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the additive functional {a}(ﬁ)1 (XIEJJ\:)I) —aV (X,EN))} (a gradient)
the Borel o-algebra of a separable complete metric space &
large deviations threshold, see §6.4

the space of continuous ¢ : R — R with compact support

the mixing constant from Proposition 1.11

the covariance

the circular variance, see §3.3.1

structure constants, see §1.3

structure constants, see §1.3

the contraction coefficient of a Markov operator 7, see §1.2.2
the graininess constant of f, see chapter 3

(usually) the uniform ellipticity constant, see §1.2.1

the expectation operator. E, := E(-|X; = x)

the essential supremum, see chapter 1

additive functionals

an entry of an additive functional f of a Markov chain or array
the normalized log-moment generating function, see chapter 6
the algebraic range, see chapter 3
the essential range, see chapter 3
the balance (of a hexagon), see §1.3.1
the co-range, see chapter 3
the space of level N hexagons at position n, see §1.3.1
the rate function, see chapter 6
(usually) the length of the N-th row of an array, minus one
a measure with its integration variable
the natural logarithm (same as In)
{1,2,3,...}
the oscillation, see §1.2.2
a measurable map 7 : Q — Q on a measure space (Q,.%, 1)
the probability of the event A. Py(A) := P(A|X] = x)
the n-th transition kernel of a Markov chain
(usually) the density of 7, 41 (x,dy)
characteristic functions, see §4.2.1
?’:1 fi(Xi,Xi+1) (chains), or zf‘g : fi(N) (Xi(N),Xl.(iVl) ) (arrays)
the sign of x: (+1) when x > 0, (—1) when x < 0, and O for x =0
the state space of X, (chains) or of X,SN) (arrays)

structure constants, see §1.3
the variance
the variance of Sy

an entry of a Markov chain, or the N-th row of a Markov array
a Markov chain or a Markov array
(usually) a real number not too far from E(Sy)
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[Sny > 1]

[x], [x]
{x}, (x)

almost everywhere

almost surely

the following are equivalent
such that

without loss of generality

the empty set

because

therefore

the indicator function of the set E, equal to 1 on E and to
zero elsewhere

a quantity inside [a — €,a+ €|

a quantity in [e”%a,e%d]

n—oo

ay < b, < 0 < liminf(a,/b,) < limsup(a,/b,) <

an < by < limsup(a, /by) < oo

for measures: 4 < v means “v(E) =0 = u(E) = 0 for all measurable
E; For numbers: non-rigorous shorthand for “much smaller than”
non-rigorous shorthand for “approximately equal”

is defined to be equal to

an equality that will be justified later
a possibly false equality that requires checking

convergence in probability

convergence in distribution

convergence in L”

conditions in brackets indicate the events that the conditions happen.
For example, if ¢ : & — R, then [¢p(®) > 1] :={w e &S: p(w) >1}

x| :=max{ne€Z:n<x}, [x] :=min{n€Z:n>x}
{x} :=x— |x]; (x) is the unique number in [—7, ) s.t. x — (x) € 277

{xhiz, Xz {xhiz i =t{x/t}, x|z :=x—{x}1z, s0 [x|;z € tZ and {x},7 € [0,1)

The Fourier transform of an L' function ¢ : R — R is

9(E) = /R e 50 (u)du.

The Legendre-Fenchel transform of a convex real-valued function ¢ on R is

¢*(n) = sgp[én —o(8)]-






Preface

Setup and aim

Our aim is to provide asymptotic formulas for the probabilities P,[Sy — zy € (a,b)], where X,
is a Markov chain, x is some initial state, P, := P[ - |X; = x],
N
Sy = Z Jfu(Xn,Xu11), and zy are real numbers not too far from E(Sy ).
n=1

Such results are called local limit theorems (LLT),' and they have a long history, see the
end of this chapter. The novelty of this work is that we allow the Markov chain to be inhomoge-
neous. This means that we allow the set of states, the transition probabilities, and the summands
Jn to depend on n.

We will always assume that f,, are uniformly bounded real-valued functions, and that {X,}
is uniformly elliptic, a technical condition which will be stated in chapter 1, and which implies
uniform exponential mixing.

These assumptions place us in the Gaussian domain of attraction. The analogy with classical
results for sums of independent identically distributed (iid) random variables suggests that in the
best of all situations, we should expect the following (in what follows Viy = Var(Sy) and Ay ~
By <:>AN/BN m 1):

2
. L. v —E(Swn) e T2

1) Local deviations: [f ——————— — z, then P,.[Sy —zy € (a,b)| ~

v et Bl @bl

—E(S
(2) Moderate deviations: If ZNVJ
N

la—Db|.
— 0, then
_ 140(1) (sz]E(SN))Z
e 2\ VW
\/2775VN

Py[Sy —zv € (a,b)] ~ ja—bl.

—E(S
(3) Large deviations: If ZNVJ < ¢ with ¢ > 0 sufficiently small, then for every x in the
N
state space of X,
W IN(vy) b ~E(Sy)
e N —féN(ZN N ) ( ZN—E(SN)>
PSSy —zv € (a,b)] ~ ———" W /dt- , ==~ ), where
«[Sv —zv € (a,b)] 27Vy ., ¢ PN\ ¥ 25 W

o y(-) are the Legendre transforms of .y (&) := % logE(e55M).

! By contrast, central limit theorems describe P[Sy — zy € (a+/Var(Sy), b+/Var(Sy))].
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o &y :(—c,c) — Rsatisfy Ey(0) =0, sgn(En(n)) = sgn(n), and 3C > 0 independent of N
st. C | < |Ev(n)| < ClnlforallN €N, |n| < c.

o pn(x,t) — 1 uniformly in N, x, and p,(-,-) are uniformly bounded away from 0, on
S x [—c¢,c] where G is the state space of X;.

o ¢,&y,py depend on the Markov chain, but not on zy or on (a,b).

(The asymptotic results in the large deviation regime are more precise than in the moderate
deviation case, but less universal. See Chapter 6 for more details.)

Although the asymptotic formulas (1)—(3) above are true in many cases, they do sometime fail
— even when Sy is a sum of i1id’s. The aim of this work is to give general sufficient conditions
for (1)—(3), and to provide the necessary asymptotic corrections when some of these conditions
fail. To do this we first identify all the obstructions to (1)—(3), and then we analyze Sy when
these obstructions happen.

The obstructions to the local limit theorems

The algebraic range is the smallest closed additive subgroup G < R for which there are ¢, €
R so that f,,(X,,X,+1) — ¢, € G almost surely for all n. We show that the following list is a
complete set of obstructions to (1)—(3):

(I) Lattice behavior: The algebraic range is tZ with ¢t € R.

(IT) Center-tightness: Var(Sy) does not tend to infinity. In chapter 2 we will see that in this
case Var(Sy) must be bounded.

(IIT) Reducibility: f,,(X,, X,+1) = gn(Xn, Xnt1) + 0 (X, Xu11) where {c, (X, X,+1)} is center-
tight, and the algebraic range of {g,, (X, X,,+1)} is strictly smaller than the algebraic range

of {fn(Xns Xn+1)}-
One of our main results is that (1)—(3) hold whenever (I), (II), (IIT) fail.

How to show that the obstructions do not occur

While it is usually easy to rule out the lattice obstruction (1), it is often not clear how to rule
out (IT) and (IIT). What is needed is a tool that determines from the data of f,, and X;, whether
{fn(Xn,Xn+1)} is center-tight or reducible.

In chapter 1, we introduce numerical constants d, (&) (n > 3,& € R) which are defined purely
in terms of the transition probabilities 7, ,11(x,E) := P(X,41 € E|X, = x) and the functions
fn(x,y), and which can be used to determine which obstructions occur and which vanish:

o If Zd,%(é) = oo for all £ # 0, then the obstructions (I),(II),(IIT) do not occur, and the asymp-
totic expansions (1)—(3) hold.

o If Y.d2(&) < oo for all £ # 0, then Var(Sy) is bounded (obstruction II).

o If Y.d?(&) = oo for some but not all £ # 0, then Var(Sy) — oo but we are either lattice or
reducible: (II) fails, but at least one of (I),(III) occurs.

We call d,(&) the structure constants of X = {X, } and f = {f,}.
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What happens when the obstructions do occur
(I) The lattice case

The lattice obstruction (I) already happens for sums of iid’s, and the classical approach how to
adjust (1)—(3) to this setup extends without much difficulty to the inhomogeneous Markov case.
Suppose the algebraic range is tZ with ¢ # 0, i.e. there are constants ¢, such that f,, (X, X, 1) —
cn € tZ almost surely for all n. Assume further that 7 is the smallest group with this property.
In this case
Sy € W+tZ as. forall N,

where Yy = YN | ¢; mod ¢Z. Instead of analyzing Py[Sy — zy € (a,b)], which might be equal to
zero, we study Py[Sy — zv = kt|, with k € Z fixed and zy € Yy +tZ.

We show that in case (I), if the algebraic range is ¢Z, and obstructions (II) and (IIT) do not
occur, then (as in the case of iid’s):

(1’)Ifw—>z,zNe}/N+tZandkeZ,thenIP’x[SN—zN:kt]Nf/%]t].
2" Ifm_‘ﬁﬂ 0, zv € v +1Z and k € Z, then
! 1 _1++<1>(z1v—ﬂa<sm)2
PalSy — oy = ] ~ e Vi ).

IN — E(SN)

N
for every x in the state space of X,

(3) If ‘ < ¢ with ¢ > 0 sufficiently small, zy € Yy +tZ and (a,b) Nt7Z # &, then

“W AR et NEGN)
Px[SN —2IN € (Cl,b)] ~ 2— . Z |t|€ T&N( Vv ) ‘PN ()C, ZN—‘I%V(SN)>
VN te€(a,b)Z

where Zy(-), py and &y have the properties listed in the non-lattice case (3).

The previous results hold for lattice valued, irreducible, non-center tight additive functionals,
that is, when (I) holds and (II),(IIl) fail. Here is an equivalent condition in terms of the data of
X, and f,:

2
Jt #0s.t. Zdﬁ(f) < oo exactly when & € TEZ.

Under this condition, (1”)—(3) hold with parameter |¢|.

(Il) The center-tight case

We show that obstruction (II) happens iff f,(X,,X,+1) can be put in the form

fn(Xn;XnJrl) = dp+1 (Xn+l) - an(Xn) +hn(XnaXn+1) +cn (*)

where a,(X,) are uniformly bounded, ¢, are constants, h,(X,,X,,1) have mean zero, and
Y. Var|h, (X, Xnt1)] < oe.
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The freedom in choosing a, (X)) is too great to allow general statements on the asymptotic
behavior of P,[Sy —zxy € (a,b)], see Example 2.2.2 But as we shall we see in chapter 2, (x) does
provide us with some almost sure control:

N
Sy =ani1(Xns1) —ar(X1) + Y (X, Xa 1) + W,

n=1

[

where Yy = Zﬁ.\’: 1 i, and Z hu (X, Xn+1) converges almost surely. This means that in the center-

n=1
tight scenario, Sy —E(Sy) can be decomposed into the sum of two terms: A bounded oscillatory
term which only depends on X7, Xy 1, and a term which depends on the entire past Xy, ..., Xy

and which converges almost surely.

(III) The reducible case

In the reducible case, we can decompose

Fn(Xns Xn1) = 8n (X, Xnr1) + (X, Xt 1) (k%)

where {c,(X,,X,+1)} is center-tight, and the algebraic range of {g,(X,,X,+1)} is strictly
smaller than the algebraic range of {f, (X, Xu+1)}-

In principle, it is possible that {g,(X,,X,+1)} is reducible too, but in chapter 5 we show that
one can find an “optimal” decomposition (xx) where {g,(X,, X,+1)} is not reducible, and cannot
be decomposed further. The algebraic range of the “optimal” {g, (X, X,+1)} is the “infimum”
of all possible reduced ranges:

G o m G- G is the algebraic range of some {g, (X, X+1)}
ess " which satisfies (xx) with {c,(X,,X,+1)} center-tight [’

We call G, the essential range of {f,}. It can be calculated explicitly from the data of f,, and
X,, in terms of the structure constants, see Theorem 3.2.

It follows from the definitions that G, is a proper closed subgroup of R, so Gz = {0} or
tZ or R. In the reducible case, G.5; = {0} or tZ, because if G,5; = R, then the algebraic range
(which contains G,;) is also equal to R.

If G.ss = {0}, then the optimal {g,} has algebraic range {0}, and g, are constant functions.
In this case f, is center-tight, and we are back in case (II).

If Goss =7 with t # 0, then {g,(X,,X,+1)} is lattice, non-center-tight, and irreducible.
Therefore

N N
Sy = Z gn(XanJrl) + Z Cn(XnaXnJrl) (T)

n=1 n=1
N 7 N 7
TV TV

Sn(g) Sn(c)
where S, (g) satisfies the lattice local limit theorems (1”)—(3") with parameter ¢, and Var[Sy(c)| =
O(1). Trading constants between g and ¢, we can also arrange E(Sy(c)) = O(1).
Unfortunately even though Var[S,(f)] — eo and Var[Sy(c)] = O(1), examples show that Sy(c)
is still powerful enough to disrupt the local limit theorem for Sy, lattice or non-lattice (example

2 Throughout this work, Example X.Y is example number Y in chapter X. Similarly for Theorems, Propositions etc.
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5.1). Heuristically, what happens is that the mass of Sy(g) concentrates on cosets of tZ accord-
ing to (1”)—(3’), but Sy(c) smudges this mass to a neighborhood of the lattice in a non-universal
manner.

This suggests that (1)—(3) should be approximately true for intervals (a,b) of length |a — b| >
|t|, but false for intervals of length |a — b| < |¢|. In chapter 5 we prove results in this direction.
av—E(Sn)

For intervals with size |a — b| > 2|t|, we show that for all zy € R such that T

— z, for
all N large enough

1 6_12/2]a—b| e_zz/z\a—b]
SO sy —av e (ab)] <3| 2 PN)
3( ez R W

If |a — b| > L > |t|, we can replace 3 by a constant C(L) such that C(L) T> 1.
L/|t|—oo
For general intervals, possibly with length less than |¢|, we show the following: There are
uniformly bounded functions by (x,xy+1) and a random variable $) = $(X;,X>,X3,...) so that

for every zy € t7Z s.t. ZN*E# — z, for every ¢ : R — R continuous with compact support,

. B 6—22/2|l|
im /VVE[§(Sy —zv — by (X1, Xv+1))] = Nir m;ZEx[(D(mt—Fﬁ)]- (%)

. . . . . ~22/2),_
For ¢ ~ 1, with [a—b| > |¢], the right-hand-side of (%) is approximately equal to e—ﬂ'—;b‘,
in accordance with (1), see Lemma 5.7. But for |a — b| < |t|, the right-hand-side depends on the
essential range 77 and on the detailed structure of {c,(X,,X,+1)} through 7, by(X;,Xn-1) and

9

What are by (Xy,Xy+1) and $? Recall that the term ¢, (X,,X,,+1) on the right-hand-side of
() is center-tight. As such, it can be put in the form

Cn(XnaXn—H) = an—l—l(Xn—H) - an(Xn) +hn(Xn7Xn+1) +CZ7

where sup,,(ess sup |a,|) < oo, ¢}; are constants, E(h,(X,,X,+1)) =0, and }_ 4, converges almost
surely. Let yy := Y, ¢ = E(Sn(c)) +O(1) = O(1). The proof of (f) shows that

o by =ay+1(Xn+1) —a1(X1) + {w}iz, where {x},z = [t|{x/]t|} =x modtZ;

o $H= Z:lozl hn(XnaXn+l>-3

This works as follows. Let zy := zy — [z, Where [x],z := x — {x},z € tZ. Then 2}, € tZ,

ZI*V_]E(SN) _ ZNf]E(SN)+O(1)
\%N - VN

— z, and

SN —bn —zv = [Sn(g) —zy] +Sn(h).

By subtracting by from Sy, we are shifting the distribution of Sy to the distribution of the sum
of two terms: The first, Sy(g), is an irreducible t7Z-valued additive functional; and the second,
Sn(h), converges almost surely to §.

Suppose for the sake of discussion that Sy(g),Sny(h) were independent, then the lattice LLT
for Sy (g) and the definition of §) would imply that

Jim VIE[Q(Sy — by —2w)] = [ 9(xm(d)

3 It is possible to replace $ by a different random variable § which is bounded, see chapter 5.
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_2/ .
where m := %m,z *my,, and mg (E) := P[$) € E], my7 := |t|-counting measure of tZ. Calcu-

lating, we find that [ ¢dm =right-hand-side of ().

In general, Sy(g) and Sy(h) are not independent, and the problem of proving (&) reduces to
the problem of proving that Sy(g) and Sy(h) are asymptotically independent. This is done in
chapter 5.

For further consequences of (%), including an interpretation in terms of the asymptotic distri-
butional behavior of Sy modulo ¢Z, see chapter 5.

Final words on the setup of this work

Before we end the preface, we would like to comment on a choice we made when we wrote this
work, specifically, our focus on additive functionals of the form f,, = f;,(X,, X;+1)-

This choice is somewhat unorthodox: The theory of Markov processes is mostly concerned
with the case f, = f,(X,) (see e.g. [45, 109, 139]), and the theory of stochastic processes is
mostly concerned with the case f, = f,,(Xy, Xy+1,- - ), under assumptions of weak dependence
of Xi, X, when |k —n| > 1 (see e.g. [74, 130]). We decided to study f,, = f,,(Xp, X,+1) for the
following reasons:

o The case f,, = f,(Xp,X,+1) is richer than the case f,, = f,(X,) because it contains gradients
an+1(Xnt1) — an(Xy). Two additive functionals which differ by a gradient with uniformly
bounded ess sup |a,| will have the same CLT behavior, but they may have different LLT be-
havior, because their algebraic ranges can be different. This leads to an interesting reduction
theory which we would have missed had we only considered the case f, = f,(X;).*

o The case f,,(Xp,...,Xn+m) with m > 1 can be deduced from the case f,(X,,X,+1), and does
not require new ideas, see Example 1.3 and the discussion in §1.3.3. We decided to keep
m = 1 and leave the extension to m > 1 to the reader.

o The case f;, = fn(Xn,Xu+1,...) is of great interest, and we hope to address it in the future, but
at the moment our results do not cover it.

We hope to stimulate research into the local limit theorem of additive functionals of general
non-stationary stochastic processes with mixing conditions. Such work will have applications
outside the theory of stochastic processes, such as the theory of dynamical systems. Our work
here is a step in this direction.

Notes and references

Local limit theorems for sums of iid’s. The first LLT is of course the celebrated de Moivre—
Laplace Theorem. De Moivre, in his 1738 book [33], gave approximations for Pla < S, < D]
when S, = X1+ --- + X,,, and X; are iid, equal to zero or one with equal probabilities. Laplace
extended de Moivre’s results to the case when X; are equal to zero or one with non-equal prob-
abilities [89, 90]. Pdlya, in 1921, extended these results to the vector valued iid which generate
the simple random walk on Z¢, and deduced his famous criterion for the recurrence of simple
random walks [121].

4 We cannot reduce the case f;,(X,,X,1) to the case f,(¥,) by working with the Markov chain ¥, = (X,, X, ) because {¥,} may no
longer satisfy some of our standing assumptions, specifically the uniformly ellipticity condition (see chapter 1).
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The next historical landmark is Gnedenko’s 1948 work [59, 60] which initiated the study of
the LLT for sums of iid with general lattice distributions. He asked for the weakest possible
assumptions on the distribution of iid’s X; which lead to a LLT with Gaussian or stable limit.
Khinchin popularized the problem by emphasizing its importance to the foundations of quan-
tum statistical physics [77], and it was studied intensively by the Russian school, with important
contributions by Linnik, Ibragimov, Prohorov, Richter, Saulis, Petrov and others. We will com-
ment on some of these contributions in later chapters. For the moment, we refer the reader to
the excellent books by Gnendenko & Kolmogorov [61], Ibragimov & Linnik [74], and Petrov
[117] and the many references they contain.

The early works on the local limit theorem all focused on the lattice case. The Gnedenko—
Kolmogorov book [61] contains the first result we are aware of which could be considered to be
a non-lattice local limit theorem. The authors assume that each of the iid’s X; have a probability
density function p(x) € L" with finite variance 6, and show that the density function p,(x) of
X + -+ X, satisfies

1 _x2/2.

ov/npu(oy/nx) — e

n—eo /21
There could be non-lattice iid’s without density functions, for example the iid’s X; equal to
(—1),0,0r /2 with equal probabilities (the algebraic range is R, because the group generated by
(—1) and v/2 is dense). Shepp [141] was the first to consider non-lattice LLT in such cases. His
approach was to provide asymptotic formulas for Pla < S, — E(Sy) < b] for arbitrary intervals

[a, D], or for
\/27Nar Sy E[9(Sy — E(S))]

for all test functions ¢ : R — R which are continuous with compact support. In this monograph,
we use a slight modification of Shepp’s formulation of the LLT. Instead of working with Sy —
E(Sy), we work with Sy — zy subject to the assumptions that zy is “not too far” from E(Sy),
and that Sy — zy € algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued 1id in [147], ex-
tending earlier work of Rvaceva [132] who treated the lattice case. These works are important
not only because of the intrinsic interest in the vector valued case, but also because of technical
innovations which became tools of the trade, see e.g. [17].

Local limit theorems for stationary stochastic processes. The earliest local limit theorem
for non-iid sequences {X;} is due to Kolmogorov [83]. He considered stationary homogeneous
Markov chains {X;} with a finite set of states & = {ay,...,a, }, and proved a local limit theorem
for the occupation times

=z

Sy = 17()(,-), where £ (x) = (Lo (x), ., Ia, (x)).

1

Following further developments for finite state Markov chains by Sirazhdinov [142], Nagaev
[109] was able to obtain a very general local limit theorems for Sy = Z?’: | f(X;) for a large
class of stationary homogeneous countable Markov chains {X;} and for a variety of unbounded
functions f, both in the gaussian and stable cases.

Nagaev’s paper introduced the method of characteristic function operators, which is also ap-
plicable outside the context of Markov chains. This opened the way for proving LLT for other
weakly dependent stationary stochastic processes, and in particular to time series of probability
preserving dynamical systems. Guivarc’h & Hardy [65] proved gaussian local limit theorems
for Birkhoff sums Sy = Zﬁvz | f(T'x) for Anosov diffeomorphisms 7 : X — X with an invari-
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ant Gibbs measure, and Holder continuous functions f. Rosseau-Egele [127] and Broise [19]
proved such theorems for piecewise expanding interval map possessing an absolutely continu-
ous invariant measure, X = [0, 1], and f € BV. Aaronson & Denker [4] gave general LLT for sta-
tionary processes generated by Gibbs-Markov maps both in the gaussian and in the non-gaussian
domain of attraction. These results have found many applications in infinite ergodic theory, dy-
namical systems and hyperbolic geometry, see for example [1], [3], [S]. The influence of Na-
gaev’s method can also be recognized in other works on other asymptotic problems in dynamics
and geometry, see for example [9], [10], [69], [76], [87], [88], [91], [92],[119],[120], [140]. For
the connection between the LLT and the behavior of local times for stationary stochastic pro-
cesses, see [38, 51].

Local limit theorems for non-stationary stochastic processes. The interest in limit theorems
for sums of non-identically distributed, independent, random variables goes back to the works of
Chebyshev [148], Lyapunov [99] , and Lindeberg [95] who considered the central limit theorem
for such sums.

The study of LLT for sums of non-identically distributed random variables started later, in
the works of Prohorov [122] and Rozanov [128]. A common theme in these works and those
that followed them is to assume an asymptotic for Pla < % < b] for suitable normalizing
constants Ay, By, and then ask what extra conditions imply an asymptotic for Pla < Sy — Ay <
b].

An important counterexample by Gamerklidze [58] pointed the way towards the phenomenon
that the distribution of Sy may lie close to a proper sub-group of its algebraic range without
actually charging it, and a variety of sufficient conditions which rule this out were developed
over the years. We mention especially Rozanov’s condition in the lattice case [128] (see the end
of chapter 3), the Mineka-Silverman condition in the non-lattice case [104], and Statulevicius’s
condition [146], and conditions motivated by additive number theory such as those appearing
in [106] and [107]. For a discussion of these conditions, see [108].

Dolgopyat proved a LLT for sums of non-identically distributed, independent random vari-
ables which also applies to the reducible case [49].

Dobrushin proved a general central limit theorem for inhomogeneous Markov chains in [45]

(see chapter 2). Local limit theorems for inhomogeneous Markov chains are considered in [145].
N

Merlevede, M. Peligrad and C. Peligrad proved local limit theorems for sums Z fi(X;) where
i=1

{X;} is a y-mixing inhomogeneous Markov chain, under the irreducibility condition of Mineka

& Silverman [114]. Hafouta obtained local limit theorems for a class of inhomogeneous Markov

chains in [67]. In a different direction, central limit theorems for time-series of inhomogeneous

sequences of Anosov diffeomorphisms are proved in [12] and [27].

An important source of examples of inhomogeneous Markov chains is a Markov chain in
random environment, when considered for a specific (“quenched”) realizations of the environ-
ment (see chapter 8). Hafouta & Kifer proved local limit theorems for non-conventional ergodic
sums in [68], and local limit theorems for random dynamical systems including Markov chains
in random environment in [69]. Demers, Péne & Zhang [36] prove a LLT for an integer valued
observable for a random dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov chains in ran-
dom environment studied in [69], we note the following differences:

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of noise and not
just to almost every realization of noise;
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(b) In the random environment setup, a center—tight additive functional must be a coboundary,
while in the general case it can also have a component with summable variances;

(c) In the non center-tight random environment setup, the variance grows linearly for a.e. re-
alization of noise. But for a general inhomogeneous Markov chain it can grow arbitrarily
slowly.

The contribution of this work. The novelty of this work is in providing optimal sufficient
conditions for the classical asymptotic formulas for P[Sy — zy € (a,b)], and in the analysis of
P[Sy — zv € (a,b)] when these conditions fail.

In particular, we derive a new asymptotic formula for P[Sy — zy € (a,D)] in the reducible
case, subject to assumption that Viy := Var(Sy) — oo, and we prove a structure theorem for Sy
in case Viy /5 oo.

Unlike previous works, our analysis does not require any assumptions on the rate of growth
of Vi, beyond convergence to infinity.

Acknowledgements: The work on this monograph was partially supported by the BSF grant
201610. The authors thank the staff of Weizmann Institute for excellent working conditions.
O.S. was also partially supported by ISF grant 1149/18. D.D. was partially supported by NSF
grants DMS 1665046 and DMS 1956049. The authors are indebted to Manfred Denker, Yuri
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work.






Chapter 1
Additive functionals on Markov arrays

This chapter discusses the setup and standing assumptions used in this work.

1.1 The basic setup
1.1.1 Inhomogeneous Markov chains

A Markov chain is given by the following data:

o State spaces: Borel spaces (S,,%(S,)) (n > 1), where &, is a complete separable metric
space, and #(6,) is the Borel o-algebra of S,. G, is the set of “the possible states of the
Markov chain at time n.”

o Transition probabilities: Borel probability measures ) (x,dy)on G, 41 (x€&,,n>1),

n,n+1
so that for every Borel E C &, 1, the function x — 75,5 n)+1 (x,E) is measurable. The measure

7, (x, E) is “the probability of event E at time n+ 1, given that the state at time n was x.”

o Initial distribution: 7(dx), a Borel probability measure on &;. w(E) is “the probability that
the state x at time 1 satisfies x € E.”

The Markov chain associated with this data is the Markov process X := {X,},>1 such that
X, € 6, for all n, and so that for all Borel E; C G&;,

P(X; € Ey) =n(E1) , P(Xut1 € En11Xn = Xn) = Tp 1 (X, Eni1)-
X is uniquely defined, with joint distribution
P(X; €Ey,-- , X, €E,) := (1.1.1)
/ /n 2 /El Tu—1 0(Xn—1,En) T (dx1) 71 2(X1,dX2) - - T2 p—1 (Xn—2,dXp—1).

X satisfies the following important Markov property:
]P)(Xn+1 € E|Xn,Xn,1, ... ,X1> = P(Xn+1 € E|Xn) = nn,n+l<Xn,E). (1.1.2)

See, for instance, [17, Ch. 7].

In what follows P, [E and Var denote the probability, expectation, and variance calculated
using this joint distribution. In the special case when 7 is the point mass at x, we write
P,,E, and Var,.

19
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If the state spaces and the transition probabilities do not depend on n, i.e., G, = &; and
Ty nt1(x,dy) = m 2(x,dy) for all n, then we call X a homogeneous Markov chain. Otherwise,
X is called an inhomogeneous Markov chain. In this work, we are mainly interested in the
inhomogeneous case.

Example 1.1 (Markov chain with finite state spaces). These are Markov chains X with state
spaces S, ={1,...,d,} , B(S,) = { subsets of S, }.

In this case the transition probabilities are completely characterized by the rectangular
stochastic matrices with entries

Ty = Tpns1 (6 {y}) (x=1,....dns y=1,....dp11),

and the initial distribution is completely characterized by the probability vector

mo=n({x}) (x=1,....,dy).
The joint distribution of {X,} is given by

1 2 -1
]P)(Xlle,"‘»Xn:xn):ﬂxlﬂ T T

XX Mpx3 T M X

and this leads to the following discrete version of (1.1.1):

P(X, €El,---  Xp€Ep) = Y, Y Y ”xlﬂ;lxﬂfzxy“”fnjxn-

Xn—1€Ey1 Xp2€E—2  x1€E}
Example 1.2 (Markov chains in random environment).

Let X denote a homogeneous Markov chain with state space &, transition probability
7(x,dy), and initial distribution concentrated at a point x;. It is possible to view X as a model
for the motion of a particle on G as follows. At time 1, the particle is located at x;, and a parti-
cle at position x will jump after one time step to a random location y, distributed like 7(x,dy):
P(y € E) = m(x, E). With this interpretation,

X, = the position of the particle at time 7.

The homogeneity of X is reflected in the fact that the law of motion which governs the jumps
does not change in time.

Let us now refine the model by adding a dependence of the transition probabilities on an
external parameter @, which we think of as “the environment.” For example, @ can represent
a external force field which affects the likelihood of various movements, and which can be
modified by God or some other experimentalist. The transition probabilities become 7 (x, ®,dy).

Suppose the environment @ changes in time according to some deterministic rule. This is
modeled by amap T : Q — Q, where (2 is the collection of all possible states of the environ-
ment, and 7 is a deterministic law of motion which says that an environment at state @ will
evolve after one unit of time to the state 7'(®). Iterating we see that if the initial state of the en-
vironment at time zero was @, then its state at time n willbe @, = 7"~ !(@) = (T o---o T)(®).

Returning to our particle, we see that if the initial condition of the environment at time one is
®, then the transition probabilities at time n are

7T$H+1<X7 dy) - ﬂ(x, Tn_l (a))7dy)
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Thus each @ € Q gives rise to an inhomogeneous Markov chain X%, which describes the Marko-
vian dynamics of a particle, coupled to a changing environment, and corresponding to the initial
condition that at time one, the particle is at position x; and the environment is at state .

If T(®) = o, the environment stays fixed, and the Markov chain is homogeneous, otherwise
the Markov chain is inhomogeneous. We will return to Markov chains in random environment
in chapter 8.

Example 1.3 (Markov chains with finite memory).

We can weaken the Markov property (1.1.2) by specifying that for some fixed ky > 1, for all
EcA (6n+1),

P(thq e E|Xn, o 7X1) _ {P(Xn-i-l € E|Xn7 e 7Xn—ko+l) n> kO;

P(Xyt1 € E[Xy, ..., X1) n < k.
Stochastic processes like that are called “Markov chains with finite memory” (of length k).
Markov chains with memory of length 1 are ordinary Markov chains. Markov chains with mem-
ory of length ko > 1 can be recast as ordinary Markov chains by considering the stochastic pro-
cess X = {(Xu, ..., Xn+ko—1) }n>1 With its natural state spaces, initial distribution, and transition
kernels.

Example 1.4 (A non-example). Every inhomogeneous Markov chain X can be presented as a
homogeneous Markov chain Y, but this is not very useful.

Let G; denote the state spaces of X. These are complete separable metric spaces, and therefore
they are Borel isomorphic to R, or to Z, or to a finite set (see e.g. [143], §3). So we can construct
Borel bi-measurable injections ¢; : G; — R. Let

Yo = (@n(Xn),n).

We claim that Y = {Y, },,>1 is a homogeneous Markov chain. Let 55 denote the Dirac measure
at §, defined by &¢(E) := 1 when E > & and 6¢ (E) := 0 otherwise. Let &, T, 11 and 7 denote
the states spaces, transition probabilities, and initial distribution of X. Define a homogeneous
Markov chain Z with

o state space © :=R x N
o initial distribution 7 := (7o (pl_l) x 81, ameasure on S x {1}
o transition probabilities
~1 ~1
o xB)om [T1 (010 0)8) xS
00(A)61(B) otherwise.

A direct calculation shows that the joint distribution Z is equal to the joint distribution of Y =
{(@n(Xp),n) }n>1. So Y is a homogeneous Markov chain.

Such presentations will not be useful to us, because they destroy useful structures which

are essential for our work on the local limit theorem. For example, they destroy the uniform
ellipticity property in section 1.2 below.
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1.1.2 Inhomogeneous Markov arrays

For technical reasons that we will explain later, it is useful to consider a generalization of a
Markov chain, called a Markov array. To define a Markov array, we need the following data:

o Row lengths: ky + 1 where ky > 1 and (ky)n> is strictly increasing.

o State spaces: (6£,N) N (6£,N))), (1<n<ky+1), where &M isa complete separable metric
space with more than one point and A (G,SN)) is its Borel o-algebra.

o Transition probabilities: { Ty n +1 (x, dy)} v (1 <n <ky) where n,(l]\:lll
(N) (N)

probability measures on S, |, so that for every Borel ECSG, ],
is measurable, and for all x, and 7, .1 (x,-) is not carried by a single atom.

(x,dy) are Borel

the function x — 71:,5 n)+1 (x,E)

o Initial distributions: Borel probability measures ™) (dx) on G(IN).

For each N > 1, this data determines a finite Markov chain of length ky + 1

XWN) — (XI(N) , XZ(N), I Xg\yll ), called the N-th row of the array. We will continue to denote the

joint probability distribution, expectation, and variance of X V) by P, K, and Var. These objects
depend on N, but the index N will always be obvious from the context, and can be suppressed.
As always, in cases when we wish to condition on the initial state X I(N)
and E,.

= x, we will write P,

The rows X&) = (XI(N) ,XZ(N), . ,Xk([]V\?LI) can be arranged in an array of random variables
(1) (1)
Xl(z)’m’X}E e
X=100) X'E g
Xl ""7Xk1+l Xk2+1""’Xk3+l
Each horizontal row X&) = (XI(N) ,Xz(N), . 7Xk(£]4)rl) comes equipped with a joint distribution,

which depends on N. But no joint distribution on elements of different rows is specified.
Example 1.5 (Markov chains as Markov arrays).

Every Markov chain {X, } gives rise to a Markov array with row lengths ky = N + 1 and rows

XWN) = (X1,---,Xn+1)- In this case 6£LN) S, zV)

N) _
bl = = Ty n41, and W) =g

Tun+1, and 7N) = 1 determines

N )

Conversely, any Markov array so that 6( ) = =G,, ﬂ,g n)+1

a Markov chain with state spaces G, transition probabilities .,
N) —

1= Tt and initial distri-

butions 7®™) = 7.
Example 1.6 (Change of measure). Suppose {X, },>1 is a Markov chain with data &,,, T, 11, T,

(N)

and let @, "’ (x,y) be a family of positive measurable functions on &, X S, 1. Define new tran-
sition probabilities by

(py(ll;?+1 (X,y)

(N) )
T (x,dy) =
J <P,5{,v,)+1 (%, 3) T 11 (x,dy)

n,n+1

Tnn+1 (x7 dy)'
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Then the data ky = N + 1, GS,N) =G, aW) .= 1 and n,(lp:la_l determines a Markov array called
the change of measure of {X, } with weights (p,(lN).

Why study Markov arrays? There are several reasons, and the one most relevant to this work
is the following: The theory of large deviations for Markov chains, relies on a change of measure

which results in Markov arrays. Thus, readers who are only interested in local limit theorems
w—E(Sy)

Var(Sy)
their attention to Markov chains. But those who are also interested in the large deviations

regime, where |M\ is of order 1, will need the theory for Markov arrays.

for Markov chains in the local regime — z, may ignore the theory of arrays and limit

1.1.3 Additive functionals

An additive functional of a Markov chain is a sequence f = {f,},>1 of measurable functions
fn:6, xS, — R, where &, are the states spaces of the Markov chain. The pair X = {X, },f =
{f} determines a stochastic process

Sn = fi(X1,X2) + fo(X2, X3) + -+ + fn (X, Xy 1) (N >1).

We will often abuse terminology and call (X,f) and {Sy}n>; “additive functionals.”
An additive functional of a Markov array X with row lengths ky + 1 and state spaces 6,(1N)

is an array of measurable functions fn(N) : 6,(1N) x &™) R with row lengths ky:

n+1

1 1
ff;,...,f,g; R
f: f] 7 7fk1 ’* 7fk (3)
f] ) ’fkl ) 7fk2 LAY )

Again, this determines a sequence of random variables

which we also refer to as “additive functional.” But be careful! This is not a stochastic process,
because no joint distribution of Sy, 5>, ... is specified.
Suppose f, g are two additive functionals on X. If X is a Markov chain,

frgim {fitad o i={ch}, W?ﬂ%(wMEwwo
n X,y

and ess sup |f| := sup (ess sup | f(Xu, Xn+1)])-
n
Similarly, if X is a Markov array with row lengths ky + 1, then

Hy%ﬁ+&%cﬂ4%m,W:wsw<wwmww’

N 1<n<ky \ x,y

and
ess sup|f| :=sup sup (ess sup|fn(N) (X,ﬁN),X,EJI)I)D :

N 1<n<ky
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The notation |f| < K a.s. will mean that ess sup |f| < K ( “a.s.” stands for “almost surely”). An
additive functional is called uniformly bounded if there is a constant K such that |f| < K, and
uniformly bounded a.s. if 3K such that |f| < K a.s.

1.2 Uniform ellipticity
1.2.1 The definition

A Markov chain X with state spaces &, and transition probabilities 7, ,1(x,dy) is called uni-
formly elliptic, if there exists a Borel probability measure t,, on &,,, Borel measurable functions
Pn 6, x 6,41 — [0,00), and a constant 0 < & < 1 called the ellipticity constant such that for
alln>1,

@) Tpni1(x,dy) = pu(x,y)nr1(dy);
(b) 0 < p, <1/ep;

©) Jo,,, Pn(x:¥)Pns1(3:2) s 1(dy) > €.

We will see in Proposition 1.12 below that one can always assume without loss of generality
that u,, are the measures u,(E) =P(X, € E).

The integral in (c) is the two-step transition probability P(X, 1, = z|X, = x), and we will
sometime call (c) a two-step ellipticity condition. For more general y-step ellipticity condi-
tions, see §1.3.3.

Example 1.7 (Doeblin chains) Suppose X has finite state spaces S, s.t |S,| <M < o for all
n, and Ty, := Ty ni1(x, {y}) satisfy

(1) 3gy > 0s.t. foralln > 1 and (x,y) € &, X &, 11, either my, = 0 or Ty, > &);

(2) for all n, for all (x,z) € S, X &1, there exists y € &, such that n)’}yny’,’jl > 0.

Doeblin chains are uniformly elliptic: Take u, to be the uniform measure on &, and
Pul(x,y) := vy /|S,+1|- Then (a) is clear, (b) holds with any & < 1/M, and (c) holds with
& := (€)/M)?. Doeblin chains are named after W. Doeblin, who studied homogeneous count-
able Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays. A Markov

array X with state spaces GS,N), transition probabilities )

g1 (X dy), and row lengths ky +

1 is called uniformly elliptic, if there exist Borel probability measures /,L,EN) on GSZN), Borel

measurable functions pS,N) : G,QN) X 6511_\91 — [0,00), and a constant 0 < & < 1 as follows: For
allN>1and 1 <n<ky,
N N N
(a) ﬂ,i,nll(x,dw =} )(x,y>u,5+)1 (dy);
® 0<piY) <1/e;
© Jo,, oo @y)pl 2 (dy) > eo.

Example 1.8 Suppose X is a uniformly elliptic Markov chain and suppose Y is a Markov array

obtained from X by the change of measure construction described in Example 1.6. If the weights

(p,gN) (x,y) are uniformly bounded away from zero and infinity, then Y is uniformly elliptic.
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1.2.2 Contraction estimates and exponential mixing

Suppose X,9) are complete and separable metric spaces. A transition kernel from X to 2) is
a family {7 (x,dy)}.cx of Borel probability measures on %) so that x — 7(x,E) is measurable
for all E C X Borel. A transition kernel {7w(x,dy) } .cx determines two Markov operators, one
acting on measures and the other acting on functions. The action on measures takes a probability
measure [ on X and maps it to a probability measure on %) via

RW)(E) i= [ w(x.Eyu(d).

X

The action on functions takes a bounded Borel function u : ) — R and maps it to a bounded
Borel function on X via

() (x) = /@ u(y)m(x,dy).

The two operators are dual: [u(y)w(u)(dy) = [7(u)(x) u(dx).
These operators are contractions in the following sense. Define the oscillation of a function
u:Y — Rtobe

Osc(u) := sup |u(y1) —u(y2)l.
y1:y2€9)

The contraction coefficient of {7 (x,dy)},cx is
O(m) :=sup{|n(x1,E) —(x2,E)| : x1,x0 € X, E € B(D)}.
The total variation distance between two probability measures L1, Uy on X is
|1 — M2 |var := sup{|u1 (A) — up(A)| : A C X is measurable}

1 Sup{/w(x)(,ul — Wo)(dx)|w: X — [—1,1] is measurable}.

)
Caution! |11 — H2||var is actually one half of the total variation of u; — pp, because it is equal
to (U — M) ™ (X) and to (u; — i2) ™ (X), but not to

(%) = (1 — p2) ™ (%) + (1 — p2) ™ (X).

Lemma 1.9 ([139]) Suppose X,9) are complete and separable metric spaces, and {7 (x,dy) }xcx
is a transition kernel from X to ). Then:

(a) 0<6(m) <.

(b) 8(m) =sup{Osc[n(u)] | u:Y — R measurable, and Osc(u) < 1}.

(c) If 3 is a complete separable metric space, T is a transition kernel from X to %), and m, is a
transition kernel from ) to 3, then d(myom) < 8(m;)6(my).

(d) Osc[m(u)] < 8(m)Osc(u) for every u : Y — R bounded and measurable.

(e) ||mw(w) — w(wa)|var < O(7)||1 — W2 ||var for all Borel probability measures Uy, lp on X.
(f) Suppose A is a probability measure on X x %) with marginals Uy, lg), and transition kernel

{m(x,dy)}, i.e. A(E xQ) = ux(E), A(X X E) = ug(E), and
Maxdy) = [ alx.dy)z(av).

Let f € L*(ux),g € L*(liy) be two elements with zero integral. Then
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S8 A(dx,dy)| < /()| f1] L2 (yux) 1811 211y

Xx9)

Proof. (a) is trivial.
The inequality < in (b) is because for every E € #A(2)), u := 1 satisfies Osc(u) < 1. To

see >, fix some u : ) — R measurable such that Osc(u) < 1. Suppose first that u is a simple
m

function (a measurable function with finitely many values), then we can write u = ¢+ Z 0414,

i=1
where ¢ € R, |o;| < %Osc(u), and A; measurable and pairwise disjoint. For every pair of points
X1,X2 € X,

|7 () (x1) = 7 (u) (x2) =,

< Z OC,'[TC(Xl,Ai) — 71'()62,14,‘)] +

7r(x1 7Ai)>7[(X2,A,')

) o;[m(x1,A;) — m(x2,A;)]
m(x1,41)<m(x2,A;)

< %Osc(u)5(7r) + % Osc(u)3(x) = 8(r) Osc(u) = (7).

So Osc[m(u)] < §(m) for all simple functions u with Osc(u) < 1. A standard approximation
argument now shows that Osc[r(u)] < §(x) for all measurable u s.t. Osc(u) < 1. This proves
(b). Part (c) and (d) immediately follow.

To see (e), we restrict to the non-trivial case u; # . Let u := u; — Up, and decompose
u=pt —p~ where u* are singular positive measures (this is the Jordan decomposition).
Since p(X) =0, u™, u~ has equal total mass, and

B = 3 (0 () + () = 3l (%) = 11— v

Let

Uy — H2

fy=ut/ = wllvar, B2 =0/ — tallvar, Hi= 1 — o = ——————.
|1 — 12| var

Note that 11 and [, are probability measures.
For every non-constant measurable function w : Q) — [—1,1],

Loy d
2fﬁul(y):rtiﬁ\),§r L = %/ w(y1) (i) (dyr) —/yw(yz)ﬂ(ﬁz)(dyz)

2/ ) (1) (dxy) — /aeﬂ(w)(xz)ﬁz(dxz)

2 / / (W) (1) — 1 (w) (2] (ot ) iz (dxz), because fir(X) = 1,

25( 7) Osc(w) < &(m),by (b) and because Osc(w) < 2||w|e < 2.

Passing to the supremum over all w(y) gives part (e).

Part (f) is the content of Lemma 4.1 in [139, Lemma 4.1], and we reproduce the proof given
there. Consider the o-algebra 4 := {X X E : E C Q) is measurable}, which represents the infor-
mation on the §)—coordinate of (x,y) € X x 2.
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Let 7, be a measurable family of conditional probabilities given ¢, i.e. m, is a probability
measure on X x {y}, y — [ fdm, is Borel for every Borel function f: X x Q) — [0,1], A =
Jexy myd A, and for every A—absolutely integrable f(x,y),

Ex (f(x,y)|%)(y) = /% fdF, A-ac.
We may identify 7, with a probability measure 7(y,dx) on X defined by

n(y,E)=m,(E x {y}) (E C X Borel).

Itis useful to think of 7(y, dx) as the transition kernel “which goes the opposite way” to 7 (x,dy).
Indeed, if 7(x,dy) is the transition probability of a Markov chain {X,} from n to n+ 1, and 4
is the joint distribution of (X, X1 1), then (y,dx) is the transition probability from n+ 1 to n,
ie. T(),E) =P(X, € E|Xy11 =Y).

The operators 7 : L?(iy) — L (,ux) and 7 : L*(ux) — L*(Uy) are dual to one another, be-
cause [y f(x)7(g)(x)dpzx(x) and [y T(f)(y)8(y)dy(y) are both equal to [ f(x)g(y)A (dx,dy).

CLAIM: Q := o7 : L*(ux) — L*(ux) is self-adjoint, Q preserves the linear subspace
L3(ux) :={f € *(ux) : [ fdux =0}, and the spectral radius of Q : Ly — L3 is at most 5(Q).
Proof of the claim: Q is self adjoint, because Q* = (n7)* = T*n* = n7.

It is useful to notice that Q is given by (Qf)(x) = [ f(x')Q(x,dx’) where Q(x,E) is the prob-
ability measure on X given by Q(x,E) = [7(y,E)®(x,dy). O(x,dx’) is a transition probability
from X to X. Notice that Q(y) = Ux:

(0x)(E) = [ QG Epalare) = [ [ palaboymln,a)(E < ()
—/ 7, (E x {y}) (dx,dy) / 7,(E x D)dA = A(E x ) = px (E).

Thus, for all f € L>(uy), [Qfdux = [ fd(Qux) = [ fdux. It follows that Q : L?(uy) —
L*(uy) preserves the linear space L.

For every @ € L3NL™, ||¢]| < Osc(@). Since Q preserves L3N L™, for every f in this space,
we have by parts (c) and (d) that

1Q"fll2 < [1Q"Flo < Osc(Q"f) < 6(Q)" Osc(f). (1.2.1)

This implies that the spectral radius of Q : L3 — L3 is less than or equal to §(Q). Otherwise
there is an L%—function, part of whose spectral decomposition corresponds to the part of the
spectrum outside {A € R : |A]| < §(Q) + €} (self-adjoint operators have real spectrum). Any
sufficiently close L% N L*—function would have components with similar properties; but the
existence of such components is inconsistent with (1.2.1). The proof of the claim is complete.

We are ready for the proof of (f). Since Q : L(z) — L(z) is a self-adjoint operator on a Hilbert
space with spectral radius < 6(Q), (Q(f),f)L(z) < 5(Q)||f||i2 for all f € L3(ux). It follows that
0

~

IR ) = U E D 300) = Qi) < SIS

So every f € L3(uz).g € L3(ty)
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[ s = | [ (@) [ 200709600 = F .z
< IZ(Hlallglls < /@) Flalglla, as required. .

We now return to the setup of Markov arrays X = {X,gN) :1<n<ky+1,N>1} and consider
the following two-step transition probabilities

minaE) i= [ 2l a0 E) ml, ()

definedfor ] <n <N < oo, x € 6£1N), and E € ,%’(G(M

n+2
. : N
the following uniform bound for & (”r(z,n)+2)3

). The uniform ellipticity condition gives

Lemma 1.10 Ler X be a uniformly elliptic Markov array with ellipticity coefficient €. Then

sup sup O (n,(ll\,]llz) < 1 — &. Similarly for Markov chains.
N 1<n<ky

Proof. We fix N and drop the superscripts V),
Uniform ellipticity implies that 7, ,12(x,E) < W,2 and that the Radon-Nikodym density is
bounded from below by &y. This allows us to write

n'n,n+2 (x,dy) = SO,unJrZ(dy) + (1 - EO)ﬁn,n+2(xady)- (122)

Note that the first term does not depend on x.
Letu: S,.1» — R be ameasurable function with Osc(u) < 1, then we can write u(-) = c+w(-)
where c is a constant and ||w/|e < % A direct calculation shows that

/ u(2) T o (1, d2) — /6 () Ty sz (2, d2)

/ W(2) T2 (61, d2) — / W(2) Tn 2 (2, d2)

n n

= (1—8())

< (1 - 80) ||W||oo [nn,n+2(x176n+2) + 7rn,n+2(x27 6n+2)] <1- &,

/ WD) R (x1,d2) — / W(2) Ron 2 (x2,d2)

n n

where the last inequality holds since [|w||. < 1. O

Proposition 1.11 If X is uniformly elliptic, then there exist 6 € (0,1) and Cpix > 0, which only

depend on the ellipticity constant &y as follows. Suppose hg,N) (x,y) are measurable functions on

&M x &™), and let i == BN (XN xN)), then
(1) i hY) is bounded and E(hN) = 0, then for all 1 < m < n < ky

IEENM X [l < G B (1.2.3)
2) 1f Var(h{™), Var (V) < oo and B(hM), E(BN)) = 0, then for all | < m < n < ky

IEGN X2 < G812 (1.2.4)
B B < G |13 2155 - (1.2.5)
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The analogous statements hold for Markov chains.

Proof. We fix N and let 7, ;11 := ﬂ(N) X, = X,gN), h, == h,gN). Define for k <n

n,n+1°
ka(Xk) = E(l’ln |Xk),

then wy, ,(X,) :=E(h,|Xn) = [ (X0, ¥) T nt1 (X, dy) = o nt-1[hn (X, -)]. By the Markov prop-
erty, Wnn(Xn) = E(hy|Xn,Xy—1,...,X1), and this allows us to write ;1 ,(Wpn)(Xn—1) =
E(Wn,n(XnHXn—l) = E(E(hn|Xna <. 7X1)|Xn—1)) = E(hnlxn—l) So nn—l,n(wn,n)(Xn—l) =Wnn-1 (Xn—l)-
Applying the Markov operator 7,_> ,—; on both sides gives in a similar way (7,2, ©
ﬂnflm)(wn,n)(anZ) = Wn7n72(Xn72)-
Continuing in this way we arrive eventually to the identity

Wn,m(Xm) = IE(hnp(m) — (ﬂm,m—H 0---0 ﬁn—],n)(wn,n)(Xm)-

By the previous lemmas Osc[w, ] < (1 —&)L2") Osc[wy.,].
Notice that for every bounded measurable function v, ||v||« < [E(v)| + Osc(v). Since by as-
sumption E(wy, (X)) = E(h,) =0,

n—m

W (Xin) [l < (1= £0) 12" Osclwi ).

Osc[Wnn| <2|[Wnnlleo < 2]|hn|w, and part 1 follows.
Part 2 is proved in a similar way, using Lemma 1.9(f). U

1.2.3 Hitting probabilities and bridge probabilities

Throughout this section, let X be an inhomogeneous Markov array with row lengths ky, and
(N) _(N)

data &, /, &

NIRR W, Suppose X is uniformly elliptic:

7™ dy) = p (6,3 s (d)

N N N
where 0 < pi") < 1/ggand [, P (x,3)pyis (002 ot 1 (dy) > €.
The following proposition estimates IP(X,EN) € E) in terms of [,L,SN):
Proposition 1.12 Under the above assumptions, for every 3 < n < ky + 1 < o and every Borel
(N) PxV k)
setECGN ,SOST

) <g I Similarly for Markov chains.
I'Ll'l

Proof. We fix a row N, and drop the superscripts (V) Define a probability measure on S, by

P,(E) =P(X, € E), then for every 1 < n < ky, for every bounded measurable ¢ : S, ., — R,

%))

/(PdPn+2 =E(¢(Xy12))=E (E (E(<P(Xn+2) | X41,X0)
=E(E(E(Q(Xut2)|Xns1)|Xn)) (.- Markov property)

= / / / P(2) Tt 1.042(9,d2) Ty i1 (x, dy) B (d)

— [ [ [ 0 pr1 (0 2)palx ) 2@ ttr1 (d) Pald)
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- [ [ / ( [peats. z)pn<x,y>un+1<dy>) Pn<dx>] thyy2(d2)

The quantity in the square brackets is bounded below by &, and bounded above by &, I So the
measures P, 2, U, 7 are equivalent, and & < Zlﬁ’—’z <g I [

Notice that in checking the uniform ellipticity condition, we are free to modify ,u,EN) by a den-

sity bounded away form zero and infinity. Thus, proposition 1.12 allows us to assume without

loss of generality that ,u,(,N) (E)= ]P’(X,SN) €E)for3 <n<ky.

