (τ − I, I + ∆(τ − I))

where

∆ = `(0)σ

∫ 1

0

`−2(s) ds, σ = ˙̀(1+)− ˙̀(1−).

T covers a map f of T2 which is defined by formula (6.16) with I taken mod 1. Specif-
ically, property (ii) of Definition 2.11 holds with d1 = 1, d2 = 0. If ∆ 6∈ (0, 4) then the
map f is piecewise hyperbolic and according to [56, Section 7], it admits a Young tower
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and hence, satisfies the MLLT (see e.g. [31]). Therefore in this case T̃ and, hence, G
are global global mixing with respect to GU .

We note that while the dynamics for large energies is described by a single parameter
∆, the dynamics for low energies is far from universal. In particular, it is easy to
construct an example where T has elliptic fixed points and so it is not ergodic. Thus
we get another natural example where the map is global global mixing but is not ergodic.

On the other hand it is shown in [19] that if ` is piecewise convex, then T̃ is ergodic
for most values of the parameter ∆ (with at most a countable set of exceptions). One
could expect that in that case T̃ is local global mixing, but this question requires a
further investigation.

6.8. Bouncing ball in a gravity field. In this model a particle moves on R+ in a
linear potential U(x) = gx and collides elastically with an infinitely heavy wall whose
position at time t equals to h(t). We assume that h is 1-periodic and piecewise C2 but
not C2. Let T̃ be the collision map in this model. It is shown in [57] that T̃ is well
approximated at infinity by the map T of the cylinder T× R given by

(6.17) T (t, v) = (t+ 2v/g, v + 2ḣ(t+ 2v/g)).

T is a Z cover of the map f of T2 defined by (6.17) with t taken mod 1 and v taken
mod g

2
. (Again, property (ii) of Definition 2.11 holds with d1 = 1, d2 = 0.) Moreover,

it is proven in [57] that if either

(6.18) ḧ > 0 or |ḧ+ a| ≤ ε

where a > g and ε = ε(a) is a small constant, then f satisfies the conditions of [9].
Consequently it admits a Young tower with exponential tail and hence satisfies the
MLLT. It follows from Theorem 2.12 that if (6.18) is satisfied, then T̃ enjoys global
global mixing with respect to GU .

As in the previous example, the dynamics for small energies is not universal and
the question about local global mixing may depend on the law energy dynamics of
the system. Finally we note that the continuous time system is not global global
mixing since on most of the phase space the motion is integrable. Namely let Φ be a
non negative continuous function which depends only on velocity, is 1-periodic and is
supported on {v : d(v,Z) ≤ 0.01}. Then Φ̄ =

∫ 1

0
Φ(v)dv > 0. On the other hand for

each T, on most of the set {v ≤ V } with V � T , velocity remains large on the time
interval [0, T ]. For such orbits v(t) = v(0) − gt for t ∈ [0, T ] and so if d(gT,Z) > 0.04
then Φ · (Φ ◦ G̃T ) = 0. Accordingly the large volume limit for such T ’s is

Φ · (Φ ◦ G̃T ) = 0

precluding global global mixing. As in the discrete time case the question of local global
mixing is more subtle and deserves a further investigation.

7. Condition (M6) for Lorentz gas with external fields

Here we complete the proof of Theorem 6.5 by checking the condition (M6) for
Lorentz gas with vanishing potential. We hope that similar arguments will apply to
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other hyperbolic systems with singularities, including the examples of §6.7 and §6.8
once their dynamics in the low energy regime is better understood.

7.1. Recurrence-transience dichotomy. For sets A,B we shall write A ≡ B if their
symmetric difference satisfies µ(A4B) = 0.
In this section we prove an auxiliary result of independent interest. Let

R± = {x : |z(T̃ nx)| 6→ ∞ as n→ ±∞}.
Then, (see e.g. [1, §1.1]), R− ≡ R+. Let R = R− ∩ R+ be the set of recurrent orbits.
Then R ≡ R+ ≡ R−.

Lemma 7.1. Either µ(R) = 0 or µ(Rc) = 0. In the second case, T̃ is ergodic.

Proof. Let R0 = R, R±0 = R±, and for n > 0 define inductively Rn = R+
n ∩R−n where

R+
n = {x ∈ Rn−1 : mes(W s(x) ∩Rc

n−1) = 0},
R−n = {x ∈ Rn−1 : mes(W u(x) ∩Rc

n−1) = 0}.
We shall show inductively that

(7.1) Rn ≡ R+
n ≡ R−n = Rn−1.