The ellipticity property implies that for all x € GSZN),Z € GSPZ

N N N N

z0ez) = [ A wpi ooml ) £ o
n+1

This allows us to make the following definition: The bridge distribution of X W)

n+1
X,gN ) — x and Xg)z = z is the measure on 6,(111)1 which assigns to a Borel set E C 6" the

n+1
probability

given that

) = /E i )P 0,2 (ay). (1.2.6)

The definition makes sense because Z,(,N) (x,z) # 0. The following lemma explains why the

formula (1.2.6) is reasonable:
Lemma 1.13 Let yg(x,z) :=right hand side of (1.2.6), then

(N)

X, X(N)

n+1 P42

) P-almost everywhere.

We omit the proof, which is routine. The lemma does not “prove” (1.2.6): Conditional prob-
abilities are only defined almost everywhere, and are by their very nature non—canonical. But
(1.2.6) makes sense everywhere. It is a definition, not a theorem.

1.3 Structure constants

Throughout this section we assume that f is an additive functional on a uniformly elliptic
Markov array X with row lengths ky + 1, state spaces GEN) , and transition probabilities as in the
ellipticity condition: n,(lﬁlrl(x, dy) = pu(x,y)n(dy), where /,L,(ZN) (E)= IP’(X,EN) €E).See§1.2.3
why we may assume this on u,(,N).

1.3.1 Hexagons, balance, and structure constants

A Level N hexagon at position 3 < n < ky is a configuration

(N) . Xn—1_Xn
By = xp-2; R
" ( n—2 Yn—1 Yn yn+1>
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()

where x;,y; € GiN . A hexagon is called admissible if

p,(ji)z(xnfbxnfl)pﬁﬁ)l (xnflaxn)pSZN) (xnayn+l) #0
p,(ji)z(xnfbynfl)pgz)l (ynflayn)pSzN) (yn7)’n+l) #0

Admissible hexagons exist because of uniform ellipticity.
The space of level N admissible hexagons at position n will be denoted by Hex (N, n).
One can put a natural probability measure on Hex(N,n) by taking {Yn(N)} to be an indepen-

dent copy of {X,gN) }, and looking at the distribution of

(N) N ) _ yWV)
(X,EIX)Z; );,’Eﬁl ;};:EN)) ,Yéﬂ) conditioned on i:?ﬁ ; I;Z ﬁ
Writing the measure explicitly is possible, but cumbersome. It is better to think of it as the result
of the following sampling procedure for | x,_»; ;::: ; i: ; yn+1) :
o (Xp—2,X,—1) is sampled from the distribution of (X,EIX)Z,X,EIX)I),
o (Yn,Yn+1) is sampled from the distribution of (Yn(N),Yn(ﬂ) (so it is independent of (x,,x,+1));

o x, and y,_ are conditionally independent given the previous choices, and are sampled using
the bridge distributions

™) _
P(xn € Elxn—1,Yp41) =P (X,,(N) € E‘ ] Xn1>
+1 = Yn+l

P()’n—l € E‘xn—Zayn) =P (Yn(f% cE Y

We call the resulting measure the hexagon measure on Hex (N, n).

The balance of a hexagon Pn(N) = (xnz; n—1 ;x" ;ynH) is
Yn—1 Yn

rEM) = ™ ozt t) + £ Gt0) + £ (s Y1)

_frglil)2<xn—27)’n—l) - frgjj)l (Yn—1,Yn) — frgN) (Vs Yns1)- b
Definition 1.14 The structure constants of f = { f,gN)} are
i = uM (f) = E (I (PM)2) " (expectation on Hex(N,n))
dM (&) = d™ (&, £) = B(|eSTE) Z 12) 2 (expectation on Hex(N,n)) (132)
Uv = Un(h) = Y. ) D) = 3 a2
n=3 n=3

If X is a Markov chain, we write u, = u,(lN), dy (&) = d,(lN)(é).
The significance of the structure constants will become clear in later chapters. At this point
we can only hint and say that the behavior of Uy determines if Var(Sy) — oo, and the behavior
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of Dy (&) determines “how close” f is to an additive functional whose values all belong to the
lattice (27 /&) Z.

Lemma 1.15 Suppose f,g are two additive functionals of on a uniformly elliptic Markov array
X, then

(a)d M (& 41,02 <8(a (5 )2 4+a (n,£)2);
(b)d V(& f+g)2 <8(d (&) +df ><5,g>2>;
(c) d} )><<§ f) < |E[ul (F); "

(@) " (+8)% < 2" ()2 " (8)7)
Proof. For any z,w € C such that |z|, |w| < 2, we have !
w2+ wl? < 8(j2f + [w]?).
So if P is a level N hexagon P at position n, and {p := EI'(P), np := nI"(P), then
/5P HMP) 112 = | (&% — 1) (™ — 1) + (" — 1) + (¢ — 1)]?
<8(Jefr — 12 + e —1]?). (1.3.3)

Part (a) follows by integrating over all P € Hex(n,N). Part (b) has a similar proof which we
omit. Part (c) is follows from the inequality |e’® — 1|? = 4sin* & < |6|%. Part (d) follows from

Minkowski’s inequality and |ab| < %(012 + ). O

Example 1.16 (Gradients) Suppose f,(x,y) = ay1+1(y) — an(x) + ¢, for all n, then the balance

of each hexagon is zero and uy,d, (&) are all zero. For a converse statement, see §2.2.1.
Suppose fn(x,y) = ans+1(y) —an(x)+c, mod %g—”Zfor all n. Then T (P) = 1 for all hexagons

P, and d,(§) are all zero. For a converse statement, see §3.3.1.

Example 1.17 (Sums of independent random variables) Let Sy = X| + --- + Xy. where X;

are independent real valued random variables with non-zero variance. Let us see what u, and
d, (&) measure in this case.

Proposition 1.18 u> = 2(Var(X,—1) + Var(X,)) and Z u, =< Var(Sy) (i.e ANy such that the

ratio of the two sides is uniformly bounded for N > Ny )

Proof. Let {Y,} be an independent copy of {X,}, and let X := X; —¥; (the symmetrization of
X;). A simple calculation shows that the balance of a position n hexagon is equal in distribution
to X* | +X; . Clearly E[X}] = 0 and E[(X)?] = 2Var(X;). Consequently,

u5(8) = E[(X;_1)* + (X,)?] = 2Var(X, 1) +2Var(X,).

Summing over n we obtain Y_; u2 < Var(Sy). O

We remark that the proposition also holds for Markov arrays satisfying the one-step ellipticity
condition (see §1.3.3).

Next we relate d2(€) to the distance of X; from a coset of %—”Z. The distance of a random

variable X from a coset 25—”2 is measured by the following quantity:

Uaw+z4+w)? =202 + 2 +w? +2(22w+zw? +zw), and |22w?| < 4|zw| < 2|72 + 2w, |22w| < 222, 2)zw| < |z]> + [w]?, |zw?| <
2|w|?.
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. ) 2T 1/2
@(X,é).:gnel]%E {dlst (X,G%—?Z)] )

The minimum exists because the quantity we are minimizing is a periodic and continuous func-
tion of 6.

Proposition 1.19 Forevery & #0d,(§) =0 iff X; € coset of zé—nZ a.s. (i=n—1,n). In addition,
there exists C(E) > 1 such that if d,,(E) # 0 then

d2
C( g )—1 < (é ) -
D(Xn-1,8)* +D(Xn, §)
Proof. Choose 6; € [0, 25”] s.t. D(X;, &) = E[dist?(X;, 6; + é—”Z)] There is no loss of generality
in assuming that 6; = 0, because the structure constants of f;(x) = x and g;(x) = x — 6; are the
same. Henceforth we assume that

<C(&).

D(X;, &) = E[dis?(X;, 26—”

As in the proof of the previous proposition, the balance of a position n hexagon is equal in
distribution to X “ +X,, where X := X; —Y; and {V;} is an independent copy of {X;}. So

B(E) = B(e% %) 1),

We need the following elementary facts:

7). (1.3.4)

| 0HY) — 11?2 = 45in? X = 4(sinjcos} +sinjcos$)? (x,y € R) (1.3.5)

Sdist*(r, 7Z) < sin’*t < dist?(1,7Z) (t €R) (1.3.6)
1

P[X;" € [0, 5] + 25—%] > (1) (1.3.7)

(1.3.5) is trivial; (1.3.6) is because of the inequality 27/ < sint <t on [0, 5], which the
reader may verify by drawing the graphs. To see (1.3.7) note that R = ([ ,25] gZ)

([ ’25] - E 5T gZ) and therefore there exists k = 0, 1 such that P[X; € [0 ,25] + Lz T gZ] > 3.
Since ¥; is an independent copy of X;, P[X;,Y; € [0, 25] + ’575 + ”Z] > 1. This event is a subset

of [X; € [0, 5] + FZ].

Returning to the identity d2(&) = E(|¢/X-1t%1) —1|2), we see that by (1.3.5)
d; (&) = E(|je ™) 1)
=4E (sinz%coszé n +sm2§ i cos? St 2=l 4 Lsin(EXy ) sin(EX, ))
—4E (sin® %=1 ) E (cos? 551 ) +4E (sin® 57) E (cos? %) (1.3.8)

where we used the symmetry of the distribution of X;* to see that E[sin(§X;")] = 0. By (1.3.7),
E (c:os2 é—f) > cos?(F)P[X; € [0, 25] zé’rZ] > £, and therefore there exists C, € [g,4] such
that

&) =G <su12g L)+ (sin? 55 | (1.3.9)
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It remains to bound E (sin2 %) in terms of D (X;,&).

Recall that X;* = X; —Y; where ¥; is an independent copy of X;, and use (1.3.5) and indepen-
dence to find that
2
Xi Y; Y; X;
( | ézl 521 _Sin%ws%)

2 8X7
E (sm ) =K
— 2E(sin® £X)E(cos? 22%) — %E(Sin(éxi))z < 2R(sin )

2
< 2K (dist?(5%, 72)) = %ZE(distz(X,, ¥r)= 2D(Xi,§), by (1.3.4),(1.3.6).

Next by (1.3.6) and the definition of (X, &),

. 2
E (sng—) > %E (dist%%,nZ)) é <dISt (Xi— Y,-,Z—EZ))

§
62 52

2

:%EYI{EXI.Glst(X,,YJréZ))} Ey (00X, )] = 55D(X,€).

The proposition follows from (1.3.9). U

1.3.2 The ladder process

The material of this section is needed for the proofs of the gradient lemma and the reduction
lemma in chapters 2 and 3, but will not be used elsewhere.

Suppose X = {Xl.(N)} is a Markov array with row lengths ky + 1, state spaces 621\’)

sition probabilities n,EIYZ)Jrl (x,dy). Let u,(,N) (E):= ]P’(X,SN) € E). Suppose X is uniformly elliptic.

In particular,

, and tran-

7™ dy) = p () (ay),

(N)

with py, ' (x,y) as in the uniform ellipticity condition.
We would like to define a new Markov array L, called the Ladder process, with the following
structure (figure 1.3.2):

(a) Each row has entries I:,(lN) = (Z,(l )2, n(Ni, (N )) B<n<ky+1),

(b) {Z () } is an independent copy of X,
(©) Y 1 € 6( )1 are independent given {X } {Z } and

@ (5 < B[ = s, 2" = (@) ) = (X,EN% cE

see the discussion of bridge probabilities above.
Let L,SN) = (Z4—2,Yn—1,%n ). Define the probability measures

M) (aL™y = P (@2 Y1) Pph (=1 %)

fg(l\i)l pfl_)z(zn—Zan)p;S )1(77 xn)l'l'}’(l )( n)

1™ (dzy )™ (dyn )i (dx).
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4 A3
2, Y. Xy
2 Y Xs
2, Y

Fig. 1.1 The ladder process. {Zl-(N)}, {X,-(N>} are independent copies. v are conditionally independent given {Xi<N)}., {Zl-(N)},

Lemma 1.20 L exists, is Markov, and is uniformly elliptic with ellipticity constant eg (with
respect to the background measure my,), where € is the ellipticity constant of X. For every N,

(1) {X,gN)}kN ol {Z,(,N) }kN ~1are independent, and distributed like the corresponding pieces of

n=3 n=1

the N-th rows of X.
(2) v are conditionally independent given {Xi(N)}, {Zi(N)}.

(N) (V)
(3) PrgN) = <ZnN)2, i’(’g,)l ;;'Z(N) ,X,EZJ\Z)I) is distributed like the level N, position n, random hexagon.
n—1 N
(N) _
Proof. LetP | dy, sz 1(,)1 ~%n=1) denote the bridge measure on SN with boundary conditions
Xn—H = Xn+1
X,E]X)l = Zu—1 7Xr51—\0—[)1 = Xp+1. Define the Markov array L with

o Rows LJSN) = (Zn—Zayn—laxn) B<n<ky+1,NZ=1)
o State spaces: @N) = G(A_/)z X 6(]!)] X G,SN) B<n<ky+1).

n n

~—

(V) _
o Initial distribution: 7™ (dzy,dyy,dxs) = [ ™ (dz)ul™ (dx)P dy‘Xl(N) —
G(IN)XG;N) X3 =X

o Transition probabilities n,(lN)((znfz, Yn—1,%n)s En—1 X Ey X Eptq) =

_ ) ) XN =2,
= pn_z(zn—szn—l)pn (xnaxn—b—l)lp dyn (N)
E, 1 XEyxE; 11 XI’H-] = Xpn+1
(We evolve z,,_» — z,_1 and x,, — x,,1 independently according to ﬂ,gji,)z (zn—2,dz), ﬂ,(,N) (X, dx),

and then sample y, using the relevant bridge distribution.)
It is routine to check that L has the structure described at the beginning of the section, and
that it satisfies the properties listed in the lemma.

Here for example is the proof of uniform ellipticity. In what follows we fix N, suppose
Xi, Vi, zi € G;, and write pg,N) = p whenever the subscript is clear from the variables.
Then 7" (L,,dL, 1) = P(Ly, Ly 1)1 (L 1), where
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P(Lnaén—l—l) = p(zn—szn—l )p(xnaxn-l—l )

If X has ellipticity constant &, then P(L,,L, ) < & *, and

/P(Ln7Ln+l)P(Ln+l7Ln+2)mn+1(dLn+l)

Z ///p(zn—ZaZn—l)p(xnyxn—kl)p(zn—l7Zn)p(xn+17xn+2)x

P(2n—1,Y0) PV Xn11)
I P(za—1,1) (N, Xn41) Un(dT)

= //p(zn—Zazn—l)p(xmxn—l—l)p(zn—laZn)p(xn—i—l7xn+2).un—1(dzn—l).un+l(dxn—H)

) Hn—1 (dzn—l).un (dyn),un—l—l (dxn—H )

Z/P(andnl)P(Zn17Zn).unl(dZn1)/P(xn,anrl)P(an,xn+2).un+1(dxn+1)
> g,

So the ladder process is uniformly elliptic with ellipticity constant Sg. 0

1.3.3 vy-step ellipticity conditions

We mention a few possible variants of the uniform ellipticity condition discussed in this chapter.

Suppose X is a Markov array with row lengths ky + 1 and transition probabilities taking the form

7 (dy) = pi ey (dy).

The one-step ellipticity condition is that for some & > 0, forall N > 1, 1 <n < ky, and for

every x € G,SN),y € GSEI),

N _
&< pi (x,y) <.
Notice that this implies that all transitions x — y have positive probability.

The 7y-step ellipticity condition (y = 2,3, ...) is that for some & > 0, forall N > 1,n < ky,

0 §P$ZN) <1/g

and for all n < ky — Y+ 1, and every x € G,SN),Z € Gﬁ)y, the iterated integral

72
// PSzN)(xa)’l)prl]i)i()’iayiﬂ)ng_)y_l()’y—bz) Mnr1(dy1) - Hay(dyy—1)
i—1

N N
SHUNCH

0
is bigger than &y (with the convention that H =1).
i=1
The ellipticity condition we use in this work corresponds to ¥ = 2. This is weaker than the
one-step condition, but stronger than the y-step condition for y > 3.
The results of this work could in principle be reproduced assuming only a 7y-step condition
with ¥ > 2. To do this, one needs to replace the space of hexagons by the space of 2(y+ 1)-gons

Xp— X oy . . .
(Xn—y; yn v+l y” YV +1> with its associated structure constants, and its associated y-ladder
n—y+1 n
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(N)

process L, ' = (Zr(ﬁ)y_ I,Yn(ﬁ),, . ,Yn(ﬂ,X,SN)). Since no new ideas are needed, and since our

notation is already heavy enough as it is, we will only treat the case ¥ = 2 in this work.

1.3.4 Uniform ellipticity and strong mixing conditions

The contents of this section are not used elsewhere in this work.

Suppose (2,.#,P) is a probability space, and let <7, % be two sub c-algebras of .%. There
are several standard measures for the dependence between <7 and Z%:

oot , B) :=sup{|P(ANB) —P(A)P(B)|: A € &/ ,B € A},

- B  fEL*(A),g € L*(B); .
P, %) = S“p{'E(f &) —ELEG () =1, g~ E(g)l =1 }

¢(/, %) :=sup{|P(B|A)—P(B)|: A€ o/,Be B,PA)#0};

P(ANB
y(of | PB) = sup {‘W — 1‘ A € o/ \B € % with non-zero probabilities} .

If one of these quantities vanishes then they all vanish, and this happens iff P(ANB) =
P(A)P(B) for all A € o7, B € . In this case we say that <7, % are independent. In the depen-
dent case, o, p, ¢, ¥ can be used to bound the covariance between (certain) .27 -measurable and
Z-measurable random variables:

Theorem 1.1. Suppose X is o/ -measurable, Y is SB-measurable, then

(1) |Cov(X,Y)| < 8a(e, B)" "4 ||X||,||Y ||y whenever p € (1,9], g € (1,09,
ste<lXelhyeld

(2) |Cov(X,Y)| < p(oZ,B)|| X —EY||2||Y —EY ||, whenever X,Y € L?.

(3) |Cov(X,Y)| < 2¢(,B)||X||1||Y || whenever X € L', Y € L.

(4) |Cov(X,Y)| < w(Z,B)|X|1||Y ||1 whenever X € L'Y € L.

For proof and references, see [16, vol 1, ch. 3].

Definition 1.21 Let X := {X,},>1 be a general stochastic process, not necessarily stationary
or Markov. Let Z[' denote the G-algebra generated by Xi,...,X,, and let Z,; denote the G-
algebra generated by X; for k > m.

(1) X is called a-mixing, if o(n) := sup;~, o0(F{, Z,) ——0.

(2) X'is called p-mixing, if p(n) := sukaIp(ﬁlk, F i) — 0.
(3) Xis called ¢-mixing, if ¢ (n) := sup~, ¢ (FF, F7,) —0.
> e

k+n
(4) X is called y-mixing, if y(n) := sup>, Y(F{,.75,) — 0.
= n—oo

Theorem 1.2. If (Q2,.7,P) is a probability space, and </, 9 are sub-c-algebras of F, then
o:=a(A RB),p:=p(A,B), p:=0(A,B), v:=vy(F,B) satisfy the inequalities

20< 9 < -y, p<2./9. (1.3.10)
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For the proof, see [16, vol 1, Prop. 3.11]). It follows that
Y-mixing = ¢-mixing = p-mixing = O-mixing.

These implications are strict, see [16, vol 1 §5.23].

Let us see what is the connection of ¢-mixing to uniform ellipticity. First we’ll show that
uniform ellipticity implies exponential y-mixing, and then we’ll give a weak converse of this
statement for finite state Markov chains.

Proposition 1.22 Let X be a uniformly elliptic Markov chain, then for every x € &1, X con-

ditioned on X\ = x is WY-mixing. Moreover, a(n),p(n),¢(n),y(n) — 0 exponentially fast,
n—oco

uniformly in x.

Proof. We will need the following fact:

CLAIM. There exists a constant K which only depends on the ellipticity constant of X as follows.
For every x € &1, k > 2, and for every bounded measurable function hy : S, — R, we have the
inequality || By (hi(Xe) | Xg—2)lleo < KB ([ (X )]).

Proof of the claim. By the uniform ellipticity of X, the transition kernels of X can be put in the

form 71, 41 (x,dy) = pp(x,y) Hns1(dy), where 0 < p, < &5 ' and [ p(x,¥)pps1(3,2) tns1(dy) >
& In addition, Prop. 1.12 tells us that the Radon-Nikodym derivative of 1 with respect to
the measure P (X, | € E) is almost everywhere in [€y, &, 1]. It follows that for all £,

B (h2(Xii2) [ X = &) < //Pk(éa)’)PkH(%Z)|hk+2(z)’.uk+1(d)’)uk+2(dz)

<& [ 12 (0) es2(d2) < & Bl i (Xes2)]).

We now prove the proposition. Fix x € Gy, and let y, denote the y measure of dependence
for X conditioned on X = x. Let .%; denote the c-algebra generated by X;. Using the Markov
property, it is not difficult to see that

ll/x(l’l) = Zup Wx(io/\kuﬁk-i-n)?
>1

see [16, vol 1, pp. 206-7].
Suppose now that n > 2, and fix some A € %;,B € ., with positive P,-measure. Let
hi := 14 and hyy,, := 15 —P,(B). Then

“P)x(AmB) —Py(A)P(B)| = |]Ex(hkhk+n)‘ = |Ex(Ex(hkhk+n’g;k))|
= B (B (o | X)) | < B (k) 1ok (g 1 Xi) [ oo
= Po(A) | B (B (ko [ X —2) 1Xi ) || o=
< Pe(A) - Coin0" || (A | X n—2) || oo» by uniform ellipticity and (1.2.3)
<P (A) - Cpin0™ % - KE(|hgin|), by the claim
< 2KCpix0" Py (A)P(B).
Dividing by P,(A)P,(B) and passing to the supremum over A € %, B € F.,, gives Yy(n) <
2K G 0" 2.
Recall from Proposition 1.11 that Gy, 0 depend on the ellipticity constant of X, but not

on x. So y,(n) — 0 exponentially fast, uniformly in x. By (1.3.10), o (n),px(n),¢(n) — 0
exponentially fast, uniformly in 7. U



1.4 Notes and references 39

Proposition 1.23 Let X be a Markov chain such that
(1) 3k > 0 s5.t. P(X,, = x) > K for every n > 1, x € S, (in particular, |S,| < 1/K).
(2) ¢(n) — 0.
n—soo
Then X satisfies the y-step ellipticity condition for all 'y large enough.

Proof. By (1), all state spaces are finite sets. Define a measure on &, by u,(E) = P(X, € E),

P(X,r1 =y X, =
(K1t =310 =%) i well-defined by (1), and:
]P)(Xn-H = y)
(a) By construction, 7, 41 (x,dy) = pu(x,y) Un+1(dy).
(b) By (1)7 pn(x7Y) S I/P(Xn+l :y) S Kﬁl-
(c) By (2), for all y large enough, ¢(7y) < %K‘. For such 7,

and let p,(x,y) :=

72
// P, 910) || Prvi s Yice 1) Pry—1(y=1,2) Hng1(dy1) =+ - Mgy (dyy—1)
i1 Griy =1

1
=P(Xp1y=2|Xy =x) 2 P(Xy1y = 2) — 0(Fn, Fryy) = K— () > 5K

We obtain the y-ellipticity condition with ellipticity constant %K. 0

1.4 Notes and references

For a comprehensive treatment of inhomogeneous Markov chains on general state spaces, see
Doob’s book [52]. The uniform ellipticity condition is one of a plethora of contraction con-
ditions for Markov operators, which were developed over the years as sufficient conditions for
results such as Propositions 1.11 and 1.12. We mention in particular the works of Markov [100],
Doeblin [46, 47], Hajnal [70], Doob [52], and Dobrushin [45] (see also Seneta [137] and Sethu-
raman & Varadhan [139]).

The contraction coefficient mentioned in section 1.2.2 is also called an “ergodicity coeffi-
cient,” and it plays a major role in Dobrushin’s proof of the CLT for inhomogeneous Markov
chains [45]. Our treatment of contraction coefficients follows closely [139]. In particular,
Lemma 1.9 and the proof of part (f) of that lemma is taken from there.

Proposition 1.12 is similar in spirit to Doeblin’s estimates for the stationary probability vector
of a Markov chain satisfying Doeblin’s condition in terms of the stochastic matrix of the chain
[46, 47].

For a discussion of the “change of measure” construction see chapter 6. The quantities
D (X, &) were introduced by Mukhin for the purpose of studying local limit theorem for sums
of independent random variables. See [108] and references therein.

For a comprehensive account of measures of dependence and mixing conditions, see [16].






Chapter 2
Variance growth, center-tightness, and the central limit theorem

In this chapter we analyze the variance of Sy = f1(X1,X2) + -+ fn(Xn,Xn+1) as N — o,
characterize the additive functionals for which Var(Sy) + e, and prove Dobrushin’s Theorem:
If Viy — oo then the central limit theorem holds.

2.1 Main results

Let X be a Markov array with row lengths ky + 1, let f an additive functional on X, and define

kn
N)/+(N) (N
Sy = Zfi( )(Xi( )7Xi(+1))'
i=1
Definition 2.1 f is called center-tight if there are constants my s.t. for every € > 0, there exists
M s.t. P[|Sy —my| > M| < € for all N.

Center-tightness is an obstruction to the local limit theorem. We shall see below (Theorem

2.2) that f is center-tight iff Var(Sy) - oo. Obviously, in such a situation the right hand side in

-2 . . . .
P[Sy —zn € (a,b)] L 62—\/%]" can be made bigger than one by choosing |a — b| sufficiently big,

and the asymptotic relation fails. One could hope for a different universal asymptotic behavior,
but as the following class of examples shows, this is hopeless:

Example 2.2 (Non-universality in the LLT for center-tight functionals):

Let X = {X,, },>1 be a sequence of identically distributed independent random variables with
uniform distribution on [0, 1]. Choose an arbitrary sequence of random variables {Z, },> tak-
ing values in [0, 1]. By the isomorphism theorem for Lebesgue spaces, there are measurable
functions g, : [0,1] — [0, 1] such that

20=0, g.(X,) = Z, in distribution.

Let f = {fn}nZl with fn(Xan—H) = g,1_|_1(Xn_|_1) — gn(Xn) Then Sy = ZN+1 in distribution,
whence P(Sy € (a,b)) =P(Zyy1 € (a,b)) is completely arbitrary.

Every Markov array admits center-tight additive functionals. Here are three constructions
which lead to such examples (in the uniformly bounded, uniformly elliptic case, all center-tight
additive functional arise this way, see Theorem 2.2 below):

Example 2.3 (Gradients): Gradients on Markov chains are additive functionals of the form
fn(xay) = (Va)n(x7Y) ‘= Ap+1 (y) _an(x)‘

41



42 2 Variance growth, center-tightness, and the central limit theorem

where a,, : S, — R is measurable, and a = {a,} is a.s. uniformly bounded.
Gradients on Markov arrays are defined similarly by the formula fn(N) (x,y) := ay) (y) —

n+1
a,(fv) (x). where aslN) : 6,(1N) — R is measurable, and a = {aﬁlN)} is a.s. uniformly bounded. We

write f = Va, and say that f is the gradient of a and a is the potential of f.!
The gradient of an a.s. uniformly bounded potential is center-tight because if |a| < K, then
N N
Sl = lagy . () — ™ (x0)] < 2K.

Example 2.4 (Summable variance): We say that an additive functional f on a Markov chain
X has summable variance if it is a.s. uniformly bounded, and

Voo := i Var| f, (X, Xnt1)] <

n=1

The definition of summable variance for additive functionals on arrays is similar, except that

kn
now V. is defined by V., := sup Z Var| f,EN) (XrgN),X ()

n+1)] < oo,

N p=1

If X is uniformly elliptic and |f| < K a.s., then summable variance implies center-tightness.
This follows from Chebyshev’s inequality and the following lemma:

Lemma 2.5 Let f be a uniformly bounded functional of the uniformly elliptic Markov array.

= — kx N) ;v (N) (N
ThenVy <Vy (1 + 2C’"”‘> whereVy = Z Var(f,g )(X,E ),XrEJr)l)), and Cpiy and 0 < 0 < 1 are
n=1

as in Prop. 1.11.
Proof. We give the proof for Markov chains (the proof for arrays is identical):

Var (Sy) = ZVar fa)+2 Z Z Cov(fu; fin)

n=1 m=n+1

<VN+2Chix Z Z 0"/ Var(f,)Var(f,), with Cpix, 0 as in (1.2.5)

n=1m= n—l—l
= N1 j 2Cmiva
<Vn—+2Chix Z 0 Z \/Var (fu)Var(fnyj) < Vy+ o
j=1 n=1
by the Cauchy-Schwarz inequality. O

Example 2.6 Suppose X is uniformly elliptic. Then every additive functional of the form f =
g+ h where g is a gradient and h has summable variance is center-tight.

We will now state the main results of this chapter. We assume throughout that

(E) X= {x,ﬁN)} is a uniformly elliptic inhomogeneous Markov array with row lengths ky + 1,
)

AT initial distributions 7 ), and ellipticity

state spaces 65, )| transition probabilities 7
constant &.

B) f={ f,EN)} is an a.s. uniformly bounded additive functional on X, satisfying the bound
f| < K almost surely.

! In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.
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N N
Let Viy := Var(Sy), and Uy := Z (ufl ))2 where u,(l ) are as in (1.3.2).
n=3

Theorem 2.1. There are constants Cy,Cy > 0 which only depend on &y, K s.t. for every uniformly
elliptic array with ellipticity constant &y and every additive functional f on X s.t. |f| < K a.s.,

CI_IUN - < Var(SN) <CiUy+Cy forall N.
Corollary 2.7 Suppose X is a Markov chain. Either Var(Sy) — o or Var(Sy) = O(1). More-

N
over, Var(Sy) < Y. u2 where u, are the structure constants from (1.3.2).
n—=

(The corollary is clearly false for arrays.) Returning to arrays, we’ll show:

Theorem 2.2. Var(Sy) is bounded iff f is center-tight iff f = Va+ h where a is a uniformly
bounded potential, and h has summable variance.

Corollary 2.8 f is center-tight iff supUy < oo.
N

Theorem 2.1 is a statement on the localization of cancellations. In general, if the variance of
an additive functional of a stochastic process does not tend to infinity, then there must be some
strong cancellations in Sy. A priori, these cancellations may involve summands located far apart
from one another. Theorem 2.1 says that strong cancellations must already occur among three

consecutive terms fé]j)z + fg)l + f,EN): This is what Uy measures.
If f depends only on one variable f,(x,y) = f,(x), and we have the one-step ellipticity con-
dition py(x,y) > & one can define the ladder process using quadrilaterals

XN
Qf:l - ( rlz\Ll Y:lfv ¥ r{YH )
instead of hexagons. As a result u,, is replaced by
@7 = [0 00 = 40 )P0 dinl) = 2Var(f). @.11)

Repeating the arguments from the proof of Theorem 2.1 we obtain that there are constants C 1, 62
such that

Cr'Y Var(f(X,) —Co < Vy < G (ZVar( f,,(Xn))> +GCo.

This estimate has been previously obtained in [45, 139] under weaker ellipticity assumptions.
A similar estimate does not hold in case f,gN) depends on two variables. Indeed if f,EN) is a

N
gradient, then Vy is bounded while Z Var(f,(X,,Xy+1)) can be arbitrarily large.

n=1
We end the chapter with the reproduction of the proofs of the following two known well-
known results.

Theorem 2.3 (Dobrushin). Let f be an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov array X. If Var(Sy) — oo, then for every interval,

SN—E(SN) 1 /b 22
—= € (a,b)| — — dt.
Var(Sy) (a )] N—eo /270 Ja ¢
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The proof we give, which is due to Sethuraman & Varadhan, is based on McLeish’s martingale
central limit theorem. For the convenience of the reader we prove the martingale CLT in section
224.

The next result reduces in the case of identically distributed independent random variables to
Khintchin-Kolmogorov’s Two-Series Theorem. The result is stated for Markov chains, and not
Markov arrays, because it relates to the properties of Sy as a stochastic process.

Theorem 2.4. Let f = {f,} be an a.e. uniformly bounded additive functional of a uniformly
elliptic inhomogeneous Markov chain X = {X,}. If ¥, Var[f,,(Xu,Xu+1)] is finite, then
n=1

Z [fn (X, Xn11) — E(fn(Xn, Xut1))] converges almost surely.
n=1

2.2 Proofs
2.2.1 The Gradient Lemma

Lemma 2.9 (Gradient Lemma) Suppose f is an additive functional on a uniformly elliptic
Markov array X, and assume |f| < K almost surely. Then we can write

f:?—i—Va%—c,

where f,a, c are additive functionals on X with the following properties:

(V)

(a) |a| < 2K and a (x) are measurable functions on &,
(b) |c| <K and ™) are constant functions.
(c) |f| <6K and f;N) (x,y) satisfy H%N)Hz <uV) forall3 <n<ky+1.

If X is a Markov chain, we can choose f,EN) = fu, aﬁ,N) =ay, cﬁ,N ) — Ch-

Proof for Doeblin chains: Before proving the lemma in full generality, we consider the impor-
tant special case of Doeblin chains (Example 1.7), for which the proof is particularly simple.

Recall that a Doeblin chain is a Markov chain X with finite state spaces G,, of uniformly
bounded cardinality, and whose associated transition matrices 7y, := 7, »11(x, {y}) satisfy the
following properties:

(E1) Jgy > 0s.t. foralln > 1 and (x,y) € &, x &, 1, either ), = 0 or 7, > &);

(E2) for all n, for all (x,z) € &, x &, 12, Iy € &, such that ”xy”;;l > 0

We saw in example 1.7 that X is uniformly elliptic.

We re-label the states in &, so that S, = {1,...,d,} where d, < d, and in such a way that
7y, > 0 for all n. Assumption (E2) guarantees that for every n > 3 and every x € &, there exists
astate &,_1(x) € S, s.t. ) 5 () gn,l() > 0. Let

ap=0, a; =0, and a,(x) := fr—2(1,&-1(x)) + fu—1(En—1(x),x) forn >3
co:=0, ¢;:=0, andc,:= f,_2(1,1) forn>3
fi=f—Va—c.
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We claim that ?, a, c satisfy our requirements. To explain why and to motivate the construc-
tion, consider the special case u, = 0. In this ||f||, = 0 and the lemma reduces to constructing
functions b, : G, — R s.t. f = Vb +c. We first try to solve f = Vb with ¢ = 0. Any solution
must satisfy

Jn(%,¥) = by 1(y) — ba(x). (2.2.1)
Necessarily, b,(y) = ba(x2) + fo(x2,x3) + - + fu—2(xn—2,%1—1) + fu—1(xn—1,y) for all paths
(x2,...,Xs—1,y) with positive probability. The pathx, = -+ =x,_» = 1, x,_1 = &,_1(y) suggests

to define
n—3
by=0, by(y):= Y fillL,1)+ fu2(1,&-1(3) + fu-1(Eu-1(¥),y)
k=2

This works: for every n > 3, if nfy > 0 then

bui1(y) = bu(x) = [fu2(1, 1)+ fa1(1,6:(y) + fu(Ea(y),y)
— fa2(1,80-1(x)) = fu1(&n—1(x), %) — fulx,3)] + fu(x,y)

)= =15 (15 1 O 5) ) Lt 222

. o . ! .
Here is the justification of =. In the setup we consider, the natural measure on the level n
hexagons is atomic, and every admissible hexagon has positive mass. So u,, = 0 implies that

I,(P) = 0 for every admissible hexagon, and = follows.

We proved (2.2.1), but we are not yet done because b is not necessarily uniformly bounded.
To fix this decompose b,(y) = ax(y) + Xi—5 fi(1,1). Then |a| < 2K, and a direct calculation
shows that f,,(x,y) = apt1(y) — an(x) + fu—2(1,1), whence f = Va+c as we claimed.

This proves the lemma in case u,, = 0. The general case u, > 0 is done in exactly the same
way, except that now the identity (2.2.2) gives for f :=f —Va—c

X

E@WZH@W—@HMWWAW—%:_QOéwk@@@y)

If |f| < K, then |I;;| < 6K, whence |?| < 6K. Next,

1 &(Xus) ?
In (1 énfl(Xn) Xn+1 Xn+1) ] .

In the scenario we consider the space of admissible hexagons has a finite number of elements,
and each has probability uniformly bounded below. So there is a global constant C which only
depends on sup |S,| and on g in (E2) such that

I &(Xur) ?
F”(l AN X"“)

where the last expectation is over all position n hexagons. So |[f]|> < V/C - u2.

(The gradient lemma says that we can choose a and c so that C = 1. The argument we gave
does not quite give this, but the value of the constant is not important for the applications we
have in mind.)

Ifall3 <E

E < CE[['(P)?],
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The proof of the gradient lemma in the general case: Recall the ladder process L = {L,(lN)},
L,(,N) = (Z,(ZJX)27 Yn(ﬁ ,Xn(N)) from §1.3.2. In what follows we omit the superscripts V) on the right
hand side of identities. Define

FVLM) = Fu(L,) = fo2(Zn-2, Yo 1) + foo1 (Y1, Xn)

N),,(N) (N Zo 1Y,
LML ),L,Sﬁ]):=1;<Ln,Ln+1)=F<Zn_zY:_l‘ ann+1), see (1.3.1).

Then we have the following identity:

fYEN) (Xan-l-l) = Fn+1 (L‘n—i-l) - Fn(Ln) +fn—2<Zn—2’Zn—1> - G(Lnﬂén—kl)' (2.2.3)

Next define aE,N) : GSZN) — R and c,(lN) € R by
(@) =E(BELIX =) ) G<n<h) 224)
N = Bfy2(Zon, Zp1)]. (2.2.5)

We will show that the lemma holds with a, c and f:=f—Va—c.

Since |f| < K by assumption, it is clear that |a| < 2K and |c| < K. It remains to bound f in L
and L?.

CrLAIM: For every (£,1) € 6, X &1,

X
ngN) =K |:E (fnZ(ZnZaZn1>

Xn—H :T[)

X, =&

Xn—H =N
X, =&

o) (&) = E(Fn@n)

™ () = E(m (Lusy)

Proof of the claim. The proof is based on Lemma 1.20. The first identity is because {Z,} is
independent from {X, }. The second identity is because conditioned on X,,, L, is independent of
Xp+1. The third identity is because conditioned on X, 11, L, , | is independent of X,,.

With the claim proved, we can proceed to bound f, Taking the conditional expectation

E(- |X,§i)1 =n, xM = &) on both sides of (2.2.3), we find that

FYE M) = a1 (1) — an(E) +cn—E (mm;nm ))ﬁ:*;g”) ,
whence (1) 1=~ (Tl L) 51 2 )

Clearly |f| < 6K. To bound the L2 norm we recall that the marginal distribution of {X,} with
respect to the distribution of the ladder process is precisely the distribution of our original array.
Therefore
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2
171 =B [ 00 Xo10)] = [B (L) Ko, )

<E[E(Li(Ly Lyt 1)?)]

because conditional expectations contract L>-norms.
Next we use Lemma 1.20(3) to see that I, W )(L ,L, 1) is equal in distribution to the balance

of a random level N hexagon at position n, whence E(I;?) = (u,SM)Z. O

The gradient lemma splits an additive functional into a gradient term, and a term with con-
trolled variance. The next lemma estimates the covariances between the two terms.

Lemma 2.10 Suppose f is a uniformly bounded functional of a uniformly elliptic Markov array.

There is a constant C s.t. if h(N) are uniformly bounded measurable functions on 6; ) % GEN)I

and ess sup|fn | <K, ess sup|h | < L, then

Cov (S, hf) )(Xé(;v),xmlw < CKL.
Proof. This follows from the decomposition Cov(Sy, A Z Cov(f, , )) and the expo-
nential mixing of X (Proposition 1.11). 0

2.2.2 The estimate for Var(Sy)

We prove Theorem 2.1. Let f = { f,gN)} be an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov array X = {X,gN)} with row lengths ky 4 1. Our aim is to bound
Var(Sy) above and below by affine functions of the structure constants Uy = Zﬁ"’ 3(u$lN) )2
Assume |f| < K almost surely.
("l;hroughout the proof, we fix N and drop the superscripts V). So X,SN) = Xy, f,EN) = fu,
N

Uy, - = uy, etc.

Lower bound for the variance. Let’s split Uy = foi 3 u? into three sums:
Uy = Z Un(y), where Uy(Y Zu L=y mod3( ) |-
y=0,1,2
For every N there is at least one 7y € {0,1,2} such that Uy (yv) > %UN. Let
oy =YW+ 1.

and define By by
—Byv+1=max{n<ky:n=ay mod3}.

With these choices, o, By € {1,2,3}, and ky — By + 1 = ooy mod 3.
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kn—PBn
We begin by bounding from below the variance of Sy, := Z fi(X;,Xj11). Write ky — By +
k=0
1 =3My + oy, with My € N, then

Sy =Fo+ -+ Fyy—1, where Fi := fy gy + firay+1 + fkray+2-

Observe that Sy is a function of the following variables:

7XOCN+1 7XOCN+277X(XN+47X0£N+5a Tty XkaﬁNqu 5

where we have boxed the terms with indices congruent to ay mod 3. Let .%#y denote the o-
algebra generated by the boxed random variables. Conditioned on %y, F; are independent.
Therefore,

My—1 My—1
Var(Sy|-Zn) = Y. Var(F|Zn) = ). Var(FeXsisay > X3k 1)+a)
k=0 k=0

Taking the expectation on both sides, and using the general inequality Var(S},) > E(Var(Sy|-Zy)),

we obtain
My—1

Var(Sy) > ) E (Var(Fk|X3k+05N7X3(k+1)+061v)) :
k=0

To estimate the summands, we recall that for every random variable W, Var(W) = 1E[(W’' —

W")?] where W/, W" are two independent copies of W. Thus

Var(Fi| Xz 1oy = @, X3(k41) 10y = b)

1

2
_lg {F (X3k+aN Sktay+1 X3ktay+2 Y3(k+1)+ocN) Sktay = Vakray

2 Yiiray+1 Yakray+2 X3(kr1)ray = Bkr1)ray =0’

whence E (Var(Fe| X+ ay > X3k 1)1ay)) = E(T(P)?) = (ugjlgaNﬂ)z where I (P) is the balance
of a random hexagon P € Hex(N,3k + oy +2). So

) 1MN—1 (N) 2 1 My —
Var(Sy) > 5 kZO (Bipay42)” = 5 Z k+1 HN (cay=mw+1)

ky 1
Z l[nzyn mod 3] (n) _2sup{u§} > EUNO/N) -2 (6K)2

> —Uy — 100K, by choice of yy.

O\'—ﬂl\)l'—‘

Now we claim that |Var(Sy) — Var(Sy)| is uniformly bounded from below. To see this, let
fi=fi—E(fj), and let Ay := {j e N: 1 < j < aorky — B < j < ky}. Then Sy = Sy +
):jEAij, whence

Var(Sy) = Var(S)y) + Var( Z fi)+2 Z Cov(Sy. fj)-
JEAN JEAN

Since |f| < K and |Ay| < 6, the second term bounded by 4K?|Ay| < 24K?. Next by uniform
ellipticity and (1.2.5), there are mixing constants 6 € (0, 1) and C,,;, > 0 which only depend on
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&, the ellipticity constant of X, so that

ky 20, K2
Cov(Siy, £) < Cuix Y- /5 12l1f7 267 < =22
n=1

It follows that Var(Sy) > Var(Sy ) — const > constUy — const, where the constants depends only
on K and the ellipticity constant &.

Upper bound for the variance. Write f = f+Va+casin the gradient lemma. In particular,
Var(f,(X,_1,X,)) < u2. Then

kn kn .
Var (Z fn) = Var ( fn> + Var (ay+1 —ay) +2Cov (
n=1 1

kn

n—= n—=

fnsans1 —611) -
1

The first term is smaller than C;Uy + Cé due to the gradient Lemma and Lemma 2.5 the second
term is smaller than Cé’ due to Lemma 2.10. L]

2.2.3 Characterization of center-tight additive functionals

We prove Theorem 2.2. Suppose f is an a.s. uniformly bounded functional on a uniformly elliptic
array X. We will show that the following conditions are equivalent:

(a) Var(Sy)=0(1);
(b) f is the sum of a gradient and an additive functional with summable variance;
(c) fis center tight.

(a)=-(b): By the gradient lemma f = Va+ (f—i— c), where ale) (x) are measurable functions on

S ,SN) with uniformly bounded L™ norm, C,(1N) are uniformly bounded constants, and ||Fn 2 < ule) .
k _
By Theorem 2.1, sup Z (u,(fv))2 < oo, 80 f 4+ ¢ has summable variance, proving (b).
N p=3

(b)=>(c): We already saw that gradients and functionals with summable variance are center-
tight. Since the sum of center-tight functionals is center-tight, (c) is proved.

(c)=-(a): Assume by way of contradiction that IN; 1 e such that Vi, = Var(Sy;) — c. By Do-

- ]E’(SNi)

SN
brushin’s CLT (see [45], [139] and §2.2.5), Ni \/V_ converges in distribution to a standard
N;

o/
Gaussian distribution. But center-tightness implies that there are constants [y, s.t. S’Z/%N con-
verges in distribution to the deterministic random variable W = 0, and both statements cannot
be true simultaneously. U

2.2.4 McLeish’s martingale central limit theorem

A martingale difference array with row lengths ky is a (possibly non-Markov) array A of
random variables
A={aM:N>1,1< )<k}
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together with an array of c-algebras {.%# ](N) :N>1,1<j<ky},so that:

(1) Foreach N, AI(N), o 7A1g\:/) are random variables on the same probability space (Sy, %y, Uy )-
(2) gﬂ(N) C ﬁZ(N) C 93(1\’) C---C ﬁ’,gvv) are sub o-algebras of .Zy.

(3) AJ(.N) is ¥ J(N)—measurable, E(|AJ(-N)|) < o0, and E(A](?l |§]§N)) =0.

j(.N) ) =0 for

all j=2,...,kys. If in addition E(AI(N)) = 0 for all N, then we say that A has zero mean.

(V)

We say that A has finite variance, if every A"’ has finite variance. Notice that E(A i

Example 2.11 Suppose {S,} is a martingale relative to {.%#,}, then

AV =851, AN =5;-5,., FV =7, j=1,...N

is a martingale difference array.

The following basic observation on martingale difference arrays is a key to many of their
properties:

Lemma 2.12 Suppose A is a martingale difference array with finite variance, then for each N

AI(N), e ,A,g;]) are uncorrelated, and if A has zero mean, then
WAy _ N pr )
Var(} A7) = Y E[(A: ).
n=1 n=1

Proof. Fix N and write AJ(-N) =A;, 7 ;N) =Z;.

Ifi< j, then ]E(Ain) = E[E(Ainng_[)] = E[E(AiE(Aj‘gzj_] ))] == E(A, : 0) = 0. The iden-
tity for the variance immediately follows. U

Theorem 2.5 (McLeish’s Martingale Central Limit Theorem). Ler A = {AJ(N)} be a mar-
tingale difference array with row lengths ky, zero mean, and finite variance, and let Vy :=

ZI;’L | E[(A](.N))z]. Suppose:

AN
1) max —Z
(1) 1<j<ky VWV

(V)

Al

(2) 1?‘% ‘\/JW‘ N—> 0 in probability; and
<J<kn —ree

1 vk (N)\2 . .
(3) 7 Loty (An ) = 1 in probability.

has uniformly bounded L* norm;

. k N 2
Then for all intervals (a,b), P \/LVTVZJ'ZLI Aj(- ) e (a,b)| — ﬁfa e 1 /2dr.

N—roo

We prepare the ground for the proof.

A sequence of random variables {Y,} on (Q,.%,u) is called uniformly integrable if for
every €, 3K s.t. E(|Ya|1)y,>x)) < € for all n. This is strictly stronger than tightness (there are
tight non-integrable random variables).

Example 2.13 If M, := sup ||V, ||, < oo for some p > 1, then {Y,} is uniformly integrable.

Indeed, by Chebyshev’s inequality, p1[|Y,| > K] < Z-M5, and by Holder’s inequality
E([Yall gy, 5k) < Mp[|[Ya] > K]'/4 = O(K~7/4) for the g s.t. 1+ 1 = 1.
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1
Lemma 2.14 Suppose Y,,Y € L'(Q,.7 1), then Y, —L:—) Y iff {Y,} are uniformly integrable
n—soo
and Y,, —— Y in probability. In this case E(Y,) — E(Y).
n—oo

n—yoo
Proof. We include the well-known, standard proof for completeness.

Proof of (=): Since Y € L!, it follows (for example from the Dominated Convergence Theo-
rem) that I}im E(]Y|1)yj>x) = 0. Given € take K so that E(|Y|1|y>x) < €. Let 6 = P(|Y|| < K)
—oo = =

then it is easy to see that
E(|Y|1F) < € for all measurable sets F s.t. u(F) < 8. (2.2.6)

Fix € > 0, and choose 0 as in (2.2.6).

Suppose ||Y, —Y||; — 0. By Markov’s inequality P[|Y, — Y| > €] < ||Y, = Y||:/€ — 0, and
Y, — Y in probability.

Markov’s inequality also implies that P[|Y;,| > K] < K~ !sup||Y,||; = O(K~!), so there exists
K s.t. P[|Y,| > K] < 0 for all n. By the choice of J,

[ Wlaws< [ (vidu+ Y, — Y]y <&+ Y, — Y|} — &,
[|¥2]>K] [|¥2]>K] (|¥2]>K] oo

Uniform integrability follows.

Proof of (<): Given a random variable Z, let ZX := Z1j7 <. Since {¥,} is uniformly inte-

grable, for every € there is a K > 1 s.t. |[¥X —Y,||; < € for all n. Similarly, ||[YX —Y||; < € for
all K large enough. Thus for all n,

¥y =Yl < 1K — Y51 426 < enl[7K —¥¥| < &] + 2KuYK —YX| > €] 4 2¢
< 3£+2K(M[|Yn—Y| > &)+ ullta] > K] +ulY] > K])

< 38+2K‘LL[|Y —Yl > 8] +2E(|Y |1HY \>I(]) +2E(‘Y’1\Y\>K)
llmsup||Y Y||1 < 38+2SUpE(|Y |1 (1Y, |>K]> +2E(|Y|1|Y|>K)

n—oo

where we have used the assumption that ¥, — Y in probability. The last expression can be made
arbitrarily small, by choosing € sufficiently small, K sufficiently large, and appealing to the
uniform integrability of ¥,,. U

Lemma 2.15 (McLeish) Let {WJ.(N) :1 < j <kn} be a triangular array of random variables?,

where WI(N), . =Wk(1y) are defined on the same probability space. Fix t € R and let Ty(t) :=
ky
[T+ ith(N)). Suppose

1) {Tn(z )} is uniformly integrable and E(Ty) — 1,

N—>oco

=1
(1)
(2) Z ( ) N_>—°o> 1 in probability,
(3)

max ]W | —— 0 in probability.
1<j<kn N—o0

w™ (V)
Then (e’ W Wy ))N—>e 2",
—»00

2 Not necessarily a martingale difference array or a Markov array.
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Proof. Define a function r(x) on [—1,1] by the identity e® = (1 + ix)e’%x2+’(x), then r(x) =
—log(1+ix) +ix+ 3x* = O(|x*). Fix C s.t. |r(x)| < Clx|? for |x| < 1.

Substituting Sy := WI(N) +- Wk(liv) in e™ = (1+ ix)e’%xzﬂ () gives (in what follows we
drop the superscripts (V) and abbreviate 7, := T;,(1)):

kv 2p2
zzSN Heth TNe z)jj (W -H'(tW))

1 &
= [E(TyUy), where Uy := exp —3 Z tz(Wj(N))2 + r(th(N))
j=1

Ty and Uy have the following properties:
(a) E(Ty) = 1, by assumption.
—»00
(b) {Ty} is uniformly integrable by assumption, and |TyUy| = || = 1

1
(c) Uy —0b> exp 2 , because

kyn 2
(N)) prob
W — 1,b ti
o j; < ¢ Y y assumption,
o max (W prod —— 0 by assumption, so with asymptotic probability one,
1<j<kn ”*“’
kn kn 2
Y rew ™) <clef max (W)Y (W) 2250,
= J I<jsky /TN N—soo

We claim that this implies that E(e?SV) = E(TyUy) ~ e 2. Let L:= e 2", Since
—o0
|E(TyUy) — L| < |E(Tn(Uny —L))| + L|E(Ty) — 1], (a) tells us that

[E(TvUn) = L| < [E(Tw(Uy — L))| +o(1). (2.2.7)

Next, for every K, €, u[|Ty(Uy —L)| > €] < u[|Ty| > K]+ 1[|Un — L| > €/K]. Therefore by (b)
and (c),

Ty (Uy — L) N—> 0 in probability. (2.2.8)
—>00

Finally, |Ty(Ux — L)| < 1+ L|Ty|, so Ty(Un — L) is uniformly integrable by (b). By Lemma
2.14, E(Ty(Uy — L)) — 0, and by (2.2.7), E(e/"V) = E(TyUy) — e~ 2" 0

Proof of the Martingale CLT [103]: Let A = {Aj(-N)} be a martingale difference array with
row lengths ky, which satisfies the assumptions of Theorem 2.5, and let

ky
Sy = Z A](. and Vi := Var(Sy) = Z E[(A N (see Lemma 2.12).