For n = 0 this follows from the foregoing discussion. Assuming that (7.1) holds for
n− 1 we obtain, using the absolute continuity of the stable lamination (namely, (5.11))
and the relation Rn−1 ≡ R+

n−1, that

R+
n ≡ {x ∈ R+

n−1 : mes(W s(x) ∩ (R+
n−1)c) = 0} ≡ R+

n−1

where the last step uses that, by construction,

mes(W s(x) ∩ (R+
n−1)c) = 0

for x ∈ R+
n−1. Thus R+

n ≡ Rn−1. Likewise R−n ≡ Rn−1, proving (7.1). (7.1) shows that

(7.2) R∞ :=
⋂
n

Rn ≡ R.

Let E0 = E = E+ ∩ E− where

E± = {x : |z(T̃ nx)| → ∞ as n→ ±∞}.
and define En and E∞ similarly to Rn and R∞ respectively. Similarly to (7.2) we obtain
that

E∞ ≡ E ≡ E+ ≡ E−.
Denote G = E∞ ∪R∞. By the foregoing discussion

G ≡ E ∪ R ≡ E+ ∪R+.

Since the last set equals to the whole phase space we conclude that µ(Gc) = 0.
Suppose for a moment that that R∞ 6= ∅. Pick x′ ∈ R∞. Then, by [11, Lemma 3.6]

for every x′′ ∈ G there exists a Hopf chain, that is, a chain

x′ = y0, y1, . . . , yn = x′′ such that yj ∈ G and yj+1 ∈ W s(yj) ∪W u(yj).

By construction since y0 = x′ ∈ R∞ then yj ∈ R∞ for all j. Thus x′′ ∈ R∞ and hence
µ(Rc) = 0.
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On the other hand if R∞ = ∅ then µ(R) = 0. This proves the first claim of the
lemma. The fact that recurrence implies ergodicity follows from [34]. �

Corollary 7.2. For any set A of finite measure and for any ε, R > 0 there exists n
such that

(7.3) µ(x ∈ A : T̃ nx ∈ BR) < ε,

where BR = {x : |z(x)| ≤ R}.

Proof. If µ(R) = 0 then T̃ is dissipative ([1, §1.1]), that is, for a.e. x

lim
n→+∞

|z(T̃ nx)| = +∞,

so (7.3) is obvious.
On the other hand if µ(Rc) = 0 then T̃ is ergodic, so the Ratio Ergodic Theorem

tells us that for each z1, z2 and for almost every x

lim
N→∞

Card(n ≤ N : z(T̃ nx) = z1)

Card(n ≤ N : z(T̃ nx) = z2)
=
µ(x : z(x) = z1)

µ(x : z(x) = z2)
.

Since the last expression is uniformly bounded away from 0 we have that for any z̄ and
almost every x

lim
N→∞

Card(n ≤ N : z(T̃ nx) = z̄)

N
= 0.

By the Dominated Convergence Theorem

1

N

N∑
n=1

µ(x ∈ A : z(T̃ nx) = z̄)

= µ

(
Card(n ≤ N : z(T̃ nx) = z̄)

N
1{x∈A}

)
→ 0 as N →∞.

Summing over z̄’s such that |z̄| ≤ R we get

1

N

N∑
n=1

µ̃(x ∈ A : T̃ nx ∈ BR)→ 0.

Therefore the set of times n when (7.3) is false has zero density. �

The preliminaries discussed in Section 5 extend to the case of billiards will small
external fields by [10, 11]. In particular for an unstable curve γ, we write

γδ = {x ∈ γ : rs(x) ≥ δ}, Λδ(γ) =
⋃
x∈γδ

W s(x).

Then (5.6) holds (see [11, Lemma 3.2] in case of external fields) and we have the
analogue of (5.9):

(7.4) κ1 ≤
dµ̂

dµΛδ

≤ κ−1
1 .
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and the analogue of (5.10):

(7.5) µ(Λδ(γ)) ≥ κ2.

Corollary 7.3. For any unstable curve γ for any ε, R > 0 there exists n such that

(7.6) mes(x ∈ γ : T̃ nx ∈ BR) < ε.