It is tempting to apply McLeish’s Lemma to the normahzed array A / vV, but to do this
we need to check the uniform integrability of T]}_,; (1 + ltA / +/Vn) and this is difficult. It is



2.2 Proofs 53

easier to work with the following array of truncations:

WM = AN

L N1,y

U sl aMe<awy)

It is easy to check that {Wn } is a martingale difference array relative to 2, and that {Wn(N)}
has zero mean, and finite variance.

In addition, Sy, := Zkf W,,(N) are close to Sy /+/Vy in probability:

n=1

j—1 ky
uiSy # 3] < p {31 <j<kyst ¥ (aM)?> 2VN] <u {Z(A,ﬁm)z >2Vy| ——0
k=1 j=1

N) prob .
because - (A( ) —— 1 by assumption.
Vn ]; J N—soo0 y p

Thus to prove the theorem, it is enough to show that Sy converges in distribution to the

standard Gaussian distribution. To do this, we check that {W } satisfies the conditions of
McLeish’s Lemma.

Fixt € R, and let Ty = Ty (¢) := Hl;’il(l —|—ith(N)). LetJy:=max{2 < j<ky: Zi;} (A,(lN))2 <

2V} (or Jy = 1 if the maximum is over the empty set). Writing W; = WJ.(N) and A; = A](-N), we
obtain

ky Iy lez 1/2
|TN|:H(1+t2W2 12 = H(1+—>

j=1 j=1 Vv
Iy—1 224\ /2 A2\ 12 0
= 1—|——]) ~<1—|— JN) , where [ [(---):=1
(F(+50) (58 e 1
(N)
2 Iyl 2 vz A
< AF ) (1+-A <e (141t ——1).
<orla 5 4) (eah) = (oo G )

Thus

2
2 212 A('N)
1T (t)]5 <e 1+ f|E| max

J
1<j<ky | v/VN

By the first assumption of the theorem, the last quantity is uniformly bounded for each 7. It
follows that {7y (¢) }y>1 is uniformly integrable for each 7. Next, successive conditioning shows

that E(Ty) = 1+ itE (AI(N)> = 1. The first condition of McLeish’s Lemma is verified.

ky 2
The second condition of McLeish’s Lemma follows from the assumption — Z (A,EN)) —

0 in probability, and the estimate

lg #Z 2]§u

31 <n <kys.t. Z (A](.N))2 > 2VN] <
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n=1 n j=1

v A0 L,
<u|Y @) >2vy ~—— 0, because v Y (4")* = 1 in probability.

The third condition of McLeish’s Lemma follows from the assumption that

max |W | — 0 in probability, for similar reasons.
1<j<kn

So McLeish’s lemma applies to {WnN }, and E(e™V) — e 2 forall t € R. By Lévy’s con-
tinuity theorem, this implies that S}, % N(0,1).

dist
As explained above, this implies that A \/Tv o N(0,1). O

2.2.5 Proof of Dobrushin’s central limit theorem

Let X = {X,EN)} be a uniformly elliptic Markov array with row lengths ky + 1, and let
f ={ an } be an a.s. uniformly bounded additive functional on X. Define as before Sy =

Z fn B +1) Vi := Var(Sy). Without loss of generality,
E[fng) (X,gN),X,EIX)I)] =0and \f,gN)| < K for all n,N.
Deﬁne ? (V). (XI(N), . >Xr$i\ul)1) forn > 1, and yém :=trivial o-algebra. Fix N and write
feo= 1" (% SbmM%:ﬁﬁhmmwmgu=ﬂﬂum%ﬁﬁw@:ammmm

fore

kn

kv k
SN = ka =Y (E(ilZ) —E(ilZF0) = Y, Y (B(fi Zn) —E(fi| #u1))

k=1 k=1 k=1n=1

Y (%)~ Bl Fa )

n=1k=n

S ) N (1 ) ) ™) F M)
=Y A, where A, =Y (E(f 1% ) =B 12,0))-

n=1 k=n

The array {A,EN) :1 <n<ky;N > 1} is a martingale difference array relative to the filtrations
a(N)

n » with zero mean and finite variances. To prove the theorem, it suffices to check that {A,EN)}

satisfies the conditions of the martingale CLT.
(,N ) 2D prob

. 2 j pro

STEP 1: | Ignj?l(w \/W has uniformly bounded L~ norm, and ) g}ég}(w \/]W m 0.

Proof. The proof is based on the exponential mixing of uniformly elliptic Markov arrays (Propo-

sition 1.11): Let K := such that for

all k > n,

mix

B2 o < Crink €.
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It follows that |A](.N)| <2CuKY7 ,6°= %. The step follows from the assumption
that Viy — oo.

1 &
STEP 2: W,;(A (N)) 2 1 in probability.

Proof. We follow [139] closely.
Let Yi(N) = ( ) /Vn. We will show that HZkN Y — IH = 0, and use the general
—>00
fact that L2-convergence implies convergence in probability (by Chebyshev’s inequality).

kn
Notice that E ( Z Yl.(N )> = 1, because by Lemma 2.12, this expectation equals
i=1

1 ky (N) 1
7o % Var | ) A | = WVar(SN) =1.

N n=1

So
k

I8 132 (] -2 [y 4

i=1

k
— E[ZN’(Yi(N))Z} +2F [ZYI.(N)YJ.(N)] —241
i=1

i<j

_ My W) | _
_0(123;; HY {ZY }+2E[2Yi Y; 1 1.

i<j
We saw in the proof of step 1 that HAJ(-N) ||« are uniformly bounded. Thus  max HYZ(N)HM =
SUSAN

O(1/Vy), so ||Zfi’1 Yi(N) = 1||§ =2FE [ZKle.(N)YJ.(N)} —1+o0(1). It remains to show that

2F {Z Y}MY}N)} —— 1. (2.2.9)

i<j N—yeo

The proof of (2.2.9) is based on the following fact:

kn
Osc(N) := max Osc [E( Y} v™M|zM) ] —o. (2.2.10)

Here Osc is the oscillation, which was defined in §1.2.1. Before proving this, we explain why
(2.2.10) implies (2.2.9). Write x = y + € whenever y — € < x < y+ €. Every bounded function
@ satisfies @ = E(¢) +Osc(@). So

sl sl & ol i

i<j Jj=i+1 i=1

—2E {i yME( f Y].(N))} +F {% YZ.(N)} Osc(N)

j=it1 i=1
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ky ky

—2Y Z E(r™)+20sc(N) (- Y E¥M)=1)

i=1 Jj=i+1 i=1

kn kn
_ (ZE(IQ(N))> ~ Y E(¥,M)? +20s¢(N)

i=1 i=1
_ (N) .. (N)\2 (N) (N)
— 10 may (1)) & 20s6(0) . LB < R0 max 1.

= 14+0(Vy!) +0(Osc(N)).

So (2.2.10) implies (2.2.9), and with it the step.
We turn to the proof of (2.2.10). Henceforth we fix N and drop all the V) superscripts. First

we note that a routine modification of the proof of Lemma 2.12 shows that for all j, k > i,
E(A;A¢|-Z#i) = 0. It follows that

ky 1 ky )
|1z ) = T
E Z YJJ,>:V—E(Z A5 | Fi ( E A )
j=i+1 N \j=it1 n=i+1

ky  ky 2
( Y Y E(hl7) - <fk|5fn_1>])
n=i+1

k=n

(
((k;rlnzl;]E (fel Fn) — (fk|ffn—1))2
(

»)
')

1 ky 2
:V_E< [fk—E(ka%)]) %)
N k=i+1
ky
- L E[([fk—wk%])(ﬁ—E(fM))'%]
Nk t=i+1
ky
Y, B[ BUISIEGS) - B Z) - B 7]
N kt=i+1
ky
Vl Y. [E[ffdl 7] —E(fill ZOR(fil 7] (2.2.11)
N g r=it1

The oscillation of the summands can be estimated as follows. By Lemma 1.9(d)
N) (N N N
Osc (E(M(Xk( L x| x! >)) <5 (7)) Osc(w),

where 0 ( JUZ)) is the contraction coefficient of the (k — j)-step Markov operator nj(Nk) In the

uniformly elliptic case, by Lemma 1.10, (=« (erz) < 1 — g, where g > 0 is the ellipticity

constant of X. Iterating Lemma 1.9(c) we conclude that there exists Cp > 0 and 0 < 8 < 1 such
that for all £ > i+ 1, and for every bounded function u : GI(CN) X 6,@1 — R,

Osc(E(u(Xk(N) Xk(ﬁ){f( ))) < Co0"0sc(u).
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This, (1.2.3), and the inequalities |f;| < K, Osc(u) < 2||ul|e and Osc(uv) < ||u||Osc(v)
||v]|Osc(u) imply the existence of constants C; > 0 and 0 < 6 < 1 such that for every N >
and i +2 <k </ <ky,

+
1

Ose (E( ol Z)E(A|Z >>
< Ose(Bfl 7)) Bl 71) =+ (i1 79)l-Ose(E(fd 79) < €16 0.
OSC( fkfé|fz}> 080( AE(fe F) |Jl])

< Cob*~ ’OSC(ka fil Zr)) < Co8* K - Osc(E(fo] F)) + Ose(fi) IE(fe|-F)|o»]
We have stated these bounds for k, ¢ > i+ 2, but in fact they remain valid fork=i+2or { =i+2,

if we increase C to guarantee that C; 0% > 2K>.
Substituting these bounds in (2.2.11), we find that

20, & . 260,/ 6 \°
Osc(N) < =1 Z oF-igt—k < ! < ) s 0.
N ki=it1 \%N 1-6 N—yoo

This proves (2.2.10), and completes the proof of step 2.

Steps 1 and 2 verify the conditions of the martingale CLT. So \/LV—NZ?L | A,EN) converges in

e e . C e . 1 o — 1 vkyv 4(N)
distribution to the standard Gaussian distribution. By construction, \/WSN = \/VTVanl A
and the theorem is proved.

2.2.6 Almost sure convergence for sums of functionals with summable variance

We prove Proposition 2.4. Let f; := 0, f := fu(Xn, Xnt+1) — Efn(Xu, Xnt1), let Fy denote the
trivial o-algebra, and let .%, denote the c-algebra generated by Xi,...,X,. Then f is % -
measurable, so

k
=B Fi) —E(f [ Fo) = Y B Furt) —E(F | F0)-
n=0

Therefore (numbered equalities are justified below):

N N k N N

k=1 k=1n=0 n=0k=n
N oo N I

DY Y B 1) —ESf 1) - ¥ E(f¢ | Fni1) =B | F0)
n=0k=n n=0k= N+l
N o o0 N

DY Y ERHIF) -EEIZ) - Y Y €U Fan) - E]5)
n=0k=n k=N+1n=0

S
M=
s

(E(ff 1 Fnr) =B 1Z0)— Y, B Pn).

k=N+1

3
Il
o
=
1l
3
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To justify the numbered inequalities almost surely, we need to establish the convergence of
the series which they involve.

E(f{|Zns )2 + |E(f | Zn)ll2 < 2Cmixy/Var(f) 051, so by the Cauchy-
Schwarz inequality and the assumption Y Var(f;,) < oo,

N o
Y Y B[ Fas1) —E(f | Fa)l, < oo

n=0k=n

This justifies 0, and (2

Next by assumption, |f| < K a.s. for some constant K. By (1.2.3), [|E(f|-%0) [|eo + [|E(f|-Fn) |0 <
S 3
4KCpix0"* 50 X7 ot [E(fi|:#n+1)] < oo. This justifies ®
N N

In summary, Z fi = Z A, — Zy, where
k=1 n=0

(o)

An:= Y BN Tnrt) —EBRNF) » Zn = Y, E(ff[Fns):

k=n k=N+1

To finish the proof, we show that Z A, and Al/im Zy exist a.s.
n=0 e

CLAIM 1. My := Y "\ A, is a martingale relative to { Fy}, and sup |My |2 < co. Consequently,
lim My exists almost surely.

Proof. E(My+1 —Mn|Fn) = E(AN| Fn) = ZE (fe [ Fn )| FN) —EE(f | Fn)|Fn) =0

e . !
To justify = we note that the series

(o]

Ay =) [E(ff|Fu1) —E(L] )]

k=N

converges in L?, because |[E(f;|Znt1) —E(fi| Zu)|l» = O(6%™), so its conditional expectation
can be calculated term-by-term.
Next we show that ||My/||, is uniformly bounded:

N o
Myl < 1Y Y B Fnr1) —E(f | Fn) ,
n=0k=n
o kAN oo
Y Y B Z) B 15| = ZEUW(MN)H)\
k=0n=0 2 k=0 2
N oo
<Y ZlL+1Y EGZn)|,
=0 k=N+1
< Z||fk||2+2 Y, Cov(fy. f)+ Z IEFne1) ||

0<k<t{<N k=N+1
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o)

S\/ZHf;?H%JrZCmix Y 0N A G Y, (165
k=0

0<k<f<oo k=N-+1

The last expression is uniformly bounded, because Y Var(f;) < oo and

Y IR < ZG’Z ficll2lficrllz < =5 Z [T
0<k<l<oo

Y 116" = ;=5 sup [l [l
k=N+1 k

CLAIM 2. Zy N—> 0 almost surely.
—>00

Proof. It is enough to prove that ¥ || Zy||5 < o, because this implies using Chebyshev’s inequal-
ity that Y P[|Zn| > €] < éz |Zn||3 < oo for all € > 0, whence, by the Borel-Cantelli Lemma,
limsup|Zy| < € a.s. for all €. Equivalently, limZy = 0 a.s.

Here is the proof that ¥ ||Zy||3 < oo

[e)

1 (oo}
PUCYEES Vb W VA AT
N=1

N=1ky >k >N

-3 ¥ E[rEwiee]

N=1ky>k>N

<GCuir Y. Y, ONA RIES [ Fn)lla by (1.2.5)
N=1ky>k; >N

o)

<C,31,XZ Y 0N - 04 N |y by (1.2.4)
1k22k1>N

= Crzmx Z 6/ Z 62k Z Hflj—Q—N—i—j”zl‘flj—i-NHZ

>0 k>0  N=I
(after changing indices j =k; —k;,k=kj —N+1)

j k v * - *
< Cl%ux Z 6/ Z 62 Z kaJrNJer% Z “fk+]\/”%
j>0 k>0 = =
< Gois - g Y Il = e 3 IR 2 0% <o
k>0 N=
because 0 < 0 < 1 and ¥ || f{ |15 < oe. O

2.2.7 Convergence of moments.

Dobrushin’s CLT (Theorem 2.3) shows that if Vy — oo then for any bounded continuous function
¢ : R — R we have
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) SN—E(SN> . L o )2
lim E {¢ (—\/W )} = m/_mq)(z)e dz. (2.2.12)

In applications, one often need to have convergence of expectations for unbounded functions,
such as polynomials. This problem is addressed in the present section.

Lemma 2.16 Let f be a centered bounded additive functional of a uniformly elliptic Markov
chain such that Viy — oo. Then for each r € N there is a constant C, such that for all N,

syl < vy

Corollary 2.17 Under the assumptions of Lemma 2.16

. E[Szrv] 0 ris odd,
am = (/21 .
= Vy (r—D"U =TI, ., (r—2k—1) riseven.

The corollary follows from Dobrushin’s CLT (Theorem 2.3), using the fact that by Lemma 2.16
and the de la Vallée-Poussin Lemma, (Sy/+/Vy)" is uniformly integrable for all » > 1 even, and
therefore imE[(Sy/+/Vn)"] = E[N"], where N is a Gaussian random variable with mean zero
and variance one.

The proof of Lemma 2.16 proceeds by expanding S}, into a sum of r-tuples f, -+ f,
(np < -+ < n,), and by estimating the expectation of each tuple. (Here and throughout,
o= fu(Xn,Xn+1).) In view of the gradient lemma it is sufficient to prove Lemma 2.16 under
the assumption that there is some constant C > 0 such that u, := || f, || ;2 satisfy Zﬁ% < CVy.

n

Consider an r tuple f;, - - fn, where n; <np <--- <n,. Segments of the form [n j,njH] will
be called edges. The vertices belonging to an edge are called bound, the other vertices are called
free.

A marking is a non-empty collection of edges satisfying the following two conditions. Firstly,
each vertex n; belongs to at most one edge. Secondly, for every free vertex n, either

(i) there exists a minimal f () > [ such that ny () is bound, and forall / <i < f),nip1—n; <

Rp)+1 () OF
(ii) there exists a maximal p(/) </ such thatn,,; is bound, and for all p(/) <i <[, n;—n;—1 <
Mp(r) = p(1)—1-
If (i) holds we will say that n; is associated to the edge [n F() )+ 1] otherwise it is associated
to [1p(1y—1,7p(0)]-
Lemma 2.18 There are constants L= L(r) > 0and 0 < 6 < 1 such that

ani] <L Z H (9(nj+1—nj) ﬁnﬁnm)-
i=1

markings [nj,nj.1] is an edge
Proof. If r = 1 then the result holds since E[f,,] = 0 (in this case there are no markings, and we
let the empty sum be equal to zero).
If r = 2 then the lemma says that |E[f,, f,,]| < KO0™7"1|| fu, |l 2]/ fn, || ;2 which is true due to
Proposition 1.11(2).
L2>

E

For r > 3 we use induction. Take j such that n;, | —n; is the largest. Then

L J r J r
[T/ [T/ IT 7 [T/ IT /
i=1 i=1 i=1

i=j+1 i=j+1

E =E E

+0 <9(ﬂj+1—"j)

12
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Let K := ess sup|f|, then the second term is smaller than 9("«"“*"1)&”].%1.“[(”2. Thus this
term is controlled by the marking with only one marked edge [n;,7;,1]. Applying the inductive
assumption to each factor in the first term we obtain the result. U

Lemma 2.19 There exists C, > 0 s.t. for every set € of r tuples 1 <nj; < --- <n, <N,

Iy = Z

(n1yeesny ) EC

Lemma 2.19 implies Lemma 2.16 since

- 4 r!
]E[SN]:S_Z,lk Y i L E

|
1+ tky=r S 1<n<--<ng<N

Therefore it suffices to prove Lemma 2.19.
Proof. By Lemma 2.18

PRV D M | (A

(n1,...,ny)€E markings (eq,...,es) Jj=I

of (ny,...,ny)
where the marked edges are e¢; = [e;,e;“], Jj=1,...,s. Collecting all terms with a fixed set of
marked edges (eq,...,e5) we obtain
S —
<cnY Y II (ﬁfﬁe*e@ (et _e;)rfz) (2.2.13)
S (617 "7eS)j:1 ! !

where C(r) [ J(ef — e; )" accounts for all tuples which admit a marking (e, ...e;). Indeed, for

every edge e = [e~,e ™| there are at most 0 < j < r — 2 vertices which may be associated to e
and the positions of those vertices are located inside

[em—(r=2)(e"—e"),e)U(e", e+ (r—2)(e" —e7)].

It follows that there are at most 2(r —2) (et — e ™) choices to place each vertex associated to a
given edge. This gives

r—2 .
11 (Zb [2r=2)(e” —e‘W) <c(r[Ile" —e )2

possibilities for tuples with marking (ey,...,es) proving (2.2.13).
The sum over (ey,...es) in (2.2.13) can be estimated by

N—1N-n s
Y Y im0
n=1m=1
For each m, Z Unly+m = O(Vy) due to the Cauchy-Schwartz inequality and because YV_, 2 <
n

CVy by assumption. Summing over m gives Iy < const Z Vi where the condition 2s < r ap-
2s<r
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pears because each edge involves two distinct vertices, and no vertex belongs to more than one
edge. The result follows. O

2.3 Notes and references

The connection between the non-growth of variance and representation in terms of gradients is
well-known for stationary stochastic processes. The first result in this direction we are aware of
is Leonov’s Theorem [94]. He showed that the asymptotic variance of a homogeneous additive
functional of a stationary homogeneous Markov chain is zero iff the additive functional is the
sum of a gradient and a constant. Rousseau-Egele [127] and Guivarc’h & Hardy [65] extended
this to the context of dynamical systems preserving an invariant Gibbs measure. Kifer [80],
Conze & Raugi [28], Dragicevi¢,Froyland & Gonzalez-Tokman [53] have proved versions of
Leonov’s theorem for random and/or sequential dynamical systems.

The connection between center-tightness and gradients is a central feature of the theory of
cocycles over ergodic transformations. Suppose T : X — X is an ergodic probability preserving
transformation on a non-atomic probability space. For every measurable f: X — R, {foT"} is
a stationary stochastic process, and

Sy=f+foT+ -+ forT"!

are called the “ergodic sums of the cocycle f.” A “coboundary” is a function of the form f =
g —goT with g measurable. Schmidt characterized cocycles with center-tight Sy as those arising
from coboundaries [136, page 181]. These results extend to cocycles taking values in locally
compact groups, see Moore & Schmidt [105] and Aaronson & Weiss [7]. For more on this, see
Aaronson [2, chapter 8], and Bradley [16, chapters 8,19]. We also refer to [64] for an analogous
result in the continuous setting.

Notice that inhomogeneous theory is different from the stationary theory in that there is
another cause for center-tightness: Having summable variance. This cannot happen in the sta-
tionary homogeneous world (unless all f; are constant).

Theorem 2.3 is a special case of a more general result due to Dobrushin, which can be found
in [45]. The conditions for Dobrushin’s full result are more general than uniform boundedness
or uniform ellipticity. Our proof follows the paper of Sethuraman & Varadhan [139], except for
some changes we needed to make to deal with additive functionals of the form f; (X, X 1), and
not just fi(X;) as in [139]. McLeish’s Lemma, the martingale CLT, and their proofs are due to
McLeish [103]. We refer the reader to Hall & Heyde [71] for the history of this result, further
extensions, and references.

Theorem 2.4 is extends the Kolmogorov-Khintchin “Two-Series Theorem™ [84]. There are
other extensions to sums of dependent random variables. We mention for example a version for
martingales (Hall & Heyde [71, chapter 2]), for sums of negatively dependent random variables
(Matuta, [101]) and for expanding maps ([28]).

The proofs of theorems 2.3 and 2.4 use Gordin’s “martingale-coboundary decomposition”
[62], see also [71],[86].



Chapter 3
The essential range and irreducibility

In this chapter we discuss the following question: How small can we make the range of an
additive functional, by subtracting from it a center-tight functional?

3.1 Definitions and motivation

Let f = {f,} be an additive functional of a Markov chain X := {X,}. The algebraic range of
(X,f) is the intersection Gq(X,f) of all closed groups G s.t. ,

dep € Rst. P[f, (X, Xpr1) —cn € G =1 foralln > 1. (3.1.1)

We will see later (Lemma 3.9) that G, (X, f) itself satisfies (3.1.1), therefore G;4(X,f) is the
smallest closed group satisfying (3.1.1).

Example 3.1 (The simple random walk). Suppose {X,} are independent random variables
such that P(X, = +1) = % and let f,(x,y) = x. Then S, = X| + - -- + X,, is the simple random
walk on 7. The algebraic range in this case is 27.

Proof: G4 C 27, because we can take ¢, := —1. Assume by contradiction that G, C 27Z, then
Gaulg = t7Z for t > 4, and the supports of S,, are cosets of ¢Z.

But this is false, because Jay,a; s.t. |a; —az| <t and P(S, = a;) # 0: For n even take a; =
(—1)%, and for n odd take a; = 1+ (—1)". O

The lattice case is the case when Galg(X, f) =tZ for some ¢t > 0. The non-lattice case is the
case when G4(X,f) = R. The distinction is important for the following reason. If G;4(X,f) =
tZ, and Yy :=c1 +---+cp, then

P(Sy € ww+1t7Z) =1 for all N.

. . ~2/24_ _
In this case it is not true that P(Sy —zy € (a,b)) ~ 62—\/%“ whenever % — z, because

P(Sy —zn € (a,b)) = 0 whenever |a — b| < t and zy + (a,b) falls inside the gaps of yy +tZ.
This is the lattice obstruction to the local limit theorem.

There is a related, but more subtle, obstruction. An additive functional f is called reducible
on X, if there is another additive functional g on X such that f — g is center-tight, and

Galg<X7 g) g Galg (X, f)'

In this case we say that g is a reduction of f, and call the algebraic range of g a reduced range
of f.

63
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Example 3.2 (Simple random walk with continuous first step): Suppose {X, },> are inde-
pendent real valued random variables such that X; has continuous non-uniform distribution §
with compact support, and X»,X3, ... are equal to +1 with equal probabilities. Let f,(x,y) = x,
then S, = X1 +Xo+---+X,.

Because of the continuously distributed first step, G, (f) = R. But if we subtract from f the
center-tight functional ¢ with components

cn(x,y) =xwhenn=1and ¢,(x,y) =0 whenn > 1,

then the result g := f — c has algebraic range 2Z. So f is reducible.

The reduction g satisfies the lattice local limit theorem (see the preface), because it generates
the (delayed) simple random walk. But by the assumptions on §, the original functional f =g—+c¢
does not satisfy the LLT, lattice or non-lattice. This can be seen by direct calculation from
the observation that the distribution of §,, is the convolution of § and the centered binomial
distribution. See chapter 5 for details.

Here we see an instance of the reducibility obstruction to the local limit theorem: A situation
when the LLT fails because the additive functional is a sum of a lattice term which satisfies the
lattice LLT and a non-lattice center-tight term which spoils it. The reducibility obstruction to
the LLT raises the following questions:

1. Given an additive functional f, how small can we make its algebraic range by subtracting
from it a center-tight term?

2. Is there an “optimal” center-tight functional c such that the algebraic range of f — c cannot
be reduced further?

Motivated by these questions, we introduce the following definitions. The essential range of

fis
Gess (X, ) :=[){Gaig(X,g) : f — g is center tight } .

This is a closed sub-group of Gq(X,f).

An additive functional without reductions is called irreducible. Equivalently, f is irreducible
iff Gegs(X,f) = Gurg(X,f).

In this terminology questions 1 and 2 call for the calculation of G (X,f) and ask for an
irreducible reduction of f.

3.2 Main results
3.2.1 Results for Markov chains

The questions raised at the end of the last section can be answered using the structure constants
d, (&) introduced in (1.3.2). Define the co-range of f to be the set

H(X,f):={E eR: idn(‘g’)Q < oo},

Theorem 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If f is center-tight then H(X,f) = R, and if not then either H(X,f) = {0}, or
H(X,f) =tZ for some t > 1 /(6ess sup|f]).
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Theorem 3.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, then

(a) If H(X,f) =0, then G5 (X,f) =R.

(b) If H(X,f) =tZ with t # 0, then Gess(X,f) = 2.

(c) If H(X,f) =R, then G.s(X,f) ={0}.

Theorem 3.3. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic

Markov chain X. Then there exists an irreducible uniformly bounded additive functional g such
that f — g is center-tight, and

Galg(x7g) - Gess(xvg) - Gess(xaf)-

Corollary 3.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If Gss(X,f) =tZ with t # 0, then |t| < 12ess sup [f|.

The corollary follows directly from Theorems 3.1 and 3.2(b).

3.2.2 Results for Markov arrays

The previous discussion applies to Markov arrays. Let f be an additive functional on a Markov
array X with row lengths ky + 1:

(1) The algebraic range G, (X,f) is the intersection of all closed subgroups G of R such that
forall 1 <k <ky,N>1

3N eRst PN (XN xM) - M e g = 1.

(2) The essential range G, (X,f) is the intersection of the algebraic ranges of all additive
functionals of the form f — h where h is center-tight.

k
(3) The co-range is H(X,f) :={& e R: sup ZI“V d,EN)(é)Z < oo},
N k=3

(4) An additive functional f is called irreducible if G4 (X,f) = Gy (X, f).

This is consistent with the definitions for Markov chains, see Corollary 3.4 below.

Theorem 3.4. The results of Theorems 3.1, 3.2 3.3 and of Corollary 3.3 hold for all a.s. uni-
Jormly bounded additive functionals on uniformly elliptic Markov arrays.

Corollary 3.4 Suppose f = {f,} is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X = {X,,}. Let f = { f,gN)} be an additive functional on a Markov array
X = {X,gN)} s.t. f,gN) = fyand X,gN) = X,,. Then

Gaig(X,F) = Garg(X, ), Gess(X,F) = Gugs (X, F) , H(X,F) = H(X,f).

Proof. The equality of the algebraic ranges and co-ranges is trivial, but the equality of the

essential ranges requires justification, because some center-tight functionals of {X,EN)} are not

of the form hg,N) =h,.
However, since the co-ranges agree, the essential ranges must also agree, by the version of
Theorem 3.2 for arrays. U
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3.2.3 Hereditary arrays
Some results for Markov chains do not extend to general Markov arrays. Of particular impor-

tance is the following fact, which we need for the proof of the LLT (see the proof of Theorem
4.1, claim 2). Recall the definition of Dy (&) from (1.3.2).

Theorem 3.5. Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, then

Dy(&) o uniformly on compact subsets of R\ H(X,f). (3.2.1)
—>00

Proof. Suppose & € R\ H(X,f), then supDy (&) = oo, whence
N

Dy(8) = Y4 @) o X " (€ =supDy() ===

Since Dy(&) is non-decreasing and & — Dy(&) are continuous, the convergence is uniform on
compact subsets of R\ H(X,f). O

The following two examples show that Theorem 3.5 fails for some arrays:

Example 3.5 Let X, be a sequence of independent uniform random variables with zero mean
and variance equal to one. Form an array by setting

<k<
X(N):{Xk ISKSN+LNodd 0\ )

k 0 1<k<N-+1,Neven

and let fk(N) (x,y) :=x. Then for every 0 # & € R\ H(X,f), Dn(&) # co.
Proof. We claim that sup Dyy 11 (&) = oo for every & # 0.
N
Xn—1 Xn
-2 Ynfl Yn 7Yn+1

n,thenI'(P) =X, +X,—Y,—1 —Y, where X;, Y; are independent random variables each having
uniform distribution with mean zero and unit variance. So I"(P) is a non lattice random variable

and for every £ # 0, d,(,ZNH)(é)2 = E(|eST ) — 1|2) = ¢(&), where ¢(&) is a positive constant
independent of n. So

To see this, suppose P = (Xn ) is arandom level 2N + 1 hexagon at position

Doni1(8) = (2N —1)c(§) — oo

N—roo

Thus H(X,f) = {0}. But Dy (&) # o for & # 0, because Doy (§) = 0. O

Example 3.6 Suppose X,, are a sequence of independent identically distributed random vari-

ables, equal to =1 with probability % Form an array with row lengths N + 1 by setting

X,gN) =X, and let

A Xo) = 5 (1 +3L> X, (1<n<N+1).

2 VN

Then Dy(&) — oo for all § & H(X,f), but the convergence is not uniform on compact subsets of
R\H(f).
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+1+1

Proof. I <+1+1 1

+ 1) = 1+N~1/3. Since Hex(N,n) consists of 2° hexagons, the hexagon

(+1 j: J_“} + 1) has probability 2-6. Tt follows that

. ~ ~1/3
dy(&) > 270 RN 2 = %SmZ SUENTT) Ll )

N—2  LEQ+NY3 [167'Nsin2§ & &2n7
D > ~ 2
we) 2 o 16N Ee2nZ.

16 2

We see that Dy (&) — oo for all & # 0, whence H(X,f) = {0}, and Dy(§) — oo for all & ¢
H(X, f). But the convergence is not uniform on any compact neighborhood of 27k, k # 0,
because Dy (Ey) = 0 for Ey = 2mk(14+N"13) "1 = 27k, O

Because of the importance of property (3.2.1) to the proof of the LLT, we would like to
characterize the additive functionals on Markov arrays which satisfy it. Examples 1 and 2 point
the way.

Let X be a Markov array with row lengths ky. A sub-array of X is an array X’ of the form

{Xk(N‘) 1 <k<ky,+1,0> 1} where N; 1 0. The restriction of f to X’ is

flx = {fM 1 <k <ky, 0> 1}

(X, f) is called hereditary, if G, (X', f|x/) = Gess(X, ) for all sub-arrays X', and stably hered-
itary if (X, g) is hereditary whenever g = {(1+ &y) fk(N)} with &y — 0.

Theorem 3.6. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X, then the following conditions are equivalent:
(1) f is hereditary;
kn kn

(2) for all &, liminf ¥, d"(£)? < oo = limsup ¥, d\" (€)% < oo;

N—reo =3 N—oo k=3
(3) forall & & H(X,f), Dy(&) %

—>00

(4) HX', f|x:) = H(X, f) for every sub-array X' of X.
In addition, f is stably hereditary iff the convergence in (3) is uniform on compact subsets of
R\ H(X,f).
Example 3.7 (Markov chains): Suppose f is an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov array X. If fn(N) = fnand X,SN) = X, then f is stably hereditary.
Proof. This follows from Theorems 3.5 and 3.6. U

Example 3.8 (“‘Change of measure’): Let Y be an array obtained from a Markov chain X
using the change of measure construction (example 1.6). Let (p,sN) denote the weights of the
change of measure. If 3C > 0 s.t.

c' < oY) < Cforalln,N,

then for every a.s. uniformly bounded additive functional f on X, the additive functional f,gN) =
fn is stably hereditary on 'Y .
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Proof. 1f d,(&,X) are the structure constants of f on X, and d" (\5 Y) are the structure constants
of f on Y, then C~6d,,(€,X) < d\™ (E,Y) < COd,,(E,X). So H(Y,f) = H(X,f).

Theorem 3.5 says that Dy(&,X) — oo uniformly on compact subsets of R\ H(X,f). Since
Dy(E,Y) > C5Dy(&,X), Dy(&,X) — oo uniformly on compact subsets of R\ H(Y,f). O

Sometimes (but not always, Example 3.6), every hereditary functional is stably hereditary:

Theorem 3.7. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X.

(a) Suppose Gss(X,f) =17 or {0}. If f is hereditary then f is stably hereditary.
(b) Suppose f is integer valued and not center-tight, and |f| < K, then Goz(X,f) = %Z for some
0 < k < 12K, and if f is hereditary then f is stably hereditary.

3.3 Proofs
3.3.1 Reduction lemmas

Lemma 3.9 Let f be an additive functzonal ona Markov array X with row lengths ky + 1. For

every N > 1 and 1 <n < ky, there exists ck ) sit. fn ( ,511)1) M ¢ Gaig(X,f) almost surely.

Proof. Gg4(X,f) is the intersection of all closed subgroups G such that

Elck ) st fn ( YEIJ\:)I) — cfl ) € G almost surely. (3.3.1)

This is a closed subgroup of R. The lemma is trivial when Galg(X, f) =R (take cS,N) =0), so we
focus on the case G, (X, f) #R.

In this case (3.3.1) holds with some G = ¢Z with t > 0, and f,gN) (X, Xpn+1) must be a discrete
(N)

random variable. Let A,/ denote the set of values attained by f,gN) (X, Xnt+1) with positive

probability. Since G = ¢Z satisfies (3.3.1), A(N) Ccoset of tZ, and D(N) A(N) A(N) C tZ.

™) Then Gy is a subgroup of ¢Z. In

Let Go denote the group generated by Uy~ Ui<u<ky D
particular, Gy is closed.

By the previous paragraph, Gy C tZ for any group ¢Z which satisfies (3.3.1). So Gy C
Gag(X,f). Next, we fix n,N and observe that all the values of fn(N) (X, Xn+1) belong to the

same translate of AS,N) —Ag,N), and therefore to the same coset of Gy. So Gy satisfies (3.3.1), and

Go D Gug(X,f). So Gue(X,f) = Go. Since Gy satisfies (3.3.1), Gug(X,f) satisfies (3.3.1). O
Lemma 3.10 (Reduction Lemma) Let f be an a.s. uniformly bounded additive functional on

kn
a uniformly elliptic Markov array X. If & # 0 and sup Z d,EN)(ﬁ)z < oo, then there exists a
N k=3
uniformly bounded additive functional g on X s.t.

2r
f —g is center-tight, and G,4(g) C ?Z.

If X,EN) =X, and f,gN) = fu (as in the case additive functionals of Markov chains), then we can
take g such that gS,N) = gn.
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Proof for Doeblin chains: As in the case of the gradient lemma, the reduction lemma has a
particularly simple proof in the important special case of Doeblin Markov chains (Example
1.7). Recall that Doeblin chains have finite state spaces &,. Let 7}, := 7, 1 (x,{y}), and re-
label the states &, = {1,...,d,} in such a way that 7, = m, ,+1(1,{1}) # O for all n. The
Doeblin condition guarantees that for every x € &, there exists a state &, (x) € &, such that
n—1
T ) )1 > O _
Define as in the proof of the gradient lemma,
ap=0, a1 =0, and ay(x):= fu2(1,8u-1(x)) + fu—1(5p—1(x),x) forn >3
co:=0, ¢;:=0, andc,:= f,—2(1,1)forn>3

f:=f—Va—c.

Then f,,(x,y) = fu(x%,5) = (@ns1(y) — an(x)) —cn = I, (1 gn—ll ) é"fcy) y) , where I, denotes

the balance of a hexagon, see (1.3.1).

For Doeblin chains, there are finitely many admissible hexagons at position n, and the
hexagon measure assigns each of them a mass which is uniformly bounded from below. Let
C~! be a uniform lower bound for this mass, then

|8 12 < CE(|e5 — 1)) = Cd2(&).

Decompose f,(x,y) = gn(x,y) +hn(x,y) Where g, (x,y) € 25—”Z and hy(x,y) € [ %, %) Clearly
gl < If+[Va| +[c| + ] < 6|f| + /&, and Gug(X,h) € FZ.
We show that f — g is center tight. We need the following inequality:!

oy

4
ni < e — 1 < X2 forall |x| < 7. (3.3.2)

hn(x,y)|2 < %|ei§hn(X7y) _ 1|2 7r |€l§fn xy) _ 1|2 < C452d2(§), whence

ZVar n (X, Xn1) +¢n) = ZVar (X Xn11)) Zdz

So h + c has summable variance. Therefore f —g = Va+ (h +c) is center tight. U

Preparations for the proof in the general case.

Lemma 3.11 Suppose Ey,...,En are measurable events, and let W denote the random variable
which counts how many of E; occur simultaneously, then

W>t <

1 N
=
Proof. Apply Markov’s inequality to W =} 1, . U

Suppose W is a real-valued random variable. A circular mean of W is a real number 6 €
[—m, ) which minimizes the quantity E(|]e/(" =€) — 1|2). Such numbers always exist, because

! Proof of (3.3.2): Since y = sinx is concave on [0, 2], its graph lies above the chord y = 2x/m and below the tangent y = x. So
2x/m < sinx < x on [0, Z]. Now use the identity |* — 1|* = 2(1 — cosx) = 4sin? 3
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0 — E(|e™ =9 —1]2) is continuous and 27-periodic. But circular means are not unique: If, for
example, W is uniformly distributed on [—7, 7], then every 6 € [—m, 7) is a circular mean.
The circular variance of a real random variable W is defined to be

CVar (W) := eer[mjrrln)]Eﬂe iW=6) _ 1) = 66r[nrn )4]E(srn2 er)

For every x € R, let
(x) := unique element of [—7, ) s.t. x — (x) € 277Z. (3.3.3)
It is not difficult to see, using (3.3.2), that for every circular mean 0
%Var(W —6) < CVar (W) < Var(W). (3.3.4)
Lemma 3.12 For every real-valued random variable W, we can write W = W + W, where
W) € 277 almost surely, and Var(W,) < ”TZCVar (W).
Proof. Wy := (W —0)— (W —0), W, := (W —6)+ 6, 6 := acircular mean. O

Proof of the Reduction Lemma in the general case: Suppose f is an a.s. uniformly bounded
additive functional on a uniformly elliptic Markov array X, with row lengths ky, and fix £ # 0

such that
kn N
sup Z d,g )
N p=3

Let L denote the ladder process associated to X (see section 1.3.2). We remind the reader that
this is a Markov array with entries L") = (Zle)z,erN% , Xn (N)) (3 < n < ky), and for every N:
(a) {X,EN) 1, {Z } are two independent copies of X(V); (b) vV are conditionally independent
given {Xi(N)} and {Zi }, and (c) the conditional distribution of ¥, given {Zl.(N)} and {Xi(N)}
is given by

N (z™My = {¢™y
P(Y 1eE’ N} {éN}

= given that X, (v )2 = C,EN)z and X, (v ) §,§N).

) bridge probability for X that X} € E
(see §1.2.3).

Let F, H be the additive functionals on L with entries

y zZ™ oy ™ (N)>> (B3<n<ky, N>1)

(see (1.3.1) and (3.3.3)). Clearly ess sup|F
step 1: [E(HM)) < 2™ (€)%, B[(HM)?) < 2™ (€)2, and

In

2ess sup|f| and |H| < 7.

SupE[(H HY 4+ BV < .

PROOF OF STEP 1. We fix N and drop the superscripts (N).
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. Zn1 Yy Y,_1 X,
The map 1 : (an Y, | Xn’X”“> — (an Zo 1 Y, ,Xn+1 | preserves the natural mea-
sure on the space of hexagons, and is an involution: 1> = id. Clearly
I'oi=-TI".

Using the partial symmetry (—x) = —(x) for all x ¢ — + 277, we find that H, o1 = —H, on
[Hy # —7]. So E(Hy 1y, _5)) = 0, and therefore

T . b . ¥/
[E(H,)| = P(H, = —7) < TE(le™ —112) = ZE(eST — 1) = Zau(6)?
which is the first statement we needed to show. , _ ,

Next we observe from (3.3.2) that E(H?) < %E(|e”§r — 1) = ”Tan)(é)z, which is the
second statement we had to prove.

The two statements already proven and the boundedness of d,, show that there is a constant C

s. t. Var(H,) < Cd*(£)?. Now the third statement follows from Lemma 2.5. The proof of step 1
is complete.

From now on, fix a constant D such that
W L. 2
supZd,(l )(§)Z+sup]E ZH,E ) <D.
N ;=3 N n=3

kN+1
STEP 2: For every N > 1 there exists Q(N) = (Cl(N)W"Ck(,I\;?Ll) € H GEN) s.t.
i=1

ky
Y E (HéN) w,L))?
n=3

(zM} = Q(N)) < 7*D,

{Z-(N)} = E(N) < n’D,

1

k 2
. (z Y @M,L;N:l))

kn
Ex Z CVar (éF,,(N) (L,SN)) {Zl.(N)} = Q(N),X,gN)> < °D and
n=3

V@M GWD)] < ess sup|f] forall 3 < n < ky.

Here and throughout L, = (Zr(ﬁ)z, Yn(y) ,X,EN)), and Ex indicates averaging on {Xi(N)}.

PROOF OF STEP 2. We fix N and drop the () superscripts.
Let Q) := {£ : Zl:lNng(H;%HZi} ={) < nzD} .By step 1,

2 ky

ky
Ez {Zi}:£>] :’;E(Hﬁ)ﬁﬂ?’;dﬁm(ﬁ)zéﬂ;&

kn
E <Z H?
n=3
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where Ez = integration over { with respect to the distribution of {Zi(N)} (recall that {Zi(N)} dist

{Xl-(N)}). By Markov’s inequality, [{Z () } eQ>3
Let Q:={(: E[(Zﬁ’;H (Ly,Lyi1)) |{Z} £ < 7t2D} As before, by Markov’s inequal-
ity, Pz} e 2] > 1 L,

Let Q3 := {g :Ex LkéCVar (EF (Ly1)|{Zi} =§,Xn+1)] < 7r2D},

9*(Ln7Xn+17anl):_ _éfn ( n— 27 n— 1)+§F( )+€fn(Xn7Xn+l)-

Then eXp[iHn(Lan—H)] - exp[ éF( n—H) 0 ( n+17Xn+17Zn—2)]'
Given X, and {Z;}, L, ,, is conditionally independent from L,, {X;};,+1. So

Ezx (CVar (éF(LnH)\{Zi},XnH)) = E<CVar (cﬁF(LMMLﬂ,{ZiL {Xi}))
é IE( (|ei§F(Ln+n)—i9*(L1-,Xn+1,anl) - 1|2|L‘n7 {x:}, {Zi}>)

= (8 =0 _12) = E(|e — 1) = E(Ie® ~ 1) = dy (&),
!

where < is because 6* is conditionally constant. So

Ez < D.

ky
By < ¥ CVar(sF@nH)HZi},XnH))

n=3

By Markov’s inequality, IP’({ZZ.(N)} € >1-— %
Finally, let Q4 := {C : | fu(&n, Gut1)| <
U

1<i<4
in the intersection satisfies the requirements of step 2.

{zMye ) =1.

2 1
In summary P < — -+ 1 < 1. Necessarily 21N, N0Q3NQy # &. Any § = éj

STEP 3: There exist measurable functions 9,£N) : G,SN) — [—m, ) s.t.

k
ZN: £ (,ei!;FnW) @)=i6" ) _ )2
n=3

(z™M} :g(N)) < 27D,

Proof. We fix N and drop the ) superscripts.

Clearly, 8 — E(|e/" =) —1[?) is continuous for every random variable W. So CVar (W) =
inf,cqE(|e/™ =9 —1]?), an infimum over a countable set, whence CVar (EF,|{Z} = ¢, X,,) =
infyeqE(|e~F L)~ —1P|{Z;} = { X, = &y).

The expectation can be expressed explicitly using integrals with respect to the bridge distri-
butions, and this expression shows that

N+ CVar(EF|{Zi} =, X, = M)
(V).

is measurable on G,
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Fix Nand { = ™) We say that (1,q) € S,(lN) x R have “property P,(1,q)”, if the following
condition holds:

E(|eSf L)~ —12{Z,} = { X, =n)

P.(S,q))
< CVar (EE (L) |{Z} = E.Xa = 1) + &

By the previous paragraph, {n : P,(1n,q) holds} is measurable, and for every n there exists
g € QN (—m, ) such that P,(n,q) holds. Let

0,(n) = G,SN)(n) =inf{qg:q€ QN (—n,x) s.t. P,(N,q) holds}.

Again, this is a measurable function, and since for fixed 1, P,(1,q) is a closed property of ¢,
9,§N)(n) itself satisfies property P,(n, oV (&)). So

k .
Ex | Y E(leRL) 0" 00 1P (z,0 — ¢ %,
n=3
nz
<Eyx ECVar(cSF( ) ) <D

< 27%D, by choice of .

STEP 4 (THE REDUCTION). Let g = Q(N), 6, = G,EN), fu= f,EN), F, = F,,(N), X, = X,EN), Z, =
Z,(,N). Define

M) :fn(Cnbenfl)

agzN)(x)::é[G( ) +E((EF(L,) Nz =X =x)| xesl)

- f0-5)

g::f—Va—c—?.

Then a,c,f,g are uniformly bounded, and Gu,(g) C Zé—”Z.

Proof. By choice of Q(N), |c| < ess sup|f|, and by the definition of 8™) and (), |a| < 27/|&|
and [f] < 7t/|&|. It follows that |g| < 2ess sup |f| +37/|&|. Next,

e= ¢ (80 -Va-0) - (Elr-va-0) ).

The term in the brackets belongs to 27Z by the definition of (-), so Gye(g) C %”Z, and the
proof of step 4 is complete.

Notice that f —g = Va+c +f. Gradients and constant functionals are center tight. So to
complete the proof of the reduction lemma, it suffices to show:

STEP 5: f is center-tight.

Proof. We fix N and drop the ) superscripts.
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We begin with a few identities. Suppose {Zl.(N)} = {Ci(N)}, and consider the hexagon P, :=
Zn—l Yn - Cn 1 n
(Zn—Z Yn—] Xn X}’H'l) - (Cn—Z Yn— Xn ﬂ+l) ) then
L (B) = ~fo2Za-2.Z1) ~ Frt (L) + FalL) + (KXo,

whence

E (XXt 1) — <é(—r<Pn>+an<Xn>—F(Ln>+F<Ln+1>—an+1<xn+1>)>

= (i) + (%)~ F(L) 4 £ (F (L) = s () )
Define a new functional W of the ladder process {L, } with entries

W(L,) = (EF(Ly) = 0u(X,)) —E ((EF (L) — 6,(%)[{Zi} = £V .X,)

Notice that W(L,)) = £(F(L,) — an(X,)) mod 2nZ. Therefore
87080 X11) = (W (L) = WL~ HolLa L) ) (335)

CLAIM. Given § > 0, let Ts = 1122D /8. Then there exists a measurable set Qx of {X;} such
that P(Qx) > 1 — & and such that for all § € Qy,

T (Z) = . (x) = §><T57

><T5,

@ B(|xi L m'{Z} X} = ¢§><Ta

(1) g IP’(!W( NES:

(2) Zfllif‘,P(IH (-nv_n—l-l)’ >

Proof of the claim. L, is conditionally independent of {X;},., given {Z;},X,. So
¥ (Wi > 2l - o0 -5)

—ZPQW Iz 5l =g =4).

Since E(W(L,){Zi} = {,X,) = 0, we can use the Chebyshev inequality to bound the sum of
probabilities from above by

ky

Z ar((EF (L,) — 0.(Xa)) {Zi} = {. Xa)

<4Z o F L) =i8nXn) _12|(7} = £, X,), see (3.3.2).

Integrating over {X;} we have by the choice of G,EN) (Xy) (step 3) that
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Ex

ZIP’(|W |> {zi} =(.{x;} = 5)]<8n2D

n=3

By Markov’s inequality, the set

kn T
ol(1) = {5: ¥ p(wi)l> § @) =g -8 < T}

has probability P[Q(T)] > 1 — 87°D/T.
Similarly, by Markov’s inequality

(1> § (20 = £ %) = 5) e (n

(7} = £ = 5)

By the choice of £, Ex [ ]:ZN3IP’<\H 1> %

)} < 16D. So the set

(1) {5 ZPQH LoLocr)| > 5|20 = LX) =8 < }

has probability P[Q2(T)] > 1—16D/T > 1—2x>D/T.
Finally, since conditional expectations contract L>-norms,

813, Mot Lo = .00 =2 ) |

lE )

S0 @4(1) 1= { £+ |ER (L L) 12 = £, X) =& ) =T | s probaviiy

{z:} :4 < 7’D.

P[Q3(T)] > 1 —x*D/T>.

We see that if T > 1, then P[Q(T) N Q% (T) N Q3(T)] > 1 — UZL The claim follows. [

We can now complete the proof of the step 5 (and the reduction lemma) and show that fis
center-tight.

Fix 6 > 0 and Qy, Ty as in the claim. Fix N and define the random set
(N)yy . i1
ANHLYY) = B<n<ky: WL, 2 = 3 OF (Lo, Lo1)| = 5

For all § € Qyx, we have the following bound (Lemma 3.11):

NI'—‘

<|AN’ > 4T5

Z) =g (x)=¢) <3

=

kn
Similarly, for all £ € Qx, P (| Y H.| > 4T;
n=3

Z) =) = g) <
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Since the probabilities of these events add up to less than one the intersection of their com-
plements is non-empty. So for every § € Qx we can find {Yl( (& )}fﬁ "such that L* := L (&)=
& (N%, Yn(fi (£),&n) has the following two properties:

n—

kn
ZH”( ;:7 n—|—1) §4T57 and
n=3
T
Mi=#{3<n <y W(Lp)| = 5 or [Ha(Li Li))| = 5 | <475,

Letn; < --- < ny be an enumeration of the 1nd1ces nwhere [W(Ly)| > % or [H,(L;,L; )| > .
By (3.3.5),ifn; <n <mjy1 —1,

& fu(6nsnst) =W (L) = W(Ly) = Ha(Ls Ly )
because (x+y+z) = x+y+z whenever |x|,|y|,|z| < §. So

ni41— 1 niy1— 1
- Z éfn EnsEnv1) = Z H,(L,,L, ) *+6x
n=nj n=n;+1

where we have used the bounds |W| < 27 and |H,,| < 7. Summing over i we find that for every
¢ € Qx,

kN ~ kN
‘6 Y fuGn&in)| < | Y Ha(Li Ly )|+ 10M 7 < 4T +40T5m < 427 T5.

Setting Cs := 42nTs /&, we find that P ’ZkN A(N { > Cg) < 0 for all N, whence the (center-
)tightness of f, OJ

In chapter 5 we will need the following variant of the reduction lemma for integer valued f.

Lemma 3.13 (Integer Reduction Lemma) Let X be a uniformly elliptic Markov chain, and t

an integer valued additive functional on X s.t. |f| < K a.s. For every N, fu(x,y) = gSZN) (x,y) +

aﬁ,N)(x)— ,(1+)1()’)+Cz(1 ) (n=1,...,N) where

(1) C,(1N) are integers such that |c,(1N)| <K,

(2) aE,N) are measurable integer valued functions on S, s.t. |a,(1N) | <2K,
N

N
(3) gn ) are measurable, integer valued, and Z E[g ( )(Xn,XNH) 1< 10°k* Z u% with u, the
n=3 n=3
structure constants of f.

2 5" ! ? Xn+1) be a random hexagon. By the definition of the structure con-
—1

2
Z, 1Y,
E n-ln oy Zo2,
Z ( (nZYn_ Xn n—H) n2 > Zu

Therefore, for every N there exists z, = z,(N) € S, (n=1,...,N —2) such that

Proof. Let (Zn

stants,
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Z 1 Y, 2 N
ZE < ( n—2 Yn an Xn+1> Zn2=7Zn-2,2n1 :Zn1>] < Z urzr
n—1 n=3

We emphasize that z, depends on N.

Let cn = fn—2(zn—2,20—1), and let aSlN) (xn) be the (smallest) most likely value of

fn72(2n727y> +fn71(Y7xn)a

where Y has the bridge distribution of X,,_; conditioned on X,,_» = z,_» and X,, = x,,. The
most likely value exists, and has probability bigger than dg := %, because f,-2(zy-2,Y) +
Fa1 (Y. x) € [~2K 2K] N Z.