Proof. Since measure of γ − γδ tends to 0 as δ → 0 (see (5.6)), it suffices to prove that,
for each fixed δ, (7.6) holds with γ replaced by γδ. Combining Corollary 7.2 with (7.4)
we obtain for each ε > 0 there exists n such that

µ̂(x ∈ Λδ : |z(T̃ nx)| ≤ R + 1) < ε.

On the other hand the definition of µ̂ easily shows that

µ̂(x ∈ Λδ : |z(T̃ nx)| ≤ R + 1) ≥ δmes(x ∈ γδ : |z(T̃ nx)| ≤ R)

proving the result. �

7.2. Verifying (M6). By our choice of M it suffices to show that for each δ, for each
ε and R there exists n0 such that for n ≥ n0 for each unstable curve Γ of length at
least δ we have

(7.7) mes(x ∈ Γ : T̃ nx ∈ BR) ≤ ε.

We first show this result under an additional assumption that

(7.8) |z(Γ)| ≥ R̃

provided R̃ = R̃(ε, δ, R) is sufficiently large and then use Corollary 7.3 to remove this
restriction.

Before giving the formal proof let us describe the main idea. Given an unstable curve
Γ satisfying the conditions above and ñ ∈ N we consider the Hopf ñ-brush obtained by
issuing the stable manifolds from all points of T̃ ñΓ. We shall show that

(i) If ñ = ñ(ε, δ, R) is large, then the brush has a large measure;
(ii) If at some time n ≥ ñ a significant proportion of Γ came close to the origin, then

a significant portion of the ñ-brush would come close to the origin at time n− ñ. Since
T̃ n−ñ is measure preserving, there is not enough room in a fixed neighborhood of the
origin, giving a contradiction.

To prove part (i) above we show that the image T̃ ñΓ stretches across a large number
of cells. For T this is true because of the LLT, while for T̃ this is true because it
is very well approximated by T at infinity (at this step it is important that we take
R̃ = R̃(ε, δ, R, ñ) sufficiently large). Next, the Growth Lemma implies that most of
the components of T̃ ñΓ are not too short. Consequently, there are many cells whose
intersection with T̃ ñΓ contains relatively long component. Now (7.5) implies that the
brush has a significant measure in each such cell.

The proof of part (ii) uses the fact that if a point returns close to the origin then the
same is true for its whole (homogeneous) stable manifold.

We now give a more detailed argument. We divide the proof into seven steps.

Step 1: Preliminaries.
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Let δ1 � δ be a small constant. The precise requirements on δ1 will be given below.
Here we require that for each unstable curve Γ of length at least δ and for each n,

(7.9) mes(x ∈ Γ : x is not (δ1, n)− good) ≤ ε2,

where we call x (δ1, n)-good if

(7.10) rn(x) ≥
√
δ1 and rs(T̃

nx) ≥
√
δ1.

(The existence of δ1 when only the first inequality is required in (7.10) follows from
the Growth Lemma 5.1 ([10, Proposition 5.3] in case of external fields). The second
inequality can also be ensured by combining (5.6) ([11, Lemma 3.2] in case of external
fields) with (M1)).

By transversality of stable and unstable directions, there is a constant K1 such that
if T is an unstable curve and π is the projection to T along the stable leaves, then

(7.11) d(πx, x) ≤ K1d(x, T )

provided that π is defined at x.

Step 2: Long brushes are abundant. Let

Xk̃,η = {x ∈ X : ∀y ∈ B(x, η) ∀ 0 ≤ j ≤ k̃ T̃ is continuous on B(T̃ jy, η)},

and define Mk̃,η similarly with X replaced by M and T̃ replaced by T . In step 2, we

prove that for k̃ large enough and for δ1 = δ1(k̃) sufficiently small the following holds.
If x ∈ Xk̃,2K1δ1

and T is an unstable curve of length δ1 through x, then

(7.12) mes(t′ ∈ T : rs(t
′) ≥ 2K1δ1) ≥ δ1

2
.

To prove (7.12), first we recall inequality (5.58) from [16]:

rs(t
′) ≥ min

n≥0
Λnds(T̃ nt′,S)

where Λ > 1 is the minimal expansion factor of T̃ , S is the discontinuity set of T̃ and
ds(T̃ nt′,S) is the length of the shortest unstable curve that connects T̃ nt′ with the set
S.

Note that if the above minimum falls below 2K1δ1, then also

(7.13) min
n≥k̃

Λnds(T̃ nt′,S) ≤ 2K1δ1.

(Indeed, for n < k̃,

Λnds(T̃ nt′,S) ≥ ds(T̃ nt′,S) ≥ d(T̃ nt′,S) ≥ 2K1δ1

by the definition of Xk̃,2K1δ1
.) Let us write ` = (T , 1

δ1
mesT ). Then, we have

ν`(t
′ ∈ T : min

n≥k̃
Λnds(T̃ nt′,S) ≤ 2K1δ1)

≤
∞∑
n=k̃

ν`(t
′ ∈ T : ds(T̃ nt′,S) ≤ Λ−n2K1δ1).
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Next, observe that by transversality there exists some constant C so that for every
t ∈ T , rn(t′) ≤ Cds(T̃ nt′,S). Thus the above display can be bounded by

∞∑
n=k̃

ν`(t
′ ∈ T : rn(t′) ≤ Λ−n2CK1δ1) ≤

∞∑
n=k̃

Z(T̃ n∗ `)Λ
−n2CK1δ1

Using the fact that Z` = 2/δ1 and the growth lemma, the above is bounded by
∞∑
n=k̃

(C1θ
n 2

δ1

+ C2)(Λ−n2CK1δ1) =
4K1CC1

1− θ/Λ
θk̃Λ−k̃ +

2K1CC1δ1

1− 1/Λ
Λ−k̃ =: I + II.

Now we choose k̃ so that I < 1/4 and then choose δ1 = δ1(k̃) so that II < 1/4. Since
ν` = 1

δ1
mesT , (7.12) follows.

To complete Step 2 we show that Xk̃,2K1δ1
fills most of the space. Namely, by further

reducing δ1 = δ1(k̃) if necessary, we may assume that

(7.14) µ(M −Mk̃,2K1δ1
) ≤ ε7.

Then for large R̃ and for each cell C = {z = m} which is at least R̃ away from the
origin,

(7.15) µ((X −Xk̃,2K1δ1
) ∩ C) < 2ε7.

Step 3: Construction of unstable frame. Next, we construct a collection of
unstable curves {Wk,i,j}, i = 1, .., I, j = 1, ..., J , k ∈ Z2 with Wk,i,j ⊂ X ∩ {z = k}
with length(Wk,i,j) ∈ [δ1, 2δ1) that will serve as the handles of our brushes.

Recall that by (5.2), the unstable cones can be defined in a way that there is a
segment [α, γ] ⊂ S1 (here S1 is identified with [0, 2π)) so that 0 < α < γ < π/2 and
for any y ∈ M and for any β ∈ [α, γ], the direction β = dφ/dr is in the unstable cone.
Increasing α and decreasing β a little and supposing that the field small enough, the
same is true for (y,k) ∈ X for any y ∈M and k ∈ Z2. Let us now fix k ∈ Z2. First we
fix parallel lines W1, ...WI ⊂ X ∩ {z = k} with angle dφ/dr = β where β := (α + γ)/2
and the distance between Wi and Wi+1 is δ1. (To be more precise, we have to fix these
lines in all connected components of X ∩ {z = k}, which are topological cylinders,
but to simplify notation we pretend that there is only one cylinder. Also we do not
emphasize the dependence on k as the curves are translates of one another for different
k’s). Each line segment Wi connects the two boundaries of the cylinder, that is one of
its endpoints is on the line φ = −π/2, the other one is on the line φ = π/2. The index
I is defined by

I = max{i : i cos(β)δ1 ≤ arc length of the scatterer} − 1.

We would like to use Wi’s as the frame for building our brushes, However, there are
two problems when trying to use (7.12). First,Wi’s are too long compared to δ1, so the
right hand side of (7.12) does not give a good bound for the relative measure on Wi.
Secondly,Wi may be disjoint to Xk̃,2K1δ1

and so (7.12) may not hold. To handle the first
issue we subdivide each Wi into shorter pieces. To handle the second issue we perturb
slightly each short segment so that the resulting broken line lies in a ξδ1 neighborhood
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of Wi and most of the resulting segments {Wk,i,j}j=1,...,J contain a point in Xk̃,2K1δ1
.