N N . N
Set g,(1 )(x,,,an) = fu(Xn,Xn+1) +a£, )(xn) —a,(H)1 (Xn+1) —c,(1 ), Equivalently, g,g )(xn,xnﬂ) =
—TI' {2z, i”_ll i " an) for the y; which maximize the likelihood of the value f;_1(zx_1,Y)+
n— n

fx(Y,x¢11) when Y has the bridge distribution of X; given Xy 1 = 2x—1, Xkt 1 = Xt 1
Our task is to estimate 3]E[g£l )(Xn,XnH) |. Define for this purpose the functions hglN) :

6}1 X 6n+1 — R,

5 12
Zn2=2Zn-22n1=2n-1
Xn =Xy Xnr1 = Xt ’

Z, Y,
hgzN)(xn,an) =K (F (Zn—2 Y" IXn Xn+l>
1

Our plan is to show the following:

N
(a) Z E(h Xnaxn—i-l ) < Z M%
=3

(b) Ifh )(xn,x,hq) < Ok, then g,gN) (Xn,xn+1) = 0.
© E(gW (X, Xu41)?) < (6K)2P[h) > 8] < 36K25 2B (X0, Xp11)2).

Part (a) is because of the choice of z,,. To see part (b), note that since f is integer valued, either

the balance of a hexagon is zero, or it has absolute value > 1. Therefore, if h,SN) (X, Xn+1) < Ok,
then necessarily

Zn1Y,
P [F (Zn—Z Yn 1; Xn+1> 7£O
n—1

V4 Y,
r (zn_z v 1X” Xn+1)
-

= 1M (X, Xpi1)? < 82,

2 =Zn-22Zn-1=Zn-1
Xy —xn Xnt1 = Xnt1

<E

2
Zn2=2n-22n1=2n-1
Xy =Xy Xnt1 = Xpt1

Zn—l Yn Zn—2 =n-2 Zn—l = n—1 2

X =0 >1— 6.

2 Y1 X ntl Xn = Xn Xnt1 = Xnt1 K
At the same time, by the structure of the distribution of random hexagons,

Q, = (Z L, Zn1 Yy X-l-l) Jn— 1( n—1,Y; )+fn(Yn7Xn+1):ag}&(XnJrl)
" Yn—l Xn " fn ( n— 27 n— 1)+fn l( n— IX)—QSZN)(Xn)

whence P (I" | Z,,_

satisfies P {Qn

Zn2=Zn-22p—1=2n-1 2
> O,
Xy = xn Xnt1 = Xnt1
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If the sum of the probabilities of two events is bigger than one, then they must intersect. It
follows that there exist y,_1,y, such that

o a" (Xa) = fu2(zn-2,n1) + fo1 (n-1,X0):

N
o a,(1+)1 (Xout1) = fo1@n1,90) + fuOns Xt 1)
Zn—1 Yn o
O F (Zn—2 yn_] Xn Xn+1> — O.
By the definition of gﬁlN), this implies that gSlN) (Xn, Xn+1) = 0, which proves part (b).

Part (c) follows from part (b), Chebyshev’s inequality, and the estimate || g,gN) o < 6K (as is
true for the balance of every hexagon). 0

Combining Lemmas 3.10 and 3.13 we obtain the following result

Corollary 3.14 (Joint Reduction) There is a constant L = L(€,K) such that under the condi-
tions of the Reduction Lemma we can arrange, in addition to the other conclusions of Lemma

ky N
3.10, that Y || |13 < LUW.
n=3

Proof. Apply Lemma 3.10 and then apply Lemma 3.13 to the resulting integer valued additive

functional g—g. Notice that the reduction in this corollary depends on N even if f is an additive
functional of a Markov chain. U

Corollary 3.14 says the following. Suppose we have an additive functional f such that both
Uy is small and Dy (&) is small for some & (but Dy (&) can be much smaller than Uy). Then we
can adjust f such that at time N, the resulting functional will have a small norm as prescribed

by Uy and small distance to 25—”2 as prescribed by Dy at the same time.

3.3.2 The possible values of the co-range

We prove Theorem 3.1 in its version for Markov arrays: The co-range of an a.s. uniformly
bounded additive functional on a uniformly elliptic Markov array X is equal to R when f is
center tight, and to {0} or tZ (t > 0) otherwise.

Recall that the co-range is defined by

kn
H:=H(X,f)={§ eR: sg}pDN(é) < oo}, where Dy (&) =) d,gN)(é)z.
n=3

STEP 1. H is a subgroup of R.

Proof. H= —H, because d,(,N)(—é) = d,gN)(é). H >0, because d;"’ (0) = 0. H is closed under

addition, because if {,n € H, then by Lemma 1.15,

kn kn kn
sup ). i (& +m)* <8 |sup Y dfV () +sup Y i (n)?| <en
n=3 n=3 n=3

STEP 2. If f is center-tight, then H = R.
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ky
Proof. Suppose f is center-tight. By Corollary 2.8 and the center-tightness of f, sup )’ (u,(fv))2 <

N k=3
WM g2
co. By Lemma 1.15(c), sup Y. dy '(§)* < e forall & € R.
N k=3
STEP 3. If f is not center-tight, then 3t s.t.
HnN (—Z‘(),l‘()) = {O} (3.3.6)

Proof. Let K := ess sup|f|, then |I"(P)| < 6K for a.e. hexagon P.

Fix 7 > 0 such that e — 1|2 > 1¢2 for all |¢| < 7y, and let o := 75(6K)~'. Then then for all
€| < 19, |€STP) — 1|2 > SE2I"(P)? for all hexagons P.

Taking the expectation over P € Hex(N,n), we obtain that

1
V() > Egz(u,(f“)z for all |E] < fg,1 <n < ky,N > L. (3.3.7)
k
Now assume by way of contradiction that there is 0 # & € H N (—fy, 1), then sup XI“V (uS,N))2 <
N n=3

kn
% sup Y. d,(,N) (&)? < 0. By Corollary 2.8, f is center-tight, in contradiction to our assumption.
N n=3

STEP 4. If f is not center-tight, then H = {0}, or H =tZ witht > Wuplf\'

Proof. By steps 2 and 3, H is a proper closed subgroup of R. So it must be equal to {0} or
tZ where t > 0. To see that t > ", assume by contradiction that t = (g —7—r7)p With
ss sup|f]| 6ess sup| /]|

0<p < 1,and let k := min{|e™ —1|>/|u|? : |u| < wp} > 0. Then |¢I"(P)| < 6tess sup|f| = wp
for every position n hexagon P, whence

d2(1) = E(Je' — 1?) > kE(I'?) = xu?.

This is impossible: € H so Y.d>(t) < oo, whereas f is not center-tight so ¥ u2 = oo, U

3.3.3 Calculation of the essential range

We prove Theorem 3.2 in its version for Markov arrays: For every a.s. uniformly bounded
additive functional f on a uniformly elliptic Markov array X,

{0} HXf)=R
Gess(X,f) =S 227 H(X,f)=EZ (3.3.8)

B H(X,f) = {0}.

Lemma 3.15 Suppose f,g are two a.s. uniformly bounded additive functionals on the same
uniformly elliptic Markov array. If f — g is center-tight, then f and g have the same co-range.

kn

Proof. By Corollary 2.8, if h = g —f is center-tight, then sup Z ug,N)(h)2 < co. By Lemma 1.15
N pn=3
(b),(c),
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kN kN
sup ), aM (&, g)* < 8sup ). aM (&,f)? +86%sup ). V) (h)2.
n=3 n=3 n=3

So the co-range of f is a subset of the co-range of g. By symmetry they are equal. U

Proof of Theorem 3.2: As we saw in the previous section, the possibilities for the co-range are
R, tZ with ¢ # 0, and {0}.

CASE 1: The co-range equals R. As we saw above, this can only happen if f is center-tight, in
which case the essential range is {0} because we may subtract f from itself.

CASE 2.: The co-range equals EZ with & # 0. We show that G (X,f) = %—”Z.
By assumption, & is in the co-range: supy Zﬁi 3 d,(l]\])(é)2 < oo, By the Reduction Lemma, f
differs by a center-tight functional from a functional with algebraic range C 25—”2. S0 Gg5(X,f) C

L.
Assume by way of contradiction that G (X,f) C Zé—”Z, then there exists a center-tight h such
that the algebraic range of g :=f — h is a subset of %MZ for some integer ¢ > 1. The structure

constants of g must satisfy d,gN)(%,g) = 0, whence % €co-range of g. By Lemma 3.15, % €

co-range of f, whence % € EZ. But this contradicts £ > 1.

CASE 3.: The co-range equals {0}. We claim that the essential range is R. Otherwise, there
exists a center-tight h such that the algebraic range of g :=f — h equals #Z with t # 0 or {0}.
But this is impossible:

(a) If the algebraic range of g is tZ, then d,gN)(ZT”,g) =0forall 3<n<ky, N>1,so the co-

range of g contains 27 /¢. By Lemma 3.15, the co-range of f contains 27 /¢, in contradiction
to the assumption that it is {0}.

(b) If the algebraic range of g is {0}, then f = h, and f is center-tight. But by Theorem 3.1, the
co-range of a center-tight functional is R, whereas the co-range of our functional is {0}. [J

3.3.4 Existence of irreducible reductions

We prove Theorem 3.3, in its version for Markov arrays: For every a.s. uniformly bounded
additive functional on a uniformly elliptic Markov array X, there exists an irreducible functional
g such that f — g is center-tight and G14(X,g) = Gess(X,8) = Gess (X, f).

Proof. The essential range is a closed subgroup of R, so G, (X, f) = {0},¢Z or R.

(@) If Gess(X,f) = {0}, then H(X,f) =R, and f is center-tight. So take g = 0.
(b) If Gegs(X, f) = tZ with t # 0, then by Theorem 3.2 the co-range of f is EZ with & :=

k

2w /t. So sup )iv d,(lN) (&,f)? < . By the reduction lemma, there exists an additive func-
N n=3

tional g such that f — g is center-tight, and G, (X,g) C tZ. By Lemma 3.15 Gy (X, f) =

Gess(xa g), whence Gess(xaf) = Gess(xa g) C Galg(xa g) Ctl= Gess(xf)a and Gess<x,g) =

Galg(xag) = Gess<xaf)-

(©) If Gess(X, f) =R, take g :=f. d
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3.3.5 Proofs of results on hereditary arrays

Proof of Theorem 3.6: Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov array X.
The first part of the theorem asks for the equivalence of the following conditions:

(1) f is hereditary

(2) forall €, llmlnf Z d (6)2 < o0 = limsup kXI‘,V d,EN)(é)z < oo
N—oo k=3
(3) forall & %H(X f) DN(é) JYde

(4) H(X',f|x) = H(X,f) for every sub-array X’ of X.
(1)=(2): Assume that f is hereditary and Liy¢(&) := liminfDy (&) < . We’ll show that

Lgup(&) :=1limsupDy(&) < eo. This is obvious for & = 0, so suppose & # 0.
Choose Ny, My 1 oo such that Dy, (&) o Lint(&), Du, (&) o Lgup(&). Let
—oo : —oo

X' = {xM)} and X" := {x M)},

Since Linf(&) < oo, H(X',f|x/) contains &, whence by (3.3.8), Ges(X', flx) C ZgZ By the

hereditary property, Gss(X”,f|xr) = Gess(X,f) = Gy (X', flx/) C zé”Z This implies by (3.3.8)

that H (X", f|x») 5 &, whence Lgp(§) < oo.

(2)=-(3): We assume that Lips(§) < c0 = Lgp(E) < oo and show that Dy (&) — oo for all

EZH(X ). If & & H(X,f), then supDy (&) = oo, 50 Lgyp(§) = oo. By assumption, this forces
N

Linf(é) = oo, whence DN(g) —> 0,

(3)=-(4): We assume that DN(f) — oo for all & ¢ H(X,f), and show that H(X,f) = H(X',f|x)
for all sub-arrays X' = {X, (Ne) I E € H(X,f), then supDN(é) < oo, whence sup Dy, (§) < oo
14

and & € H(X',f|yx/). If & € H(X,f), then Dy (&) — oo, whence Dy,(&) —ecand & & H(X ,f|x).

(4)=-(1): We assume that H (X', f|x/) = H (X, f) for all sub-arrays X', and show that G (X', f|x/) =
Gess(X,f) for all sub-arrays. The inclusion Gz (X, flx/) C Gess(X,f) is obvious, so we focus
on Gess(xlaf|x’) 2 Gess(xaf)-

If Ggs(X',f|x/) = R then there is nothing to prove.

Suppose G5 (X', f|x/) # R, then Gogs (X', f|x) =1Z for somet € R. Let £ :=2x/t whent #0
or any real number otherwise. By (3.3.8),

H(X,,f‘x/) = 5
By assumption (4), this implies that H(X,f) > &, whence by (3.3.8), G5 (X, f) C ?” =
Gess(X', fIx), and the proof of (1) is complete.
This finishes the proof that properties (1)—(4) are equivalent.

The second part of the theorem asks to show that f is stably hereditary iff Dy (&) — oo uni-
formly on compact subsets of R\ H(X,f).

Suppose f is stably hereditary, then f is hereditary, whence Dy (&) — oo for all & & H(X,f).
To show that the convergence is uniform on compacts, we check that
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VE & H(X,f),¥M > 0,3Ng, 8 >0 (|§, £ <8~ Dy(E") > M) . (3.3.9)

Suppose this were false for some & and M, then 3Ey — & such that Dy (Ey) <M. But this implies
that {(1+é&n) fk(N)} is not hereditary for &y := %’" — 1, in contradiction to our assumptions.
Conversely, if Dy (&) — oo uniformly on compact subsets of R\ H(X,f), and gy — 0, then

{g,(CN)} ={(1 —I—SN)fk(N)}) is hereditary, because for all & ¢ H(X,f), Dy(&,g) = Dn((1 +
en)E,f) — oo, and as we saw above (2)=-(1). O

Proof of Theorem 3.7: The first part of the theorem assumes that G.(X,f) =¢Z or {0} and
that f is hereditary, and asks to show that f is stably hereditary.

We begin with several reductions. It is sufficient to consider the case G (X,f) = Z: If
Gess(X,f) = tZ with t # 0 we work with r~'f, and if G4 (X,f) = {0} then H(X,f) = R and
Dy (&) — oo uniformly on compact subsets of R\ H(X,f) (vacuously), so f is stably hereditary
by Theorem 3.6.

Next we claim that it is enough to treat the special case G4 (X, f) = Gegs(X, ) = Z. Otherwise
we use Theorem 3.3 to write f = g —h where Gu4(X,g) = Gess(X,8) = Gegs(X,f) and h is
center-tight. By Lemma 3.15, H(X,g) = H(X,f), and by Lemma 1.15 and Corollary 2.8,

kn+1

DY(E.) 2 gDu(E8) ~ g T ! (0 = (Dv(E.8)0(1)

Thus, if Dy(&,g) — oo uniformly on compact subsets of R\ H(X,g), then Dy(&,f) — oo uni-
formly on compact subsets of R\ H(X,f).

By assumption, ess sup|f| < K for some integer K. Then for every hexagon P € Hex (N, n),
I'(P) € ZN[—6K,6K].

Let m,g ) denote the probability measure on the space of hexagons Hex(N,n) and define for
every Y € ZN|[—6K,6K],

kn
uv({r}) = Y. mi"{P € Hex(N,n) : I (P) = 7}.

n=3

28y

Using the identity |57 — 1|2 = 4sin >-, we see that

=4 Z un(y szé?’
Y=—6K

Since f is hereditary, Dy — o0 on R\ H(X,f), and the expression for d% (&) shows that if Dy — o
at &, then Dy — oo uniformly on an open neighborhood of &.

It follows that Dy — oo uniformly on compact subsets of R\ H(X,f). By Theorem 3.6, f
must be stably hereditary. This is the first part of the theorem.

The second part of the theorem says that if f is integer valued and not center-tight, and if
ess sup |f| < K, then G4 (X, f) = kZ for some integer 0 < k < 12K.

To see this recall that G, (X,f) C Gue(X,f) C Z, whence Gs(X,f) = kZ for some k € Z.
Since f is not center-tight, k # 0. By (3.3.8), H(X,f) = 2”Z

The inequality | f| < K 1mp11es that every hexagon P has balance |I'(P)| < 6K. This implies

that k < 12K: Otherwise |2”F | <0.957 and (3.3.2) gives
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|eH/OTP) _ 12 > const I'(P)>.

But this implies that dv (27”) > const ", whence
sup Z d 2> sup Z = oo by non-center-tightness.

This contradicts 2% € H(X,f). Thus 0 < k < 12K.
k

It follows from the first part of the theorem and from Theorem 3.6, that if f is integer valued
and not center-tight, then the properties of being hereditary and of being stably hereditary are
equivalent. O

3.4 Notes and references

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [136]) and the problems
discussed in this chapter reduce to the question how small can one make the range of a cocycle
by subtracting from it a coboundary. The question appears naturally in the ergodic theory of
group actions, because of its relation to the ergodic decomposition of skew-products [2, chapter
8], [136], [29], and to the structure of locally finite ergodic invariant measures for skew-products
[6], [133], [124]. In the general setup of ergodic theory, minimal reductions such as in Theorem
3.3 are not always possible [93], although they do sometime exist [133],[124].

The relevance of (ir)reducibility to the local limit theorem appears in different form in the
papers of Guivarc’h & Hardy [65], Aaronson & Denker [4], and Dolgopyat [49]. There “irre-
ducibility” is expressed in terms of a condition which rules out non-trivial solutions for certain
cohomological equations.

It is more difficult to uncover the irreducibility condition in the probabilistic literature on the
LLT for sums of independent random variables. Rozanov’s paper [128], for example, proves a
LLT for independent Z-valued random variables X; assuming Lindeberg’s condition (which is
automatic for bounded random variables), }" Var(X;) = oo, and subject to the assumption that

H ( max P(X; = m mod t)) = 0 for all integers t > 2. (3.4.1)
=1 0<m<t
Let X = {X;} and f = {f;} where fi(x) = x. Clearly, (3.4.1) implies that G, (X,f) = Z. We
claim that (3.4.1) is equivalent to the irreducibility: G.s(X,f) = Z.

To see why, it is useful first to note that (3.4.1) is equivalent to

Y PX; # mj mod 1] = oo (3.4.2)
k

where my, is the (smallest) most likely residue mod ¢ for X.

Irreducibility=-Rozanov’s condition: Define forx € Zand 2 <t € Z, {x};z :=t{x/t}, [x];z :=
x—{x},z, and set

o yi(x) := the (smallest) integer in my +t7Z closest to x
o Zx(x) :=x— y(x)

o gr(x) := (yr(x) — my) + [x — yr(x)];z (g« takes values in t7Z)
o hi(x) := {x—yr(x)}:z (h takes values in Z). Then
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X = gk (X) + hi (X)) + my..
The algebraic range of g; is inside tZ, and by the Borel-Cantelli Lemma,

(3.4.2) fails < X # m;,  mod tZ finitely often a.s. < Iy (X;) # O finitely often a.s.

If (3.4.2) fails, then Z hi(X) converges a.s. (since a.s. there are only finitely non-zero terms).
k=0
Hence h is center-tight. Since G,(g) C tZ, we have a contradiction to irreducibility.

Rozanov’s condition = irreducibility: Fix 0 € [0,7) and let m be the closest integer in [0,7) NZ
to 6. Then |m' — 6| > % for m’ # m, whence
1

1
E[dist?(X,, 0 +1Z)] > IP’(X # mmodr) > —[1 — max P(X,, = m mod 1)].
4 0<m<t

Passing to the infimum over 6, we obtain that

1
D%(X,, 2E) > 71— max P(X, = m mod 1)].

(See §1.3.) We now obtain from Proposition 1.19 that

Zdz 7” >c0nstz Xn—1,5" Z)+D (Xn’ztn))
n=3

> const Z (1 — max P(X; =m mod t)) = oo, by (3.4.2).

0<m<t

We find that the co-range does not contain 27/t for t = 2,3,4,.... We already know that the
co-range does contain 27 (because X; are integer valued). The only closed sub-group of R with
these properties is 277Z. So the co-range is 277, and the essential range is Z =the algebraic
range

Other sufficient conditions for the LLT for sums of independent random variables such as
those appearing in [104],[146] and [108] can be analyzed in a similar way. The reduction lemma
was proved for sums of independent random variables in [49]. A version of Theorem 3.5 for
sums of independent random variables appears in [108].



Chapter 4
The local limit theorem in the irreducible case

) . B in—E(Sy)
In this chapter we prove the local limit theorem for P(Sy —zy € (a,b)) when o) converges

to a finite limit and f is irreducible. In this regime, the asymptotic behavior of P(Sy —zn € (a,b))
does not to depend on the details of X and t (“universality”).

4.1 Main results
4.1.1 Local limit theorems for Markov chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov chain X, and we let X = {X,,}, f = {f,}, Sv = i(X1,X2) + -+
fv(Xn,Xn+1), and Viy := Var(Sy). We make no assumptions on the initial distribution and allow
P=P,=P(-|X; =x).

Theorem 4.1. Suppose f is irreducible, with algebraic range R. Then Viy — oo, and for every

interval (a,b) and zy € R s.t. ZN_E% converges to a finite limit z,

—z%/2

P[Sy —zv € (a,b)] = [1 +o(1)] m(b —a), as N — oo. (4.1.1)

Theorem 4.2. Suppose t > 0 and f is irreducible with algebraic range tZ. Then Vy — o and

there are constants 0 < yy <t such that for all k € Z, and for all zy € Y +1tZ s.t. %

converges to a finite limit z,

e /2

PlSy —zv =kt] =1 1 , N — oo, 4.1.2

S —aw =k = [1+0(1)] oL as @12)

The constants Yy are determined by the condition P[Sy € Yy +tZ] = 1 for all N.

The conditions of the theorems can be checked from the data of X and f using the structure
constants d, (&) from §1.3:

Lemma 4.1 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Then

(1) f is non-lattice and irreducible iff ¥ d> (&) = oo for all & # 0.
(2) f is lattice and irreducible with algebraic range tZ, t > 0, iff Y.d>(E) < o for & € (271 /t)Z
and Yd2(E) = o= for & & (21)1)Z.

85
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(3) fis lattice and irreducible with algebraic range {0} iff fn(Xn, Xu41) are a.s. constant for all
n.

Proof. f is non-lattice and irreducible iff G.s(X,f) = Gye(X,f) = R. By Theorem 3.1, this
happens iff f has co-range {0}, which proves part (1). Part (2) is proved in a similar way, and
part (3) is a triviality. O

4.1.2 Local limit theorems for Markov arrays

In this section, we assume that f is an a.s. uniformly bounded additive functional on a uniformly

elliptic Markov array X with row lengths ky + 1, and we let X = {X,EN)}, f={ f,gN)}, Sy =

221 i(N) <Xi(N) 7Xi(fl)

and allow P =P ) =P(- |X1(N) = xEN)).
1
The LLT for Sy may fail due to the possibility that f|x, may have different essential range for
different sub-arrays X'. To deal with this we need to assume hereditary behavior, see §3.2.3.

), and Viy := Var(Sy). We make no assumptions on the initial distribution,

Theorem 4.1°. Suppose f is stably hereditary, non-lattice and irreducible. Then Vy — oo, and

: w—E(Sy)
for every interval (a,b) and zy € R s.t. W oo cE R,

-22/2

27'L'VN

P[Sy —zy € (a,b)] = [1+0(1)] (b—a), as N — oo, (4.1.3)

F

Theorem 4.2°. Suppose t > 0 and f is hereditary, irreducible, and with algebraic range tZ. Then

VN — oo, and there are 0 < Yy <t such that for all k € 7 and zy € Y +1t7Z s.t. W N—>
—»00
zeR,

—72/2
P[Sy — 2y = ki] = [1 +0(1)] \e/T—vl as N —s . 4.14)
N

The constants 7y are determined by the condition P[Sy € Y +1t7Z)] = 1 for all N.

Notice that whereas in the non-lattice case we had to assume that f is stably hereditary, in the
lattice case it is sufficient to assume that f is hereditary. This is because in the lattice case the
two assumptions are equivalent, see Theorem 3.7.

Again, it is possible to check the assumptions of the theorems from the data of X and f using
the structure constants:

Lemma 4.1°. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X with row lengths ky + 1. Let d,SN)(ﬁ) be as §1.3, then

(1) f is stably hereditary, irreducible, and with algebraic range R iff

kn
Z d,SN)(é)Z —— oo uniformly on compacts in R\ {0}.
n=3

N—oo

(2) Suppose t # 0, then f is hereditary and irreducible with algebraic range tZ if and only if

fo; d,(lN)(é)2 = oo forall & & ZT”Z. In this case f is also stably hereditary.
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Proof. As in the case of Markov chains, f is non-lattice and irreducible iff its co-range equals
{0}. By Theorem 3.6, f is stably hereditary iff Zﬁi 3 d,SN)(é)z o uniformly on compacts
—>00
in R\ {0}, which proves part (1).
Part (2) is proved in a similar way, with the additional observation that thanks to Theorem

3.7, in the irreducible lattice case, every hereditary additive functional is automatically stably
hereditary. O

4.1.3 Mixing local limit theorems

Let f be an additive functional on a Markov X with row lengths ky + 1, and state spaces
(GE,N) , B(S ) )). Let Sy and Vy be as in the previous section.

Theorem 4.3 (Mixing LLT). Suppose X is a uniformly elliptic Markov array, and f is an ad-
ditive functional on X which is stably hereditary, a.s. uniformly bounded, and irreducible. Let
Ay C 6,(;:11 be measurable events such that ]P’[X,g\:]}r | € ] is bounded away from zero, and let
XN € GEN). Then for every ¢ : R — R continuous with compact support,

IN— E(SN)

(1) Non-lattice case: Suppose f has algebraic range R. For every 7 € R s.t. N TR €eR,
- ) ) e 2
lim Bl —2nIX{ € 2 X =) = [ ot
(2) Lattice case: Suppose f has algebraic range tZ (t > 0) and P[Sy € yv +1tZ] =1 for all N.
For every zy € Y +tZ s.t. % —z€eR,

) _ e <2t

_XN]: \/ﬁ LEZQ)(HJ)

lim VN]E[q)(SN—ZN)\ IemN,
N—yoo

To understand what this means, think of ¢ ~ 1, ;).

In the next chapter, we will use mixing LLT for irreducible additive functionals to study
the LLT for some reducible additive functionals, as follows. Suppose f = f + VA, where f is
irreducible and h is uniformly bounded. Then

7 N) /(N N N
S (F) = Sw(F) + 1 M) = Y 60 ).
To pass from the LLT for SN(?) (which we know since f is irreducible) to the LLT for Sy(f )
(which we do not know because of the reducibility of f), we need to understand the joint distri-
(N) (v (N)

bution of Sy (f), hy”(X;"’) and h,((]]\\]]l] (Xiy+1)- This is the task achieved by the mixing LLT.

4.2 Proofs

We will provide the proofs in the general context of Markov arrays.

Standing assumptions and notation for the remainder of the chapter:

(N)

X= {X,gN)} is a Markov array with row lengths ky + 1, state spaces &,, ’/, and transition proba-
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bilities n,(llyll L (x,dy), and f = { f,EN)} is an additive functional on X. As always, av) (&) are the
structure constants of f.
We assume that ess sup | f| < K < oo, and that X is uniformly elliptic with ellipticity constant

€. By the uniform ellipticity assumption,

mie (5.dy) = pi (o)l ()
with 0 < p,(fv) (x,y) < &' such that [ pS,N) (x,y) pfﬁ)l (y, z)ur(l]i)l (dy) > €. There is no loss of

generality in assuming that ;,LIEN) (E) = IP’(Xk(N) € E), see Proposition 1.12 and the discussion

which follows it.

4.2.1 Characteristic functions

The classical approach to limit theorems in probability theory, due to P. Lévy, is to apply the
Fourier transform, and analyze the characteristic functions of the random variables in the
problem. In our case the relevant characteristic functions are:

Dy (x,&) :=E, (eigSN) =E (eiéSN|X1(N) = x) .
Dy (x, E|) = E, (ei55N|XkN+1 € 9() =F (elfSN XM, eax™ = x) .

Here x € 6§N), A C 6,(511, EeR,and E,(-) =E( - ]Xl(N) =X).
We write these functions in terms of perturbation operators as in [109]. For every N € N

and 1 <n<ky+ 1 define 2,3 : L7(&,})) = (&) by

i& M)
(£009) 0= [, PR e v(3)am 0

n+1
N)

= E(eiéf"(N> x" ’X»§+')V(Xrgli)1 )X = x).

Lemma 4.2 (Nagaev) Let 1(-) = 1, then the following identities hold:

iES (N) N _ ) = (N) gp(N) (V)
E (e5 Y(Xp, 1) X —x> = (flé .,2”275 ""’%wév) (x), 4.2.1)
Dy(x,E) = (gl(fglsfz(”g) N .z;f;vgl) (%), 4.2.2)
W PN M1y (x)
Dy (x, E[A) = ( L 728 - NS ) . (4.2.3)
PuXp, 11 €2
Proof. E(eiéSNv(X,g]VJ)r])’XI(N) =x)=
£ (V) : (N)
/ P () @R (T Ay XN = ) apY) ().
Proceeding by induction, we obtain (4.2.1), and (4.2.1) implies (4.2.2),(4.2.3). [

Let || - || denote the operator norm on Hom(L>,L*).
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Lemma4.3 . (]z) are bounded linear operators, and there is a positive constant € which only
depends on &y such that for all N > 1 and 5 < n < ky, Héf || <1, and

|4 202

N) () —zdM(&)?
et e 2N 2| < e .

76

Proof. Throughout this proof we fix N and drop the superscripts (M), and we use the notation

Xi,zi etc. to denote points nG;=6; (N)

It is clear that H.$ H < 1. To estimate the norm of

L= Ly se Ly 3l e L) e T L (Gnit) = L7 (Sma),

2,6 1.6

we represent this operator as an integral operator, and analyze the kernel. Let
o p(xy- . xm) := [ pilxi-xiz1),
i=k

m—1
f(xka"'7xm) = Z ﬁ(xiaxi+1)7
i=k
(

L xn—4yzn+l) =

= / P(Xn—tZn—3s - Zng1 )€ Crttntni) o (dz, )y (dzy).
Gn_3><...><6n

Then (£4)(an4) = [ Pm4@HMMn%mwMome
n+1

[ZV]lw < |Vl sup |L(Xn—4:Zn+1) | Bnt1 (d2nt1)-
Xn—4€6, 4 Snt1

To estimate this integral we change the order of integration:

/ \L(Xn—452n+1) |Mnv1(dzns1) < //
6n+1

n 2><6n+1

/6 p(xn—4vzn—3azn—2).un—3(dZn—3):| Mn—2(dzp—2) Unt1(dzps1), (4.2.4)
n—3

’K in— 27Zn+1)|

where K, (zp—2,2n+1) :=

// P(anz sZn—154n53n+1 )dgf(zni%znil 1) Hn—1 (dZn, 1 ).un (dZn) .
anl ><6n

CLAIM: Let p(zp—2 = Zu+1) := P(Xut1 = 20+11Xu—2 = 2n—2), then
’Kn(zn—Zazn—lﬂ S p(Zn—Z — Zn—|—l)_

1
Pl e )E Qﬁf) 12

Xn—2 = Yn_2 = Zn_z (425)
Xnt1=2Zny1 = Zntl .
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Proof of the claim. Set K,, (Zn—2,2n41) == %, then

Ru(zn2,zne1) =E (ez‘é YL 2 f%Xen)

Xn2=2p—2
Xnt1 = Zny1

Writing ’EH(ZH—ZaZYH-l) ’2 =K, (Zn—2azn+1)Kn(Zn—27zn+l)’ we find that

Xpo=Yy20=2 )

1 1 Xy Xn
K,(z,-2,7 2 _ E elgr(Xn—Z Yoy T Xn+l)
| n(n 25 n+1)| ( Xn+1:Zn+1:Zn+1

where {Y,} is an independent copy of {X,}, and I" is as in (1.3.1).
Xn—1 Xn

The imaginary part is necessarily zero, so writing P = (Xn_z Y. .Y Xn+1) we have by the
n—1 1n
identity 1 —cos & = 3|e/® — 1/ that

K (zn-2,2n-1) > = 1 =E(1 —cos(EL(P))| 252

=1- %Eﬂeiér(l)) _ 1|2|XH72ZY)X72:ZH72>.

Xn1 = Zpg1 =1

The claim follows, since /1 —¢ <1—5 forall0 <7 < 1.
We now substitute (4.2.5) in (4.2.4). The result is a difference of two terms:

(a) The first term is obtained by replacing K;,(z,—2,zn+1) in (4.2.4) by p(zp—2 — Zu+1)- It has
the following upper bound:

// / p(xn—47Zn—37Zn—2)p(Zn—2 — Zn—H) = 1.
6n72><(5n+1 6nf3

(b) The second term is obtained by replacing K, (z,-2,2,+1) in (4.2.4) by

1 .
Zp(zn—Z — Zn+])E(|el§F(P) — 1|2| Xp2=Yy2=22 ) .

Xnt1 =Zp1 =1

The inner-most integral satisfies / P(Xn—4,2n—3,Zn—2) Un—3(dzy—3) > & because of uni-
6n73
form ellipticity. This leads to the following lower bound for the second term:

LGE(ET 1P = L6

In total we get: [ |L(Xy_4,Z0:1)|Unr1(dzns1) < 1—E€dy(E)?, where € := %eg. Since 1 —¢ < e,

we are done. O
4
Recall that Dy (&) = Zﬁi3 aNv) (€)% Write Dy = )" D;y where
j=0
N
Din) =Y V&>
3§n§kN
n=j mod 5

Applying Lemma 4.3 iteratively we conclude that there is a constant C independent of N s.t. for
all N,
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|y (x, )| < CeEmax(DosDan) < Com3EDN(E), (4.2.6)
- <1
If P(Xlgvvll € 2l) > & then by (4.2.3), | Py (x,E|A)| < 6 H.,iﬂl(g).ﬁfz(g) . .,iﬂk(}ivé 1g(|| whence

[Py (x, & |2A)] < Ce 5EPNE), 4.2.7)
The next result shows that if uSZN) is big, then d(-) cannot be small at two nearby points.
Recall the standing assumption ess sup || f,EN) ||« < K, and the definition of the structure constants

WY in (1.3.2).
Lemma 4.4 35 = g(K) > 0s.t. if |0] < 8 then for all 3 < n < ky,

2
dM (& +8)? > %52 (u,SN)> —218uMai™ (&). 4.2.8)

Xn—1 Xn

Proof. Fix a hexagon P = (xnzy Ly yn+1) € Hex(N,n), and let
n— n

= (P), 0a(§) 1= e — 1],
then the identity |¢’® — 1|> = 2(1 — cos 8) implies

0;(& +8) = [T — 12 = 2[1 — cos((& + 8)un)]
= 2[1 —cos(Euy,) cos(duy,) + sin(Euy,) sin(Suy,)]
=2[(1 —cos(Euy,))cos(duy,) + (1 —cos(duy,)) + sin(Euy,) sin(Suy,)] (4.2.9)

: . . N T
> 2[(1—cos(8uy)) — | sin(Euy) sin(Su,)|] provided 8| < 2K’

because in this case [Su,| < %, so cos(du,) > 0. Make & even smaller to guarantee 0 < |¢| <
6K6 = %tz < 1—cost <2, then

0,(& +8) = 2(36%; — [Sun|y/1 —cos?(Sun))

— 2<%52 2 |8u,| /(1 —cos(Euy,))(1 +COS(€un)))

> 2(%52 2_ |5un|\/2(1—cos(§u,,))> =257 22| 8uy|[e5t — 1
= 28%u7 —2|8u,[0,(&).

Integrating on P € Hex(N,n), and using Cauchy-Schwarz to estimate the second term we obtain

the lower bound for d,,(§ + §)?. O
Lemma 4.4 and the Cauchy-Schwarz inequality together give
2
Dy(§+6) > 552UN—2|5]\/UNDN(‘Q’) (4.2.10)
o
where U, := Z (“1(< ))2. If Viy := Var(Sy) — oo, then as soon as Vi > 2C, where C; is the
k=3

constant from Theorem 2.1, we have
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Un
— < Vy <2C1U, 42.11
2C) N 1Un. ( )

So there are €,¢] > 0s.t. Dy(E+8) > €,8%Vy —¢1|6|\/VuDn(&). By (4.2.6), there are €,¢ > 0
s.t. for all N so large that Vy > 2C, for all & and || <

| By (x,E +8)| < Cexp (—?VNBZ +a5|\/VNDN(§)> . 4.2.12)

We rephrase (4.2.12) as follows. Given a compact interval / C R, let

An(I):=—log sup |DPy(x, &) (4.2.13)
x.&)ee™x1

and choose some pair (xy, gN) € 6§N) x I such that
An(I) < —log| Py (¥n,En)| <An(I) +In2.
So | (%, &v)| = 3¢ = L sup|dy(-,-)| on &1 x 1

Corollary 4.5 For each 8 there are C,e,c>0s.1. for every compact interval I s.t. |I| < 5 for
all N for every (x,&) € G( x I, for every 2 C 6,(< Zrl s.1. ,LL,E J)rl(Ql) > 8,

@ (x,£)] < Coxp (—8Vi (€ — &) +218 — Evl VA (D)) :
Dy (3, E[20)] < Coxp (~&Vi (& — &w)? + 1€ — Enlv/Vwdn (D))

Proof. We only give the proof in the case Vy is large, so that (4.2.12) holds. This is the case
we need. We remark that the result also holds generally, because the estimate we seek is trivial
when Vy 1s small.

Applying (4.2.12) with EEN instead of £ and 6 = & — EN gives
@u(x.£)| < Coxp (~2Va (& ~ B+l — 1y WD (@) ).

By (4.2.6), e~ W& < 2| @y (B, Ev)| < 2Ce~ 5EVE) We conclude that

DN(E) <CAN)+C

for some global constants Cj,C,. The estimate of |®y(x,&)| follows. The second estimate is
proved in the same way. 0

4.2.2 The LLT in the irreducible non-lattice case

We give the proof for arrays (Theorem 4.1’). Theorem 4.1 on chains follows, because every
additive functional on a Markov chain is stably hereditary (Example 3.7).
We begin by proving that Vy N—> oo, Otherwise liminfVy < oo, and one can find N, 1 o such
—>00

that Var(Sy,) = O(1). Let X' denote the sub-array with rows X’ () — X(No), By Theorem 2.2,
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flx is center-tight, whence Gegs (X', f|x/) = {0}. At the same time, Gegs(X,f) = Ggo(X,f) =R,
because f is irreducible and non-lattice. S0 Gegs(X',flx/) # Gess(X,f), in contradiction to the
assumption that f is stably hereditary.

Next we fix zy € R such that 2=E6Y) s and show that for every non-empty interval (a,b),

N/
for every choice of ng) c GEN) (N>1),
6722/2
ngzv) [Sv —zv € (a,b)] ~ \/m(b —a), as N — oo. (4.2.14)

A well-known approximation argument [147], [17, chapter 10] reduces (4.2.14) to showing
that for all ¢ € L!(IR) whose Fourier transform ¢ (§) := [ ¢~ (u)du has compact support,

‘ e—z2/2 oo
Jim /WE [0 (Sv—zv)] = Ton - 9(u)du. (4.2.15)

Fix ¢ € L' such that supp(¢) C [~L,L]. By the Fourier inversion formula, EX(M(‘P(SN -
1

L .
w)) = % /L(I)(é)@N(ng),é)e’észé. So (4.2.15) is equivalent to
lim /Ty 1 LAggD ™) ¢ iészg_e_zz/on 42.16
S Vg [ F@OY i = ToT50). w210

Below, we give a proof of (4.2.16).
We note for future reference that the proof of (4.2.16) below works under the milder assump-
tion that ¢ is bounded, continuous at zero and has compact support, e.g. ¢ = %1[_%%} (which

is the Fourier transform of ¢ (u) = S2™) & 1)

Divide [—L,L] into segments /; of length < & where § is given by Lemma 4.4, so that [j is
centered at 0. Let

LI (N) gy,
PN = o) B gk,
Jini= o /, O(E) By (xy" §)e SV dE
CLAIM 1 (CONTRIBUTION OF Jy y):
1 2 /m~
VVdon —— ——e = 129(0). 4.2.17
Won 77 aa ¢(0) ( )

Proof of the claim. Fix R > 0. Since Jo y 2 0, Ay (Jov) = 0. By Corollary 4.5, given € > 0 there
is R > 0 such that

" (N) —izy
‘\/V_N~/{§€IO:§|>R/\/‘TN}¢(§)¢N()CI 7&)6 d&'gg

Next, a change of variables & = s/1/Vy gives

. SNy

n (N) —ilzy . -~ k) m\/W
4 P, dé = E ds.
V[ @G e = [ G () B ay
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By Dobrushin’s CLT for inhomogeneous Markov arrays (Theorem 2.3) Sl\"/%]\’ converges in

distribution w.r.t. ]P’ ) to the normal distribution with mean —z and variance 1. By Lévy’s

continuity theorem, th1s implies that

E (e VIV ) —— 52

uniformly on compacts, and so

Vn / 6(&) oy (), E)eEN gE = §(0) / * e s 4 oy (1),
IE1<R/ T : R

Since this is true for all R, we can let R — oo sufficiently slow to obtain (4.2.17).

CLAIM 2 (CONTRIBUTION OF THE OTHER J; v): /VNJj N N—> 0 for j # 0.
N e

Proof of the claim. Since f is irreducible with algebraic range R, the co-range of f is {0} (The-
orems 3.1, 3.4). Since f is stably hereditary,

Dy(€) FvEvde uniformly on compacts in R \ {0}.
—>00

By (4.2.6), @N(ng),é) — 0 uniformly on compacts in R\ {0}.
We will use this to show that for any interval / C R\ {0}

\/W/\cp E)|dE — 0. (4.2.18)

By subdividing [ into finitely many subintervals we see that it suffices to prove the claim

for I = I; for some j. Recall that Ay(/;) = —logsup|®y(-,-)| on 6( ) % I;, and (xj,Nvéj,N) are
points Where this supremum is achieved up to factor 2. Set A; y := An(I;), then Aj y — oo as
N — oo for each j # 0.

Take large R and split /; into two regions

~ A',N
Iy = {5 €lj:|8—&jnl SR”VJ_N}’ y:=L\Iy

Split the integral |, I \@(x(N) ,&)|d§ into two integrals J} v, J7  accordingly.
o OnI]N,|€DN( é)\<e AjN and |I’N|<2R\/
VYN < 2R\/Ajne .

o On [}y, by Corollary 4.5,

@ (1.£)| < Cexp @V ~ Euniiy (2 el - &,-,NWNAJ,N)
~ : -
< Cexp (—515 —&inl /ALNVN) provided R€ >+

t\Jlm>
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Hence \/Vy jN<\/VNC/ e~ 2VAW g — 0 O(A ")

Combining these estimates, we obtain

C
VIVl @n (Y ) iy S 2R Ay e NN 4 : (4.2.19)
AjN

Since Aj y — o0 as N — o0 (4.2.18) follows.

-~ (N)
o ||PN(x7 /- 4
Since |/ y| < I91l-- N;; )||Ll(1’), claim 2 follows from (4.2.18).

Remark 4.6 Note that in the proof of (4.2.18) the irreducibility assumption is only used at the
last sentence, namely, to conclude that Ay j — 0 as N — . In particular, (4.2.19) holds for
arbitrary arrays, irreducible or not.

Claims 1 and 2 imply (4.2.16), and (4.2.16) implies (4.2.14) by [17, chapter 10]. This proves
the LLT theorem for initial distributions concentrated at single points (i.e. P = IP’xw)). To deduce
1

the theorem for arbitrary initial distribution /.LI(N) (dng)), it is sufficient to prove the following
claim and then integrate:
CLAIM 3: (4.2.14) holds uniformly with respect to the choice of {xS,N)}.

Proof of the claim. Assume by contradiction that this is false, then there exists € > 0 and N — oo

with y\™ such that P 001y — 2y, € (a,)]/* \Z//M%N“ ~¢ ¢€]. But this contradicts (4.2.14)
for any sequence {xl } such that ng") = yg K, O

4.2.3 The LLT for the irreducible lattice case

We give the proof in the context of arrays (Theorem 4.2”): X is a uniformly elliptic array, and f
is an additive functional on X which is a.s. uniformly bounded, hereditary, irreducible, and with
algebraic range ¢Z with ¢ > 0. Without loss of generality, = 1, otherwise work with #~'f.

By Lemma 3.9 and the assumption that G,;,(R) = Z, there are constants c,(lN) such that

f,1 ( ,E]I)l) c,(lN) € Z a.s. We may assume without loss of generality that c,(lN) =0, oth-

erwise we work with f —c. So

Sy € Z a.s. for every N > 1.

We will show that for every sequence of numbers zy € Z such that % — 7, and for every
P
e—z2 /2
ngm Sv=zn) =1 +0(1)]\/T—VN’ as N — oo, (4.2.20)

As in the irreducible case, once we prove (4.2.20) for all choices of {x(lN)}, it automatically

follows that (4.2.20) holds uniformly in {ng)}. Integrating over (6§N),%(6§N)), ,LLI(N)) gives
(4.1.4) with k = 0. For general k, take z), := zy +k.
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The assumptions on f imply that Var(Sy) N—> oo, The proof is a routine modification of the
—s00

argument we used in the non-lattice case, so we omit it.

Observe that 5 ™ ¢S dE is equal to zero when m € Z\ {0}, and equal to one when m = 0.

In particular, since Sy — zy € Z almost surely, for every ng) € GgN)

1 T 1 T .
— v =0) = — i&(Sn—2n) — (N) —ilzy
P (Sy—av=0)=Ew (M /_ K d§> o /_ (", g)eEvae,

Thus to prove (4.2.20) it is sufficient to show that

i . L g (N) —i€zy _ L —72/2
A%lglo\/VN = /_ECIJN(xl ,E)e dé = me ) (4.2.21)

Notice that (4.2.21) is (4.2.16) in the case ¢ (u) = Sm,g—;m), 0(E) = ﬁl[,n,,ﬂ(é), and can be
proved in almost exactly the same way. B

Here is a sketch of the proof. One divides [—, 7] into segments /; of length less than the &
of Lemma 4.4.

The contribution of the interval which contains zero is asymptotic to —L_¢=7/2 This is

\V21wVy
shown as in claim 1 of the preceding proof.

The remaining intervals are bounded away from 27Z. Their contribution is o(1/+/Vy). This
can be seen as in claim 2 of the preceding proof, using the facts that since f is irreducible with
algebraic range Z, H(X,f) = 2nZ (Theorems 3.1, 3.4), and since f is hereditary and G, (f) =
Z, f is stably hereditary, whence Dy (&) m 0 uniformly on compacts in R\ 277Z. U

4.2.4 The mixing LLT

The proof is very similar to the proof of the local limit theorem, except that we use @ (x,&|2)
instead of ®(x,&).

We outline the proof in the non-lattice case, and leave the lattice case to the reader. Suppose
X is a uniformly elliptic Markov array, and that f is a.s. uniformly bounded, stably hereditary,
irreducible and with algebraic range R.

Let Ay € 6,({1;11 be measurable sets s.t. P(X, )

kn+1
Suppose % — z. As before, Viy — oo, and a standard approximation argument ([17], chap-

ter 10) says that it is enough to show that for every ¢ € L' (R) s.t. supp((})\) C [-L,L],

€Ay)>6>0,andlet xy € G(IN) be points.

e—zz/Z ~

9(0).

li \/— 1 b o A —iézzvd _
Jim Ve [ @l El2tw)e Fvag =

Divide [—L,L] as before into intervals /; of length < S where § is given by Lemma 4.4 and
Iy 1s centered at zero, and let

Jjn = %‘c /, 0 (&) Pn(xy, & |An)e N dE.

CLAIM 1: \/VNJ()?N N—> (Zﬁ)i%e_zz/za(o)'
S0
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Proof of the claim: Fix R > 0. As before, applying Corollary 4.5 with Ay = 0 we conclude that
for each € > 0 there is R > 0 such that

V/ O(E)D xn, E2A e g ‘SE.
‘\/_N {5€Iotlé|>R/\/W}¢(§) v (v, A ) a

Next the change of variables & = s/+/Vy gives

A 0 (E)DP(xn, E|Ay)e o d
(ceniziry gy (5 DS IA) :

N & is(Sl\V/;ﬁV)
— _ N
[ ()

Xlgﬁ-l S QlN) dé

: /Rq?( S )IE ("‘Y(S%VH (x/ ))d§ (4.2.22)
= —_— X (4 A L
P ey JrT \WI ) "

We analyze the expectation in the integrand. Take 1 < ry < ky such that ry — o and
rn/v/Vn — 0, and let

Zf 'N ]+{)_SN_ Z f (N j+%)

J=kn—rn+1

Since ess sup || < oo, |Sy —Sy| = 0(/Vw), and so

is(SM=2 ) is(3D
Ery ( Vi 1mN<X,£5L>)=EXN ( Vi 191N<X£5L>> +o(1)

is(S’iV/;ﬁV) (N)
=E, e VR Ly, ( kN+1)|X X )| ()

is(2) N)
=FEy e VW E(IQlN (X]{(Nll)|X]<(11_)rN) +o(1) by the Markov property

is Sy
2 Ey, <e ) [P(X,gvvll € Ay) +0(9’N)}) +0o(1), where 0 < 6 < 1

! . . . . .
and = uses the exponential mixing estimate (1.2.3). Since ]P’(X,fi:?rl € 2y) is bounded below,
and Slvﬁ converges in distribution to the standard normal distribution by Dobrushin’s theorem,

we may conclude that

is(2 ) L+o(l) 2y iy
By (e Vi 1Q[N(X,§;Vll)> - —27([ ) =212 P(x), e aty).

Substituting this in (4.2.22) gives the claim.
CLAIM 2: /VNJj N N—> 0 for j #0.
—>00

The claim is proved as in the previous proof, but with (4.2.7) replacing (4.2.6). Together, claims
1 and 2 imply the theorem. U
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4.3 Notes and references

For a brief account of the history of the local limit theorem, see the end of the preface.

Many of the techniques we used in this chapter have a long history. The reduction of the LLT
to the asymptotic analysis of the integrals (4.2.16) and (4.2.21) for ¢ € L! with Fourier trans-
forms with compact support was already used by Stone [147] for proving local limit theorems
for sums of iid random variables. As mentioned at the end of the synopsis, the method of char-
acteristic function operators is due to Nagaev [109], who used it to prove central and local limit
theorems for homogeneous Markov chains, and this method was used extensively in dynami-
cal systems. Hafouta & Kifer [69], Hafouta [66, 67], and Dragicevi¢, Froyland, & Gonzalez-
Tokman [53], used this technique to prove the local limit theorem in a non-homogeneous setup.

The terminology “mixing LLT” is due to Rényi [125], who initiated the study of the stability
of limit theorems under conditioning and changes of measure. The relevance of Mixing LLT to
the study of reducible case is noted by Guivarc’h & Hardy [65]. Mixing LLT have numerous
other applications including mixing of special flows [65, 50], homogenization [44] and skew
products (see in particular, Theorem 5.2 in Chapter 5). Mixing LLT for additive functionals of
(stationary) Gibbs-Markov processes were proved by Aaronson & Denker [4].



Chapter 5
The local limit theorem in the reducible case

) . B in—E(Sy)
In this chapter we prove the local limit theorem for P(Sy —zy € (a,b)) when o) converges

to a finite limit and f is reducible. In the reducible case, the asymptotic behavior of P(Sy — zy €
(a,b)) depends on the details of f,(Xn,X,+1). The dependence is strong for small intervals, and
weak for large intervals.

5.1 Main results
5.1.1 Heuristics and warm up examples

An additive functional is called reducible if
f=g+c

where c is center-tight, and the algebraic range of g is strictly smaller than the algebraic range of
f. By the results of Chapter 3, if Var(Sy(f)) — oo, X is uniformly elliptic, and f is a.s. bounded,
then we can choose g to be irreducible. In this case

Sn(f) = Sn(g) +Sn(c).

where Var(Sy(g)) ~ Var(Sy(f)) — oo, Var(Sy(c)) = O(1), and Sy(g) satisfies the lattice local
limit theorem. The contribution of S,(c) cannot be neglected. In this chapter we give the
corrections to the LLT needed to take S,(c) into account.

Before stating our results in general, we discuss two simple examples which demonstrate
some of the possible effects of Sy(c).

Example 5.1 (Simple random walk with continuous first step and drift):

Suppose {X,},>1 are independent real-valued random variables, where X is distributed like
a random variable §, and X; (i > 2) are equal to 0, 1 with equal probabilities.

§ could be arbitrary, but we assume for simplicity that 0 < §F < 1 a.s., E[F] = %, the distribu-
tion of § has a density, and § is not uniformly distributed on [0, 1]. Let iz denote the probability
measure associated with the distribution of §.

Sy = X1+ -+ Xy is exactly Sy(f), where f,(x,y) := x. Since the distribution of § has a
density, f has algebraic range R.