They are defined as follows. Wk,i,j is the line segment connecting (rk,i,j−1, φk,i,j−1,k)
and (rk,i,j, φk,i,j,k), where φk,i,j = −π/2 + j sin(β)δ1 for

j < J := max{j : j sin(β)δ1 < π}

and φk,i,J = π/2, and rk,i,j is defined inductively. First, rk,i,0 is such that (rk,i,0,−π/2)
is an endpoint of Wi and denote r̂k,i,j = rk,i,0 + j cos(β)δ1 (thus (r̂k,i,j, φk,i,j,k) ∈ Wi).
Now assume that rk,i,j is defined so that rk,i,j − r̂k,i,j ∈ (−ξδ1, ξδ1). If rk,i,j − r̂k,i,j < 0
(> 0, resp.), then we try to choose rk,i,j+1 ∈ (r̂k,i,j+1, r̂k,i,j+1+ξδ1) (respectively rk,i,j+1 ∈
(r̂k,i,j+1 − ξδ1, r̂k,i,j+1)) so that the line segment Wk,i,j contains a point in Xk̃,2K1δ1

. If
this is not possible, we choose rk,i,j+1 arbitrarily (in the above interval) and say that
Wk,i,j is bad. Note that in case Wk,i,j is bad, then there is a corresponding bad region
of area Cδ2

1 that is disjoint to Xk̃,2K1δ1
.

To facilitate the comparison between the invariant measure µ and the area, we say
that Wk,i,j is marginal if min{j, J − j} < ε2/(2δ1). Thus there are three kinds of line
segments Wk,i,j: marginal, bad (from now on bad means bad in the sense defined above,
but not marginal) and good.

Now if Wk,i,j is bad, then the µ measure of the corresponding bad region is at least
Cε4δ2

1 and so by (7.15), the number of bad curves for any k is bounded by ε2δ−2
1 /2.

Also, the µ measure of the K1δ1 neighborhood of marginal curves is bounded by ε2/2.

Step 4: Anticoncentration of measure. Next, pick an unstable curve Γ of length
at least δ satisfying (7.8). Let T be the union of the line segments {Wk,i,j} constructed

in Step 3. Given ñ ∈ N let πñ : T̃ ñΓ → T be the projection to the closest Wk,i,j

along the stable leaves. Assuming that δ1 is so small that
√
δ1 > K1δ1 we get that

πñ is defined on T̃ ñx if x is (δ1, ñ)-good. Denote by Jñ the inverse of the Jacobian of
T̃ ñ : Γ→ T̃ ñΓ. For t ∈ T let

J (t) =
∑

x is (δ1,ñ)−good
πñ(T̃ ñx)=t

Jñ(x).

Let Lñ = {t ∈ T : 0 < Jñ(t) < 1√
ñ
}. In Step 4, we prove the following claim: if

ñ = ñ(δ1), R̃ = R̃(δ1, ñ) are large enough, Wk,i,j is a good line segment constructed in
Step 3, t ∈ Wk,i,j and J (t) > 0, then t ∈ Lñ.

To prove this claim, first we observe that by the definition of πñ and (7.11), if
πñ(T̃ ñx) = t, then d(T̃ ñx, t) ≤ K1δ1. Take t′, on the same Wk,i,j as t with rs(t

′) ≥ 2K1δ1

(the Lebesgue measure of such points is at least δ1/2 by (7.12) by the fact that Wk,i,j

is good). Since x is (δ1, ñ)-good and by the construction of T , there is x′ ∈ Γ such that
T̃ ñx′ belongs to the same component as T̃ ñx and π(T̃ ñx′) = t′. By bounded distortion
of T̃ ñ (see (5.3)), there exists a constant c such that if Jñ(t) ≥ 1√

ñ
, then Jñ(t′) ≥ c√

ñ
.

Combining the absolute continuity of πñ (see (5.7) and (5.8)) with (7.12) (and noting
that the length of Wk,i,j is bounded by 2δ1 by construction), we conclude that if there
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existed t′ such that Jñ(t′) ≥ 1√
ñ
, then we would have

(7.16) mes(x ∈ Γ : z(T̃ ñx) = z(t)) ≥ c̄δ1√
ñ
.

On the other hand the LLT for T shows that there is a constant C̃ such that for each
ñ there exists R̃ such that if z(Γ) ≥ R̃, then

(7.17) mes(x ∈ Γ : z(T̃ ñx) = z(t)) ≤ C̃

ñ
.

If ñ is so large that
C̃

ñ
<
c̄δ1√
ñ
, that is,

(7.18) ñ >

(
C̃

c̄δ1

)2

,

this gives a contradiction with (7.16) proving the claim.

Step 5: Most of the image of Γ is not too close to the discontinuities. We
claim that if δ1 is small, then for appropriate ñ, R̃ we have

(7.19) mes(Γ \ Γ∗) ≤ 4ε2,

where Γ∗ is the set of points x in Γ such that x is (δ1, ñ)–good and πñ(T̃ ñx) ∈ Lñ.
To prove (7.19) note that by combining (7.9) with the fact that for (δ1, ñ)–good

points x, πñ(T̃ ñx) exists, (7.19) will be implied by the following:

mes(Γ#) ≤ 3ε2,

where Γ# is the set of points x in Γ that are (δ1, ñ)–good and πñ(T̃ ñx) /∈ Lñ. By Step
4, it is sufficient to prove that the Lebesgue measure of points x ∈ Γ so that x is
(δ1, ñ)–good and πñ(T̃ ñx) ∈ Wk,i,j ∈ T with some marginal or bad Wk,i,j is bounded
by 3ε2.

Note that by choosing R̃ large we can ensure that the goodness of Wk,i,j only depends

on i, j and not on k as long as |k| > R̃ − ñ. Indeed, for fixed k̃, δ1, ñ we can ensure

that the singularities of T̃ k̃+ñ are uniformly close to those of T k̃+ñ by choosing the field
small. Let us write (i, j) ∈ B if Wk,i,j is bad or marginal for some (and hence for all) k

with |k| > R̃− ñ.
Next, increasing ñ = ñ(δ1) if necessary, uniform equidistribution of the images of

unstable curves (see [11, Proposition 2.2]) implies that

mes(x ∈ Γ : ∃k,∃(i, j) ∈ B : πñ(T̃ ñx) ∈ Wk,i,j)

≤ 2µ(x ∈ X : d(x,∪(i,j)∈BWk̃,i,j) < K1δ1)

where k̃ is arbitrary with |k̃| > R̃. The last displayed formula is bounded by 3ε2 by the
last paragraph of Step 3. We have verified (7.19).

Step 6: Proof of (7.7) assuming (7.8). By the definition of Lñ, for any N > ñ,

(7.20) mes(x ∈ Γ∗ : TNx ∈ BR) ≤ 1√
ñ

mes(y ∈ Lñ : TN−ñy ∈ BR+1).



INFINITE MEASURE MIXING FOR SOME MECHANICAL SYSTEMS 45

On the other hand combining the absolute continuity of the stable lamination (see (7.4))

with the fact that rs ≥ δ1 on Lñ, we obtain that there is a constant Ĉ such that

(7.21) mes(y ∈ Lñ : TN−ñy ∈ BR+1) ≤ Ĉ

δ1

µ(y ∈ L̂ñ : TN−ñy ∈ BR+2),

where L̂ñ =
⋃
z∈Lñ

W s(z).

Since T̃ preserves µ, we have

(7.22) µ(y ∈ L̂ñ : T̃N−ñy ∈ BR+2) ≤ D(R + 2)2

for some D > 0. Combining (7.20), (7.21), and (7.22), we see that

mes(x ∈ Γ∗ : TNx ∈ BR) ≤ DĈ(R + 2)2

δ1

√
ñ

.

Thus if

(7.23) ñ ≥

[
DĈ(R + 2)2

2δ1(ε− 4ε2)

]2

,

then

mes(x ∈ Γ∗ : TNx ∈ BR) ≤ ε− 4ε2.

Combining this with (7.19) we obtain (7.7) provided |z(Γ)| is large as required by
(7.8).

Step 7: Relaxing (7.8). It remains to obtain (7.7) without assuming (7.8). Fix
ε > 0. Then take δ2 so small that for every unstable curve Γ of length δ and for all
sufficiently large n,

(7.24) mes(x ∈ Γ : rn(x) ≤ δ2) ≤ ε2.

Applying (7.7) with the assumption (7.8) and with δ replaced by δ2 and ε replaced by
δ2ε, we find that there exists R̃ so that for any curve Γ of length greater than δ2 such
that |z(Γ)| ≥ R̃ we have

(7.25) mes(x ∈ Γ : z(T̃ nx) ≤ R) ≤ ε2|Γ| for n ≥ n0(R̃, ε, δ2).