The following decomposition shows that f is reducible, with essential range Z: Let J;; be
Kronecker’s delta, then f = g+ c where

99
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gn(x,y) 1= (1= 81.0)x, calx,y) := 1%,
g is irreducible with essential range Z, and c is center tight.
We have Sy = (X2 +---+Xy)+ X . Clearly, Sy(g), Sn(c) are independent; Sy (c) ~ §; and
——

Sn(g) Sn(c)
Sn(g) has the binomial distribution B(5,N — 1). So Sy has distribution piz * B(3,N — 1). This
distribution has a density, which we denote by py(x)dx. The following holds as N — oo:

(A) Non-uniform scaling limit for py(x)dx: my := pn(x)dx is a positive functional on
C.(R) = {continuous functions with compact support}. Fix zy := E(Sy) = N/2 and let Vy :=
Var(Sy) ~ N /4. Then for every ¢ € C.(R) and N even,

9= 2w () = Elo (Sk — 2] = EI (S (&) + Sk () ~ )]

N-1 /n
~ L Elp+m-alPls,(e) =n = X (1) o+ maw)

mez m=0 m

1 NP /N—1
me;o( m )wm—%% where y(m) :=E[g(§ +m)]

1 NN
= m b Stirling’s formula
A m—gN/Z <m+N/2> \ 27'C'V n;ZII/ d s

1
~ Y E[¢(F+m)], as N — eo. This also holds for N odd.
v N mez

Thus the distribution of Sy — zy tends to zero in the vague topology of Radon measure on R “at
a rate of 1/v/2xN,” and if we inflate it by \/27Vy then it converges in the vague topology to
Ug*(counting measure on Z).

By the assumptions on §, the scaling limit t3+(counting measure on Z) is not a Haar measure
on a closed subgroup of R. This is different from the irreducible case, when the scaling limit is
the Haar measure on G4 (X, f).

(B) Non-standard limit for \/27VyP[Sy —zn € (a,b)]: Fix a,b € R\ Zs.t. |a—b| > 1. Repeat-
ing the previous calculation with ¢; € C.(IR) such that ¢; <1, ;) < ¢ and Z E[¢pi(m+F)] ~

mez
Y. E[l (4 (m+3F)] gives for zy = E(Sy) that
mez
V2IVNP[Sy —zw € (a,b)] —— Y E[l(yp) (m+3F)]. (5.1.1)

N—roo mel,

This is different than the limit in the irreducible non-lattice LLT (Theorem 4.1):
\/ 2nVNP[Sy — 2y € (a,b)] = la—b|; (5.1.2)
—»00

or the limit in the irreducible lattice LLT with range Z (Theorem 4.2):

V2IVNP[Sy — 2y € (a,b)] —— Y 1(4p)(m). (5.1.3)

N—>oo me?,
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(C) Robustness for large intervals: Although different, the limits in (5.1.1),(5.1.3) and (5.1.2)
are nearly the same as |a — b| — oo.

The ratio between the limits in (5.1.3),(5.1.2) tends to one as |a — b| — . The ratio be-
tween the limits in (5.1.1),(5.1.3) tends to one too, because supp(F) C [0,1], so |[a—b| —2 <
Z Liap)(m+%) <la—b[+2as., whence
mez

L Elliup)(m+3) )

—1] < 0
Y gy (m) |a—bl |a—b|-e
meZ

Example 5.1 is very special in that S,(g),Sn(c) are independent. Nevertheless, we will see
below that (A), (B), (C) are general phenomena, which also happen when Sy(g), Sy(h) are
strongly correlated. The following simple example demonstrates another pathology that is quite
general:

Example 5.2 (Gradient perturbation of the lazy random walk)

Suppose X, Y, are independent random variables such that X,, = —1,0,4-1 with equal prob-
abilities, and Y, are uniformly distributed in [0, 1]. Let X = {(X,;,Y3) }n>1-

o The additive functional g, ((x,,Yn); (Xn+1,Yn+1)) = X, generates the lazy random walk on Z,
Sn(g) = X1+ -+ Xy. Itis irreducible, and satisfies the lattice LLT with range Z.

o The additive functional c,((Xn,Yn), (Xnt1,Yn+1)) = Yn — Ynt1 is center-tight, and Sy(c) =
Yy — 1.

o The sum f = g+ c is reducible, with algebraic range R (because of c) and essential range Z
(because of g). It generates the process

Sn(f) = Sn(g) +Yni1 —11.

Sn(f) lies in a random coset by + Z, where by = Yy — Y;. Since the distribution of by is
continuous, P[Sy —zy = k] = 0 for all zy, k € Z, and the standard lattice LLT fails. To deal with
this, we must “shift” Sy — zy back to Z. This leads to the following (correct) statement: For all
N EZst 2 sz forallk € Z,

A7
e—z2/2
P[Sy — 2y — by = K] ~
et =

Notice the shift by a random bounded quantity by .

5.1.2 The LLT in the reducible case

Theorem 5.1. Let X = {X,,} be a uniformly elliptic Markov chain, and let f be a reducible a.s.
uniformly bounded additive functional with essential range O(f)Z, where d(f) # 0. Then there
are random variables by = by(X1,Xn+1) and § = §(X1,Xz,...) with the following properties:

(1) For every zy € 6(f)Z such that % — z, for every ¢ € C.(R) and x € &,
_ §(fle</?
lim /VyE,[¢(Sy —zv — by)] = of)e Y Efo(mb(f)+3F)].

N—oo v 2n me7Z
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(2) For every Ay C Sy measurable such that P[Xy11 € An+1] is bounded below, and for
every x € Gy,

_ §(f)e</2
1 VNE, |0(Sy —zv — by ) | X e = E, o(f)+3)].
dim /Viy [0 (Sy —2v — bn) | Xn+1 € Ant1] NoT mze‘,z [¢(md(f) +3)]

(3) ||bw |l < 98(f), and § € [0,8(f)).

The statement may seem at first sight different from the previous LLT we discussed, so we’d
like to spend some time on clarifying what it is saying.

o Ey[¢(Sy —zv —bn)], when viewed as a positive functional on C.(R), represents the measure
on R, my n(E) =P [Sn —2v — by (X1, Xn+1) € E]. This is the distribution of Sy, conditioned
on X| = x, after a shift by zy + by (X1,Xy+1). The deterministic shift by zy cancels the drift
of Sy (notice that zy ~ E(Sy) =~ E,(Sy)). The random shift by is needed to force Sy to stay
inside 8(f)Z, see Example 5.2.

o The linear functional

() Y Ei f)+3)] (5.1.4)
me
defines the element of C(R)* which represents the measure i, 5 * mgf), where [, 3(E) =
P(§ € E) and mg ) := 6(f) x counting measure on &(f)Z. So part (1) of Theorem 5.1 says

that my y — 0 in C.(R)* at rate 1/+/Vy, and gives the scaling limit /27Vymy NW—*> My 5 %
—>00
mg sy when z = 0. See Example 5.1.

o Asin Example 5.1, part (1) implies the following: For all a < b s.t. § has no atoms in {a,b} +

6(f)Z, and for all zy € 8(f)Z s.t. % Sz

-22/2

Py[Snv —zv —bn € (a,b)] = [1+o(1 )]\/m

(1(ap)), and

la—b| as l[a—b| — o

Allan)™ {m e (b)) for(ab) < [0,5(F)).

Viewed from this perspective, Ay(1(4)) is a “correction” to the term |a — b| in classical LLT
(4.1.1), which is needed for intervals with length of order &(f).

These observations should be sufficient to understand the content of part (1). Part (2) is a
“mixing” version of part (1), in the sense of §4.1.3. Such results are particularly useful in the re-
ducible setup for the following reason. The random shift by (X1, Xy 1) is sometimes a nuisance,
and it is tempting to turn it into a deterministic quantity by conditioning on X1, Xy 1. We would
have liked to say that part (1) survives such conditioning, but we cannot. The best we can say
in general is that part (1) remains valid under conditioning of the form X; = x1,Xy+1 € ™An+1
provided P(Xny1 € Un1) is bounded below. This the content of part (2). For an example how
to use such a statement, see §5.2.3.

In the following sections, we explore some of the consequences of Theorem 5.1.
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5.1.3 Irreducibility as a necessary condition for the mixing LLT

Theorem 5.1 exposes the pathologies that could happen in the reducible case. But is irreducibil-
ity a necessary condition for the non-lattice LLT? No!

Example 5.3 Take example 5.1 with fixed x and § uniformly distributed on [0, 1], given X; = x.
v —E(Sy)
_)
VVn

|a — b|, even though f is reducible, with essential range 7.

,and

Inthis case, 6(f) = 1, Wy g *mg(s) =Lebesgue’s measure, Ax(1(,p)) = la—b

212

\/ 21tV

Of course, such behavior is immediately destroyed if we modify X;.

7= Py[Sy —zn € (a,D)] ~

In this section we show that irreducibility is a necessary condition for the mixing LLT,
provided we impose the mixing LLT not just for (X,f), but also for all (X',f’) obtained from
(X,f) by changing finitely many terms.

Let f be an additive functional on a Markov chain X. Denote the state spaces of X by G,,
and write X = {X, },>1, f = {fu}n>1. A sequence of events 2, C & is called regular if 2(; are
measurable, and P(X,, € 2,,) is bounded away from zero.

o We say that (X, f) satisfies the mixing non-lattice local limit theorem if Vi := Var(Sy) — oo,

and for every regular sequence of events 2, € S,,, x € &1, for all zy € R such that % —

z, and for each non-empty interval (a,b),

2
e /2
P Sy —zv € (a,b)|X, e =[140(l)|——=|a—b| as N — oo,
x( N —2ZN ( )| N+1 N—H) [ ( )]\/m‘ ‘
o Fix r > 0. We say that (X,f) satisfies the mixing uniform distribution mod ¢ property, if
for every regular sequence of events 2, C &,, x € &, and a non-empty interval (a,b) with
length less than one,

ja—b|

Pr(Sy € (a,0) +1Z Xy 11 € Ans1) —— —

Theorem 5.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Given m, let (Xp,tm) := ({Xn}nzm, {fn}n>m)- The following are equivalent:

(1) f is irreducible with algebraic range R;
(2) (X, Tm) satisfy the mixing non-lattice local limit theorem for all m;
(3) (X, Tm) satisfy the mixing uniform distribution mod t for all m and t > 0.

5.1.4 Universal bounds for P,[Sy — zy € (a,D)]

So far we have considered the problem of finding P, [Sy — zx € (a,b)] up to asymptotic equiva-
lence. We now consider the problem of finding P,[Sy — zy € (a,b)] up to bounded multiplicative
error, assuming only that Vy — oo,

We already saw that the predictions of the LLT for large intervals (a,b) are nearly the same
both in the reducible and irreducible, lattice and non-lattice cases. Therefore we expect univer-
sal lower and upper bounds, for all sufficiently large intervals without further assumptions on
irreducibility or on the arithmetic structure of the range. The question is how large is “suffi-
ciently large.”
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We certainly cannot expect universal lower and upper bounds for intervals smaller than the
graininess constant of (X, f):

t Ges(X,f)=1tZ, t >0
0(f):==40 Gess(X,f) =R (5.1.5)
o0 Gess(xaf) = {0}7

because intervals with length less than d(f) may fall in the gaps of the support of Sy — zy.
Theorem 5.1 can be used to see that universal bounds do apply as soon as |a —b| > &(f):

Theorem 5.3. Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Then for every interval (a,b) of length L > O(f), for all € > 0, x € &1 and

zy € R such that % — z, for all for all N large enough,
“ZRla—p 218(f
Py(Sn —zv € (a,0)) < ¢ \/ZJILV | (1+ L( >+8), (5.1.6)
N
~R)g— 5(f
P(Sy—zv € (a,b)) > & \/27|riv |(1— 2)—8). (5.1.7)
N

In addition, if 0 < 6(f) < ccand k6(f) S L5 (k+1)6(f), k €N, then
e /2

6—12/2
(\/W)kS(f)SPx(SN—ZNe(a,b))g( _2EVN>(k+1)6(f).

Here Ay < By means that limsup(Ay/By) < 1.
N—oo

We note that both upper and lower bound become asymptotic to the Gaussian density as
L — 0. Notice also that the theorem makes no assumptions on the irreducibility of f.

Theorem 5.3 is an easy corollary of Theorem 5.1, see §5.2.4, but this is an overkill. At the
end of the chapter we will supply a proof of universal bounds for intervals of length L > 25 (f),
which does not require the full force of Theorem 5.1, and which also applies to arbitrary initial
distributions and to arrays.

5.2 Proofs
5.2.1 Characteristic functions

Setup: Throughout this section we assume that X = {X,,} is a uniformly elliptic Markov chain

with state spaces &, marginals u,(E) = P(X, € E), and transition probabilities 7, 41 (x,dy) =

Pn(x,y)Un+1(dy) which satisfy the uniform ellipticity condition with ellipticity constant &.
For every bounded measurable function ¢ : G, X G, 11 — R, we let

E((P) = E[(p<Xn7Xn+l>] ) G(@) = \/Var((p<Xn7Xn+1>)'

Next we assume that K > 0, € € (0,1) and f = {f,SN) :1 <n <N < oo} is an array of mea-
surable functions fn(N) : 6, X 6,11 — R which satisfy the following assumptions for all N:
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(N)
(D E(fn ') =0andesssup|f| < K.

N
(II) Let Sy := Z f,EN) (X, Xn+1) and Viy := Var(Sy), then there exists C > 0 s.t.

n=1

Vy — oo and —Zo Yy <é. (5.2.1)

dII) f =F + h+c, where
(a) F= {IFE,N)} are measurable functions such that ess sup |F| < K, G, (X,F) C Z.

(b) h= {hElN)} are measurable functions such that

N
E(h}(le)) =0, esssuplh| <K, Z Gz(hg,N)) <e.

n=1

(c) c= {cﬁ,N)} are constants. Necessarily |c,(1N)| <3Kand ") = —E(IFS,N)). Let ¢cV) :=
ZN—] CElN)'

We are not assuming that IE(]F‘,(@N)) =0: ]F,SN) are integer valued, and we do not wish to destroy
this by subtracting the mean.

Lemma 5.4 Under the above assumptions, for every K >0, m € Z, there are C,N > 0 s.t. for
every N >N, |s| <K, x € &y, and vy : Syy1 — Rwith ||vyii]|e < 1,

2mm+ S imc®™) _s
E, <e ! M) NVN+1(XN+1)> — 2T 2 By (X)) + v (%)

where E(|n) < c{ o2 )] e

Proof. In this proof we fix the value of N, and drop the superscripts N for the ease of notation
(for example W) = =c).

We develop a perturbation theory of transfer operators similar to [12]. Recall the operators
Zye  L”(6y41) — L7(6,) given by

Loz = [ palen)e S u(y) ().
n+1

Let & = &(m,s) :=2ntm+ Since T, is integer valued,

s
NAY/YE

. i| ——(F,+cy +§h,,)
el In — = exp2wimF, + —F, +i§c, +iEh,)] = ez’”mcnel( VN( ) ]

\/V_

We now split e*Z”"m“"iﬂn’g = yn,é -1—02/’;5 + 95:’?,;5 where

l‘s/ (Fn(x,y)+cn)

(Zngu) ()= [ pulry)e ()1 (dy),

(Zuge) @) =38 [ paley)mey)uty)pn (@), and
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~ i€ hpt—— (Fy (x,y)+¢n) B_(F,(x,y)+cn) .
(Zugu) 0= patoca) [ RGO i 1) |t (a),
n+1

We claim that there exists Cy (K, m) > 1 such that for |s| < K, n > 1

| Zell =%l o < 1 (5.2.2)

Hgn,é ||L14L°° <C (Kv I’I’l), (523)

|2, i (5.2.4)

H«Zn,é oy S C1(K m)o (hn), (5.2.5)
2 O'(hn)G(fn)

[ %], < ci®om) o)+ gL, 526)

To see this, we represent these operators as integral operators, and estimate their kernels. For
example, .Z, ¢ is an integral operator whose kernel has absolute value [i§ py(x,y)hn(x,y)| <

& €]l (x,)|. So

1% el < &V AT2m2 + B a1 < &5 472m2 + K[| 12,

and (5.2.5) follows from the identity ||h,||;2 = o(h,). Similarly, Z,& has kernel with absolute
value

. . Fn(xy)+cn . Fn(x,y)+cn . Fn(xy)+cn
pn(x,y)}eléhnﬂs Vi VW —i&hy(x,y)| Seal‘els Vi (e‘éh —1) —i&hy|
iS]Fn(xﬁy)+Ln is Fp(x.y)+cn
—gylle” VW (il +O(E2)) —ilhy| =gy e VN —1||Ehy|+ 0 (h2)

:0(

where the implicit constants in O(-) are uniform on compact sets of &. It follows that uniformly
on compact sets of &,

!hn<Fn+cn>|) +0 (hy)

EF

1L el ir = Oy YE(In(Fu+ ca)]) + O(1hal3)
= O(Vy ")l 2 |F + call2 + O al3)

= Oy ) Iall2(1fo— Feall2) + O([1 R 13)

= Oy ") hall2(1full2 + all2) + O Bal3)

— o a2l fall2 2\ _ (hn)o(fu) | >
_O(—\/W +||h,1||2)_0(—\/W +cr(hn)>,

as claimed in (5.2.6).

Recall Nagaev’s identity (4.2.1): Ey[e ’éstNH(XNH)] (L eLne - Lyevn+r)(x). The
decomposition e~ %" L nE = Z, & +$ & +.;2” & implies that

By (51 (Xa1)) = 7 (B (x,8) + By (n 8) + Bu(x.8))  (5:27)
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where ¢ = ¢ =c1+---+cn, and

DN(x,8) = (L1g.. . Lygvwi) (),

(EN(X,g) — e—Znim(cl—i-...—i-ckq) <$1’€ .. .gk_17§,27k75§k+17§ ---§N7§VN+1> (X),
k=1

~ N_l 2 . — [E— [—

Bu(x§) = Y e 0N (F e Ly e Dg Dy Dgvwn ) ().
k=1

We will analyze each of these summands.

CLAIM 1:For every m € 7,
R: |S| < I_(}, x€ 6y, vt € {V € Lw(6N+1) : ||V|| < 1}.

Dy (x,&) — e_sz/zEx(vNH (XNH))‘ o 0 uniformly in s on {s €
—o0

— N
PROOF: @y (x,&) = Ey <exp (iszk:\}‘%ﬂ) VN1 (XN+1)> ,where E(YY_F,) = —c.Fix 1 <r <

N. Using the decomposition f = F + h + ¢, we find that

By assumption ITI(b), the L? norm of the second summand is O(1/+/Vy). Therefore the second
term converges to 0 in probability as N — oo, and

is SN

By(x,E) = E, (f

rVN—I—l(XN—H)) +o(1), (5.2.8)

where we have abused notation and wrote Sy_, = fl(N) +- f,E,Ii),.
The rate of convergence to 0 depends on r and m, but is uniform when |s| < K and ||y 41 ]|e <
1. At the same time, by exponential mixing (see (1.2.3)), there is 0 < 6 < 1 such that

is SN_r LS _
Ey <em ! VN+1(XN+1)> =Ky {em ! By (w1 Xne1) | X1, Xv—r)

_is_ g _r
=E, [e\/W N E, (VN+1(XN+1)‘XN_V):| (Markov property)

is S _r
=E, (e N [Ex(vyr1(Xne1) + O(Gr)]> (exponential mixing)

= E(e"SN/VIW)E (vy 41 (Xn41)) +O(87) (5.2.9)

where the O(0") is uniform in ||[vy41 |-
A similar mixing argument shows that

Ex(SN—r) = E(SN_r|X1 = X) = E(SN) + 0(1) = 0(1)
uniformly in x € &. By Dobrushin’s CLT,

. Sy—Ex(S
i SN —Ex(Sy)

E(e#S8-r/VIW) = [1 + o(1)]Eg(e” VW ) =[14+0(1)]e >/ as N — .
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The claim follows from this, (5.2.8), and (5.2.9).
CLAIM 2. There exists Co(K,m) s.t. for all |s| < K and ||vy 11l < 1,

H(5N<x7é:)HLl <G (K,m)VEe.

PROOF: || By (x,&)||; < NEZ

N JR—
+;2(H31,§H - [ Zwell)
Suppose |s| < K, then (5.2.3), (5.2.4) and (5.2.6) tell us that
— — _ h
[ Za - 2| < o) [t U]

2 A o (hi)o (fi)
Hﬁfl,gﬁ,zgu < Grell e || e et < Ci(K,m)? [ (hk)2+W _
Therefore || Py (x, E)||; < Ci(K,m)> 22[:_11 [(F(hk)2 + —G(h\"/)‘%v(f")} . By Cauchy-Schwarz,

Nilc(hk)z‘f’ ol \/)_ i 2+ Z 62 (hg) - Z (72 (fx)
k=1

k=1
<e+VC g, by assumptions II and III(b). The claim follows.

CLAIM 3. There exists C3(K,m) s.t. for all |s| <K, and ||[vy11|l~ < 1,
[Py (x,8)[l1 < C3(K,m)\/e.

PROOF. Fix N, vy € Lw(6N+l) such that ||VN+1||°° < 1, and define Ck € Lw(6k>, Nr € R s.t.
O () := (yk,é ~'-§N,§)VN+1 = G(+) + Mk
where 0 :=E[(Ly ¢+ Ly .e)vn+1(Xe)], and B[ (X,)] = 0. Then

-~ N —_~
[Dv (6|, <Y 1% e ZhmreZre (Gt + M D] (5.2.10)
k=1

SUB-CLAIM. We can decompose §; = §/+ {}' so that for all |s| < K, there exist Co,Ko > 0 and
0< 60 <lstforallk=1,....N—2

16600 < O3 11542 lloo + Koll & a1 (5.2.11)
16! [l < Co (G(f") +G(f"“)\/%7(h") +G(h"“)) . (5.2.12)

Proof. In what follows, .2} = 2} o. Write

M+ G =0k = (LreLiv1e) frr = (LreLrivrg) Misa+ Graa)
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= (L) M2+ (GLirt) Gesr + (ZLr e L1 — LeLirr) Dira-
Observe that £ 1 = 1, 50 (£4-%k+1) Mkr2 = Ni+2- This leads to the decomposition
G = (L)) Gen+ (LreLire —Leirt) Oera+ M2 — M

S iy

We use this decomposition to define §/, §”. This gives the following recursion:

G = (L) Gln + (L) Gl

v o o (5.2.13)
i = (LreLiire — LeLirr) O + M2 — M

Notice that {/,{;’ both have zero means. Indeed in our setup, u;(E) = P(X; € E) and
(Zu)(x) = E(u(Xi+1)|Xx = x), whence

/Clédﬂk =E(§ (X)) = E[E(E(Sk2(Xea2) [ Xer 1) 1Xk)] = E(Gry2(Xiy2)) =0,

and E({]) =E() —E({)=0-0=0.
To prove the estimates on ||} ||, we first make the following general observations. If Y, €
L*(Sk42), then (L Ly 1 Wir2) (x) = [ P(x,2) Wi (2) Hi+2(dz), where

B(x,z) = /6 DY) Pit (0:2) it (d).

By uniform ellipticity, p > & so we can decompose p; = & + (1 — &)gx where g is a proba-
bility density. Hence if y;,, has zero mean then

(L1 Wir2) (x) = & / Virod iy + (1 — &) / Gk (X, Y) Wicr2(0) M2 (dy)
= (1 —80)/67k(X7Y)‘lfk+2(y)Hk+2(dY)-

Thus || L1 Wit2le. < (1 —€0)[| Wit 2|
We apply this to §; » = (LeLher1) §op + (L) Gla

160l < (1 — €)1k lleo + |- Z2Zi1 &2 o
-2
< (1= &)l1&lle + 1 Zillp s =1Lt I 1664210 < (1= €0) 1l + & (16K 21

The last step is because 0 < p,(x,y) < 80_1. This proves (5.2.11).
Next we analyze ||{'||.. Since {; has zero mean and 74, — 7 is constant, we can

write §; = A,é’ — E(Alé’ ) with Z,ﬁ’ = (L1 eLrr1e — %Lis1) Peqa. Observe that the kernel
of (gk,égk F1E— fkcka) is bounded by

S
COHSt\/’—V‘—N (Fr(x,2) + Fro1 (z,9) + i + 1) Mir1 (d2).

By assumptions IT and III, the L!-norm of the kernel is bounded by

0 Q%) <||fk—thl + [| fie1 —hk+1H1> =0 (%) <||f,<||1 + el + | et 11 + ||hk+1”1>
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N
<0 (o ) (Wl Dol e+ el ).

N
This implies that &/l = 0 (55 (o(fi) + 0(fee1) + 0(h) + o). whence [/ <
2HZ,£’||°° =0 (\)%}) (6(fx) + 6(fit1) + 0 (hk) + O (h41)). (5.2.12) and the sub-claim are
proved.

We return to the proof of Claim 3. Iterating the estimate in the sub-claim, we conclude that
for some constant C

¢l < C §2L¥J T égr (0 (ferar) + 0 (firari1) + 0 (hiyor) + 0 (hiy2ri1))
k — 0 =~ \/V_N

é\ka N §6 h
0 + = \/V_N (G(fk+r) + G( k+r)> :

Since .Z ¢ are contractions and H.,i/”; ¢llp= g1t < C1(K,m)o (hy), this implies that

Yl e ZireZie (o)l
k

— ~ O (firr) +0(hiyr) AN—k
< CC(K,m) ;eogc(hk) N +;G(hk)00 ]

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (5.2.1), and as-
sumption III(b) that the sum over k is O(+/€). Hence

y H.,%Lé o Lre T (|| = o). (5.2.14)
k

L -
Next we claim that

Y|4 Lire bl = o). (5.2.15)
k

le

The proof is similar to the proof of (5.2.14), except that now we use (5.2.13) to see that as in
the proofs of (5.2.5),(5.2.6) and (5.2.12),

+ 6 (fir2) + 0 (hiy1) + 0 (hei2)

N7

@ = c
”.ﬁﬁ,g ...%_1@%{75@&1)]&1 < C4(K,m)6(hk) (fk+1)

for some constant C4(K,m).
(5.2.14) and (5.2.15) give us an O(1/€) bound for contribution of ;| to (5.2.10). It remains
to estimate the contribution of 1y to (5.2.10).

Split £, ¢ = ¥ L, 4 L ¢ As before,

jl,& ---Zk_l,gi/’”;,g(l) _ ezmm(c1+...+ck_1)$l ...%{_19@;75(1)

+Ze2ﬂim(Cj+1+...+Ck—l)glé "'iﬂj_l,g«ffg«fjﬂ"'Zk—loé’;,g(l)
j

(5.2.16)
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Since E(hy) =0, E[(ﬂcg )(Xx)] = 0. By exponential mixing (1.2.3), the first term on the RHS
of (5.2.16) has L= (whence L) norm no larger than

Conix0 | L 21| < C30 (hy) 6F

for some constant C3 = Cs (K,m) and 0 < 6 < 1. Similarly each summand in the second term
on the RHS of (5.2.16) has L' norm less than

121 ¢ 1|C30 (i) 0" < Cao (i) 6%

< Cyo (i) 0 (% ; o(h,o) 7

for 64 = 64 (K m). So the second term on the RHS of (5.2.16) has norm less than

(Fj+cj)+Eh;

\/—_

2

= S
Csa(hk)j; 6% J(W]’V+c(hj)> (5.2.17)

for some constant Cs.

It follows that Z H.ZL& .. ..ch,l’g.,?k?g (1)‘ | is bounded by
k

%( o () 8% + Cso () Ze" f((i/(‘]:_N) +o(h; ))

=1 j=1

N—

=~

o~

N
<6\ Lo Lo <G 3078 (T2 w0t ot

6 € __N-1 N o2(f; N N
S 3\/_2 +C5 Z 0" Z V(f]) + Z 0'2(]1]) Z j+r
1-6 r=0 =1 N j=1 j=1

By assumptions II and III, there is a constant 66 = 66 (K,m) such that
Y| e Liredie)] <Cove (5.2.18)
k

Claim 3 now follows from (5.2.10), (5.2.14), (5.2.15), and (5.2.18).
Lemma 5.4 now follows from Claims 1-3 and (5.2.7). O

5.2.2 Proof of the LLT in the reducible case

Setup and reductions. Let f = {f,} be an a.s. uniformly bounded additive functional on a
Markov chain X = {X,} with state spaces &, and marginals u,(E) = P(X, € E). We assume
that f is not center-tight, and that f is reducible. In this case Gz (X,f) = 8(f)Z with some
o(f) > 0. Without loss of generality,
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S(F) =1, Ges(f) = Z , E(f,) := E[f(Xp, Xp11)] = 0 for all n,

otherwise we center and rescale f.
By the reduction lemma (Lemma 3.10), f =F + Va+h + ¢, where

Galg(xv]F) = Gess(xy]F) =7,

h has summable variances and E(h,) := E(h,(X,,X,+1)) = 0, ¢ = {¢,} are constants, and
[F,a,h,c are a.s. uniformly bounded. There is no loss of generality in assuming that a = 0, be-
cause Theorem 5.1 holds for f with by iff Theorem 5.1 holds for f — Va with b}v (X1, XN41) =

by (X1, Xn+1) +an+1(Xy+1) — a1 (X))
Henceforth we assume f =F+h+c, and E(f,) = E(h,) =0. So ¢, = —E(F,). Let

N
¢(N) ==Y E[Fi(X,Xis1))- (5.2.19)
k=1

By Theorem 2.4, the following sum converges a.s.:
H(X1,Xa,...) Z (X, Xn11)-

Lemma 5.5 Under the previous assumptions, for every sequence of non-negative functions
VN+1 € L*(Sn1) .. ||[vn+1]|e 7 O and for some 6 > 0

/ VN+1dUN+1 > g||vN+1||oo, (5.2.20)
Sn11

forallmeZ, s € Rand x € Gy,

i(2mms—£)s
E, (e VW NVN+1(XN+1))

E(Wy1(Xn+1))

where o(-) term converges to 0 uniformly when |m+ is| are bounded, vy are bounded, and

(5.2.20) holds.

_ eZyrimc(N)—s2/2Ex <627rmi5§> +0N_>oo(1)_ (5.2.21)

Proof. Since the LHS of (5.2.21) remains unchanged upon multiplying vy by a constant, we
may assume that ||[vyi 1|l = 1.

Fix € > 0 small and r so large that Z Var(h) < €. Fix N. Applying the Integer Reduction
k=r
Lemma (Lemma 3.13) to {IF,,})_ , we obtain a decomposition

Fo (s 1) = 6 (i) — o (o) 4 e 4+ 78 O 1)

where ¢') are bounded integers, and V) (+), f,(lN) (+,-) are uniformly bounded measurable inte-

ger valued functions such that
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There is no loss of generality in assuming that a](azl = agN) = 0, otherwise replace JA‘}N) (x,y)

N N
by /™ (x,y) —a™ (x), and 7 (x,y) by 7 (x,3) + a0, (). Then Y, = ¥ (cfY) + iV,

n=r n=r
whence

Sn — Srl—an—ch +hn+cn—2 Vb by BNV 4 hy). (5.2.22)

n=r

(The last equality is because E(Sy — S,—1) =0.)

Let g denote the array with rows gE,N) = A,(ZN) +h, — (A(N) +h,) (n=r,...,N), N>r. We
claim that g satisfies assumptions (I)—(III) of Lemma 5.4. (I) is clear, and (III) holds by choice
of r and because f,SN) is integer valued. To see (II), note that

N N
Z o’ Z +hy) = Y S (FM) + 02 (h) +2Cov (Y )
n=1 n=1

nf

N N
<Y 2(fM) + 6% (h) +206(F)o(h) <2 Y 2(FN) + 6% (ha) (.- 2ab < @+ b?)
1 n=1

N ~
= O(Z u%(lﬁ‘)) + O(1), by choice of f and h.

Since f =F+h+c, u2(F)=u2(f+h) <2[u2(f)+u2(h)], see Lemma 1.15(4). Thus by Theorem
2.7 and the assumption that h has summable variances,

N N
Y w(F) <2 Y w3 (f)+ (k) = 0(Vy) +0(1) = O(Vy).

Assumption (II) is checked. B
We now apply Lemma 5.4 to g, and deduce that for every K > 0 and m € Z there are C,N >0

x)

. e—Sz/zE(VNJrl (Xn+1)) +v—r(X),

i(2nm+—=)(SN—S,_1)
E(e S VN+1(Xn41)

imc)
— emec

where ¢(V) ;= — ],Y:rE(]A‘,SN)) and ||My—,|l1 <Cv/€. Since ||[vy41]l = 1, we also have the trivial
bound || Ny—re < 2.

We are ready to prove the lemma. The left-hand-side of (5.2.21) equals

i2em+—+=)S$,
E, (e VW NVN+1(XN+1))

E(vy+1(Xn+1)) N
E (el(Zﬂm‘F\/‘;an)(SN_Sr*l)vN_i_] (XN-H ) }XT’)

E(vyr1(Xni1))

i(2mm+—5

—E. | e \/Tw)sr—l

X
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i2em+—2=)8,— imeW) _g2 anr(Xr)
—F, |e N7 <e2mmc s°/2 + ):|
{ E(vns1(Xn+1))

_ eZTEimc(N>fsz/ZEx(eZEier71+0(l)) + 0(6 I)Ex(nN—r(Xr)); as N — oo,
N - s S—

A B

r—1 r—1 N
We examine A,B. Let ¢V~ = Z k= —E(Z Fi(Xk, Xk+1))- Since ¢(N) = — Z E(Fy),
k=1

k=1 k=1
r—1 N N N
c(N)=— Y EF) - Y EF) + M) because Y F, = ¥ (V) + 7V
k=1 k=r n=r n=r
== 4+ ™) mod 7., because C,SN) e 7.
By assumption, f = IF 4 h + c with F integer valued. Necessarily,
exp(27imS,_1) = exp(2mim$), + 2wimc" V) (5.2.23)

r—1
where §), := Z hi(Xk, Xk+1). By choice of r and Lemma 2.5,
k=1

‘Ex(eiéﬁ) —]Ex(eiéﬁ’)

oo 1/2
< E[EL (19— 5] < |¢War(kg WX Xen) ) =0(Ve)

uniformly when & varies in a compact domain. Substituting (5.2.23) in A, we obtain
A=[1+o(1))P W TE, (27m9) 10 (V)
Next, the exponential mixing of X implies that for all N large enough,
B :=Ex(nv—r(Xy)) = E(nv—r(X,)) +o(1) = O(V).

Thus the left-hand-side of (5.2.21) equals e27mc(N)=s* /2 (g2mimH+0(1)) L O(,/€). The lemma
follows, because € was arbitrary. U

Proof of Theorem 5.1. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, and assume G(f) = 6(f)Z with §(f) # 0.

We begin with some reductions. By Theorem 3.3, f has an optimal reduction, and we can
write f = F + F where F has algebraic range 8(f)Z and F is a.s. uniformly bounded and center-
tight. There is no loss of generality in assuming that ess sup|F| < d(f), since this can always
be arranged by replacing F, by F,, mod 6(f). Next by the gradient lemma (Lemma 2.9), we
decompose

F=Va+f4<
where ess sup |a| < 2ess sup |F]|,  has summable variances, and &, are constants.
1
It is convenient to introduce f, := m[fn —Va, —E(f, —Vay)]. Gess(X,f*) = Z, and

i 1
f* = 6(f>IE‘+h-|—c, (5.2.24)
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where h, 1= %[ﬁ, — E(ﬁ)] is a centered additive functional with summable variances, and

Cn = ﬁ[gn +E(];;1) —E(fu — Vay)].
We first prove the theorem in the special case when

o(f)=1,E(f,) =0 for all n, and a = 0. (5.2.25)

In this case f = f* and (5.2.24) places us in the setup of Lemma 5.5. Given this lemma, the proof
is very similar to the proof of the local limit theorem in the irreducible non-lattice case, but we
reproduce it for completeness. We focus on parts (2) and (3) of the theorem, because part (1)
follows from them.

1 N
Define as in (5.2.19), ¢(N) := _3_ Z [Fr(Xk, Xi11)], and let

i (X0, Xn41), by :={c(N)}.

Fix ¢ € L'(R) such that supp(a) C [-L,L], and let vy denote the indicator function of
2y 1. By the Fourier inversion formula

E(¢(Sy — by —zn) | Xn+1€ An11)
Lo Ex<ei€(SN—bN—ZN)vN+1(XN+1)>
/| @

T om - E(vn1(Xy 1)

and the task is to find the asymptotic behavior of (5.2.26) in case zy € Z, r — Z.

(5.2.26)

Let K := ess sup|f| and recall the constant S5 = 3( ) from Lemma 4.4. Split [—L, L] into a

finite collection of subintervals /; of length less than min{§, 7}, in such a way that every /; is

either bounded away from 27Z, or intersects it an unique point 27zm exactly at its center.
If1;N277Z = @, then Y. d2 (&) = oo uniformly on I; (Theorem 3.5). Thus by (4.2.7), ®y(x,&) —

0 uniformly on /;. In this case we can argue as in the proof of (4.2.18) and show that the contri-

bution of /; to the integral (5.2.26) is o(VA?l/z).
If I; 277 # 2, then the center of I; equals 27tm for some m € Z. Fix some large R. Let J}

be the contribution to the integral from the set {§ € I; : |§ —2mm| < RV, -1/ 2} and let J7  be

the integral over {§ € I, : |§ —27m| > RVA;I/Z}.
The main contribution comes from J; - because one can show as in Claim 2 in §4.2.2 that
—cR?
e gy < €S which is negligible for R > 1.

|u|>RVy 71/2 R\/VN

To estimate J;N, we make the change of variables & = 27tm + \/LV—N Since zy € Z and by =
{c¢(N)}, we have &(Sy — by — zv) = ESy —2mtme(N) — \/‘;“TN(ZN +{c(N)}) mod 2m.So

1!
JN

—27ximc(N) ( iESy ) . zy+0(l
e Ex(e"Yvni1(Xyg1) ) _jpavtom)
i e B ds

!

1 —~ N
Jin = 2m/Vy /|s<1e¢(27rm+ \/W) E(vn+1(Xv+1))

Fixing R and letting N — oo, we see by Lemma 5.5 that
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o(2 . )
V' = ¢(27m) E, (eznlmfj)/ e*’szfsz/zds—f—oN—m(l)
o 2r Is|<R
o (27Tm - 2
= o o >]Ex (62mm55> e /2 + 0R—0o (1) + ON—se(1).

Combining the estimates for J; y we obtain that
efzz/ 2
V2

if I; intersects 2717, and this limit is zero otherwise. Hence

lim VNJ' N =
Nesoo Js

E, (ezmmﬁ> ¢ (27mm),

lim /VNE, ((])(SN—bN—ZN)‘XN_;_l € QlN_H)

n—yoo
e—z2/2 i e ? 2/2

— E, (™) ¢ (2mm) = E, (&™) ¢ (27tm)
\/ﬁ mEZﬁz[: LL| ( > ng ( >

Z E, ( 2”””3) (2wm), where § €[0,1),F:=$ modZ

=== mzelz (6,:0)(27m), where (€,:0)(t) := Ex[0 (1 +F)]
212

= ©x9) E (m
V2T m;Z( ¢ meZ +3’

by the Poisson summation formula.
This proves part (2) of the theorem in the special case (5.2.25), and in particular for the
additive functional f* defined above. Now consider the general case:

Sn(f) —E[Sn(f)] = 8(F)Sn(f*) + an+1(Xn+1) — a1(X1) +Ea1 (X1) — ay+1(Xn+1)]-
Since part (2) of the theorem holds for f* with § = {Y. h,} € [0,1) and by = {c(N)}, it must
hold for f with &(f)§ and

byn(X1,Xn+1) := 8 (F){c(N)} +an1(Xn+1) — a1 (X1) +Ela1 (X1) —ay 1 (Xn41)]-

Clearly |by| < &(f) +4ess sup |a|. Recalling that ess sup |a] < 2ess sup |F| <25(f), we find that
ess sup |by| < 98(f), proving part (3) as well. O

5.2.3 Necessity of the irreducibility assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. Recall that f, = {f,},>, and X, = {X,,},>,. In this section we prove Theorem 5.2, which
asserts the equivalence of the following three conditions:

(a) f is irreducible with algebraic range R.
(b) (X,,f,) satisfies the mixing non-lattice local limit theorem, for all r.
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(c) (X,,f) satisfies the mixing uniform distribution mod # for all r and ¢ > 0.

(a)=(b): To see this recall that additive functionals on uniformly elliptic Markov chains are
special cases of stably hereditary additive functionals on uniformly elliptic Markov arrays, and
apply Theorem 4.3(1) to ¢ continuous with compact support which approximate indicators of
intervals in L (R).
(b)=(a): Assume f satisfies the “mixing non-lattice LLT” property. By definition, Vy — o, and
therefore f is not center-tight.

Also, Gy (X, f) =R, otherwise P (Sy —zn € (a,b)|Xy11 € ™Uny1) = 0 for zy and (a, b) such
that zy + (Cl,b) CR \ Galg(X, f)

If Gegs(X,f) = R then f is irreducible and we are done. Assume by way of contradiction
that Geg(X,f) # R, then G5 (X, f) = tZ for some ¢ > 0 (t = 0 is impossible because f is not
center-tight). There is no loss of generality in assuming that

Gess(X,f)=7Z and E(f,(Xy,X,41)) = 0 for all n.

Let SN = fr(Xp, Xp1)+ -+ fv(Xn, Xn41) and V( . Var(Sl(\;)). By the exponential mixing
of X (Proposition 1.11),

r—1 oo

V=V = [V,_1 +2Cov(SY),S,-1)| <V, +2 Y Y Cov(fj, fi) = O(1).
j=lk=r
Therefore, for fixed r, Viy/ V]\(,r) N—> 1.
—>00
Since Gg14(X,R) =R and G (X, f) = Z, f is reducible, and we can write

f=F+Va+h+c,

where F is irreducible with algebraic range Z, a,(x) are uniformly bounded (say by K), h has
summable variances, [E(/,) = 0, and c are constants.
Let

N
by (X, Xna1) = a1 (Xns1) — ar(X,) + {— Y E(]Fk(Xkan—H))} :
k=r

Z Xn;Xn—i—l Sri= Zhn(XnaXn+l)~

n=r
By Theorem 2.4, these sums converge almost surely and in L.

ZN—IE(Sl(Vr)

As we saw in the proof of Theorem 5.1, if o ) — 0 and P(X, € 2,,) is bounded below,
Vy

then for all ¢ € C.(R) and x, € &,,
lim \/27VNE,, [6(SY — by —2n)] = ¥ E[p(m+3,)]. (5.2.27)
N—oo mez

We are going to choose r,x,,zy,2y and ¢ in such a way that (5.2.27) is inconsistent with (b).
Here are the choices:

o Choice of r: Since §, is the tail of a convergent series, §, — 0 a.s., whence in probability.
r—yoo
Choose r s.t. P(|§,| > 0.2) < 1073.
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o Choice of x,: P(|§,| > 0.2) = [Py(|F+| > 0.2)]u,(dx). So there exist x, € S, s.t.

P. (|3, >0.2) <107,
o Choice of 2y: By construction, ess sup \bl(\f)\ < 2K + 1. Divide [-2K — 1,2K + 1] into equal

intervals of length less than 10—2. At least one such interval, call it Jy, satisfies P(bl(\;) eJy)>
1072(4K +2)~ " and |Jy| < 1072, Let

Al = by € Jnl.

_m(s()
o zy := —center of Jy, then zy = O(1) and ZN]E# — 0.
V-
o Choose a sequence Ny — oo such that zy, — a. Let I := —a+[0.4,0.6].

o Choose (P < CC(R) s.t. 0 < (P < 1, (])’[0.370.7] =1 and (P‘R\[O.Z,O.S] =0.
With these choices,

liminf\/ 27V Py, (S — 2n € I[Xnys € 2L )

N—soo

(r)
v,
< lim /27Vy, Py, (S( )—ZNk € I|b (Xr, XN +1) € IN,) (because VL — 1)

k—yoo ‘N
< khm A /ZJIVNkIP’xr( — —2zn, €[0.3,0.7] ‘ b E JNk) (because for k> 1
—>00

I—kaCI—JNkCI+<sz 'gk',szJr'Nk‘)cH(a 0.1,a+0.1) € [0.3,0.7))

< hm \/ZEVN,(]EX,( k I(Vk |b € Jn+1)
- Z Ey [¢p(m+3,)], by (5.2.27)
mez

< Y P, (m+3,€1[0.2,08]) <P, (I§,| >02) <107 < |1].

mez

But this contradicts (b).

(a)=-(c): Suppose (X, f) is non-lattice and irreducible, then (X,,f,) is non-lattice and irreducible
for all r. Fix t > 0, x; € &, and some sequence of measurable events 2,, C &,, such that

P(X, € 2,) is bounded below. Let S Z Sie(Xpe, Xpei1)-
k=r
We show that for every continuous and periodic ¢ (x) with period ¢,

1 t
E(0(SV)Xws1 €M) 7 1 [ o) (5.2.28)
It is enough to show (5.2.28) for trigonometric polynomials ¢ (1) = Z cne?®m/1 as these are

|n|<L
dense in C[0,7]. For such functions,
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()
Ex(fl’(sz(\;))’XNH €UAvit) = Y, caBu(eX™SN X1 € Antr)
|n|<L

=co+ Z Dy (x, ztﬂ‘Q[N+ 1) ,where @y are the characteristic functions of (X, f,)
0<|n|<L

= ¢o+o(1), by irreducibility and (4.2.7).

Since ¢y = % Jo @ (u)du, (5.2.28) follows. Standard approximation arguments show that (5.2.28)
implies that

ja—b|

t

]P’X(S](\f) € (a,b)|Xn+1 € An+1) = for all intervals (a,b).
—$00

(c)=-(a): We need the following lemma.
Lemma 5.6 Fix a regular sequence of sets Uy, x, and t > 0, and suppose that

|a—D|
t

]P)X(SI(\;) e (a,b) +ZZ|XN+1 € Q[N.H) m

for all intervals (a,b) s.t. 0 < |a—b| < t. Then the convergence is uniform in (a,b).

Proof. Without loss of generality, (a,b) C [0,7). We are asked to find for each € > 0 an Ny such
that
PL(SY) € (a,b) +1Z|Xy 11 € Ay 11) — “B| < & forall N > N and a < b.

Choose 0 < § < min{£,1}, and divide [0,] into finitely many equal disjoint intervals {/;} with
length |7;| < &. Choose N so that for all N > Ny, for all I},

|1|| ol

(S € I+ 1Z Xyt € Ayi1) — t

(5.2.29)

I := (a,b) can be approximated from within and from outside by finite (perhaps empty) unions
of intervals I; whose total length differs from |a — b| by no more than 26. Summing (5.2.29)
over these unions we see that for all N > Ny,

ja—b|+25  8(ja—b|+28)

P.(S\V) € I+1Z|Xn 41 € Ayst) <

t t
b|—286 6Sla—1b
Po(SY) € I+1Z|Xyy1 € Anir) > - t| B ’at "
By choice of 9, | P, ( ) ¢ I+1Z|XN41 € Ans1) — _b|| <E. O

We can now prove that (¢) = (a). Suppose (X, f,) has the “mixing uniform distribution mod
t” property for all r and ¢. This property is invariant under centering, because of Lemma 5.6. So
we may assume without loss of generality that E[f,, (X, X,+1)] = 0 for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants cy and M such that
P(|Sy —cn| > M) < 0.1 for all N. Take ¢ := 5M and N; — oo such that ¢y, —— ¢ mod tZ,

k—roo
then by the bounded convergence theorem and (c),

0.9 < lim P (S, € [c—2M,c+2M]) < Jim P(Sy € [c—2M,c+2M] +17Z)
—00 —> 00

4M
= [_ lim P, (Sn € [c—2M,c+2M] +1Z|Xn+1 € Sy41) i (dx) = — =038,
S| N—roe
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a contradiction. Thus (X, f) is not center-tight and Vy — oo.

Assume by way of contradiction that G,z (X,f) # R, then G, (X,f) = #7Z for some ¢, and
t # 0 because Vy — oo. Without loss of generality + = 1, otherwise we can rescale f. By the
integer reduction lemma, we can write

fn(x7y> —|—an(x) —dn+1 (y) = Fn(xay) +hn(X,y) +cn
where ay, Fy, hy, ¢ are uniformly bounded, [, are integer valued, /,, have summable variances,
and E(/,) =0. Then § := Y51 1, (X, Xnt1) converges a.s., and §, := > 10 (X, Xg1) — 0
almost surely.
Working as in the proof of (b) = (a), we construct x € & and r > 1 such that
B (e*™57)| > 0.999.

Next we construct a regular sequence of measurable sets 2y 1, and intervals Jy with lengths
< 0.0001 and centers zy = O(1) such that ay;(Xy+1) — a1(X,) € Jy, whenever Xy €
22[N—H 7Xr = X.

By Lemma 5.5 with s =0, m = 1, and vy, = 1, there are ¢(r,N) € R s.t.

]Ex(ezni(sl(\,r)Jra(X])fa(XNH —ZN) Xyi1 € Ql]w_l) o2mile (rN)—zN)Ex(eznig,)+0(l),

as N — oo. Since

I[XN+1€Q[N+17Xr:x} < 0.1’

H < ezni(va’)+a(Xr)—a(XN+1)—ZN) _ 82751'(51(5)))

[

- olr)
we find that for all N large enough, |E, (ezm(SN )|XN+1 € EZIN+1) | > %
But this is a contradiction, since (c) implies that

st 1 2,
Ex (2™ [Xn41 € Ansy1) — 5= / “du = 0.
«(e Xn-+1 € A1) Now 27 o €

S0 Gs(X,f) =R and (a) is proved. d

5.2.4 Universal bounds for Markov chains

Lemma 5.7 Suppose § is a real random variable such that 0 < § < 8 almost surely. Then for
every interval (a,b) of length L > 6,

(1—§)]a b| <8 Y E[l(yp(mé+3F)] < ( %)]a—b[.

me7Z

Proof. Fix k large, and divide [0, §) into k intervals /; := % +10, %) For each j,

8 Y, Elluy(md+)F €[] <8 Yl oo, s (md)[F €1}

meZ me”z

26
_621 +(j 1)8 +(1+1 )(m6)<|a b|—|—1—1—7—>|a b|—|—1
meZ
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Multiplying by P[§ € /;] and summing over j =0,...,k—1 gives the bound 8 ¥.,,,c7 E[1 (4 ) (md +
$)] < la—b[+ 4. Similarly, 8 Y.,,cz E[1(4)(m0 +F)] > |a —b| — 5. The lemma follows. [

Proof of Theorem 5.3: If (f) = oo then there is nothing to prove, and if 6(f) = 0 then (X, f) is
non-lattice and irreducible, and the universal bounds follow from Theorem 4.1. So assume 0 (f)
is finite and positive.

Suppose % — z. Let § and by (X, Xy) be as in Theorem 5.1.
Upper bound (5.1.6): Fix x € &y, let § := §(f) and suppose (a,b) is an interval of length
L > 6. We may assume without loss of generality that a — 109, + 108 are not atoms of the

distribution of § given X| = x (otherwise change a, b a little).
Suppose % — z, and write zy = Zv + 8y, Zv € 6Z ,|n| < 8. Recall that by Theorem

5.1, |bn| < 96. Therefore

SN —2n € (Cl,b) =Sy—Iv—by € (a—103,b+105)

So

limsup \/2xVyPy[Sy — 2w € (a,D)]

N—ro
< limsup /2xVNP[Sy —Zn — by € (a—105,b+ 108)]

N—soo
— P25 Y Eill(4—105,+105)(m8 +3F)] by Theorem 5.1

meZ
o 2

<(1+4————) e¥/*(la—b|+208) by L 5.7 5.2.30
—( +|a—b|+205) ¢ " "(la—b]+206) by Lemma (5-230)

< (Ja—b|+218)e /2 < (”?) el

Lower bound (5.1.7): Fix x € & and an interval (a,b) with length bigger than some L > 6(f).
Recall that |by| are uniformly bounded. Choose some K so that P[|by| < K| = 1 and fix x € &,

s.t. Py[sup|by| < K] = 1. B
Next, divide [~K, K] into k disjoint intervals I; y of equal length 2K, with k large. For each

N, Z Piby €1 j7N] >1-— %, because to complete the left-hand-side to one we need
Py[bn€Eljn)>k2

to add the probabilities of [by € I y] for the j s.t. Py[by € I; §] < k=2, and there are at most k

such events.

Therefore, we can divide {I; 5} into two groups of size at most k: The first contains the /; y
with Py[by € Ijn] > k2, and the second corresponds to events with total probability less than
% (conditioned on X| = x).

Re-index the intervals in the first group (perhaps with repetitions) in such a way that it takes
the form I; vy (j = 1,...,k) for all N. Then for each j, ; y := [by € I; y,X| = x] is a regular
sequence of events.

Let By := center of I; y and set z; y := zy — B n. Every sequence has a subsequence s.t. z; y
converges mod & (f). We will henceforth assume that z; y = Z; x + §o + j v Where Z; vy € 6(f)Z
and |§;v| < X, and |§o| < &(f) is fixed.

Recall that |I; y| = 271( Conditioned on ; n, by = BN £ 2K therefore Zin+ G +by =
[ == %K, whence
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3K 3K
SN_Zj,N_bNG (a—go—i—T,b—c —7) =Sy —2n € (a,b).

There is no loss of generality in assuming that the endpoints of this interval are not atoms of the
distribution of § given X; = x, otherwise perturb K a little. Since 2l ; y is a regular sequence, we
have by Theorem 5.1 part (2) and the lemma that

liAl’,niIlf\/ ZEVN]P)X(SN —2ZN € (a,b)|%lj,N)
—>00
> liminf v/ 20V Px(Sy 2w —by € (a—Go+ 3K b — o — 3Ky 2, n)

2
=5(f)e 2 Y Billy, oy s (m3(f) +F)

meZ

0 T\ g2
> <1_Z) (la—b| —K)e=s/2, (5.2.31)

We now multiply these bounds by IP[2; y| and sum over j. This gives

k
liminf\/27Vy P, ([SN —zy € (a,b)] ﬂ U ﬂj,N)

N—voo
Jj=1

> (1 - %) (ya—by . 6%) e PN (1 . %) .