Next for each Γ with |Γ| ≥ δ, Corollary 7.3 shows that there is some time n1 = n1(Γ, ε)
such that

(7.26) mes(x ∈ Γ : |z(T̃ n1x)| ≤ R̃) ≤ ε2.

By compactness there exists N1 such that for all curves Γ of length at least δ one has
n1(Γ, ε) ≤ N1. Further increasing N1 if necessary, we can assume that (7.24) holds with
n = N1. Next, take n ≥ N1 + n0(R̃, ε, δ2). Divide the set of x such that |z(T nx)| ≤ R
into three parts

(i) : rN1(x) ≤ δ2, (ii) : |z(T̃N1x)| ≤ R̃,

(iii) : rN1(x) ≥ δ2, |z(T̃N1x)| ≥ R̃ but |z(T̃ nx)| ≤ R.
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Inequalities (7.24), (7.25), and (7.26) show that contribution of each part to mes(x :
|z(T̃ nx)| ≤ R) is at most ε2. This proves (7.7) for

n ≥ N1 + n0(R̃, ε, δ2).

8. Conclusions.

This paper deals with global mixing, that is, calculation of the expected value of
an extended observable in a long time limit, for mechanical systems. The systems
considered in this paper admit approximations at infinity, that is, when either the
position or the velocity is large, by a periodic system. It turns out that if the map,
obtained from the approximating system by factoring out the Zd extension, is chaotic
(in our examples, the reduced systems are hyperbolic systems with singularities), then
the original system enjoys global global mixing. To establish local global mixing, in
addition to controlling the dynamics at infinity we also need to ensure the hyperbolicity
in the whole phase space. In particular, we gave examples, where local modifications
of the dynamics destroy local global mixing.

We note that notions of global mixing discussed in this paper are neither implied by
nor imply the classical properties studied in infinite ergodic theory [1]. For example,
Lorentz gas in a small external field is dissipative but it enjoys both local global and
global global mixing. Non mild local perturbations of Lorentz gas are conservative but
not ergodic and they enjoy global global mixing (even though under natural assump-
tions, ergodicity is a necessary prerequisite for local global mixing in the recurrent case,
cf. discussion in §6.2). On the other hand, certain continuous time systems of bouncing
balls in gravity field (i.e. special cases of the systems studied in §6.8) are likely to
be ergodic and Krickeberg mixing but they are not global global mixing. This logical
independence between global mixing and other infinite ergodic theoretic properties is
not surprising since those notions serve different purposes. Namely, classical ergodic
theory strives to control the ergodic sum of localized (L1) observables and the notions
such as Krickeberg mixing are useful for that purpose (see e.g. [29, 48, 50]). The global
mixing, on the other hand, is useful for studying ergodic sums of extended observables
(cf. [6, 38]). In particular, it seems to us that the global mixing is more suitable
for derivation of macroscopic dynamics from microscopic laws, as statistical mechanics
concerns itself with extended observables. In fact, in this paper we were able to prove

(A) global global mixing for systems where a good control on the dynamics in the
bulk is already known and

(B) local global mixing for systems where full limit theorems are available due to a
good control of the boundary conditions ( [10, 11], [30, 24]).

We also note that for mechanical systems there are more examples where the local
global mixing is known than the examples where the Krickeberg mixing was proven.
Intuitively, proving local global mixing is easier since it only requires control on most of
the phase space, while Krickeberg mixing requires a good understanding of the dynamics
in the localized regions of the phase space.

In summary global mixing is an interesting recent concept, which is relevant in sev-
eral areas of mathematics including mathematical physics (cf. [33]), dynamical systems
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([21]), homogenization ([23]) and probability ([22]) and is easier to establish than sev-
eral other mixing properties. Our paper is a first step in studying global mixing for
mechanical systems. A natural next question to study is the Birkhoff theorem for global
observables. In [23] we address this question in the simplest setting, namely for i.i.d.
random walks. However, since the main tool in [23] is the local limit theorem and
related asymptotic expansions, we hope that the results similar to [23] also hold for
many of the mechanical systems addressed here.

We also hope our work will stimulate further research on global mixing. Some of the
natural questions motivated by our results include the multiple mixing, limit theorems
for ergodic sums of global observables as well as quantitative aspects of global mixing.
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