Passing to the limit k — oo, we obtain

1)
liminf+/27VyPy ([Sy —zn € (a,b)]) > (1 — Z) e_zz/z|a—b],

N—roo

and the lower bound is proved.

To prove the last statement of the theorem let <7, be the positive functional on C.(R) defined
by (5.1.4), and let 11, be the Radon measure on R s.t. fi (¢) = <7 [¢] for ¢ € C.(R).

The inequalities (5.2.30), (5.2.31) can be used to see that

(1=8L7")(Jla—b| = O(1)) < py(a,b) < (14+218L71)(Ja—b| +O(1)),

Moy [0, L]
L

whence lim = 1. Since p; is clearly invariant under translation by (f), it must be

L—oo

the case that for each a, u/[a,a+ 6(f)) = o(f), whence
VkEN py(ja,a+ 8(kF))) = kS(f). (5.2.32)

Given an interval (a,b) of length L with k6 (f) < L < (k+ 1)8(f) take two intervals I—,I" such
that

I"C(ab) CI, () = py (A1) =0, || =k8(f), |I*|=(k+1)3(F).
Next let ¢ —, ¢ be continuous functions with compact support such that

117 < (P_ < 1[a,b] < ¢+ < 11+.
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Then for large N, \/VyP(Sy —zv € (a,b)) is sandwiched between <7 (¢ ) and <7 (¢ ") which
in turn is sandwiched between

My (I7) =k8(f) and pgy(I7) = (k+1)5(f)

where the equalities rely on (5.2.32). The proof of the theorem is complete. U

5.2.5 Universal bounds for Markov arrays

Next, we give a different proof of universal lower and upper bounds, which does not rely on
Theorem 5.1, and which also applies to arrays and to arbitrary initial distributions.

Theorem 5.4. Let X be a uniformly elliptic Markov array, and f an a.s. uniformly bounded
additive functional which is stably hereditary and not center tight. For every € > 0 there is
Ng > 0 as follows. Suppose ZN_E# —— z€ R, and |a—b| > 26(f) +¢€, then for all N > Ng,

N—o0

2 2
1 (e %/?a—0b| e~ /2|a—b|
[ ——— | <P(Sy— b)) <3| ————|.
3 ( vy ) SPevmaveah) <3| =

Recall that by our conventions, the Fourier transform of an L' function y: R — Riis ¥(x) =
[ e " y(t)dt. Fix some b > 0, and define the Fourier pair

o) i= 210 o) = 2 (P2,

Lemma 5.8 1 <, (x) < Z for |x| < 2 and |, (x)| < 1 for |x| > 7.

Proof. The function W (x) is even, with zeroes at z, = 7n/b, n € Z\ {0}. The critical points are
co = 0 and £c¢, where n > 1 and

T
¢, := the unique solution of tan(bc,) = bc, in (Zn, nt %) :

It is easy to see that ¢, = z, + 5; —0(1) as n — oo, and that

senllen)] = (-1 [Flen)] < 5 - Bolen) ~ 5 asn oo

n

So j, attains global maximum ¥, (0) = Z at co, and |Yj(t)| < 5. everywhere on [n/b, w(n+

1)/b).

In particular, |y (¢)| < 1/2 for |t| > 7/b. On (0,7/b) the function is decreasing from its
global maximum v,(0) = F to Y,(%) = 0, passing through ¥,(35) = 1. It follows that 1 <
Y, (t) < % on (0,7) and |y, ()| < 1 for ¢ > 2. The lemma follows, because W, (—t) = W (¢).
U

Lemma 5.9 There exist two continuous functions ¥i(x), ¥ (x) s.t. supp(%) C [—2,2]; 71 (0) > 3
$(0) <3; and %1 (x) < 1j_z z(x) <P(x) (x€R).

Proof. Throughout this proof, y*" := y x---x y (n times), where * denotes the convolution.
Let 11 (2) := [wi*(t) — w;2(¢)]. Then 7 (x) = %[I/A/% (x)* - I/A/% (x)?]. By Lemma 5.8, 1 < lfl% <Z
on [—x, 7] and |l2//}%| <1 ozutside [—m,7]. So



124 5 The local limit theorem in the reducible case

max % (x) < max %( 4y :% {<E>4— <E>2] <1,

x| <m 1<y<Z 2 2
= 1 o4 2

max ¥ (x) < max — — =0.

MN%( ) < |y‘§14(y y9)

So 71(x) < 1j_g g(x) forall x € R.
It is obvious from the definition of the convolution that

11
Supp(Yl) = {x+y+Z+W3X,y727W € [_575]} = [_272]

Here is the calculation showing that % (0) > £

n? 2
(W) (1) = @(H—b,b] * 1_pp))(t) = @1[—21),%] (t)(2b — |t])
(W5(0) = (w3 = y)(0)

4 e
= 256b% /_ml[—2b,2b}(’)(2b_’f’)l[—zb,zb}(—f)(%—|—t|)dt

nt 2 nt 2 @b}
T [T b—|t])2dr = / b — 1)2dt = [2h)y
256b% /—Zb( 1) 128b% Jo ( ) 1284 3 48b

% 4 % 2 4 2
So w%4(0) =, 1,/%2(0) —Z and 7 (0) = 4(& %) > L.

Nextwe set 1a(r) = (Wy 1, ) (1) = 21y (6)(1— ). Then supp(13) = [1,1] and 1(0) =
%2 < 3. Finally, %» > 1|_z 4 (x), because by Lemma 5.8,

o p(t)= (1[7%)2()6) > 1forall x| <% =7, and

o p(r)= (117%)2()6) > 0 for all |x| > 7. 0

[\S]

Proof of Theorem 5.4. If G,.(X,f) = R then the theorem follows from the LLT in the irre-
ducible case. Otherwise (since f is not center-tight), G5 (X,f) = ¢Z for some ¢ > 0, and there is
no loss of generality in assuming that G, (X,f) = Z.

Henceforth we assume that G.(X,f) = Z. In this case our interval I := [a,b] has length
bigger than 2. Notice that we can always center / by modifying zy by a constant. So we may
take our interval to be of the form

[ =[—a,al], witha > 1.

Let () be the functions constructed in Lemma 5.9, then
~ (Tt ~ (Tt

% (-) <L) <h (—) :

a a

Therefore, for every choice of ng) € 6§N) (N>1),
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Recalling that supp(7y;) C [—2,2], and substituting ¢ = a§ /7, we obtain

_ 1] 2/ i (Sn—2)\ny (aE
P w(Sv—zvel)> 5 E (e )71 (% )déE. (5.2.33)
xl TTJ-2r/a M
Similarly, we have
1 2n/a . u
Pwm(Sy—zvel) < |2 | E w (e*’é(SN’ZN))yz(%)dﬁ. (5.2.34)
xl TJ-2n/a %1

Next we claim that under the assumptions of Theorem 5.4:

Lemma 5.10 If G, (X,f) = Z and wn—E(Sy) i€ R, then for every a > 1
—>00

T
2n/a

NG / E o (e SV )y () d& —— V2me 5 y(0)
—27/a

and the convergence is uniform in a on compact subsets of R\ [—1,1].

Proof. In what follows we fix i € {1,2} and let y(§) := ( é) Divide [—2%, 2Z] into segments

I; of length at most 5 where § is given by Lemma 5.5, making sure that Iy is centered at zero.
Let

ini= [ B e SO yg)ae

CLAIM 1. /VnJon N—> V2me 7/ 2y(0).
—>00

Proof. The proof is similar to the proof of (4.2.17). _
Applying Corollary 4.5 to the interval Iy, and noting that Ay (lp) = 0 and Ey = 0 we find that

IE (e SN =))| < Cexp(—€&>Vy).

X1

So for every R > 1,

\/W/Sgofb E v (e SV -))y(€)dg = O(e ).

R x
N
Similarly, for all N large enough
R o (SN—IN

—i&(Sv—zw) d :/ E e_m( VI (I d

Yz A%K< e &g = [ B W
lT}(SN ]I;:/(SN)) l-n(ZN*H“:/(SN)) an

= [ 't "IN A i a
= / 21 iy (0)dN + 0N—se(1) uniformly on compact sets of a

=V27e % §(0) + 0gseo(1) + 0y se0(1),
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where = is a consequence of Dobrushin’s CLT and the bounded convergence theorem. (When

applying Dobrushin’s Theorem it is useful to recall that by the exponential mixing of uniformly

elliptic arrays, |E(Sy) — E w) (Sn)| = O(1), therefore the condition % — z is equivalent to
1

the condition (z — E o) (SN))/v/VN — z.) In summary,
1

VWnon =V 212 y(0) + OR—00(1) + ON—seo(1).
Fixing R, we see that limsup v/VnJo y and liminf+/VyJy y are both equal to

V2me ¥ Y(0) + 0r—ee(1).

. . . C . 1.2
Passing to the limit R — o gives us that the limit exists and is equal to v/2me™ 2% ¥(0).
It is not difficult to see that the convergence is uniform on compact subsets of a.

CLAIM 2. /VnJ, N = 0 for every j # 0.
—>00
Proof. Since G (f) = Z, the co-range is H(f) = 2n7Z. So

I; C [-2£,27]\ int(Iy) C a compact subset of R\ H(f).

a’ a

This implies by the stable hereditary property of f that

Dn(&) —— oo uniformly on [},
N—soo

whence by (4.2.6), ]Exw) (e~ M(Sn=2w))] Y 0 uniformly on ;.
i —poo

Let Ay := —log{sup [E (e cOV=2))| : (x,€) € 6§N) x 1}, then Aj y FYENSSar and this
: 2 : -

divergence is uniform for a ranging over compact subsets of R\ [—1,1].

From this point onward, the proof of the claim is identical to the proof of (4.2.18). We omit
the details.

The Lemma follows by summing over all subintervals /; in [—27”, 27”], and noting that the
number of these intervals is uniformly bounded <by 1+ %) . U

We now return to the proof of theorem. Lemma 5.10, (5.2.33), (5.2.34), and the inequalities

11(0) > % and > (0) < 3 imply that for every choice of {ng)}Nzl , for all N sufficiently large

L1 _2p 1 _2p

R d T <P wSy—zv €N <3 ——1—e¢/2 5.2.35

3 \/27FVN6 - x(lN)( NN ) B \/27Z?VN6 ( )
This estimate is uniform in {ng) }n>1: There is an Ny such that (5.2.36) holds for all N > Ny

and for all choices of {ng)} n>1. Otherwise, there exist Ny — oo and ng") € GEN") which violate

(5.2.36). But then (5.2.36) fails for any choice of ng) which contains ng") as a subsequence,

whereas (5.2.36) holds for all possible choices.

Since (5.2.36) holds uniformly in {xEN")}NEI, we can integrate and deduce that for all N
sufficiently large

1 V\ —72/2 m -22/2
R ol B <P(Syv—zveEl) <3 —1 o7/ 5.2.36
3 27TVN€ (Sy—awel) < \/2775VN€ ( )
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for any initial distributions /,LI(N) (dng)) on GEN). O

We end this section by recording a useful consequence of the previous proof: The upper
bound in Theorem 5.4 does not require any information about the arithmetic properties of f.

Lemma 5.11 For each K, &y and { there is a constant C* = C*(K, &y, {) s.t. if f is an additive
functional of a uniformly elliptic Markov chain with ellipticity constant &), and if |f| < K, then
for every x € &1, N > 1, and for each interval J of length ¢,

*

N

Proof. 1t suffices to prove the result for / = 4 since longer intervals could be covered by a finite
number of intervals of length 4. Thus J = zy + 1 with [ = [-2,2]. Applying (5.2.34) with a =2
we get

P, (SyeJ) <

Py(Sy €J) < G/Z@N(x,—éwé.

~ 2 ~ ~
where C = EH)@HM. Dividing [, 7] into finitely many subintervals of length §/2 where &
comes from Lemma 4.4, and applying (4.2.19) on each subinterval we obtain the result. U

5.3 Notes and references

Dolgopyat proved a version of Theorem 5.1 for sums of independent random variables. The
connection between the LLT and uniform distribution modulo ¢ was considered for sums of
independent random variables by Prohorov [122], Rozanov [128], and Gamkrelidze [58].
The question of estimating P[Sy —zx € (a,b)] is related to the study of the rate of convergence
in the CLT. In particular, a Berry-Esseen type result on thf(: ra)te of convergence in the CLT would
v—E(Sny

certainly imply that IM s.t. for all |a — b| > M, if o o then for all N large enough,

~2/2|,_
P[Sy —zw € (a,b)] equals © la_b| up to bounded multiplicative error. Such results were shown

V2
to us by Y. Hafouta. The Berry-Esseen approach has the advantage of gives information on the
time N when the universal estimates kick in, but has the disadvantage that it only applies to very
large intervals (how large depends on the growth of the third moment of Sy). By contrast, the
results of this chapter apply to intervals of length > &(f), which is optimal, but do not say on
how large N should be for the estimates to work.

Lemma 5.11 for the sums of independent random variables appears in [117, Section III.1].

The proof in the Markov case is essentially the same.






Chapter 6
Local limit theorems for large and moderate deviations

In this chapter we prove the local limit theorem in the regimes of moderate and large devia-
tions. In these cases the asymptotic behavior of P(Sy — zn € (a,b)) is determined by the “rate
functions,” the Legendre transforms of the log-moment generating functions of Sy.

6.1 The moderate deviations and large deviations regimes

Suppose f is an irreducible, a.s. uniformly bounded, additive functional on a uniformly elliptic
Markov chain X, with algebraic range R or tZ with t > 0. Let

Sv=X1,X2)+ -+ fn(Xn,Xn+1) , Vv := Var(Sy).

In the previous chapters, we analyzed P(Sy —zy € (a,b)) as N — oo, in the regime of local
N—E(Sy) v—E(Sy)

Var(Sy) A/ Var(Sy)

Usually in the literature the large deviations regime is defined by the condition |zy —E(Sy)| >
€Var(Sy)for some fixed € > 0. However, to get meaningful results we need to assume some
upper bounds |zy — E(Sy)| as well. We will study the following regimes:

deviations, — const. In this chapter we ask what happens when

(1) Moderate deviations: % — oo and zy — E(Sy) = o(Var(Sy)),
N

wv—E(Sy)

(2) Large deviations: vor(n)

— oo and |zy — E(Sy)| < €Var(Sy) for some € > 0 “small
enough.”

In some cases we can take € = oo, see e.g. §7.3, but in others € must really be finite, see Exam-
ple 6.21. To see why it is forced on us, let us consider a few examples of what might go wrong
when |zy — E(Sy)|/Var(Sy) is “too big.”

If w grows too fast, e.g. if & _‘I,EN(SN ) Zess i};vms’v L, then the probabilities P[Sy — zy €

(0,00)] are all equal to zero, and our problem is vacuous. A more subtle but related issue
ZN—E(SN)
v,

arises when falls at the boundary of the domain of the Legendre transforms of

t— Vl—N logE(e (Sn—E(Sy ))). Why this matters will be clear once we explain the strategy of our
proofs (see the end of §6.3.1 and §6.4). At this point we can only present an example:

Example 6.1 If W falls near the boundary of the domain of the Legendre transforms of

> ‘}—NlogE(e’(SN*E(SN))), then the behavior of P[Sy — zy € (a,b)] may depend not just on

lim 2—E(Sy)
N

but also on zy itself.
N—oo

129
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Proof. Let Sy := X1 + --- + Xy where X; are identically distributed independent random vari-
ables equal to —1,0,1 with equal probabilities. Here E(Sy) = 0, Vy = 2N/3, the Legendre

transforms of the log-moment generating functions have domains (—%, %) and the classical

theory of large deviations says thatif z € (—%, %), then lim —logP[Sy —zx > 0] exists and
v /Vn—z VN

is finite. But no such conclusion holds when z = %:

o If zy = N, then [Sy —zy > 0] = @ and %log]P’[SN—zN > 0] = —oo;
o If zy = N — 1, then [Sy —zxy > 0] = [Sy = N/, and %logP[SN—zN > 0] = —3log3.

So the limit depends on how zy /Vy approaches %, and it could be infinite. 0

For general additive functionals on Markov chains (homogeneous or not), we do not know
how to determine the asymptotic behavior of P[Sy —zy € (a,b)] when ‘Z,—x is close to dCy, where

1
Cy := domain of the Legendre transform of Ve log B (¢! SvE(SM)y,

N

We can only analyze the case where % “E(%) i5 well inside the interior of Cy for all N. This is

Var(Sy)
why we must assume that |zy —E(Sy)| < €Var(Sy) for € small enough.

It is instructive to compare the regime of large deviations to the regime of the LLT from the
point of view of universality.

The asymptotic behavior of P[Sy — zy € (a,b)] in the regime of local deviations does not
depend on the details of the distributions of f,,(X,,X,+1). It depends only on rough features
such as Var(Sy ), the algebraic range, and (in case the algebraic range is Z) on the constants cy
s.t. Sy € cy +tZ almost surely.

By contrast, in the regime of large deviations the asymptotic behavior of P[Sy —zy € (a,b)]
depends on the entire distribution of Sy. The dependence is through the Legendre transform of
log[E(e"SV), a function which encodes the entire distribution of Sy, not just its rough features.

We will consider two partial remedies to the lack of universality:

(a) Conditioning: The conditional distributions of Sy — z,, given that Sy —zy > a has a universal
scaling limit, see Corollary 6.4.

(b) Moderate deviations: If |zy —E(Sy)| = o(Var(Sy)), then P[Sy — zx € (a,b)] have universal
lower and upper bounds (Theorems 6.3, 6.4).

6.2 Local limit theorems for large deviations

6.2.1 The log moment generating functions

Suppose |f| < K almost surely. For every N such that Vi # 0, we define the normalized log
moment generating function of Sy to be

FIN(E) = VLNlogE(eésN) (& eR).

The a.s. uniform boundedness of f guarantees the finiteness of the expectation, and the real
analyticity of .Z#y(&) on R.
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Example 6.2 (Sums of iid’s)

N

Suppose that Sy = Z X, where X,, where Xy are i.i.d. bounded random variables with non-zero
n=1

variance. Let X denote the common law of X,,. Then

IN(G) = Tx(G) = logE(e*¥)

Var(X)
is independent of #. In addition,

(i) Fx (&) is strictly convex, by Holder’s inequality and because X # const a.s. Since Fx (&) is
smooth, its second derivative must be bounded away from zero on compacts. So Fy (&) are
uniformly strictly convex on compacts.

(ii)élim Fy (&) =ess inf(X)/Var(X), élim Fy (&) =ess sup(X)/Var(X). To see this, use con-
——co —too

vexity to see that lim.%},(&) are the slopes of the asymptotes of Zx (&), or equivalently
lim %ﬁN(‘é) The last limits can be easily found to be equal to ess sup(X)/Var(X) as & — oo,
and ess inf(X)/Var(X) as & — —oo.

Properties (i) and (ii) play a key role in the study of large deviations for sums of i.i.d. random
variables. A significant part of the effort in this chapter is to understand to which extent similar
results holds in the setting of bounded additive functionals of uniformly elliptic Markov chains.
We start with the following facts.

Theorem 6.1. Let f be an a.s. uniformly bounded additive functional of a uniformly elliptic
Markov chain X, and assume Vy # 0 for all N > Ny, then

(1) Forall N > No, Zn(0) =0, F4,(0) = 522 770(0) = 1.

(2) For every N > Ny, #n(&) is strictly convex on R.

(3) The convexity is uniform on compacts: For every R > 0 there is C = C(R) positive s.t. for all
N >Ny, C ' < FU(E) < Con|-R,R.

(4) Suppose Vy — 0. For every € > 0 there are §,Ng > 0 s.t. for all |E| < 8, N > Ng, we have
e < F[(E) <€, and

el ESw)) CESN) . _ 1, ESW)
e 5(5 = ) < #u(e)- 2 é§e2<§ = ) .

This is very similar to what happens for iid’s, but there is one important difference: In our setting
Vn may be much smaller than N.
For the proof of this theorem see §6.3.5. Here is an immediate corollary:

Corollary 6.3 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If Vy := Var(Sy) — oo, then for all 0 < a < % and x > 0, U‘W ~kVy*
as N — oo, then

2

1 1
lim ———logP|Sy —zy > 0] = —=«k~.
WL ygar ey man = 0= o

Proof. There is no loss of generality in assuming that E(Sy) = O for all N. Let a,, := V,} 72%,
by, =V W, :=S,/b,. Then a, — o, whence by Theorem 6.1(4),
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Z (&) := lim ing( W) = lim V2 Py (2 : ) = 152.

n—eo g, Ve 2

We may now use the Girtner-Ellis Theorem see e.g. [55, Thm I1.6.1]) and & — K to deduce

that r}i_r&%logP[Sn — 7, > 0] = ,}i_rg%logp[m: > )= _1x2, O

an — anby

6.2.2 The rate functions

Suppose Vy # 0. The rate functions %y (1) are the Legendre transforms of .7y (). Specifi-
cally, let ay := inf.%}; and by := sup.%}; then Ay : (an,by) — R is

In(n) = En — Fn (&) for the unique & s.t. F4(E) =1.

The existence and uniqueness of & is because of the smoothness and strict convexity of .%y on
R. We call (ay,by) the domain of .#y, and denote it by

dom(ﬂN) = (aN,bN).
Equivalently, dom(.#y) = (F'(—0), #'(+e0)), where .#'(+oo0) := lim .Z'(t). Later we will

t—+too
also need the sets (ak,bX) C dom(.#y), where R > 0 and

ak = F,(-R), bR :=.F(R). (6.2.1)

The functions %y and their domains depend on N. The following theorem identifies certain
uniformity and universality in their behavior.

Theorem 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, and assume Vi # 0 for all N large enough, then

(1) 3¢,N1,R > 0 s.t. for all N > Ny, dom(.#y) D [ak,bR] D [% —c,%—kc :
(2) For each R there exists p = p(R) s.t. p~1 < 7 < p on [aX,bR] for all N > Nj.
(3) Suppose Viy — oo. For every € > 0 there exists 0 > 0 and N¢ such that for all n € [Eg}ij) —

8,258 4 8] and N > N,

L[ E(Sy)
8_ _——
¢ 2(" Vy

) < () < %(n—E(SN))Z.

(4) Suppose Vy — oo and w

Vv In (‘Z/Z) = H;(l) (ZN_\/I%SN))Z as N — oo

— 0, then

The proof of the theorem will be given in §6.3.6.
The significance of part (4) will become apparent in §6.2.3.
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6.2.3 The LLT for moderate deviations.

Recall that the state spaces of X are denoted by S; (i > 1), and that P, denotes the conditional
probability given X; = x.

Theorem 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic

Markov chain X. Suppose f is irreducible with algebraic range R. If zy € R satisfy M — 0,
then for every non-empty (a,b) and x € Sy,
a—>b Z
Py [Sy —zy € (a,b)] = [1 +o(1)]\’/T_V]|vexp (—VNJN (V—ij/>) as N — oo,
la— b 14+0(1) (v —E(Sy) >
Py Sy —zv € (a,b)] = [1 +0o(]) ]| ——== — N — oo,
w2 € ()] = 1+ 0] 5= S () | e

Theorem 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Assume f is irreducible with algebraic range Z, and Sy € cy + 7Z almost

surely. If zy € cy + 7 satisfy M — 0, then for every x € &1,

=)= 0 o (3)) o

V21 \%%
1+o(1 1+o(1 ~E 2
o] [ 1ol (av—Esn\] v
V21 Vn 2 vV

We will obtain these results as special cases of a more complicated and general asymptotic
relation which we will state in the next section.

The two asymptotic relations in Theorems 6.3 and 6.4 complement each other. The first is a
precise asymptotic, but it is not universal, because it is expressed in terms of the rate functions,
which depend on the fine details of the distributions of Sy. The second is universal, but it is not

an asymptotic equivalence because the right-hand-side is only determined up to a multiplicative
(ZN—]E(SN) )2]
A/ °

Vv

PSSy =zn] =

error of size exp[o

6.2.4 The LLT for large deviations.

Recall the definition of the subsets (ak,b%) := (Z,(—R), Z},(R)) C dom(Zy) from (6.2.1). It
is convenient to define
E(SN) & E(Sw)

~R TR R
by = ——— by —
[aN7 N] ay Vy N Vi

Theorem 6.5. Let f be an a.s. uniformly bounded, irreducible, additive functional on a uni-
Sformly elliptic Markov chain X. For every R large enough there are functions py : &1 X

[@%jﬁ] — RF, &y : [aR,bR] — R as follows:

(1) 3¢ > 0 such that [&?@,,Z{@] D [—c,c] for all N large enough.

(2) Non Lattice case: Suppose Gyo(X,f) =R, then for every sequence of zy € R s.t. M

€
[Zl\f,,gﬁ], for all finite non-empty intervals (a,b), and for every x € &1, we have the followmg
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asymptotic as N — oo

,VNﬂN(éﬂ) b Y v—E(Sy)
ofSy —aw € (a.b)] = [1+o(D)]- S (1 252) [T ()

(3) Lattice case: Suppose Gy o(X,f) = 7Z and Sy € cy +Z a.s., then for every sequence of

N € cN+ 7 s.t. W € [Zif;,,zm,for all finite non-empty intervals (a,b) and x € &y, the
Jfollowing asymptotic holds when N — oo:

~Vn I () 715N(ZN—E(SN))
Py[Sy — 2w € (a,b)] = [1+0(1)] ————py (x, Z=EEW) ) . o Vv
V2RVN ( w ) tE(L;b)ﬂZ

(4) Properties of the error terms:
(a) pn(x,n) are bounded away from 0,00 on S x [555,35] uniformly in N, and py(x, 1) —
n—
1 uniformly in N and x.

(b) For each R > 0 there exists C = Cg > 0 such that for all n € [Zif,,gﬁ] and N, C~'n| <
[En(n)] < Cln| and sgn(§(n)) = sgn(n).

The proof of this result will occupy us in §§6.3.1-6.3.7.
Theorem 6.5 above assumes irreducibility. Without this assumption we have a following
weaker bound.

Theorem 6.6. Let K := ess sup|f|, and suppose Vy — . For each €,R there is D(¢,R,K) and
Ny such that for all zy € [F}(€),bR] and N > Ny,

>
VWNP(Sy > zv) <D

vege(N) =
. VN,/N<VN>

D '<

To assist the reader in digesting the statement of Theorem 6.5, we now explain how to use it
to obtain Theorems 6.3, 6.4 on moderate deviations, as well as other consequences.
Proof of Theorems 6.3 and 6.4: By Theorem 6.5(1), 3R > O s.t. if ZN_]‘}EM — 0, then

N
w € [aX,bR] for all N large enough, and

—E(Sy)

_ _ 1 b N
Pl B o 1 V() 0, a/ M a1
had - a

Suppose G4(X,f) =R, then theorem 6.5(2) implies that

|a—b|
2nVn

P[Sy —zn € (a,b)] ~ exp(—Vy In(zv/WN))-

!

Next, by Theorem 6.2(2), if #—") — 0, then

won(3) -5 (25

whence P[Sy —zy € (a,b)] ~ \L‘%exp(— H‘z’(l) (Z”%N))Z). This proves Theorem 6.3. The

proof of Theorem 6.4 is similar, and we leave it to the reader. O
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Here are some other consequences of Theorem 6.5.

Corollary 6.4 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Suppose f is irreducible, with algebraic range R.

(1) If Z’\’*]VE% — O then for any finite non empty interval (a,b) the distribution of Sy — zn

conditioned on Sy — zn € (a,b) is asymptotically uniform on (a,b).

(2) If liminf ZN_]VE# > 0 and there exists R s.t. ZN_‘I,E& € [af;,%] for all sufficiently large N,
then the distribution of

Ex (ZN —E(Sw)

) -(Sy — zw) conditioned on Sy > zy
Vi

is asymptotically exponential with parameter 1.

ZN*E(SN)

Remark. The condition in (2) is satisfied whenever liminf w > 0, and lim sup S 0
is small enough, see Theorem 6.5(1).

Proof. To see part (1), note first that if W — 0, then &y = éN(W) — 0, whence

lﬁ J 5 eIV dt YR 1 for every non-empty interval (o, 3). Thus by Theorem 6.5, for every
interval [c,d] C |a,b],

i PeSy =2 € ()] _ Je=d]
N—oo Px[SN—ZN € (Cl,b)] |a—b|'
(the prefactors py are identical, and they cancel out).

To see part (2), note first that our assumptions on zy guarantee that &y = Ey (Z"’_}VE#) is

bounded from away from zero and infinity, and that all its limit points are strictly positive.
Suppose &y, — €. Then arguing as in part (1) it is not difficult to see that for all (a,b) C (0, o)
and r > 0,
Py[én (SN, —2zw,) € (a+rb+71)|Sy, >2v] .,

lim =e
k—reo ]P)x[gNk (SNk _ZNk) € (a?b)‘SNk > ZNk]

Since this is true for all convergent {y, }, and since any subsequence of {&y} has a convergent
subsequence,

limi ]P)x[éN(SN_ZN>E(a+r7b+r)‘SN>ZN] . _—r
iminf =e
N—oo P [En(Sy — zv) € (a,b)|Sn > zv]

P Sy — b S
fim sup dlov(Sy —zv) € (atnb+7)|Sy>av] _ -

Now  P[EN(Sy —2n) € (a,b)|Sy > zv]

P _
and so lim &N (SN —zn) € (a+r,b+71)[Sy > zn]

N—oo  PyEn(Sy —zn) € (a,b)|Sn > zn]
zn) is asymptotically exponential with parameter 1. U

= e . So conditioned on Sy > 7, En (Sy —

Corollary 6.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Suppose f is irreducible, with algebraic range 7. Let 7y be a sequence of integers.

(1) I]‘w — O then for any a < b in Z the distribution of Sy — zny conditioned on Sy — zn €
[a, D] is asymptotically uniform on [a,b).
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(2) If liminf WVE% > 0 and there exists R s.t. <~ 7‘],EN(SN ) e [Zif;,j)\m for all sufficiently large N,

En (Z—Nf‘]}E(SN)> — &, then

N

(Sy — zw) conditioned on Sy > zn

is asymptotically geometric with parameter e s,

The proof is similar to the proof in the non-lattice case, so we omit it.

It worthwhile to note the following consequence of this result. In the following statement,
“local distribution” means a functional on C.(IR) and “vague convergence” means convergence
on all continuous functions with compact support.

Corollary 6.6 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Let 7y be a sequence s.t. for some R, w € [&35,?9\]13,] for large N. Let Cy be
the local distribution of Sy around zy, that is Cn(¢) = Ex(¢(Sy — zw)). Let § be a vague limit
of {gnCn} for some sequence gy > 0. If  is irreducible then { has density c1e®? with respect
to the Haar measure on the algebraic range of f for some ¢y € Ry, cp € R.

If the restriction W € [&55,5}@] is dropped, then it is likely that ( is either as above, or an
atomic measure with one atom, but our methods are insufficient for proving this.

6.3 Proofs

We prove Theorems 6.1, 6.2, 6.5 and 6.6. (Theorems 6.3 and 6.4 are direct consequences, and
were proved in §6.2.4.)

We assume throughout that {X,} is a uniformly elliptic Markov chain with state spaces &,
transition probabilities 7, ,+1(x,dy), and stationary distributions u(E) :=P(X; € E). Let f =
{fu} be an a.s. uniformly bounded additive functional on X. Let &y denote the ellipticity constant
of X, and K = ess sup|f|.

6.3.1 Strategy of proof

The proof can be briefly described as an implementation of “change of measure” technique (aka
“Cramér’s transform”).

We explain the idea. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, and let zy be as in Theorem 6.5. We will modify the tran-

sition probabilities of X = {X,} to generate a Markov array X = {XV,§N)} whose row sums

Sy = h ()?fN),yz(N)) + - +fN()?,S,N),)?]gi)l) satisfy

w—E(Sy) =0 ( Var(§N)) . (6.3.1)

(6.3.1) places us in the regime of local deviations which we have analyzed in Chapter 4. The
results of that chapter provide asymptotics for P(Sy —zw € (a,b)), and these can be translated
into asymptotics for P(Sy — zv € (a,b)).
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The array X is constructed from (X,f) as follows: Let &, and 7, ,11(x,dy) denote the state

spaces and transition probabilities of the original Markov chain X, then we take f,EN) = fn»

(N)

6,(1N) =G, and we let X be the Markov array with state spaces G,, ' and transition probabilities

_ vy) ey,
nr(zljl)—i—l(x’ dy) = engn( Y) epn g]\;l< (éNé)N) ﬂn,n—O—l(xa dy)

Here £y is a parameter that is calibrated to get (6.3.1), and p,,, hy, b, 1 are chosen to guarantee

that 7r( n)+1

The value of &y depends on . To construct Ey and to control it, we must know that
‘Z,—x belong to a sets where .#y are strictly convex, uniformly in N. This is the reason why we
ZN*E(SN)

(x,dy) has total mass equal to one. This technique is called a “change of measure.”
ZN—]E(SN)
VN

need to assume that 3R s.t. € [&5‘;,353] for all N, a condition we can check as soon as
|Ml < ¢ with ¢ small enough !

We remark that the dependence of Ey on N means that {f,EN)} is an array, not a chain. The fact
that the change of measure produces arrays from chains is the reason we insisted on working
with arrays in the first part of this work.

6.3.2 A parameterized family of changes of measure

In this section we construct, for an arbitrary given sequence of constants y € R, transition
probabilities of the form

~ h,, \
N (xdy) 1= ) JUE (y(ézvgN) Toun i1 (), (6.3.2)

where p,(&y) are real numbers and hf"’ () = hy(-,En) are positive functions on &, which are

=(N)

chosen to guarantee that 7, " |

(x,dy) has total mass equal to one.

We treat the sequence of parameters Ey as arbitrary. In the next section we will explain how
to choose a particular {Ey} to guarantee (6.3.1).

Lemma 6.7 Given £ € R and a sequence of real numbers {ay, },cn, there are unique numbers
pn(§) € R, and unique non-negative hy(-,§) € L™ (&, B(6y), hn) s.t. [g, n(x,E)n(dx) =
exp(a,&) for all n, and for a.e. x

1 (3,6)
éfn(%ﬁ# dy)=1. 6.3.3
/Gn+l ¢ ep"(é)hn()ﬁé) Tcn7n+1(x’ y) ( - )

The unique solution is positive almost everywhere.
Remark.: Notice that if {h,(-,€)}, {p,(E)} satisfy the Lemma with a,, = 0, then the unique
solution with general {a,} is given by

hn(?é) = eanéﬁn('vé) ) pn(g) :pn(g) _ang +an+1§- (634)

1 Other situations where the condition % 7‘%5"’ )

€ [@® bR] can be checked are discussed in §6.4.
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Evidently, ,, p, give rise to the same probability kernel (6.3.2) as do &, p,. We call {h,} and
{P,} the fundamental solution.

Proof. Itis enough to prove the existence and uniqueness of the fundamental solution, so hence-

forth we assume a,, = 0. We may also assume without loss of generality that |&| < 1, else scale
f.

SetV,, :=L*(&,,%(S,), ), and define operators Lﬁ :Vur1 — Vy, by

(LER) (x / SN () Ty (5, ). (6.3.5)
n+

1

The operators L,% are linear, bounded, and positive.

For (6.3.3) to hold, it is necessary and sufficient that hg() := hy(+,&) be positive a.e., and
ths+1 = el’"(‘:)hg for some p,(§) € R.

Positivity everywhere may be replaced by the weaker property that hs € L\ {0} are all

non-negative a.e., because for such functions, since |f| < K a.s. and X is uniformly elliptic with
ellipticity constant &,

hs (x) = e_Pn(é)_PnJrl(g)(LéLg hé

o n+2)( x) > o Pn(&)=Pnr1(8) 80”;1 +2||1

Thus to prove the lemma it is enough to find a sequence numbers p,(&) € R and non-negative

hg € L” \ {0} such that LShSJrl = ePr&)p for some pn(&) eR.
The existence and uniqueness of such ‘“generalized eigenvectors” can be proved as in
[56],[15],[81] using Hilbert’s projective metrics. We recall what these are. Let C, := {h €

Va:h>0ae. }. These are closed cones and L,% (Cnt1) C Gy Define

M(h|g)
m(h|g)

where M = M(f|g),m = m(f|g) are the best constants in the estimate mh < f < Mh. This is
a pseudo-metric on the interior of C,, and d(h,g) = 0 < h, g are proportional. Also, for all

h,g € C,\ {0},

dn(h,g) ::1og( ) € (0,09, (hgeCy).

h

Jh f g
Birkhoft’s theorem [13] says that any hnear map 7T : C, 1 — C, such that the d,—diameter of
T(Cy42) in C, is less than some A > 0, contracts the Hilbert’s projective metric at least by a
factor 6 := tanh(A /4) € (0,1).

We will apply Birkhoff’s theorem to the linear transformations

< edn(hg) _ 1. (6.3.6)

TS =815, | : Coyz = Co.
One checks using the standing assumptions and || < 1 that

e Keo||hlly < (TFh)(x) < ey 2||h]li (b€ Cuya), (6.3.7)

whence dn(Tnéh, 1) < 4K +3log(1/gp). So the diameter of Tf (Cys2) in Gy, is less than A :=
8K +6log(1/€p). Hence by Birkhoff’s Theorem mentioned above,



6.3 Proofs 139

d(T*

n+1h7T§+1g) S 6dn+2(h7g) (hvg € Cn+2)' (638)

n

where 6 := tanh(2K + 3 log(1/&)) € (0,1).

It follows that for every n, {LELE 41 Ls ti—1le, +k}k2 1 C C, is a Cauchy sequence with
respect to d,,. By (6.3.6),

&6 g
L"Ln—H a ‘Ln+k71 16n+k

Sr¢ S
||L"Ln+1 o 'Ln—ﬁ—k—l 16n+k||1

is a Cauchy sequence in L'.

The limiting function hg has integral one, and is positive and bounded, because of (6.3.7).
Clearly, L,% th = epnhs for some p, € R. So {h,%}, {pn} exist.

Moreover, the proof shows that diam <ﬂk21L,§ LS +k_1(Cn+k)> = 0. It follows that i

is unique up to multiplicative constant, whence by the normalization condition, unique. The
lemma is proved. 0

The proof has the following consequence, which we mention for future reference: For every
R > 0, there exists Cy > 0 and 6 € (0, 1) (depending on R) such that for every || < R

i (L - Ljh o L5 -+ L1 ) < Co0™ 2y (B 1) (6.3.9)

The case when N is even follows directly from (6.3.8) and does not require the constant Cy. The
case of odd N is obtained from the even case by using the exponential contraction of Lg . «Lf\,
and the fact that one additional application of Lf (or any other positive linear operator) does not
increase the Hilbert norm. This implies (6.3.9) with Cp := 0-1/2.

Lemma 6.8 Let i (1) =h(-,&) be as in Lemma 6.7. If ay, is bounded, then for every R > O there
isC=C(R) s.t. foralln> 1, a.e. x € G, and |E| <R,

C ' <hy(x,E)<C and C'<emS <.

Proof. Tt is enough to consider the fundamental solution (a, = 0, [ h, = 1); the general case
follows from (6.3.4). It is also sufficient to consider the case || < 1; the general case follows
by scaling f.

Let {hg } be the fundamental solution, then in the notation of the previous proof, T,,é hf =

ePr(E) 4P (©)pé  whence by (6.3.7),

e Kgy < epn(§)+pn+1(€)hf+2 <

engo—z.

Integrating, and recalling that | hf 42Uy 2 = exp(ay2§) = 1, we obtain
e Key < ePr&)Pi1(8) < eKey2.

So e_4K£§ < hg() < e4K80_4.

Observe that ePr = [ L,élhf c1dlp = K hS 14Uy 1. So ePr is also uniformly bounded
away from zero and infinity. 0J
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In the next section we will choose &y to guarantee (6.3.1), and as it turns out, the choice

2
involves a condition on %%” Later, we will also require information on % épz”. In preparation for

this, we will now study the differentiability of
E — hf and & s py(&).

The map & — hg takes values in the Banach space L™. To analyze it, we will use the theory of
real-analytic maps into Banach spaces [43].

Let us briefly review this theory. Suppose X,%) are Banach spaces. Let a, : X" — %) be a
multilinear map. The norm of a,, is

\|anl| := sup{||an(x1,...,x2)| : xi € X, ||x;]| < 1 for all i}.

A multilinear map is called symmetric if it is invariant under the permutation of its coordinates.
Given x € X, we denote
anX" = ap(x,...,x).

A power series is a formal expression )~ a,x" where a, : X"* — %) are multilinear and sym-
metric. -

A function ¢ : X — ) is called real analytic at x if there is some r > 0 and a power series
Y. a,x" (called the Taylor series at xo) such that ¥ ||a, || < o and

9(x) =9 (x0) + ) an(x—x0)"

n>1
whenever ||x — xg|| < r. One can check that if this happens, then

d
—o di,

¢ (xo + Z 1ixi). (6.3.10)

ln=0 i=1

an(X1y..yXp) = — —

Conversely, if Y a,(x —xp)" has positive radius of convergence with a,, as in (6.3.10), then ¢ is
real-analytic, and equal to its Taylor series ¢ (xg) + Y. a,(x — x)" on a neighborhood of xj.

Example 6.9 Let ¢ : X x X X R — X be the map ¢ (x,y,z) :==x—y/z. Then ¢ is real-analytic
at every (xo,y0,20) such that zo # 0, with Taylor series

¢ (x,y,2) = ¢(x0,50,20) + Y an(x— X0,y —¥0,2—20)",
n=1
where |la|| = O([[yoll/lz0l"*") + O(n/]zo"*).
Proof. If |z —z0| < |z0|, then x —y/z = x — %Zk>0(—1)kzlk(z—z())k. For each n > 1, x; :=
- "0
(%0,50,20), %; := (x3,i,zi) (1 <i<n),and (11,...,1,) ER",

n n ) (_1)k+l n n k
‘1’(&04‘2%&') :X0+Zh‘xi+ Z T )’0+Zliyz' ZIiZi
i=1 i=1 k=0 <o i=1 i=1
converges in norm whenever (f1,...,t,) € A, 1= [\Z?:l tizi| < ]zol]. In particular, on A, this

series is real-analytic in each #;, and can be differentiated term-by-term infinitely many times.
To find a,(x;,...,x,) we observe that the differential (6.3.10) is equal to the coefficient of
11 ---t, in the previous series. So for n > 2,
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—1)""yp R~ -
an()_Cl,.._,_Xn):%-Zl-”Zn_{_( I’l) Zyizl"'Zi"'Zn
20 0 =1

where the hat above z; indicates that the i-th term should be omitted. It follows that ||a,|| =
O([lyoll/Izol™* ") + O(n/|z0]"). m

Lemma 6.10 The functions & — hs, pn(&) are real-analytic. If ay, is bounded, then for every
R > 0 there is C(R) > 0 s.t. for every || < Rand n > 1,

lszmt-a)| <cw. |Jemco| <cw.

%S}

Proof. The proof is based on §3.3 in [54], although it is somewhat simpler because our setup is
more elementary.

It is enough to consider the special case R = 1 and a,, = 0. In particular, [ n=1.

Fix || < 1andlet T, := TS, hu(+) = hy(-, &) be as in the proof of Lemma 6.7. Define two
Banach spaces:

X =4 (S)pen - Sn: L2 (6,42) — L7(S,) are bounded linear
T WnEN - operators, and || S]] := sup,, ||S,|| < o
Y= {(@n)nen : @n € L7(Gp12) , |9 := sup || @n[oe < oo}

Using (6.3.7), it is not difficult to see that T := (T},) belongs to X. By Lemma 6.8, h := (hy,),en
belongs to Y.

STEP 1. There exists 0 < 8 < 1 s.t. for every (S,9) € X XY, forall || < 1, if ||S—T|| < 6 and
|l@ —h|| < &, then inf| [(S,@u12)| > 6.

Proof. By (6.3.7), | T,|| < M where M := ezK&‘O—z, and by Lemma 6.8, there is a constant £ > 0
so that for all nand || < 1

&1 < (Tyhns2)(x) < &f'.
Soif [|[S—T| < & and ||@ — h|| < &, then for a.e. x,

Sn@n+2(x) = (Tnhp2) (x) = (Tn = Sn)hns2(x) = Sp(Ant2 — @nr2) (x)
> & —||T = S[l[|al] = (IS =T+ T[)I[r— o
>e —6||h|—(6§+M)d.
Let C be a uniform upper bound for ||| which holds for all |£| < 1.If0 < § < (
then S,,¢,1» > & a.e., and the step follows.

Henceforth we fix § asinstep 1. Let B§(T) :={Se€ X : |[S—T|| < 8} and Bs(h) :={p €Y :
|l@ —h|| < 6}, and define

&
crar) N L

SnOn
Y B5(T) < Bs(h) Y, Y(S,0)= (%—I(S(sz)jm) :
n®n n ne

This is well-defined by the choice of §, and Y (7', h) = 0.
STEP 2. T is real-analytic on Bg(T) x Bg(h).

Proof. First we write ¥ = ®&(Y(), Y2 1)) with
oYW :XxY =Y, TN(S,0)=0¢
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oT® X xY — Y, @) (57 QD) = (Sn(Pn+2)neN-
o YR X xY =02, YOS, 0) = (J(SuPri2)dtni2)nen-
o @:{(p,y,&) €Y xY x{:inf|&| >0} =Y,

(0. ¥.8)iz1) = (@1 =& wi)iz1.
5
Bystep 1, ¥ := (Y"), v Y®)) maps Bs(T) x Bg(h) into
U:={(@,y,5) €Y xY xL7:|lo|| <C+6,|lyl]| <M+, inf|5;| > 5/2},

whence into the domain of @. . .

We claim that for each of the functions '), some high enough derivative of T s identically
zero. Let D be the derivative, and let D; be the partial derivative with respect to the i-th variable,
then

(1) YW is linear, so (DY) (S, @) is constant, and D*Y(1) = 0.
2) Y : X xY =Y, Y(S,0) = (S,0,:2)nen. Here

S, (p)(S/) = (S£1¢n+2)n€Z ) (D%T(z))(sa (P> =0
S,0)(9") = (Su®, 1 2)nez , (D3r?)(S,90) =0

We see that D?Y(?) does not depend on (S, @), so D’Y =0

3) Y X x¥ =2, YC(S, 0) = ([(Su@nr2)dlni2)nen. As before, the third derivative is
zero.
Consequently, T are real-analytic on its domain (with finite Taylor series at every point).
Next we show that & is real-analytic on U. To do this we recall that by Example 6.9, x — Y _
Z

Z an(x0,v0,20) (X — X0,y — 0,2 — 20)" Where a,,(xo,y0,20) : (R?)" — R are symmetric multilin-
n=0
ear functions depending on (x0,y0,20), 8.t. [|an(x0,¥0,20)[| = O(|yo|/|z0|"*") + O(n/|z0|"). So

D(9.9,8) = P(9 0y )+ Y Au(9— 00y -y -0y (631D
n=1
whereA,,:(YxYxE"")"—)Y, has entries
An((@W, M EW) (@) y™ E0))i(x) =

aAﬁ%>v&k%é”ﬂwp(%%”@ﬁ?M~WWW@%%W@£WD

A, inherits multilinearity and symmetry from a,, and by construction,

o
An(o" ,M)é@DMSW{WAmmmwwthMSC+M+&kd>§}ZOQWﬁ@-

So the right-hand-side of (6.3.11) has positive radius of convergence, proving the analyticity of
P:U—=Y.

The step follows from the well-known result that the composition of real-analytic functions
is real-analytic, see [43].
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CLAIM 4. (D,Y)(T,h) : Y — Y, the partial derivative of T at (T, h) with respect to the second
variable, has bounded inverse.

Proof. A direct calculation shows that (DY) (T, h)(¢) = ¢ — A, where

. Ty ®ni2 B J (T @ny2)duy
A= T hr2) i (f(Tnhn+2)dﬂn> :

To prove the claim, we show that A has spectral radius < 1.

Let Tn(k) =Ty Thy2 Tyqo(k—1), then we claim that

(Akq))n =

Tn(k)¢n+2k i (f(T( )¢n+2k)d“n> . (6.3.12)
JTP i )dtn \ (T o) d iy

To see this we first note, using T,/ 12 < hy, and [ hy,dp, = 1, that

/(Tn(kﬂ)hn+2(k+1))dl~ln = /(Tnth'z)dfun/(Trz(+)2hn+2(k+l))duﬂ+2'

With this identity in mind, the formula for A¥ follows by induction.
We now explain why (6.3.12) implies that the spectral radius of A is less than one. Fix ¢ € Y.
Recall that C~! < h,, < C for all n, and let

V=@ +2C|o|h.
Then y € Y, A¥y = AK¢ for all k (because Ak = 0), and for all n
Cllpllhn < v < 3C|g|h, (6.3.13)

In particular, if C, is the cone from the proof of Lemma 6.7, and d, is its projective Hilbert
metric, then y,, € C, and d,(y,,h,) <log3. Since T, contracts the Hilbert projective norm by
a factor 6 € (0,1),

k k
o3 Yot T 1) < 0¥ l0g 3,
This implies by the definition of d, that for a.e. x € &,,,

(1 o) @)/ [ Vi)
(T3 s20) )/ (T 20)

The denominator simplifies to /,. So

<max{3% —1,1-3791 =3 1= ¢.

H T ‘l/n+2k)
J( T V’n+2k)

Next we use the positivity of Tn(k) and (6.3.13) to note that

—ha|| < &l (6.3.14)

(o)

ClolI T  hyoe < TP Wak < 3C1 @ T .

We deduce that

JTF i)
Tn( k) hn+2k

Clol < <3Cllgl|- (6.3.15)
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By (6.3.12), (6.3.14) and (6.3.15),

(k) (k)
T,
450 = ARy = sup|| Tt LT e,
JT o [T hyyn w0
7®)
T
<sup | Y || LT et k| ace gl
ST Wk v J (A P2k |{] o

whence p(A) <lim/g =6 < 1.

COMPLETION OF THE PROOF OF THE LEMMA. We constructed a real-analytic function 1" :
X xY — Y suchthat Y (7T,h) =0and (D,Y)(T,h):Y — Y has abounded inverse. By the implicit
function theorem for real-analytic functions on Banach spaces [151], T has a neighborhood
W C X where one can define a real-analytic function 4 : W — Y so that 1'(S,4(S)) = 0.

Recall that T = T¢ := {Tné ben and A = {hy(+,&) },>1. By the uniqueness part of Lemma 6.7,
h(T) = h(-,&). Itis easy to see using ess sup|f| < oo that & — T*¢ is real-analytic (even holomor-
phic). So & — h(T*) is real-analytic, whence continuously differentiable infinitely many times.

Thus & +— hy,(-,&) is real-analytic for all n, and {%k (s 5)} = 8‘ékh(T5) €Y for all k.
I’l
By the definition of ¥, sup sup||a§ n(E) |l = ”E (T)|| < ooand sup sup||a52 a(E) || =
§l<1n=1 E]<1n>1
| Z5h(T)]| < oo s

6.3.3 Choosing the parameters

Given & € R and {a,} C R bounded, let {5(;? }n>1 denote the Markov chain with the initial
distribution and state spaces of X, but with transition probabilities

(x,dy) = e5nlx) M1 (3,6)

~
& &, (x,E)

n,n+1 * T n+1 (X, d)’)7
where p,(§) and h,f() = h(-,&) are as in Lemma 6.7. (This chain does not depend on the

choice of {a,}, see the remark after the statement of Lemma 6.7.) Denote the expectation and
variance operators of this chain by ES, V.
In this section we show that if Viy := Var(Sy) — o and w

is possible to choose £y and a, bounded s.t.

is sufficiently small, then it

Indeed, we will find &y so that EV(Sy) = zy + O(1). The construction will show that if
ZN_]VE# — 0, then &y — 0.

Let Ef = hy(-,&) : &, — (0,00) and p,(&) € R be the fundamental solution: LSEEH =
P&y and [ oy (v, &) ta(dx) = 1. Then iy = e~y (-, &) and 7, (E) = pa(&) +an& — i1
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SO

~¢ _ Ehxy) ]Tln—H(xag)
Rt () = gy T (6).

Let Py(&) :==p1(&) +---+Dn(&).

Lemma 6.11 & — Py(&) is real analytic, and for every R > 0 there is a constant C(R) such
that for all |E] <R and N € N,

(1) [Py(&) —E5(Sn)| < C(R); -
(2) Suppose Vy — oo. Then C(R)~' < V&(Sy)/Vy < C(R) for all N and || <R, and

Py (&)/VS(Sy) ~ 1 uniformly in |E| <R.
—>00
Proof. We have the identity e"¥() = [ (Li’: -~-L§,E§V +1) ()1 (dx). Since & — A and & L
are real-analytic, & — Py/(&) is real-analytic.

Given x € G (the state space of X;), define two measures on Hﬁvz El GS; so that for every
E;c B(6;)(1<i<N+1,

T(Ey X - X Eny1) i =P(Xz € Ep, ..., Xny1 € Eny1]|X1 = x1),
S (Eyx - x Eyy1) =P (Xf € Ea,... X5, € Ensi|XF =x1).

Let Sy(x,y) := f(x,y1) + Xy fi(yi,yit1), then

~§ _
dany . v £)

_ SNy PN (&) [ INHIUNHL6)
dﬂx(yzw.’yNJrl) ‘ ‘ ( hy(x,&) )

By Lemma 6.10, & — d”X - (¥2,-..,yn+1) is real-analytic. Differentiating, gives
"'é "'5
. [%} = [SN(%X) _PN(é)* hwd) d <hN+l(yN+1’§))} ‘27:;; . We write this as

dg hy 1w 1,6) 48 hi(x,6)
@R (g ) Ph@) +entomennd)] 2 63.16)
dé dTL'x — N va N N\X; YN+1, dTCx ( oI
where ey (x,yn11,§) 1= ENﬁl((;l\f—)l;g) % (hN%l((ygg)“é)) By Lemmas 6.8 and 6.10, ey (x,yn+1,&)

is uniformly bounded in N, x,y, and IE| <R.

S
By the intermediate value theorem and the uniform boundedness of & — dE [d”" 1 on com-

=& =&
pact subsets of £ € R, % [dgi - ‘é’% ] is uniformly bounded for 0 < || < 1. So by the bounded

convergence theorem
oo Uldm? am) 1 [dmt dE
drm, dm | " drm,  dm,

dr, = 0.
5§—0h §—0J h ] *

dE | dxm
x). Integrating with respect to x we obtain that

So [ 4 [d”x}dnx—o whence by (6.3.16), 0 =E3 (Sy) — Py(&) +O(1), where B = E& (-|X¢ =
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/

Py(E) =E°(Sy) +0(1)

uniformly in || < R, N — co.
Differentiating (6.3.16) again we obtain

2 [ =6 =5
dd_‘g'z [dﬂ] _d [dﬂx (SN(X,X)—F;V(é)‘}‘gN(xayN-Haé))]

dm, a’é dT,
. d%x — 2 — dgN
= (5w P+ evteonn £)) - P& + .
By Lemmas 6.8 and 6.10, ‘2%\’ is uniformly bounded in x,yy+1,N and || < R. As before,
2
fddé2 ‘é’;‘d = dézfd”x dm, = 0, whence
. ~é = 2 =S/
0=E | (sy—Ph(&)+0(1) | ~Pr(&)+0(1)
~ ~ 2 —
— RS {(SN—Ei(SN)JrO(l)) ] ~PlE) +o(1), (6.3.17)

:V5<SN>—T%<5>+0( Vé(sN>>

where the O(1) terms are uniformly bounded in N when || < R.
If |E| <R, then f ni1(xX,dy) are uniformly elliptic with & replaced by &/ (C2eX¥) for the C
in Lemma 6.8. Therefore by Theorem 2.7, V& (Sy) < YV_u2(&) where u, (&) are the structure

constants of {fné }. Clearly, u,(§) =< u, where u, = un(()) are the structure constants of {X}.

So V&(Sy) = Viy — oo where the multiplicative error bounds is uniform in N and |€| < R. By
==/

(6.3.17), Py (€)/V5(Sy) —— 1. O

The choice of ay: Lemma 6.11(1) with & = 0 says that 1_3;\,(0) = [E(Sy)+ O(1). The error term
is a nuisance, and we will choose a, to get rid of it. Given N, let

an :=E(S,_1) =P, 1(0),a;:=0 (6.3.18)

This is a bounded sequence, because of Lemma 6.11(1). The choice of {a, } leads to the follow-
ing objects:
i (x) = ha(x,§) = exp(and ) ha(x. &), 63.19)
pn(8) :=Pn(&) + (ant1 —an)§.

The transition kernel ﬁf et ] is left unchanged, because the differences between h,, and h, and
between p,, and p, cancel out. But now,

By (&) == pi(E) +---+ pv(E) = Py (&) + (E(Sv) — Py(0))E, (6.3.20)
satisfies Py (0) = E(Sw).

Properties of Py(&): These functions turn out to be closely related to the distributional proper-
ties of X and its change of measure X&.
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Recall that Z#y (&) := %log E (%), and that V& is the variance of Sy with respect to the

change of measure X%, Then:
Lemma 6.12 Suppose Vy — oo then & — Py(&) is real analytic, and

(1) Py (0) = E(Sy)
(2) For every R > 0, there exists C(R) > 0 s.t.

|PY(§) —E*(Sw)| <C(R) forall |§| <R,N€N.
(3) For every R > 0, there exists C(R) > 0 s.t.
C(R)"' <V5(Sy)/Vw <C(R) forall |E|<R, N€eN.

(4) PU(E)/VE(Sy) o 1 uniformly on compact subsets of .
—>00

(5) Pv(&)/Vn = Fn(E) + 0(V1\71) uniformly on compact subsets of &, as N — oo. Specif-

ically, let ANy(R) := sup VN‘ﬁN(ﬁ) PN@’ Then supAN( ) < oo for all R > 0, and
IEI<R

supAy(R) —— 0.
N R—0*t
(6) PY(E)/Vy = FZ(E) + OV ") uniformly on compact subsets of &, as N — oo. Specifically,
let AN(R) := sup Vy ’91(,(5) PN@) . Then sup An(R) < oo.
EI<R N=No

Proof. The real analyticity of Py(&) and parts (1)—(4) follow directly from Lemma 6.11, the
identity Py (&) = Py(€) + (any+1 — a1)&, and the boundedness of a;,.

The proof of part (5) uses the operators L5 L*(6,41) = L7 (S,) from (6.3.5), (L,él h)(x) =
&, SO (YY1 (x, dy) = B[S Xt p(X,41)].

Let hf := ha(-,&) € L*(S,) be the unique positive functions constructed so that L hs =

P &)1 | where p (E)+---+pn(E) = Py(&). (To construct h%, apply Lemma 6.7 with ay as
in (6.3.19).) In particular, hg =1and

E, (e*?SNhNH(XNH)) = P& (x). 6.3.21)

By Lemma 6.8, there exists C; = C;(R) > 1 such that C < hf\,ﬂ < Cj for all [§| <R and
N > 1. Thus by (6.3.21),

o) (R>—26PN(§) <E <653N> < (R)ZePN(i).

Taking logarithms, we deduce that | %y (&) — Pv(E)/Vy| <2C1(R)/Vy forall N > 1 and |§| <R.
Equivalently, supy Ay (R) < 2C;.

Next, by Lemma 6.10 and the identity 70 = 1, th 1| N—> 0 uniformly on compact
—»00

subsets of &. Returning to the definition of C;(R) we find that we may choose C(R) — L
R—0

As before, this implies that supy Ay (R) Y 0.
%

Here is the proof of part (6). Fix R > 0 and let E¢ denote the expectation operator with respect
to the change of measure X%, then
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_ E(Syes%) EE (Sw (kS /A1)
E(eE5W) BE(hS /h5,,)

(6.3.22)

We have already remarked that X& are uniformly elliptic, and that their uniform ellipticity con-
stants are bounded away from zero for & ranging on a compact set. This gives us the mixing
bounds in Proposition 1.11 with the same Cpy; > 0,0 < 0 < 1 for all || < R. So

3
~. [ h>S ~ ~ =~
e (}%_N> :Eé(h‘f)Eé (1/h§,+1>E5(SN)+0(1) as N — oo,
N+1

. K _
W<?L>:M(%§OMMJ+MWLMN%w
hN+1
where the big oh’s are uniform for |£| < R. Plugging this into (6.3.22) gives

VvZ (&) =E5(Sy) + O(1) as N — oo, uniformly for || < R.
Part (6) follows from this from part (2) of the lemma. ]
The choice of £y: We choose Ey so that P (Ey) = zv , E(Sy) = zw + O(1). The following
lemma gives sufficient conditions for the existence of such &y.
Lemma 6.13 Suppose Vy — o, R > 0, and

E(Sy)
Vn

E(Sn)
Vv

a8 %) = [%(—R)— FYR) -

(1) For each R there is C(R), N(R) s.t. Q‘W € [%,Zﬁ], and N > N(R) then

(a) vaNe[ (R+1) (R+1)] st pN(gN) -
(c) sgn(&y) —sgn(w)
(d) ‘EéN Sn) —ZN‘ <C(R

(2) For every R > 1 there exists c(R) > 0 such that for all N large enough,

ZN—]E(SN) ZN—]E(SN)

~R TR
by |. 6.3.23

if < ¢(R), then

Consequently, if |W| < ¢(R), then there exists a unique &y with (a)—(d) above.

Py(—R) —E(Sy) Py(R) —E(Sy)
Vv ’ Vv
CLAIM: For all R > 0, for all N large enough,

Proof. Let [aX,bR] :=

~R TR ~R+1 TR+1 ~R+2 TR+2
[an,by] C [ N+ abN+ ] C [aN+ 7bN+ ].

Proof of the claim: By parts (3) and (4) of Lemma 6.12, there exists 0 > 0 such that Py (§)/Vy >
0 on [—(R+2),(R+2)]. Thus by the mean value theorem,
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Next by part (6) of Lemma 6.12, ]gff,/ —ZZIS,/ =O0(Vy') and R —ak| = O(Vy") forall R <
R+2. For all N large enough |O(Vyy!)| < §, and
AR+2 <a§+1 <ﬁ§,<3§,<};§+1 <B§+2,

which proves the claim.

P, — &P (0
We can now prove part (1) of the lemma. Let ¢y (&) := w(s) VNé w ) By Lemma 6.12,

on(&) is strictly convex, smooth, and

zv — Py(0)

Py(n) =zv iff  @y(En) = e

Fix R > 0. By the claim, for all N large enough, if Z’V_‘I,Ew € [ak, bR] then 2=Fu(©)
N

VN
ZNf]VE# € [aR™, bR+1] = @y[—(R+1),(R+1)]. Since @}, is continuous and strictly increasing,

there 3!1&y € [~ (R+1), (R+1)] such that ¢} (Ey) = M*VLNN(@ Equivalently, there exists a unique
|Ev| < R+ 1 such that P{(Ey) = zy.

This argument shows that for every N sufficiently large, for every n € [af;,iﬁ] there exists a
unique & =&(n) € [-(R+1),(R+1)] such that

on(E(M)) =n.

ByLemma6 12,38(R) > ()sothat5( ) <o <8(R)'on[—(R+1),(R+1)].Son+—&(n)
is 5( -bi-Lipschitz on [aN,bR ]. By construction, ¢y,(0) = 0. So £(0) = 0, whence by the bi-
Lipschitz property

S(R)|n| <|&(M)| < 8(R)"n| on [aF,bE].

Since @y is real-analytic and strictly convex, @}, is smooth and strictly increasing. By the inverse
mapping theorem, 1 — & (1) is smooth and strictly increasing. So

sen(&(n)) = sen(n) on [k, bR).

Specializing to the case n = W, gives properties (a)—(c) of Ey.
Property (d) is because of by Lemma 6.12, which says that

v = Py(En) = ES (Sy) +O(1).
Notice that the big oh is uniform because |{y| < R+ 1. This completes the proof of part (1).
Here is the proof of part (2): For every R > 1, for all N large enough

[@%, o8] o (@ bR = oy [~ (R—1),(R—1)] (.- claim, @}, is increasing)
O[-8(R—1)(R—1),6(R—1)(R—1)] (- oy(0) =0,y > 5(R+1)).

So [aR,bR] > [—c,c] for R > 2 where ¢ := §(1). O

Corollary 6.14 Suppose Vy — oo and 2= It?V(SN)

unique &y such that Py, (Ey) = zn. Furthermore, Ey — 0.

— 0, then for all N large enough, there exists a
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6.3.4 The asymptotic behavior of V& (Sy)

Let \7]5’ denote the variance of Sy with respect to the change of measure X5, We compare \715 to
V.

Lemma 6.15 Suppose Vy N—> oo, and define Ey as in Lemma 6.13.
—>00

(1) Suppose R > 0 and W € [ﬁf(,,gﬁ] for all N, then \71§N = Vyas N — oo,

(2) If 27 0, then V¥ ~ Vy as N — oo,

(3) V]\? ~ Vy as N — o uniformly on compact subsets of &: For every € > 0 there are E* > 0
and Ny > 1, so that V]\é/VN € [e &, €] forall |E] < E*,N > Np.

Proof. Part (1) is because of Lemma 6.12(3) and the bound |Ey| < R+ 1 from Lemma 6.12.
Part (2) follows from part (3) and Corollary 6.14. It remains to prove part (3).

To do this we decompose Sy into weakly correlated large blocks of roughly the same X-
variance, and check that the X%-variance of the i-th block converges uniformly in i to its X-
variance. N

Let {X,} and {X,i’z} denote the Markov chains with transition kernels {7, ,1(x,dy)},

{ a1 (X dy)} and initial distribution p; (dx). Given natural numbers n > m, let

Spm =Xy + -+ X1
SE = XE 4+ X
Pnm(8) :=pu(E) + -+ 4 pm-1(S)-
Notice that for all R > 0, n < m, and |E| <R,

Pum(0) =0,  Phn(0) =E(Sum),  [Pom(E) —E°(S5,)| < C(R). (6.3.24)

The first identity is because &, (-,0) = 1, p,(0) = 1 by the uniqueness of the fundamental solu-
tion. The second identity is because

Pam(0) =Py, 1(0) = By (0) = E(Sp—1) —E(Sp-1)

by choice of {a, }. The inequality can be proved by applying Lemma 6.12 to the shifted Markov
chain {X; }r>p.

Let V(Sym) := Var(S,,). The application of Lemma 6.12 to the shifted Markov chain
{Xk }i>n also gives a constant M s.t. for all |§] <R,

C(R) ™ < VE(Sim) [V (Snm) < C(R)

6.3.25
2t () TE G < 2. (6325

V(Sn,m) > My = {

M is independent of n: It is a function of R, K, &, and the uniform bounds on 4,(-,&) and its
derivatives.

STEP 1 (UNIFORM EXPONENTIAL MIXING). There are C};. = Cpir(R) >0, 1 =1 (R) € (0,1)
such that for every |E| <R, for all n < m,

‘COV(fm(X Xn€1+1) fn(X Xné+l )‘ <G zxn
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Proof: If |§| < R, then the Markov chain fné is uniformly elliptic with ellipticity constant
€(R) > 0. The step follows from Proposition 1.11.

STEP 2 (BLOCK DECOMPOSITION). For every € > 0 small enough, for every R > 1, there exists
M > 1 and integers n; 1 oo such that:
(1) M <V (Spn,,) <2M;

(2) |COV(§Si7”i+l 7§$janj+1)
independent of M, i, j;
(3) Forall |E| <R, foralli >3, forall n € [n;,n; 1],

<t n forall || < R and i < j, where the constant C¥,

mix

V5(§5 )
e €< < ¢é°. (6.3.26)

Z Vg nk N1 + Vné”n

(4) M*:=sup sup sup |p, (&) <eo

i n€nni]|E|<R
. ._ SN2 e
Proof. We write V, =V (Sp ) and V2, == V< (S; ), and fix

C: Ac*. C(R)
2 mix mix
M>max{2(K +1_n) 81(1—7"03}'

Construct n; = n;(M) € N by induction as follows: n; := 1, and

Rip1 i=min{n > n; 1 Vy p.,, > M}

There does indeed exist n > n; with V,,. > M, because V,,, , — o0, as can be seen from the
n—soo

i1
following calculation:

o <—— V) n— =V i +Vn n+2COV(S17niasni,n)

00— 1
ni—1 oo
=Van Vim0 Y Y 1Cov (X, X, 1)

m=1k=0
=Vun+O(1), by step 1 with & =0.

By construction, Vy, 5., > M, and
Vni,nm < VniJlm—l + |Vni7ni+l - Vniﬂm—l ‘
<M+ Vinies — Vagnio—1| by the minimality of n;

<M+V(fi’ll+1 2( ni+1— 27Xn,'+1—1))
+z‘cov(f”iJrl—z(XniJrl_Z’X”Hl—l)’S”i+1—1)‘

*

Cc*.
<M+2 (K2+lﬂ) < 2M by the choice of M.

SoM <V, .., <2M, and {n;} satisfies part (1).

Mit1

n1+1 Inj—1

{—k
If i < j, then \COV( A n,,n,+1 Z Z il

k=n; {=n;
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niy1—1 —k * nj—njpq Mig1—1 * ni—n;
< C*. ZZ 77 _ Cmixn s niy1—k __ Cmixn s
mix 1 _ n - (1 - )2
k=n; n k=n; n

Part (2) follows with C* . :=C*_ /(1 —n)?.

mix * mix

Part (3) follows from parts (1),(2). Namely, fix n € [n;,n;;1], then

5
Vé S Z ekl nn

<2 Y 1COVSin Shae )2 Y (COV(SE S

1<k<(<i—1 1<k<i—1
<2 Z Ciixnne—nkﬂ_’_z Z C# N <D Z mlxn
1<k<{<i—1 1<k<i—1 1<k<(<i
2C#ii 2C; ;.
mzxZ Z mix” __ : mix
=10=k+1 l-n  (1-7m)*
M(i—1)
By (6.3.25), Z e _W.SO
‘75 gt ( 2, ),- ) . .
(Sn—1) e A=y L ZCm,xC() i e i

where the last inequality is by the choice of M. If i > 3, the last bound is less than %8, and
(6.3.26) follows for all € sufficiently small.

Part (4) is a uniform bound on |pj, ,(§)| for i € N, n € [n;,n], |§| < R By construction,
Viun < 2M. By Theorem 2.7, this 1mp11es a uniform upper bound on Y~ uk The structure

constants of {X,} and {X,§ } are equal up to a bounded multiplicative error. So the same the-
orem, applied to the Markov chain {)?E }anw gives a uniform upper bound for \N/n€7n, whence

sup; Suan[n, ni1] SUP|E|<R Vﬂ%:” < oo
A routine modification of the argument we used to show (6.3.17) shows that

< const.

pif,m(ﬁ) _E¢ [(gghn S (§§“n) + 0(1))2}

The expectation term is uniformly bounded because of the bound on ‘7,5,1 and the Minkowski
inequality, so part (4) follows.

STEP 3 (BLOCK EXPECTATION). For every € > 0 there exists E* > 0 such that for all |&| < &*,

ES (S5 ,) —E(Sy,.n)| <eforallieNandn <n<ni.

Proof. By Lemma 6.8 (-, &) is uniformly bounded away from zero and infinity when |&| < R.
By Lemma 6.10, & — (-, &) is uniformly Lipschitz on [—R, R]. It follows that

thrl(yaé)
h”i(xvé) &—0

> 1 uniformly fori € N, n € [nj,niy1], (x,y) € Gy, X Spy1.
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In particular, there is a &; s.t. for all || < &

hn+1(y7§)
hni(xvé)

This has a useful consequence. Since

E eésn n nJrl( n+la§ —E(Eyx. eéS”iv" hn+1(Xn+l7é) :E(l) _ 17
) n; epniﬁn(é)hni (X, &)

)
ep”z (X ’5
( &S ) < ePnin(®) < 2R <e55nz»n> whenever |&| < &F. (6.3.27)

271 < <2forallie N, n € [n,niy1], and (x,y) € S, x &,.

l

Fix L > 0 and let Ay := [|Sy, n —E(Sy,»)| < L], then:

- - - B B gsni’n ‘ hn+1 (Xn—H ) g)
EXni (Sn,n) E(Sn,n) =K <(Sni7n E(thn))e epni,n(é)hni (an 5)

_ o1 (Xt 1,6)
— _ ésni,n Pn,',n(g) It 1Pt L5 )
]EXn ((Snu E(Sni,n))e I, (Xn,-aé) lAL)

_ hp1(Xni1,8)
_ éSn,',n Pn[,n(é) . & 1 ac
‘f‘]EXn,- ((Sni-,n E(Sn;.n))e Fy (X €) 1AL) :

Expectation of the first summand: M* :=sup sup  sup |p), ,(§)| < oo. Therefore by (6.3.24),
i n€lni,nit1] [§|<R
forall |E| <R, n € [nj,ni+1],

Pni,n(g) = Pni,n(o) + ép;u,n(o) + 0(52) = gE(Sni,n) + 0(52)7 (6.3.28)

where |O(E?)| < M*E2,
So on Az, [ESnn = Puin(8)] < |S] - [Snin — E(Spn)| +M*E* < LIE[+M*E?, uniformly in
i,n € [n;,n]. In particular,

& Snin=Pnin(8) §—> 1 on Ay, uniformly in i, n € [n;,n].
—0

hn+l(Xn+17§)
hn; (Xn;-G) £—0
converges to Ey,. [(Sn;n —E(Sn;.n)) 14, ] uniformly in i, X,,, and n € [n;,niy1].
The expectation of the limit satisfies

‘E[(Sni,n - E(Sni,n)) 1AL]| = ’E[(th” - E(Sni,n)) 1A2]|

Together with the uniform convergence > 1, this implies that the first summand

V(Snla ) < 2_M
L L
Thus, for every € > 0, for every L large enough, for all |&| sufficiently small, for all i,n €

[ni,n;11], the first summand has expectation < £ /2.

<E[L™ (Sun = E(Snn))  1ag] <

Expectation of the second summand: Fix 0 < § < EF. Assume L is so large s.t. |t| < §e%l'l for
all [¢] > L.

?eoompose Aj :=ATWAS  where AS =[Sy, n —E(Sy;n) > L] and A% := [y, n — E(Spn) <
—L|. Then
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_ hni1 (Xni1,8)
E (S, )| Pua(§) It At LS )y
an‘ (|Sl’lz7n (Sl’lun) |€ hni (an-, g) A+

< 2B, ([Sun —E(Snn) 50 Pu(®) 100 ), provided €] < &

< 4EXni <(Sni,n - E(Sni,n))eésni’n ’ 1Ai> /E<eésni‘n)a by (6.3.27)

4B, ((Suyn— E(S1,0))e S E0un) 1, ) / (o5 rn Bl
45EXW(e(§+5)(sni‘n_E(Sni,n)))/]E(eé(sni’n—E(Sni,n)))
168 exp (pn;n(E+06) — ppn(E) — SE(Sp, n)) , provided |& + 8] < &/

(see (6.3.27)). Expanding py, »(& + &) into Taylor series around &, and recalling |p},. ,,(&)| < M*
for |§| < R, we find that the term in the exponent is bounded above by

S|Pl (&) —E(Syn)| +M*8* = 8|p}, 4(&) — Pl n(0)] + M* &
< M*(8|E|+8%) < M* (RS +82),

<
<

which can be made as small as we wish by choosing 0 properly.
The conclusion is that for all L large enough, for all || sufficiently small, for all i,n €

[nhnH—l]’

- hni1 (Xnt1,6) €
E( 1S, , —E(S,. etSunpPnnl&) ZntlTntl5) 1y ) &
(1500~ ESnle g ) <5

Similarly, one can show that for all L large enough, for all || sufficiently small, for all i,n €
[ni,nit1],

- hp1(Xnt1,8) €
El1S,  —F(S. Ve5Snn=pnn(&) Intl\Zntlo) el
(’ ni,n ( nlan)’e hni(Xni;§> AC < 4

Thus, for every € > 0, for all L sufficiently large, for all |&| sufficiently small, for all i,n €
[ni,n;11], the expectation of the second summand is less than € /2 in absolute value.

STEP 4 (BLOCK VARIANCE). For every € > 0 there exists E* > 0 such that for all |&]| < &*,
\7,5,1 —Vyn| < eforallie Nand n; <n <n;.

Proof. The proof is similar to the proof of step 3. Fix L to be determined later and let Ay, :=
[1Sn;.n — E(Sy, n)| < L], then

g 5 n E Sn» n— ]E SI% n zeésniv” . 1 1
( " ) << ’ ( ; )) e’ "i’"(é)hni(xnivé) !

~ o~ I’ln 1(Xn+17§)
+ B ( (Snn — E(S5, ) e Smin . —F Lag |-
(( N ( i ) €p"i’"(€)hn,-(Xni,€) A

The second summand can be analyzed as in step 3, this time with the inequality > < §edl

for all |¢| large enough. The conclusion is that for every € > 0, for all L sufficiently large, for all
|E| sufficiently small, for all i,n € [n;,n; 1],

E ((Snln _E(gshn))zeésni,n . hn+1(Xn+17€) ) 1Ai) < (6.329)

&
ep”i’n(é)hni (Xnn é 2 |
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The first summand converges to E((Sy,n — E(Sy;1))?14,) as & — 0 uniformly in i,n €
[ni,ni11] because

§S,liﬁ,, . M1 (Xnt1,8)
*¢ Pin @ h, (X,.8) L g0

14, uniformly in i € N,n € [n;,n;11], see the proof of step 3;
and
o (Spn— E(S,in))zlAL §—> (Snjn— E(Sni,,,))21AL uniformly in i,n € [n;,n], because for some
' i —0

t between IE(§,§I,1) and E(Sy, »),

| (Suin = E(S5,0))% = (S — E(Snin))?|
= 2[Sp,n — t[E(S5, ) — E(S,n)|
<2(LA+[E(S5 ) — E(Sun) )ESS ) —E(Sun)| on Ar

ni,n
5———> 0 uniformly on Ay ini € N,n € [n;,n;y1], by step 3.
—0

The limit of the first summand E((S,, , — E(Sy,1))*14,) = Vi n uniformly in i,n €
—>00
[ni,niy1]. Indeed, applying (6.3.29) with & =0

|Vni,n - E((Sni,n - E(Sni,n))zlAL)| = ]E((S"iﬂ’l - E(Sni,n))zlAi) <

| m

for all L large enough, for all i € N,n € [n;,n;11]. Step 4 follows.

PROOF OF PART (3) OF THE LEMMA. Fix € > 0, and construct the block decomposition as in
step 2.
By step 4 there exists £* > 0 s.t. for all |&| < &*, for all k € N,n € [ng,npt1], e EVipn <

?,in < €®Vy, n. Therefore
- T Vi + Vit
Zk VWVaenen T Vain
By part (3) of step 2, for all n > n3, for all |E| < £*, e3¢ < \Z?/Vn < e3¢, O

< €f.

6.3.5 Asymptotics of the log moment generating functions

We need an elementary observation from probability theory. Let X,Y be two random variables
on the same probability space (2,.%,P). Suppose X has finite non-zero variance, and Y is
positive and bounded. Let Var? (X) be the variance of X with respect to the change of measure

Y .
de, 1.€.
E(X2Y) [(E(XY)\*
Var' (X .
w'o)= 57 - ()
Lemma 6.16 Suppose 0 < Var(X) < o and C~' <Y < C with C a positive constant, then
Var! (X)
c*< <ch.
~ Var(X) —

Proof. For every random variable W, if Wi, W, are two independent copies of W then Var(W) =

%E[(Wl —W3)?]. In particular, if (X1,Y;), (X2,¥») are two independent copies of the random
vector (X,Y), then
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Var! (X) = %E[(X%I ;fgm 2] _ ci‘%E[(xl — X)) = CH*Var(X). 0

Proof of Theorem 6.1 on the asymptotic behavior of %y (&) := V_iv logE(e55V): Let f be an
a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, s.t. Vy :=
Var(Sy) # 0 for N > Np.

Since ||Sy|j < e, we may differentiate under the expectation and obtain that for all k,

d (e55V) = E(SKe55V). A direct calculation now shows that

dEF
1 E(Sye®SV) 1 ¢
ar! — _ Z\ENE ) Y,
IN(E) = Ty E(E) VNEN(SN),
2 £
noey— L | EGSRes™)  (E(Syet)\ 7| _ Var'V(Sy) . Esy
Ine) = E(e85N) E(e&5) = Nar(sy) * herely = e

Part 1: Substituting & = 0 gives Fy(0) = 0, Z§(0) = “2% Z1(0) = 1.

4
Part 2: (&) =0 < Var's (Snv) =0 < Sy = const Eé"é)d}P’—a.S. & Sy = const P-a.s. &
N

Var(Sy) = 0. So .Zy is strictly convex on R for all N > Np.

ve

Ve (S Var? (S ¢

N (Sy) S (Sn) , where Zf, = eéSNhN—gl (the normalization constant does not
Var(Sy) Var(Sy) h

matter). Next, Zf, = Yzé Wf,, where Wf, = h]év 1/ hf. Lemma 6.8 says that for every R > 0 there
is a constant C = C(R) s.t. C~! < Wlé < C for all N and |§| < R. Lemma 6.10 and the obvious

identity 40 = 1 imply that Wjé _«5——> 1 uniformly in N. So there is no loss of generality in
—0

Part 3:

assuming that C(R) 0 1.
H

By Lemma 6.16 with the probability measure ]Ei;gv) dPandY = W]\g,,

VE(Sy)  Var'v Wi (sy)
WINE)  Var'¥ (Sy)

€ [C(R)™,C(R)*], VIE| <R, N> 1. (6.3.30)

By Lemma 6.12(3), V,\é, (Sny) =< Vy uniformly on compact sets of &, and by Lemma 6.15

for every € there exists §,N; > 0 s.t. e ¢ < \715 (Sn)/Vn < €€ for all N > Ng and |&| < 8. It
follows that for every R there exists C3(R) > 1 such that C;(R) = land Co(R)~' < FY(&) <
%

C2(R) for all |&| <R.

Part 4: Suppose € > 0. We saw in part 3 that there exist §,Ng s.t. e & < .Zy(§) < €f for all
Recall that .%#y(0) = 0 and .%},(0) = E(Sy)/Vn. So for all |§| < 8,

¢
Ae) = an0)+ [ (Fh0+ [ Fieda)dn.
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Since .7y = ¢ on [-6,8] and || < |§] < 6,

2
) = B 1 Jore (5 - B 0

6.3.6 Asymptotics of the rate functions.

The rate functions (1) are the Legendre transforms of Zy (&) = %logE(eésN ). Recall
that the Legendre transform of a strictly convex function ¢ : R — R is the function ¢* :
(inf@’,sup@’) — R,

¢*(n) =&n — (&) for the unique & s.t. ¢'(§) = n.

On its domain, ¢*(n) = max{{n — ¢(§)}.

Lemma 6.17 Suppose ¢(&) is strictly convex and twice differentiable on R, and let @' (+o0) :=
glim ©'(&). Then the Legendre transform @* is strictly convex and twice differentiable on
—>foo

(¢ (—o0), @' (+0)), and for every & € R,

(¢ (1) =19 (1) — @(2), (@) (¢'(t)) =1, (¢%)"(¢'(1)) = (6.3.31)

Proof. Under the assumptions of the lemma, @’ is strictly increasing and differentiable. So
(@)1 (¢ (=), ' () — R is well-defined, strictly increasing and differentiable, and

o (m) =n(¢")"'(m) — ol(¢)~'(n)]
The lemma follows by differentiation of right-hand-side. U

Proof of Theorem 6.2 on the asymptotics of the rate functions .7y := .7

Part 1: Since .Zy is strictly convex and smooth, .7}, is strictly increasing and continuous. So
FNl-1,1] = [F(=1),Z(1)] = [a},by], and for every N € [a),by], there exists a unique
& € [-1,1] such that #4(&) = n. So dom(.Zy) D [a), bl

By Theorem 6.1 there is C > 0 such that C~! < Z; < C on [—1,1] for all N > Nj. Since

F4(0) = E2% and F,(p) = F(0) + J§ FH(E)dE, we have

E(S
by = .F4(1) > %+C—1 cay = Fh(—1) <
N

So dom () 2 [aly,bY] 2 [%—C*,%qtcfl] for all N > No.

Part 2 follows from Lemma 6.17 and the strict convexity of .#y on [—R,R].

Part 3: Let Jy := [% —C_l,%;’) —|—C_1] In part 1 we constructed functions &y : Jy —

[—1,1] such that Z(Ey(N)) = 1.
Clearly &y (ngN)> = 0. Recalling that C~! < Z{/ < C on [—1,1], we see that &{(1) =

N

1 —1
FIE ) € [C™",C] on Jy. Hence

Env(m)] < Cln — Z2¥| for all € Jy, N > No.
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Fix 0 < € < 1. By Theorem 6.1(4) there are §,Ng > 0 s.t. e ¢ < .7 < ¢® on [-6, 6] for all
N > Ne.1If [ = )| < 6/C, then ()| < 8, and Z{(En(n)) € [, 7).

Since .7y (0) = 0 and .7}, (0) = E(VSN> we have by (6.3.31) that Fy(522)) = 7 (E0M)) = 0
and 7y(n) = 1/Zy(En(N)) € e, €f]. Writing

n a
() = AR + fsy (%«E&SN“H Jes fp’v’(ﬁ)dﬁ> da,
1%

VN
we find that Zy(n) = e 5 (n — = E(Sy )) forall m s.t. [ — SN | <d/C.

Z_N c |:E(SN)_5 ]E(SN)

Part 4: If 25 5 0, then +5 } with 8y — 0. By part 3,

Vn VN N Vn
2
() ~ b (2E20)", whence V#iv () ~ § (%) ‘ .

Let Hy(n) denote the Legendre transform of Py (&)/Vy. We will compare Hy(n) to Zx(1).
This is needed to link the change of measure we performed in section §6.3.3 to the functions
#y which appear in the statement of the local limit theorem for large deviations.

Lemma 6.18 Suppose R > 0 and Vy # 0 for all N large enough. Then

(1) Hy is well-defined and real-analytic on [%‘(,—;R) Pu(R ] for all N large enough.

(2) There exists ¢ > 0 such that Hy(-) is well-defined and real-analytic on

<% —c, w + c) for all N large enough.

Proof. Lemma 6.13 and its proof provide real analytic maps

P, (—R) PL(R P,
Ex { N )7 v ( )} S [-R.R] st v (En (1)) —.
\%N; \%N; \%N;
Hence Hy(n) = [§N( )Py(E(n)) — Pv(&(n))] is well-defined and real-analytic on the in-
terval [%NR), P,VEV )]. This proves part (1). Part (2) follows from Lemma 6.13(2). ]

Lemma 6.19 Suppose Vy # 0 for all N > Ny, then 3¢ > 0 such that

(1) dom(Zy) Ndom(Hy) > [% — ¢, ) ] forall N > N,

(2) Recall that [a§,bR] = [.Z},(—R), F},(R)]. For every R > 0 there exists C(R) > 0s.t. if z/Vy €
[aR bR and N > N, then

[V In () = VwHn ()| < C(R).

(3) For every € >0, 36,Ne > 0 s.t. if N > N¢ %

}VNfN(%) — VNHN(%)‘ <e.

Proof. Part (1) is a direct consequence of Lemma 6.18 and Theorem 6.2(1).

To prove the other parts of the lemma, we use the following consequence of Lemma 6.12(6):
For every R > 0, for all N large enough, for every 1 € [ak,bX], there exist 515,1),‘@]&,2) €—-(R+
1), (R+1)] such that
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P/ (1)
BEv) _y me@)=n.
Vn

Arguing as in the proof of part 3 of Theorem 6.2, we can also find a constant C(R) such that

&V < CR)|n — =],
It is a general fact that the Legendre transform of a convex function ¢ is equal on its domain
to @*(n) = sup{&n — @(&)}. Thus for every z € [af Vi, bR V],
¢

Vv I (%) = VNSll]D{5Vi —yN('ﬁ)} Vv (‘SN V 9\N(§1Sf2)))

& N

2) 2z PN(ﬁ(z))
< Wy (gN — — —N) + Ay (R+1), see Lemma 6.12(5)
Vy Vy

z (b))
SOVNfN(Z) VNHN( )<AN(R+1)

Similarly, one can show that VNHN( ) VN IN (ﬁ

>+AN(R+1)

An(R+ 1), whence

sup sup
NZN() S [G§VN7b§IVN]

Vv PN ( ) VvHy )‘ < sup AN R—I— 1)

N>N,

=

Part (2) now follows from Lemma 6.12(5).
If instead of taking z/Vy € [aX, bR] we take z/Vy € (

=
7%}
2
C/j

C4, and the same argument will show that

sup  sup Vv SN ( ) VvHy Vi)' < sup AyN(C9).
N>Ny | z—E(Sy) ‘<8 N N>Ny
VN -
Part (3) follows from Lemma 6.12(5). U

6.3.7 The local limit theorem for large deviations.

Proof of Theorem 6.5. We give the proof in the non-lattice case; the modifications needed for
the lattice case are routine.

Suppose f is an a.s. uniformly bounded additive functional of a uniformly elliptic Markov
chain X. We assume that f is irreducible, and that f has algebraic range R. In this case f is not
center-tight, and Vi := Var(Sy) — oo (see §2.1). There is no loss of generality in assuming that
Vy # 0 for all N.

Recall that [ay, by] = [Z},(—R) E%N),fl(,(R) — Eg,fv’v)], and suppose

zv — E(Sw)

an,by).
Vi € lan,bn]
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Let hf (1) :=hn(+, &), pu(&), and Py (&) be as in §§6.3.2, 6.3.3. The assumption on zy allows us
to construct &y € [—(R+1),(R+1)] as in Lemma 6.13:

Py(éy) =zvand &y =0 (ZN—‘I/EM) .

N

Define a Markov array X := {X,EN) :1 <n <N+ 1} with state spaces (S, Z(S,), U,) (the
state spaces of X), and transition probabilities

~(N) o ENfa(xy) hn+1(y,€N)
Ty e (X,dy) =€ & (x, E)

Letf = {f,SN) :1<n<N+1,N € N} where f,EN) := fu, and set

ﬂanlJ’»l (X, dy) .

Sy = AEN ZV) 4 & Z).

Recall that e¥/r, h,, and eP*(5V) are uniformly bounded away from zero and infinity, by

~(N)

n,n+1
which are bounded away from zero and infinity uniformly in N. It follows that X is uniformly
elliptic, f is a.s. uniformly bounded, and the structure constants of (X, f) are equal to the structure
constants of (X,f) up to a uniformly bounded multiplicative error. Thus

the assumption on f, and Lemma 6.8. So . ’ | (x,dy) differ from 7, ,(x,dy) by densities

(1) ()? ?) and (X,f) have the same algebraic ranges, co-ranges, and essential ranges. In partic-
ular, (X, f) is irreducible and non-lattice.

(2) (X f) is stably hereditary (see Examples 3.5 and 3.61in §3.2.3).

(3) Vy := Var(SN) —> oo (because Vy = quv 3 U2 =< Vy — oo).

Furthermore, by the choice of &y, E(Sy) = E¥(Sy) = zy + O(1), s

ZN-E(S;N)_ L
W‘O(m> [E=a

Therefore §N satisfies the local limit theorem (Theorem 4.1):

Po(Sy —zy € (a,b)) ~ |a —b]/\/27ﬂ7,§,’v

for every x € &1 and (a,b) # @.

We will translate this into an asymptotic for P(Sy —zy € (a,b)). For all N large enough, for
every x € Gy,

Py[Sn —zn € (a,b)] = V(N =Enan
(V)

N En
h X h3
% Ex <€§NSN N+1( NJrl) . ( ) . eéN(ZN—SN) 1(a7b) (SN . ZN))

PN (EV Y () thNH( Xy

= P& -t Y (), (hngsﬁg ¢ab(SN—zzv>) (6.3.32)

where @, (1) == 1(4) (t)e= 5N,
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The pre-factor simplifies as follows. By construction N (5N ) — vr. Thus
N

Evav—Pv(én) =Vn (éN‘Z/—Z — %j/\f)) =Wy (gNPXJ‘(/f]N) B PN‘(/f,N)> .

So
Py(En)—Envan — e_VNHN(‘%) (6.3.33)

)

where Hy (1) is the Legendre transform of Py(§)/Vy.
Using the mixing LLT for Markov arrays Theorem 4.3, one can see that

v
- v (1/h3 ) b
Ex (hffil(Xffil) L0 (Sn — )) ~ ( ) / e SVt (6.3.34)

\/ 27ﬂ7]§N

as N — 0. To do this approximate ¢, in L'(R) from below and above continuous functions

with compact support, and approximate hf\,’\ﬂrl in LI(GI(\?QI,,%’ (6](\],\21), “18\21) from above and

below by finite linear combinations of indicators of sets with uniformly bounded measure (here

ulslj\j-)l is the distribution of Xls,li)l).

Since &y is bounded, Lemma 6.12(4) tells us that ‘71§N ~ Py(En) as N — 0. Since Hy(n) is
the Legendre transform of Py(§)/Vw, and Py, (En)/Vv = zv/ Vi,

. P// V
Ve~ V- ( N<5N)> = N as N—oo, (6.3.35)
Vv HN(W)

Substituting (6.3.33), (6.3.34), and (6.3.35) in (6.3.32), we obtain the following:
e—VNfN(‘%) b

\/27'L'VN a

y [eVNﬂN(Z )=V (L) H//(M)} X [th(x)uNH( )]
I N+1/ 4

P [Sny —zn € (a,b)] ~ [ egNtdt] X

hiN

.

-~ -~

P () Py (on 2 )
Let ny := ZN‘I,EM then &y = Ey(ny) where Ey : [av, by] — [—(R+ 1), (R+1)] is defined
implicitly by Py (En (1)) = NV + E(Sy). Lemma 6.13 shows that &y (+) is well-defined.
Notice that there exists a constant L = L(R) such that |ny| < L(R). Indeed, ny € [aX,bR] and

|aR|, |b | <|Z'(£R) —.Z'(0)| <R sup .Z,, which is uniformly bounded by Theorem 6.1(3).
[—R.R]
The functions Py : [~L,L] — R are defined by

B(Sn) ) _ E(Sy)
() 1= AT W (5 ),

Lemma 6.19 and Theorem 6.2 say that there exists C such that
C ' <pn(n) <Cforall N and |n| < L.

They also say that for every € > 0 there are 6,Ng > 0 s.t.



162 6 Local limit theorems for large and moderate deviations

e £ <pn(n) <efforall N > Ng and || < 6.

av—E(Sn) w—E(Sy)
f &= Ve )N%, 1.

The functions py : &1 x (—c,c) — R are defined by

In particular, i — 0, then Py (

P m) o= Iy (x £ () s (m) |

By Lemma 6.8, there exists a constant C such that

Cc ' <py(x,n) <Cforall N and |n| < L.

By Lemma 6.10 and the obvious identity £,(-,0) = 1, ||h§ —1|eo §—> 0 uniformly in n. Since
—0

|&(n)| < C|n|, for every € > 0 there are §,Ng > 0 such that
e <Ppylx,n) <efforallx € Sy, N > Ng, and |1| < 6.

Setting py := Py - Py We complete the proof of theorem in the non-lattice case. The modifica-
tions needed for the lattice case are routine, and are left to the reader. O

6.3.8 Rough bounds in the reducible case.

Proof of Theorem 6.6: We proceed as in the proof of Theorem 6.5 in §6.3.7, but using the
rough bounds of §5.2.5 instead of the precise LLT to estimate the probabilities for the change
of measure.

Let 24 = 100K + 1 where K = ess sup(f). Then using Theorem 5.4 and the assumption that
v € [Fy(€),bR] we get that there exist a constant ¢ = ¢(R) and &y = Ey (é—’;) € [e,R+1]
such that for all N large enough,

VVP(Sy —zy € [O,fi]).

e—VNfN(‘%) (6.3.36)

Note that Theorem 5.4 is applicable since /2 > 26(f) due to Corollary 3.3).

Since P(Sy > z,) > P(Sy — zw € [0, A]) the lower bound follows.

Likewise applying Lemma 5.11 we conclude that there is a constant C* = C*(R) s.t for all N
large enough we have, uniformly in j € NU{0},

VVNP(Sy —zy € [hj,h(j+1)])

< Cre NN,
o on(i) -

Summing over j we obtain the lower bound. U

6.4 Large deviations threshold

The results of this chapter are all stated for zy s.t. for some R > 0 and all sufficiently large N,

W € [%,Zﬁ]. In this section we will discuss how restrictive is this assumption.
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We say that a sequence {zy} is R-admissible if there is a constant Ny s.t. for N > Ny &y €
[—R,R] such that Py, ({x) = zy. A sequence {zy} is admissible if it is R-admissible for some R.

A number z is called reachable (respectively R-reachable) if the sequence {zVy} is admis-
sible (respectively R-admissible).

We denote the set of R—reachable points by 6% and the set of reachable points by . Since
Py, is monotone increasing,

int(%) = (c_,cs)
for some ¢ = ¢4 (X).

Example 6.20 (Sums of iid’s)

N
Let Sy = Z X,, where X, are iid random variables having law X with expectation zero and
n=1
variance one. Recall from Example 6.2 that in this case .#y does not depend on N 2 so by
property (ii) of Example 6.2 we obtain

c_ =essinf(X), ¢4 =esssup(X). (6.4.1)

Then Sy /N € [c_,c| almost surely for all N, and therefore P[Sy — zN € (a,b)] is zero when
z & [c_, c4]. Henceforth we refer to such z as “irrelevant.”

Not all relevant z are reachable: z is reachable only when z € (¢_, ¢ ). Our results do not apply
for z = c4.. Indeed different asymptotic behavior may hold for zy s.t. ‘Z,—’[‘\’, — ¢4+, see Example 6.1.
Still, the large deviation LLT for P[Sy — zN € (a,b)] holds for most “relevant” values of z. Our
next example shows that this is not always the case:

Example 6.21

Let X, = (Y,,Z,) where {Y,}, {Z,} are two independent sequences of iid random variables
having uniform distribution on [0, 1]. Fix a sequence {p, } and let

Z, ifY, > p,
2 it Y, <p,.

f n (szn) = {
We now discuss two possible choices of {p, }.
(a) Let f’ be defined as above with p, = % Then f} are iid so by discussion of the Example

6.20 the results of the present chapter apply to P(Sy € zN + (a, b)) provided that z € (0,2) while
the possible range of SNT(f) is [0,2].
(b) Let f” be defined as above with p, tending to 0 as n — o. Since Var(Z,) = f it follows

N
that Vy = (1+ 0(1))E. We shall show below that in case (b)

¢ =0, cy=12. (6.4.2)

In other words the results of the present chapter apply to P(Sy (f”) € zN + (a, b)) provided that

z € (0,1). On the other hand, the possible range of %fﬁ) is [0,2] since for each fixed N the
distributions of Sy(f') and Sy(f") are absolutely continuous with respect to each other. We will
see that the reason our results do not apply for z > 1 is that in that case P(Sy(f”) > zN) decays
super exponentially.

2 Note that in this case we also have Py (&)/N = Zy (), since Ly ¢ (e5+1) = E(e5X) - €5, whence p, (&) = InE(e5).
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In this section we discuss methods for computing ¢ (in particular, proving (6.4.2)) and pro-
vide sufficient conditions for good behavior, when (¢_, ¢ ) covers “most” relevant z.

Lemma 6.22 VR > 03¢ = €(R) > 0 s.t. if {zn } is R-admissible, and |7y — 2| < €V, then {Zy }
is (R+ 1)-admissible.

Proof. By the uniform strict convexity of % on [—(R+1),(R+1)], there exists € > 0 such that

Py(R+1)>zy+€Vyand Py(—(R+1)) < zy — €Vy. O
Corollary 6.23 (a) € is open, and (b) if E(S,) = 0, then € is a non-empty neighborhood of
zero.

Proof. Part (a) follows from Lemma 6.22. Part (b) follows from (6.3.23). [

Without the assumption E(Sy) = 0, ¥ may be empty. Even though Theorem 6.2 provides
many admissible sequences, the associated ‘Z,—’X] need not converge:

Example 6.24 An example with € = & and with admissible sequences {zy} such that 7y /Vn
does not converge.

Let N, = 10%. Consider X,, = a,, + U,, where U, are iid having uniform distribution on [0, 1] and

10 if Ny <n < Nogyr,
aA, =
" =10 if Ny <n < Npgyo.

With probability one Sy,, ., > Nogy1, Shy, < —Nog. The first inequality gives € N (—,0] = @,
the second one gives ¢’ N [0,+e) = &. Hence ¢ = @.

. . . . Z .
In this example, if {zy} is an admissible sequence then %L‘ > 1 and % < —1. Since

— N io &
Vn = 15 the ratio W does not converge.

Theorem 6.7. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, with essential range 7 or R. The following are equivalent:

(a) {zn} is admissible.

(b) I > 0,1 > 0s.t. V{Zn} with |Zy — zy| < €Vy and Vay, by s.t. |ay|, |by| < 10 and by — ay >
1 we have P(Sy € Zy + (an,bn)) > N'V.

(c)3e>0,1>0s2P(Sy>zv+eVy)>n"Y and P(Sy < zy — €Vy) > n'.

Example 6.25 The case € = 0.

N

Let Sy = Z X, where X, are iid supported on [o, ] and such that X has an atom on the right
n=1

edge: P(X = B) = y > 0. Then P[Sy > BN] = P[Sy = BN] = ¥V while P[Sy > BN +1] = 0.

Thus {BN} is not admissible. This example shows that taking € = 0 in part (c) of Theorem 6.7

gives a condition which is not equivalent to the conditions (a)—(c) of the theorem.

Proof. (a) = (b) : If {zx } is admissible then by Lemma 6.22 3¢ > 0 such that if |7y —zn| < eVy
then {Zy} is admissible. Now (b) follows from formula (6.3.36) in the proof of Theorem 6.6.

(b) = (¢) : The bound P[Sy > zy + €Vy] > 0"V follows from part (b) with Zy = zy + €V,
ay =0, b, = 1.1. The lower bound is similar.

(¢) = (a) : Our assumptions on the essential range imply that (X,f) is not center-tight, and
therefore Viy — co. By Lemma 6.12(5) Py(R) — Vy.#n(R) is eventually bounded, and therefore
for some ¢(R) > 0 and all N > N(R),
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This implies that for all N large enough Py(R) > R(zy + (€/2))Vy.
Since Py(0) = 0 the Mean Value Theorem tells us that 3&; € [0,R] such that Py (&y) >
% A%
v+ TN Likewise we can find &y, € [—R, 0] such that Py (&y ) <zy— TN By the Intermediate

Value Theorem &y € [y, & ] s.t. PY(En) = 2w l

Corollary 6.26 Under the assumptions of the previous theorem, if E(Sy) =0 then ¢y = sup{z:
J(z) < oo}, where

logP(Sy € zV, —1.1
J(z):limsup‘ ogP(Sy € 2V + [ -1, ])|
Nesoo logVy

Proof. By Theorem 6.7(b), if z € (¢, ¢4 ), then J(z) < oo. So ¢ < sup{z:J(z) < oo}.
To see the other inequality, note that ¢, > 0 (by Corollary 6.23), and J(0) < o (by (6.3.36)).
We will show that

1
3 sup{z:J(z) < oo} <Z <sup{z:T(z) < e} = 7 is admissible, (6.4.3)

and deduce that ¢y > sup{z: J(z) < oo}.
Fix Z as in (6.4.3), then 3 > 0 s.t. J(z+2€) < o0 and 7 — € > 0. Necessarily 31 > 0 s.t. for
all N large enough

P[Sy > (z+&)Vn] > P[Sy € (z+2€)Vy + [~ 1,1]] > 0"
1
PSy < (z—€)Vy] 2 PISy < 0] = S +o(1) = 0"
By Theorem 6.7(c), z is admissible. ]

We say that (X, f) and (X, ) are related by the change of measure if f, = f, and 7, (x,dy) is
equivalent to Ty (x,dy) with

Lemma 6.27 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If (X,f) and (X f ) are related by the change of measure and Vy > cN for some
¢ >0, then {zn} is (X,f)-admissible iff {zy'} is (X,)-admissible.

Proof. Since X is uniformly elliptic, X is uniformly elliptic. The exponential mixing bounds for
uniformly elliptic chains imply that Vi := Var[Sy (X, f)] and Vi := Var[Sy (X, f)] are both O(N).
Without loss of generality, cN < Vy < c1cy.

Under the assumptions of the Lemma, the structure constants of (X,f) are equal to the

structure constants of ()?,F) up to bounded multiplicative error. By Theorem 2.7, Vy =
Var[Sy (X,f)] < Vy as N — 0. So 3¢ > 0s.t. ¢cN < Vy < ¢~ 'N.
Let {zx} be (X,f)-admissible. Then there are € > 0,1 > 0 such that

P[Sy > zv+eW] > 1", P[Sy <zyv—eVy] >nP.

It follows that P[Sy (X, f) > zy+eW] > 1V, P[Sy(X,f) <zy—&Vy] > 1N where ] = 1€ and
€ := cce. Hence {zy} is X-admissible. O
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Lemma 6.28 Let f and f be two a.s. uniformly bounded additive functionals on the same uni-
formly elliptic Markov chain. Suppose Vy := Var[Sy(f)] — oo and

NNERGECHGIE
N—soo Vi

=0. (6.4.4)

Then {zy} is f-admissible iff {zy'} is f-admissible.

Proof. We write Sy = Sn(f), and Sy = Sn(f). By the assumptions of the lemma, Vy =
Var(Sy) ~ Vy as N — oo,
Let {zy} be f-admissible. By Theorem 6.7(b), there are € > 0,7 > 0 such that

P[Sy > zv+€eVw] >0, P[Sy <zv—eVy] >n".

It now follows from (6.4.4) that for large N
~ [~ £~ ~ [~ €~
P SNZZN‘FEVN} >, P[SNSZN_EVN > .
Hence {zy} is f-admissible. O

We end this section by proving (6.4.2).

Proof of (6.4.2). To show that ¢, < 12 assume by contradiction that int(%’) contained some
z> 12. Then Theorem 6.6 would imply that

P[Sy > zVy] > 0" for some 1 > 0. (6.4.5)
Note that
log B(¢5 )y — Jog (pnezé (1 _pn)E<e§U[0,1})>

S _1 S _1
e e
=log (Pnezé +(1—py) ) nﬁw\ log

5 S

because p, — 0. So

1 N 12 N £ |
6= gpeefle(0) R (504 v ()

The last expression is strictly smaller than 12& if & > 0. Therefore for any £ > 0 we have for
sufficiently large N, E <e§SN > < 26, By Markov’s inequality,
<

P[Sy > zVy] eU2=IWE for all € > 0 and N sufficiently large.

But this is incompatible with (6.4.5), since z > 12. Therefore ¢, < 12.
Next we show that (0, 12) €Int(%). By Theorem 6.7 it suffices to show that for every 3 :=
% €(0,1), 3e,n > 0 such that P[AZ (N)]>n" where

Ae(N)=P[Sy > (3+&)N], A (N) =P[Sy < (3—&)N].

Take € > 0 so small that 3 := z+ € < 1. Since Sy > Zy we have
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N
Pisy >N >P| Y Z, >3V | .
n=1

The RHS is greater than some 77" in view of Theorem 6.6 and equation (6.4.1) from Example
6.20. It follows that ¢t = 12.
The proof of the fact that ¢~ = 0 is similar but easier. U

6.5 Notes and references

The reader should note the difference between the LLT for large deviations and the large de-
viations principle (LDP): LLT for large deviations give the asymptotics of P[Sy — zy € (a,b)]
or P[Sy > zy]; The LDP gives the asymptotics of the logarithm of P[Sy > zx], see Dembo &
Zeitouni [35] and Varadhan [149].

The interest in precise asymptotics for P[Sy > zy| in the regime of large deviations goes
back to the first paper on large deviations, by Cramér [31]. That paper gave an asymptotic
series expansion for P[Sy — E(Sy) > x| for Sy =sums of iid’s. The first sharp asymptotics for
P[Sy — zv € (a,D)] appear to be the work of Richter [126],[74, chapter 7] and Blackwell &
Hodges [14].

These results were refined by many authors, with important contributions by Petrov [116],
Linnik [96], Moskvin [106], Bahadur & Ranga Rao [11], Statulavicius [144] and Saulis [134].
We refer the reader to the books of Ibragimov & Linnik [74], Petrov [117], and of Saulis & Stat-
ulevicius [135] for accounts of these and other results, and also to the survey of Nagaev [110]
for a discussion of the case of sums of independent random variables which are not necessarily
identically distributed.

Plachky and Steinebach [118] and Chaganty & Sethuraman [22, 23] proved LLT for large
deviations for arbitrary sequences of random variables 7;, (e.g. sums of dependent random vari-
ables), subject only to assumptions on the asymptotic behavior of the normalized log-moment
generating functions of 7,, and their Legendre-Fenchel transforms (their rate functions). Our
LLT for large deviations are in the spirit of these results.

Corollary 6.4 is an example of a limit theorem conditioned on a large deviation. For other
examples of such results, in the context of statistical physics, see [39].

We comment on some of the technical devices in the proofs. The “change of measure” trick
discussed in section 6.3.1 goes back to Cramér [31] and is a standard idea in large deviations.
In the classical homogeneous setup, a single parameter Ey = & works for all times N, but in our
inhomogeneous setup, we need to allow the parameter Ey to depend N. For other instances of
changes of measure which involve a time dependent parameter, see Dembo & Zeitouni [34] and
references therein.

Birkhoff’s Theorem on the contraction of Hilbert’s projective metric is proved in [13]. Results

similar to Lemma 6.7 on the existence of the generalized eigenfunction h,% were proved by many
authors in many different contexts, see for example [81], [56],[15], [131], [54], [69], [67]. The
analytic dependence of the generalized eigenvalue and eigenvector on the parameter & was
considered in a different context (the top Lyapunov exponent) by Ruelle [129] and Peres [115].
Our proof of Lemma 6.10 follows closely a proof in [54]. For an account of the theory of real-
analyticity for vector valued functions, see [43] and [151].






Chapter 7
Miscellaneous examples and special cases

In this chapter we consider several special cases where our general results take stronger form.
These include homogeneous Markov chains, asymptotically homogeneous additive functionals.
We also explain how continuity assumptions can be used to strengthen the results of the previous
chapters.

7.1 Homogenous Markov chains

A Markov chain X = {X, } is called homogeneous if its state spaces and transition probabilities
do not depend on n

G,=6, u,=u, m,(x,dy)=mn(x,dy) foralln,

and X, is stationary.
An additive functional on a homogeneous Markov chain is called homogeneous if f = {f, }
and

fn(x,y) = f(x,y) for all n.

The LLT for homogeneous countable state Markov chains is due to Nagaev. The following
version, which allows continuous spaces, follows from results in [73].

Theorem 7.1. Let f denote an a.s. uniformly bounded homogeneous additive functional on a
uniformly elliptic homogeneous Markov chain X.

1
(1) Asymptotic Variance: The limit 6% = A%im NVar(SN) exists, and 6% = 0 iff we can repre-
—>00

sent f(X1,Xz) = a(Xz) —a(X)) + K a.s. where a : & — R is a bounded measurable function
and X is a constant, equal to E(f(X;,X2)).

(2) CLT: If 6> > 0, then ﬂ\/f\(]‘gm converges in probability as N — o to the Gaussian distribu-

tion with mean zero and variance o>

(3) LLT: If 6% > 0 then exactly one of the following options holds:

(a) Non-Lattice LLT: If % — z, then for every interval [a, b,

~2*/(20%)

V21o2N

P[Sy —zv € [a,b]] = [1 +0(1)] (b—a), as N — oo

169
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(b) Periodicity: There exist k € R,t > 0 and a bounded measurable function a : S — R such
that f(X] ,Xz) —|—a(X1) — a(Xz) + K €tZ a.s.

Proof. Let Viy := Var(Sy) and f; := f(Xk,Xx+1), and assume without loss of generality that
E[f(X1,X2)] = 0.

Proof of part (1): By stationarity, E(f,,) = 0 for all n, and so

N
W=E(f)=YE()+2 Y  E(fufw).
n=1

1<m<n=N

By stationarity, E(f, fin) = E(fof1—m) and

Ly B2 2N_1IE K
NN = (fo) + k; (fofk)( _]T]>'

IE(fofm)| decays exponentially (Prop. 1.11), so ¥ |E(fofk)| < e, whence

6% := lim %Var(SN) :E(f(%)—FZiE(fofk). (7.1.1)
k=1

N—soo

(This identity for 62 is called the Green-Kubo formula.)

Let u, denote the structure constants of (X, f). The homogeneity assumptions implies that u,
is independent of n, say u, = u for all n. It follows that Uy = u% + -+ uf = (N —2)u*. Now
we have two cases:

(I) u > 0: In this case by Theorem 2.7, Viy < Uy < N, whence 62> 0.
(I1) u = 0: In this case, Var(Sy) = O(1) by Theorem 2.7, whence 62 = 0 and f is center-tight.
By the Gradient Lemma, (Lemma 2.9), f(X1,X>2) = a»(X») — a1 (X;) + k for some ay,a; :
S — R bounded and measurable and k¥ € R. In the homogeneous case, we may take
aj = ap, see (2.2.4) in the proof of the Gradient Lemma. So f(X;,Xz) =a(X2) —a(X;) +
a.s.

Proof of part (2): This follows from part (1) and Dobrushin’s CLT.

Proof of part (3): By homogeneity, the structure constants d,(&) are independent of n, and
they are all equal to d(&) := E(|e’*] — 1|?)'/2, where I' is the balance of a random hexagon at
position 3. So Dy (&) = YN 1 d2 (&) = (N —3)d*(&).

If d(&) # 0 for all £ # 0, then Dy (&) — o for all & #£ 0, f is irreducible by Theorem 3.2.
and the LLT follows from Theorem 4.1.

If d(&) = 0 for some £ # 0, then Dy (&) = 0 for all N, & is in the co-range of (X, f), and our
reduction lemma says that there exist ¢, € R and uniformly bounded measurable a,, : G — R and
Iy (X, Xn11) such that Y hy, (X, X1 1) converges a.s., and f(X,, X, 11) +an(Xn) — ani1 (Xns1) +
Iy (X, Xns1) + K € %—”Z a.s.

Let Ay (Xn, Xnt1,---) i= an(Xn) + Xion bk (X, Xi41), then for all n

2
fn(Xan—i—l) —|—An(Xn,Xn+1 ye - ) — A (Xn—H s Xn+2,s - - ) + K, € —7Zas.. (7.1.2)

§

We need to replace A;(X;, X+ 1,...) by a(X;). This is the purpose of the following proposition,
whose proof will complete the proof of the theorem:
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Proposition 7.1 Let X be a uniformly elliptic homogeneous Markov chain with state space
(6,%8,1), and let f : S x S — R be a measurable function such that ess sup | f(X1,X2)| < eo.
If there exist measurable functions A, : &~ — R and &, € R satisfying (7.1.2), then there exist
kK € R and a measurable a : & — R such that

f (X, Xnt1) +a(Xn) —a(Xut1) + K € Z as. for all n.

Proof. Throughout this proof, let Q := &N, equipped with the c-algebra .% generated by the
cylinder sets
AL, A ={xe&Y:x;cA (i=1,....n)} (A€ B)

and the unique probability measure m on (Q2,.7) s.t.
mlAL,...,Ay =P[X| € A1,.... X, € Ay]

Let 0 : Q — Q denote the left-shift map, o[(x,)n>1] = (Xn+1)n>1. The stationarity of X trans-

lates to the shift invariance of m: moo~! = m.

STEP 1 (Zero-One Law): Let 6™ ".% := {06 "(A) : A€ Z}, then forevery A € (), 0 "Z,
either m(A) =0 or m(A) = 1.

Proof. Fix a cylinder A := [Ay,...,A(].
By uniform ellipticity, for every cylinder B = [By,...,B,],

mANe~ B =m([Ay,...,Ap,%,By,...,By)) > ggm(A)m(B).

Applying this to cylinders [Q2,...,Q,By,...,B,]| we find that

k times
m(ANc~N(B, ... B,]) > ggm(A)m(B) for all k > 1.
By the monotone class theorem,
m(ANo~HE) > gym(A)m(E) for every F—measurable E and k > 1. (7.1.3)

Suppose E € ();>1 0 "%, and let A be an arbitrary cylinder of length £. By the assumption
onE,E=0""E,withE, €.% andn > {. So

mANE)=m(ENc "E,) > em(A)m(E,) = egm(A)m(E).

m(ANE)

We see that m(A)

> gom(E) for all cylinders A, whence
E(1g|X1,...,Xy) > gom(E) for all £.

By the martingale convergence theorem, 1g > gym(E) a.e., whence m(E) =0 or 1.

STEP 2: Identify f with a function f:Q — R s.t. f[(x;)i>1] = f(x1,x2). Then there exist A :
Q — R measurable and k € R s.t. f+A —Ao o0 + Kk € Z almost surely.

Proof. The assumptions of the proposition say that there exist A, : € — R measurable and
K, € R s.t.

foo"+A,006" —Api1 00" + K, € Z m-a.e. for every n.
1

27if _ Wa —

= m we have e Wroe =

, . n n . _
Let w,, := ¢?™4n_then ¢?7/°0" W0 _ — | jp-a 5. Since mo &
Wy 100

1 a.s. for all n. This gives the chain of identities
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. . havk—1 k
Wy, = e—szwn+1 06 = e—2m(f+focs)wn+2 002 = ... — ¢ 2WLjgfo0 Wik O ok,
It follows that wy, /w1 = (Wpik/Wnakr1) 0 oF for all k. Hence wy, /w,, 1 is 6 K. Z —measurable
for all k. By the zero-one law, w;, /w1 is constant almost surely. In particular, there exists a

constant ¢ such that A, —A| € ¢+ 7Z m-a.e., and the step follows with A := A and K := k1 +c.
STEP 3: There exists a : 2 — R constant on cylinders of length one such that f +a—aooc+K €
Z m-a.e.

Proof Let L: L'(Q) — L' (Q) denote the transfer operator of ¢ : 2 — Q, which describes the

oo~ !
action of o on mass densities on Q: o.[@du] = Lodu. Formally, Lo := dm‘g, mo , Where mg :=

¢dm. We will need the following (standard) facts:

(a) If ¢ depends only on the first m-coordinates, then L¢ depends only on the first (m— 1)V 1-
coordinates. Specifically, (LQ)[(yi)i>1] = ®(y1,---,Ym—1) Where

Dy, ym—1) =E[oX1,.... X)) Xi=yi (1 <i<m—1)];

(b) Lo is characterized by the condition [ WLodm = [ yoopdmVy € L*(S);
(c) Llpyoo)=yLo Vo c L,y c L™

(d) L1=1;

() Vo €L, L"¢ —— [ @dm in L.

Part (b) is standard. Parts (c¢) and (d) follow from (b) and the c-invariance of m. Part (a)
follows from (b), and the identity

/qu)dm=/wdm<poc‘l =/woofpdm=E[W(Xz,Xs,---)<p(X1,---,Xm>]
— E(y(X2,X3,.. ) E[@(X1, ..., Xn)[ X2, X3,...]) = E(w(X2, X3,...)E[0[Xa, ..., X))

= /w@dm

where = is because of the Markov property. To see part (e) note that it is enough to consider
@ € L™ such that [ ¢dm = 0 (otherwise work with ¢ — [ @dm). For such functions,

170l = [ sen(t"g)L"pdm= [ sen(L'¢)oc" - pdm
_ / sen(L"9) o a"E(¢|6".F ) dm < / E(p|o".F)|dm
The integrand is uniformly bounded (by || ¢||-), and it converges pointwise to E(¢| o ".%) =
E(p|{2,2}) =E(p) =0.
Let w := ™4 where A : Q — R is as in step 2, and assume w.l.o.g. that k = 0 (else absorb it

into f). Set S, = f+ foo +---+ foo" !, then e 2™/ = w/wo o, whence e 2" = w/wo o”.
By (c), for all ¢ € L'(Q),

. . 1
wL (e~ 2iSn ) = L (e~ Sy o 6" @) = L (we) LT> /w(pdm.

Since |w| =1 a.e., Im > 2 and 3¢ = @(x1,...,x,) bounded measurable so that [ wodm # 0.
For this ¢, we have



7.1 Homogenous Markov chains 173

w =Ll lim w,
n—e  [wodm

We claim that the right-hand-side depends only on the first coordinate. This is because
e 2mif ¢ is function of the first m coordinates, whence by (a), L(e_sz @) is a function of
the first (m — 1) v 1 coordinates. Applying this argument again we find that L?(e=2"52¢) =
Lle 2™/ L(e=2"/ )] is a function of the first (m —2) V1 coordinates. Continuing by induction,
we find that L (e 2" @) is a function of (m —n) V 1-coordinates, and eventually of the first
coordinate only.

, S
F(X1,X5)+a(X1) —a(X,) € Z almost surely. By stationarity, f(X,,X,+1)+a(X,) —a(Xyt1) € Z
almost surely for all n. O

We now determine the domain of the rate functions for large deviations. We note that the
results of Chapter 6 concern P[Sy > zViy] = P[Sy > z62(1 +0(1))N], while in large deviation
literature it is common to use the normalization P[Sy > zN]. To simplify the comparison with
other results we will assume till the end of this section that 6> = 1 which can always be achieved
by scaling f.

Let .y = ess sup Sy. Using the stationarity of {X, } and the homogeneity of f it is not difficult
to see that ., 1, < .7, + -%m, and therefore the limit
ess supSy N

s, = lim = lim —
T N N N—oo N

exists. Repeating the same argument for (—f) gives that

. essinfSy
5= lim ———
N—oo N

exists as well.
Recall the notation for large deviation thresholds ¢_, ¢ introduced in §6.4.

Theorem 7.2. Let f be an a.s. uniformly bounded homogenous additive functional on a uni-
formly elliptic homogeneous Markov chain, and assume f has zero mean and asymptotic vari-
ance 6> =1.Thenc, =s, andc_ =s5_.

Proof. We prove the first identity, the second one is similar.

First, for any € > 0, P[Sy > (s + €)N]| = 0 for sufficiently large N, whence by Theorem 6.7,
+ <s5,4.

Let K := ess sup|f|. For every € > 0, for all sufficiently large M,

Oy = P[SM > (5+ — S)M] > 0.

Let 0(X;,...,X;) denote the o-field generated by X;,...,X;. By uniform ellipticity, if E €
o(Xi,...,Xy+1) and F € 6(Xp43,. .., Xom+3), then P[ENF]| > &P(E)P(F) (see (7.1.3)). Con-
sequently,
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PlSam12) = 2(s4 — €)M —2K]

M 2M+2
2P [Z SeXi Xi) > M (s —€) Y filXa Xey1) > M55 — 8)]
k=1 k=M+3

M
> &P [Z JieXis Xie1) > M (54 — 8)] P
i=1

2M+2
Y X X)) >M(sy —g)| .
k=M+3

Thus by stationarity, P[Sy(y12) > 2(5+ — €)M —2K] > €08%. Applying this argument repeat-
edly, we find that for each /,

PlSr2ye = (54 —&)M —2K){] > (803M) :
(s4+ —€)M —2K

M+2
M — o we obtain ¢, > s, — €. Since € is arbitrary, ¢, > 5. 0]

Now Corollary 6.26 tells us that for all sufficiently large M, ¢ >

. Letting

7.2 Perturbations of homogeneous chains

Let (X,f) be a bounded homogenous additive functional on a uniformly elliptic Markov chain
with stationary measure { and transition probability 7 (x,dy) = p(x,y)u(dy). We consider non-
homogeneous perturbations (X f) of the form

Falx,y) = F(x,3) +ga(x,y) s Tou(x,dy) = P,y 1 (dy).

We assume that the strength of the perturbation decays at infinity. Namely for each € > 0O there
is ng such that for n > ng

llgnlle <€ and 1-—€<

Theorem 7.3. If the additive  functional g is center tight on X, then Gm(X f ) Gess(X,f). If g
is not center tight then Gess(X f) R.

Proof. We note that it suffices to prove the result in the case p, = p. Indeed by our assumptions,

1 _ Palxy)

27 pxy)
if n is sufficiently large. Since discarding a finite number of terms does not change the essential
range (since any functional vanishing for large n is center tight) we may assume that (7.2.1)
holds for all n. Now Example 3.8 shows that the essential range of the functionals defined via p
and via p, are the same. Thus we assume henceforth that p, = p for all n.

If g is center tight then the essential ranges of f and f are the same, so we shall assume that

g is not center tight, and prove that Dy (&,f) — oo for every & # 0. Let 0 := d,,(&,f) (the RHS
does not depend on n by stationarity).
Suppose first that 9 # 0. By Lemma 1.15(2) we have

02 = d2(E,) <8 |du(E,1)7 + du(&.8)?

™=

<2 (7.2.1)
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2

~ 0
Next, the assumption ||g, [l.c — 0 implies that d2(&, g) — 0. Accordingly d,,(f,&)* > 10
n—oo n—oo

for all n large enough, so that Dy (&,f) — oo as needed.
Next assume 9 = 0. In this case for any hexagon B, we have ¢/ (F1) = 1, where I'(f,)

denotes the balance for the additive functional f. Hence ¢5! (F) = elsl (gv‘), and so

dn(é, ) = dn(gag)‘

Let v := max,>y €ss sup |g,|, and fix 7y > 0 such that |e’ —1|? > 142 for all |¢| < 79. If n > N
and 0 < |n| < 7o(6w) ", then (3.3.7) tells us that
n?
d*(n,g) > 7u%(g) foralln > N +3.
By assumption, g is not center-tight, so ¥ u2(g) = oo. It follows that Dy(n,g) — o for all
0<[n| < 7(6mw)".

By assumption, yv — 0, so Dy(1,g) — oo for all n # 0. It follows that the co-range of g
equals {0}, and the essential range of g equals R. U

Next we discuss the large deviation thresholds for f,

Theorem 7.4. (a) If f is not a coboundary then ¢ (f) = ¢y (f) = s, (f).

(b) If f is a homogeneous gradient, B(g,) = 0 for all n, and g is not center tight, then ¢, (f) =
oo,  ¢_(f) = —oo.
Proof. The proof of part (a) is very similar to the proof of Lemma 6.28 so we omit it.

In the proof of part (b) we may assume that f = 0 since adding a homogeneous gradient does
not change the large deviation threshold. In particular in the rest of the proof we will abbreviate
SN = SN(8), Sny = Snyny(8) = ZZZ,} 8k(Xi, Xiv1), Vv = Var(Sy(g)). Since g is not center
tight, Viy — oo.

Assume without loss of generality that ess sup |g| < 1, then Var[gy(Xg,X;41)] < 1 for all k.
Divide the interval [0, N] into blocks

{nl,nz} U{ny+1}U {m,m} U---u |:nk,nk+]:| U{mr1+1}U {nk+2,N}

where n; is increasing, 1 < Var(Snjij) <2for j<k+1,and Var(S,, ,n) < L.

Since ||gnl|ee = 0, min{nj 1 —n;: € < j <k} [———> oo, Also, the analysis of §6.3.4 shows that
/—»00

1
— ) Var(S,;0,,,) = L.
VN ] J

In particular, the number of blocks By, is between Vi /2 and 3Vy /2.
LetM;= max |g;||-. Note that M; — 0. Therefore applying Dobrushin CLT to the array

njstsnjyy
{81/M}n;<i<n,,, we conclude that Sy, n; /4 /Var(Sp;n;,,) is asymptotically normal. In partic-

ular, for each z > 0 there exists 1 = 7(z) > 0 such that for j large enough and all x; € &,

P, (S

A uniform ellipticity argument similar to the one we used in the proof of Theorem 7.2 gives

>3z) > 1. (7.2.2)

njmjt1
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P (Sy > Bnz) = e,

where ¢ incorporates the contribution of blocks (with small j) where (7.2.2) fails.
Now Corollary 6.26 implies that ¢t > z. Since z is arbitrary, ¢ = 4. A similar argument
shows that ¢_(g) = —co. O

7.3 Small additive functionals.

The perturbations of f = 0 were analyzed in the previous section, however, since this case is of
independent interest it makes sense to summarize the results obtained for this particular case.

Theorem 7.5. Let g be a uniformly bounded additive functional of uniformly elliptic Markov
chain. Suppose that E(g,) = 0 and that lgll llgnlle = 0. Then
n—oo

either g is center tight in which case Z gn converges almost surely
n=1

or g is not center tight in which case Sy(g) satisfies non lattice LLT (4.1.1) and ¢+ (g) = too.

Proof. The non-center tight case was analyzed in §7.2. In the center tight case the results of
Chapter 2 tell us that g can be decomposed as

gn(x,y) = cn+ant1(y) — an(x) + hy(x,y) where ZVar(hn) < oo,
n
Changing a, if necessary we may assume that E(a,) = 0 in which case
E(gn) =0=E(hn+cn).

Therefore the additive functional h = h+c has zero mean and finite variance. Hence by Theorem

2.4 Z (hy + c,) converges almost surely. In summary Sy(g) — ay +a; converges almost surely,

n=1
and hence Sy (g) — ay converges almost surely. On the other hand equation (2.2.4) shows that
Al’im ay = 0 completing the proof. U
—>00

The following result which a direct consequence of Theorem 7.5 shows that for small additive
functionals a vague limit of the local distribution of Sy always exists.

Corollary 7.2 Let g satisfy the assumptions of Theorem 7.5. Then either and Sy converges a.s.
to some random variable . in which case for each continuous compactly supported function ¢

dim E(¢(Sv)) =E(¢())

or Sy satisfies a non-lattice LLT. That is, for each continuous compactly supported function ¢

exists we have

for each sequence 7 such that the limit z = lim

N—eo /Vy
o—3/2
lim WE(S) =E0(7) = T [ g(s
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7.4 Equicontinuous additive functionals

In this section we examine the consequences of topological assumptions on f and X. Specifically
we will say that (X,f) is equicontinuous if

(T) (S,, Py, Un) are complete separable metric spaces, %, are the Borel o-algebras, and ,, are
Borel probability measures;

(S) for every € > 0 there exists 6 > 0 such that for all x, € &, and n > 1, u,[B(x,,€)] > 6. Here
B(x,€) :={y € G, : dist(x,y) < €}.

(U) for every € > 0 there exists 6 > 0 such that for all n > 1 and x,,,y, € &,,, dist(x,,y,) < § =

|fn(xn) —fn(yn)| < E.

7.4.1 Range.

Theorem 7.6. Suppose (X,f) is equicontinuous and a.s. uniformly bounded. Assume in addition
the following:

(a) One-step ellipticity condition: Jgy s.t. for every n, m,(x,dy) = pn(x,y)Un+1(dy) where
& < Pn(xa)’) < 8(;1‘
(b) S, are all connected.

Then f is either irreducible with algebraic range R, or it is center tight.

; 0
Proof. Choose ¢; > 0 such that |¢"® — 1|? = 4sin? (5) > 167 forall || <0.1. We fix & #0,
and consider the following two cases:

(I) 3Ny such that |EI"(P)| < 0.1 for every position n hexagon P, for each n > Np.
(IT) 3ny 1 o and 3 position ny hexagons P,, such that |EI"(P, )| > 0.1.

In case (1), for all n > Ny, d2(E) = E(|*T —12) > ¢;E(I'?) = cju?. So either ¥ u? = oo and
then Y. d?(&) = oo for all £ # 0, and f is irreducible with essential range R; or ¥ u2 < oo and then
f is center-tight by Corollary 2.8.

In case (II), for every k there is a position n hexagon P, with |EI"(PB,, )| > 0.1. There is also
a position n; hexagon P,;k with balance zero (such hexagons always exist because we can take
Yng—1 = Xn,—1, Yn, = X, )- We would like to apply the intermediate value to deduce the existence
of a position ny hexagon P, such that 0.05 < EI'(P,,) < 0.1. To do this we note that:

o Because of the one-step ellipticity condition, the space of position n; hexagons is homeomor-
phicto 6, 2 x &, | x &} X &,p,.

o The product of connected topological spaces is connected.

o Real-valued continuous functions on connected topological spaces satisfy the intermediate
value theorem.

o The balance of hexagon depends continuously on the hexagon.

So P, exists. Necessarily, |¢’] Fn) — 1| > ¢, E22(P,,) =: ca.
. . = Xp—1 X . o
Write P, in coordinates: Py, := ( X, —2; yZiii ; y:i sYn.+1 |- By the equicontinuity of f, J& >
0 such that \e’fr (P) — 1> %cz for every hexagon P whose coordinates are in the €-neighborhood

of the coordinates of Py, . By the equicontinuity of i, and the one-step ellipticity condition, this
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collection of hexagons P have hexagon measure > 6 for some 0 > 0 independent of k. So
d%k(§> > %628.

Summing over all k, we find that Zd,%k (&) =oo. Since & # 0 was arbitrary, (X, f) has essential
range R. 0

7.4.2 Large deviation threshold.

Lemma 7.3 Suppose that G,, are metric spaces, f, are equicontinuous, and for each € > 0
there exists 0 > 0 such that if p,(x,y) > 0 then

7ta(x,B(y,€)) > 4. (7.4.1)
Suppose that Viy > cN and that
N N
inf Y £i(xj,x501) sup Y fi(x),xj41)
) X155 XN+1 j:1 . . X1 5o sXNA1 ,1:1
lim sup < z < liminf
N—soo Vn N—re Vi

Thenz € €.

Note that assumption (7.4.1) is satisfied whenever X satisfies (S) and the one step ellipticity
condition. We also remark that Example 6.21 shows that equicontinuity assumption on f is
essential.

Proof. Fix N. Consider first the case where z > w. By assumption there is an € such that for
all sufficiently large n there is a sequence Xy, ...,Xy1 such that

N
Y fixx ) = (2 + )V
j=1

By ellipticity, for each x € & there a sequence x1,X; ...Xy+1 such that x; = x and
N

Y fi(xj.Xj+1) > (z+€)Vy — 4K, where K := ess sup [f].

j=1

(In fact one can take X; = X; for j > 3.) By uniform continuity of f; and the fact that Viy grows
linearly, there is  such that if X; € B(x},r) for j <N+ 1 then

N
Y fi(Xj.Xj41) > (z+€/2)Vy —4K.
=1

By (7.4.1) there is § > 0 such that Py(X; € B(xX},r)) > 6". Hence

P(Sy > (z+€/3)Vy) > 8.



7.4 Equicontinuous additive functionals 179

Next, by the CLT and the assumption that z > ( v) , 1f € is small enough and N is large enough,

then! P(Sy < (z— €)Vy) > 8". Now Theorem 6 7 shows that z € €.
( N)

The case z < is analyzed similarly now using the estimate
inf Xi,Xit]
X1y 7xN+l Z fj P ]+ )
limsup <z—e¢. 0
N—o0 Vn

Corollary 7.4 Under the assumptions of Lemma 7.3 if

inf ij (xj,%j41)

X15- 7XN+I
= lim exists then 3~ =c¢
3 fraies Vi 3 )

N
sup Y fi(xj,xj41)
. X5 AN+ j=1
37 = lim !
N—eo \%N

exists then 3+ =

Proof. We will prove the second statement, the first one is similar. 37 < ¢* by Lemma 7.3. On
the other hand if z > 3T then for large N, P(Sy > Vyz) = 0. Hence ¢ < 37. O

We now restate the result of the last corollary in a slightly different way under an extra
assumption. Namely, we suppose that

S, are compact & Vx,, X1 : pu(Xn, Xpy1) >0 (7.4.2)
Definition 7.5 Let .#x denote the space of sequences x € HGn such that if y, = X, for n >
n
N +1 then

2

N
Zf(men+l Z Xnaxn+1
n=1

Denote M = m M. The elements of .# will be called minimizers.
N=1

The properties of .# are summarized below.
Lemma 7.6 Suppose that (7.4.2) holds and that f,, : S, — [—K, K] are continuous. Then

(a) My are closed sets.
(b) If N > M then N C My.
(c) /// is non empty.

(d) IfZ f (X0 X 1) mfo Yu:Yni1) then X € My.

n=1
(e) If x € My then Z f(Xn,Xnp1) < infz F(Yns¥n+1) +2K.
n=1 Y n=1
! Alternatively, combining Theorem 6.2(1)) and Theorem 6.6 (applied to —Sy) we get that P (SN < —EEfN) — 8) > 8V provided
N

that € is small enough and 6 is close to 1.



180 7 Miscellaneous examples and special cases

Proof. (a) If .#y > x/ — x & ./, then there would exist X such that X, = x,, forn > N + 1,
J—oe

and
N

f(inyinJrl) < Z f(Xn7Xn+1)~

1 n=1

M=

n

Let y/ be the sequence such that y{; = x{l forn >N+1, y{; =X, for n < N. By the continuity of

/s
N N .
Z Yn7yn+1 Zf(X{an_g_l)
n=1 n=1

for large j contradicting, X/ € .Ay.
Next let X € .#y and x,, =y, for n > M with N > M. Then

N
Z [fa(Yns Ynt1) = fo (X Xn1)] = Z [fu(Yns Ynt1) — fu(Xns Xn41)] > 0.
n=1 n=1
This proves (b).
Combining (a) and (b) we see that .#, are nested compact sets, hence their intersection is
non-empty.
(d) is clear.
Next, let x be the argmin of Zﬁ}':l(zn,zwl) and y € .#y. Let z be such that z, = x,,, for
1<n<N-1landz, =Yy, forn>N.Then

Xn>Xn+1 +2K

HMZ

an Yn: Yn+1) < Z (Zn,Zn+1)

proving (e). U

If, in addition to the assumptions of Lemma 7.6 we also suppose that f satisfies (U), then part
(e) of the lemma implies that for each x € .# (which is non-empty by part (c))

¢ = lim _fonaer-l)

N—oo N

7.5 Notes and references

Theorem 7.1 is well-known, see [109, 73, 127, 65, 112]. We note that in the homogeneous
setting the assumptions on f can be significantly weakened. In particular, the assumption that
f is bounded can be replaced by the assumption that the distribution of f is in the domain of
attraction of the Gaussian distribution [109], one can allow f to depend on infinitely many X,
assuming that the dependence of f(x1,xp,...) on (x,,X,+1,...) decays exponentially in n [65],
and the ellipticity assumption can be replaced by the assumption that the generator has a spectral
gap [109, 73]. In particular, the LLT holds under the Doeblin condition saying that &y > 0 and
a measure ¢ on & such that

n(x,dy) = & + (1 — &) (x,dy)

where 7 is an arbitrary transition probability (cf. equation (1.2.2) in the proof of Lemma 1.10).
There are also versions of this theorem for f in the domain of attraction of a stable law, see [4].



7.5 Notes and references 181

The aforementioned weaker conditions however are not sufficient to get LLT in the large de-
viation regime, in fact large deviation probabilities could be polynomially small for unbounded
functions, see [150].

There is a vast literature on the sufficient conditions for the Central Limit Theorem for ho-
mogenous chains, see [40, 62, 63, 73, 82, 85, 102] and references wherein, however, the local
limit theorem is much less understood, see notes to Chapter 4.

The characterization of coboundaries in terms of vanishing of the asymptotic variance 62 is
due to Leonov [94]. A large number of papers discuss the regularity of the gradients in case
an additive functional is a gradient, see [20, 32, 75, 97, 98, 113, 112, 152] and the references
wherein. Our approach is closest to [48, 75, 112]. We note that the condition u(f) = 0 which
is sufficient for f being a coboundary, is simpler than the equivalent condition 6> = 0. For
example for finite chains, to compute 62 one needs to compute infinitely many correlations
E(fofn) while checking that u = 0 involves checking balance of finitely many hexagons.

Inhomogeneous Markov processes arising from perturbations of homogeneous Markov chains
as in section 7.2 arise naturally in some stochastic optimization algorithms such as the Metropo-
lis algorithm. For large deviations and other limit theorems for such examples, see [42, 41] and
references therein.

Minimizers play important role is statistical mechanics where they are called ground states.
See e.g. [57, 123]. In the case the phase spaces &, are non-compact and/or the observable f(x,y)
is unbounded, the minimizers have an interesting geometry, see e.g. [26]. For finite states we
have the following remarkable result [18]: for each d there is a constant p(d) such that for any
homogeneous Markov chain with d states for any additive functional we have

1
sy =max o max [f(x,x)+ o f(4g-13) +f (xg01)]
This result is false for more general homogenous chains, consider for example the case © = N
and f(x,y) =1ify=x+1and f(x,y) = 0 otherwise.
Corollary 7.2 was proven in [49] for inhomogeneous sums of independent random variables
(in the independent case one does not need the assumption that lim ||g, || = 0 since the gradient
n—soo

obstruction does not appear in the independent case).






Chapter 8
LLT for Markov chains in random environment

We prove quenched local limits theorems for Markov chains in random environment with sta-
tionary ergodic noise processes.

8.1 Markov chains in random environment

Informally, Markov chains in random environment (MCRE) are Markov chains whose transition
probabilities depend on a noisy parameter @ which varies in time.! It is customary to model the
time evolution of @ by orbits of a dynamical system called the “noise process.” Here are the
formal definitions:

Noise process: This is an ergodic measure preserving invertible Borel transformation 7" on a
standard measure space (£2,.% ,m). “Invertible” means that there exists £2; C Q of full measure
such that 7' : ; — € is injective and surjective, and T-1.7: Q, — Q, are measurable.?
“Measure preserving” means that for every E € .%, m(T~'E) = m(E). “Ergodic” means that
forevery E € %, T 'E =E = m(E) =0 or m(E®) = 0.

If m(£2) < oo then we will speak of a finite noise process, and we will always normalize m
so that m(Q2) = 1. If m(Q) = oo, then we will speak of an infinite noise process. The infinite
noise processes we consider here will all be defined on o-finite non-atomic measure spaces.
Such processes arise naturally in the study of noise driven by a null recurrent Markov chain, see
Example 8.5 below.

Markov chains in Random Environment (MCRE): A MCRE with noise process (2,.% ,m,T)
is given by the following data:

o State space: A separable complete metric space &, with its Borel o-algebra %.

o Random transition kernel: A measurable family of Borel probability measures 7(w,x,dy)
on (6,4%), indexed by (m,x) € Q x &. Measurability means that (w,x) — [ @(y)7n(x, ®,dy)
is measurable for every bounded Borel ¢ : & — R.

o Initial probability distribution: A measurable family of Borel probability measures iy, on
(6,%) indexed by @ € Q, Measurability means that for all bounded Borel ¢ : & — R,
® — [ @(x)Uep(dx) is measurable.

This data gives for each @ an inhomogeneous Markov chain X®? = {X®} with state space &,
initial distribution py, and transition kernels 72 (x,dy) = n(T" @, x,dy).

' MCRE should not be confused with “random walks in random environment,” see §8.4.

2 Invertibility is convenient, but not necessary. Non-invertible ergodic noise processes can always be replaced by their ergodic and
invertible natural extensions. See [30, Ch. 10]

183
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Here a some examples. Suppose (&, %, L) is a standard probability space, S is a finite or
countable set, and {;(x,dy) };cs are transition probabilities on &.

Example 8.1 (Bernoulli noise)

Consider the noise process (2,.%,m,T) where

0 Q=5={(-,0_1,a0,0, ) : @ €S};

o .7 is generated by the cylinders y[ay,...,a,] = {® € Q : 0, =a;,k<i<n}

o {pi}ics are non-negative numbers s.t. Y p; = 1, and m is the unique measure s.t. m(g[ag, . . .,a,]) =
Pa; *** Pa, for all cylinders.

o T:Q — Q is the left shift map, T[(®;);cz] = (®11)icz

It’s well-known that (2,.%, u,T) is an ergodic probability preserving map.

Define 7(w,x,dy) := T, (x,dy). Notice that 7(T"®,x,dy) = 7, (x,dy), and @, are iid’s
taking the values i € S with probabilities p;. Since @, are iid, {X? : @ € Q} represent a random
Markov chain whose transition probabilities vary randomly and independently in time.

Example 8.2 (Positive recurrent Markov noise)

Suppose (¥, ),ez is a stationary ergodic Markov chain with state space S and a stationary prob-
ability vector (p;s)ses. In particular, (¥,),ecz is positive recurrent. Let:

o Q:={(w) €S :PlY) = w;,Y»=w; 1] #0forallicZ};

o 7 is the o-algebra generated by the cylinders (see above);

o m is the unique (probability) measure such that m(;|ay,...,a,]) = P[Yx = a,...,Y, = a,| for
all cylinders;

o T is the left shift map (see above).

Define as before, m(w,x,dy) := Mg, (x,dy). The resulting MCRE represents a Markov chain
whose transition probabilities at time n = 1,2,3,... are nty, | (x,dy).

Example 8.3 (General stationary ergodic noise processes)

The previous construction works verbatim with any stationary ergodic stochastic process {Y,,}
taking values in S. The assumption that S is countable can be replaced by requiring only that §
be complete, separable, metric space, see e.g. [52].

Example 8.4 (Quasi-periodic noise)

Let (2,.%,m,T) be the circle rotation: Q = T! := {® € C : |@| = 1}; .Z is the Borel o-
algebra; m is the normalized Lebesgue measure; and 7 : 2 — € is the rotation by an angle «:
T(w) = ¢'*w. T is probability preserving, and it is well-known that 7 is ergodic iff /27 is
irrational.

Choose a partition of the unit circle Q into disjoint arcs {I;};,cs and define ¢ : Q — S by
¢(w) =i for o € I;. For example, if S = {1,2} we can take I;,/, to be two equal halves of the
circle. Next define

ﬂ:(wrxa dy) = ﬂ(p(a)) (x7 dy)
Now X® are inhomogeneous Markov chains whose transition probabilities vary quasi-periodically:
They are given by Ty ina ) (X, dy).
More generally, one can take a d parameter measurable family of transition probabilities
T (x,y), where @ = (@1, @,...w;) € R?/Z4, fix some “initial phase” (@,...,®,), and con-
sider the chain with transition probabilities

ﬂ:n<.x,y) = 7r(61+na1,...,6d+nad) mod Z4 ('x7y)'
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Example 8.5 (Null recurrent Markov noise)

This is an example with infinite noise process. Suppose (¥;),cz is an ergodic null recurrent
Markov chain with countable state space S, and stationary positive vector (p;);cs. Here p; > 0
and (by null recurrence) Y p; = c. For example, (¥;),cz could be the simple random walk on
74 for d = 1,2, with the stationary measure which assigns the same mass to each site of Z¢. Let

o Q = {(w)icy € ST :P[Y; = @;,Y> = w4 1] # O forall i € Z};
o .7 is the o-algebra generated by the cylinders;
o m is the unique (infinite) Borel measure which satisfies for each cylinder

m(klax, ...,an)) = paPlYi = a; (k <i < n)|Vi = ]

o T:Q — Q is the left shift map T[(®;);cz] = @4 1.

Then it is well-known that (Q2,.% ,m,T) is an infinite ergodic measure preserving invertible
map, see [2].

Just as in Example 8.2, one can easily construct many MCRE with transition probabilities
7y, (x,dy) which vary randomly in time according to (¥;),ez. For each particular realization of
® = (Yi)jez, X® is an ordinary inhomogeneous Markov chain (on a probability space). But as
we shall see below, some features of X® such as the growth of variance, are different than in the
finite noise process case.

Example 8.6 (Transient Markov noise: a non-example)

The previous construction fails for transient Markov chains such as the random walk on Z¢
for d > 3, because in the transient case, (2,.%,m,T) is not ergodic, [2].

We could try to work with the ergodic components of m, but this does not yield a new math-
ematical object, because of the following general fact [2]: Every ergodic component of an in-
vertible totally dissipative infinite measure preserving map is concentrated on a single orbit
{T"(®)},cz.- MCRE with such noise processes have just one possible realization of noise up
to time shift. Their theory is the same as the theory of general inhomogeneous Markov chains,
and does not merit separate treatment.

Suppose X is a MCRE with noise space (2,.%,m,T). A Random additive functional is a
measurable function f: Q x & x & — R. This induces the additive functional f® on X?

[ xy) = f(T"0,x,y).

For each w € 2 we define

Mz

Sy =Y f2X°, X2 Zf (T"w, X", X2 ),

S

Vy = Va (S V) w.rt. the dlstrlbutlon of X.

Throughout this chapter, we make the following standing assumptions:

(B) Uniform boundedness: |f| < K where K < o is a constant;
(E) Uniform ellipticity: There is a constant 0 < & < 1 and a Borel function p: 2 x G x & —
[0,00) such that

(@) m(w,x,dy) = p(@,x,y)Ue(dy);
(b) 0<p<1/epy;
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© Jor(@,x,y)p(T0,y,2)Uro(dy) > & forall ®,x,z.
(S) Stationarity: For every ¢ : © — R bounded and Borel, for every @ € (2,

[ omrotas) = [ ( [ o0)r@.xd) ) nofar

(B) and (E) imply that f® is a uniformly bounded additive functional and that X® is uniformly
elliptic for every w. (S) is equivalent to saying that if Xy is distributed according to i then X,
is distributed according to uzng for all n > 0. Subject to (E), (S) can always be assumed without
loss of generality, because of Proposition 1.12 and the discussion which follows it.

Some of our results will require the following continuity hypothesis:

(C) The Borel structure of 2 and G is generated by a topologies so that 2 and & are complete
and separable metric spaces, and

(Cl) T: Q — Q is a homeomorphism and supp(m) = Q.

(C2) (w,x,y) — p(w,x,y) is continuous, and ® — [ @du is continuous for every
bounded continuous ¢ : G — R.

(C3) (w,x,y) — f(w,x,y) are continuous.

(C) 1s not part of our standing assumptions, and we will state it explicitly whenever it is used.

8.2 Main results

Let P denote the measure on £ x & x & which represents the joint distribution of (@, X", X;"):

P(dw, dx,dy) = /6 /6 /Q m(do) e (dx)T(@, %, dy). 8.2.1)

(1) f(,x,y) is called relatively cohomologous to a constant if there are bounded measurable
functions a : Q2 x & — R and ¢ : 2 — R such that

flo,x,y) =a(w,x) —a(Tw,y) +c(w) P-ae.

(2) Fixt #0, then f(w,x,y) is relatively cohomologous to a coset of 77 if there are measurable
functionsa: Q2 xS — Stand A : Q — S' s.t.

a(w,x)

(2mi/t) f(ox,y) _
¢ M) a(Tw,y)

P-a.e.

Theorem 8.1. Assume f is an additive functional on a MCRE with finite noise process. Under
the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V?| < C for all N, for a.e. @, where
C = C(&,K) is a constant.

(2) If £ is not relatively cohomologous to a constant, then there is a constant 6% > 0 such that
forae o, VY ~ No? as N — oo,

Theorem 8.2. Let f be an additive functional on a MCRE with finite noise process. Assume the
standing assumptions (B), (E),(S) and that

(a) Either |G| < Ry, or |&| > R and the continuity hypothesis (C) holds.
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(b) f is not relatively cohomologous to a coset of tZ for any t # 0.

Then there exists 6> > 0 such that for a.e. , for every open interval (a,b), and for every

aw—E2(Sy)
ZN,2 € R such that i

1 6*22/262
P[SY —zw € (a,b)] ~ N AW la—Db| as N — oo.

Theorem 8.3. Let f be an additive functional on a MCRE with finite noise process. Assume the
standing assumptions (B),(E),(S), and that all the values of f are integers. If f is not relatively
cohomologous to a coset of tZ with t # 1, then there exists 6> > 0 such that for a.e. ®, and for

zv—E® (SR,’)
every zn,Z € R such that N -7

2 /552
1 —z7/20
P[Sﬁzzﬂw—(e ) as N — oo,

VN \ V2702

Theorem 8.4. Let f be an additive functional on a MCRE with finite noise process (2, % ,m,T).
Assume (B),(E),(S). If f is not relatively cohomologous to a constant, then
(1) There exists a continuously differentiable and strictly convex function .% : R — R such that

forae weQ, F(&)= &im %logE(e‘gsfcvo)for all & e R.

—so0
(2) vE(S9) ~ F'(0) for a.e. .
—so0
(3) Let F'(£o0) := élim F'(E), and let IN(N,®), Z(N) denote the Legendre transforms
—>too
of Fn(E) = L10gE(eSSV), F(&). Then for a.e. @, for every N € (F'(—), F'(x)),
In(N, o) o J(n).

(4) #(n) is strictly convex, has compact level sets, is equal to zero at 1 = .F'(0), and is strictly
positive elsewhere.
(5) With probability one
. essinfSQ . esssupSy
=7 = fim S == g S
Corollary 8.7 Under the conditions of the previous theorem, for a.e. ®, Sy /N satisfies the large
deviations principle with the rate function % (n):
(1) limsup A logP[SQ/N € K] < —inf.cx ¥ (2) for all closed sets K C R.

N—yoo

(2) limsup x 1ogP[S¢/N € G] > —inf,cx . (2) for all open sets G C R.
N—yoo
Proof. This is a consequence of the Gértner-Ellis Theorem. U

So far we have only considered MCRE with finite noise spaces. We will now discuss the case
of infinite noise spaces (2,.%#,m,T). The main new phenomena in this case are:

Example 8.8 For MCRE with an infinite noise process:

(a) It is possible that V) — o m-a.e., but that V) = o(N) a.e.
(b) It is possible that Aay s.t. V) ~ ay for m-a.e. o.
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Proof. Let X, be iid bounded real random variables with variance one and distribution u. Let
fa(x) =x. Let (2,.%7,m,T) be an infinite noise process, and fix E € .# of finite positive mea-
sure. Let

w(®,x,dy) == p(dy) , f(@,x,y) == 1g(®)x

N
Then Sy = ) 1g(T" @)Xy, and Vi =Y 1£(T" ).
n=1
We now appeal to the following general results from infinite ergodic theory. Let (Q,.% ,m,T)
be an ergodic, invertible, measure preserving map on a non-atomic o-finite measure space, and

let L :={A €LY (Q,#,m):A>0,[Adm > 0}. If m(Q) = o, then
(1) ZZV:lA o T" = oo almost everywhere for all A € L ;
(2) 1%122’:1 AoT" N—> 0 almost everywhere for all A € L';

—>00

(3) Let ay be a sequence of positive real numbers, then at least one of the following possibilities
happens:

(a) liminfy . - Y | AoT" =0 ae. forall A € L};
(b) limsupy_,., %ZN AoT"=wa.e. forall A € LLL.

n=1
So Aay Toos.t. YN  A(T"®) ~ ay for a.e. @, even for a single A € L.

These results can all be found in [2]: (1) is a consequence of the Halmos Recurrence Theorem:;
(2) follows from the Ratio Ergodic Theorem; and (3) is a theorem of J. Aaronson. Specializing
to the case A = 1g we find that V — w0 ae.; Vi’ = o(N) a.e. as N — oo; and Aay so that
VY ~ap forae. o€ Q.

Here are our general results on MCRE with infinite noise spaces.

Theorem 8.5. Suppose £ is a random additive functional on a MCRE with infinite noise space
on a non-atomic O-finite measure space. Under the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V’| < C for all N, for a.e. ®, where
C = C(&,K) is a constant.
(2) If f is not relatively cohomologous to a constant then V) — oo a.s.

Theorem 8.6. Suppose £ is a random additive functional on a MCRE with infinite noise space
on a non-atomic O-finite measure space. Assume the standing assumptions (B), (E),(S) and that

(a) Either |G| < Ry, or |&| > R and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t # 0.

. —E®(SQ
Then for a.e. @, for every open interval (a,b), and for every zy,z € R such that %M — 7
N

-22/2

\/2rV
Theorem 8.7. Suppose f® is a random additive functional on a MCRE with infinite noise space

on a non-atomic G -finite measure space. Assume the standing assumptions (B),(E),(S), and that

all the values of f are integers. If f is not relatively cohomologous to a coset of tZ. with t # 1,
a—E®(S¥) e ?N

o __
then for every zy,z € R such that W — 7, fora.e o, ]P’[SN = ZN] ~ e as N — oo,

P[SY —zn € (a,b)] ~ |a—b| as N — oo.
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8.3 Proofs

Throughout this section X® is a Markov chain in random environment with stationary ergodic,
possibly infinite, noise process (£2,.%,m,T), and f® is a random additive functional on X®. We
assume throughout (B),(E),(S).

8.3.1 The essential range is a.s. constant

The purpose of this section is to prove the following result:

Proposition 8.9 There exist closed subgroups H,G.s < R s.t. for m—a.e. ®, the co-range of
(X®,f?) equals H , the essential range of (X® f?) equals G, and

R  H=/{0},
Gess =4 227 H=tZ, t#0,
{0} H=R.

We call H and G, the a.s. co-range and a.s. essential range.

We begin with a calculation of the structure constants of (X®,f?). Fix an element ® in the
noise space, and let Hex (@) denote the probability space of position 3 hexagons for X®. Let m,,
denote the hexagon measure, as defined in §1.3.1. Recall the definition of the balance I"(P) of
a hexagon P, and define

u(o) :=E(|C(P)P)'/?

d(E. ) = E(|eET P _ 112)1/2 (expectation on P € Hex(w) w.r.t. mg).

Since the space of position n + 3 hexagons for X® is Hex(7"w), together with the hexagon
measure mryng, it follows that the structure constants of (X®,f?) are

duis(E, ) =d(T"®,E) and  up3(f®) = u(T"®) (n>0). (8.3.1)

Lemma 8.10 u(-),d(-,-) are Borel measurable, and for every @, d(-,®) is continuous. Under
the continuity hypothesis (C), u(-),d(-,-) are continuous.

Proof. To check this, express the hexagon measure explicitly as a measure on & in terms of the
transition kernel 7(,x,y), using the formulas for the bridge distributions of §1.2.3, and write
I'(P) explicitly a function on G° in terms of f(®,x,y). We omit the details, which are routine.
O

Proof of Proposition 8.9. Let Hy, := H(X?®,f®) be the essential range of (X®,f®). By Theorem
3.1, Hy is either R or ¢Z for some t > 0. By (8.3.1)

N N-3
Dy(&, @) := st,,(&,f“’)z = Z{)d(T”a),é)z.

STEP 1: U(a,b) := {w € Q : Dy(-,0) ST uniformly on (a,b)} is measurable and T-
—>00

invariant for all a < b.

Proof. T-invariance is because d”> < 4 whence |Dy(&,T®w) — Dy(&, )| < 8. Measurability is

because of the identity
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VM € Q3N € Ns.t. }

U(a,b) = {‘0 €L forallé € (a,)NQ, Dy(,E) > M

The inclusion C is obvious. The inclusion 2O is because if @ ¢ U(a,b) then for some M € Q,
for all N € N there exists some 1 € (a,b) s.t. Dy(®,n) < M, whence by the continuity of n —
Dy(®,n) there is some & € (a,b) NQ such that Dy (®,&) <M. So o ¢ U(a,b) = » ¢ RHS.

STEP 2: The sets Q) :={w € Q :Hy ={0}}, Q:={weQ:Hy=R},and Q3 :={w e Q:
Hy =t7Z for some t # 0} are measurable and T -invariant. Therefore by ergodicity, for each i,
either m(£2;) = 0 or m(Qf) = 0.

Proof. Recall that for Markov chains, Dy — oo uniformly on compact subsets of the complement
of the co-range (Theorem 3.5). So

Q=NUGEn, 2= [\ Ub), 2=0{Na5.

n=1 0<a<b rational

By step 1, £; are T-invariant and measurable. Since T is ergodic, these sets are either of measure
zero or of full measure.

By Theorem 3.2, if €2; has full measure, then the essential range is a.s. R. Similarly, if €2,
has full measure, then the essential range is {0} almost surely. It remains to consider the case
when 23 has full measure.

STEP 3: If 3 has full measure, then there exist t # 0 such that Q3(t) :={@w € Q : Hy =7}
has full measure, and then the essential range is (27 /t)Z almost surely.

Proof. For every @ € Q3 there exists (@) > 0 such that Hy, = t(®)Z. We can characterize t(®)

as follows: (@,-)
B ' Dy(@,-) — o uniformly
t(w) = sup {t € QN (0,): on compact subsets of (0,7) } '

It is clear from this expression that /(7T @) = t(w), and that for every A > 0,

t@>Al= ()  Ulab)

0<a<b<A rational

So #(-) is a measurable T-invariant function, whence by ergodicity constant. Let ¢ denote this
constant, then Hy, = t7Z for a.e. ®. By Theorem 3.2, Go55(X?,f?) = (27 /t)Z almost surely. [J

8.3.2 Variance growth

In this section we prove Theorems 8.1 and 8.5 on the behavior of V,? as N — oo

Lemma 8.11 Suppose (Q2,.%,m,T) is an invertible, ergodic, measure preserving map of a
probability space or of a non-atomic infinite measure space. Let A : 2 — R be a non-negative

measurable function. Either A =0 a.e., or Z AoT" =o0aq.e.
n>0

Proof. If m(Q) < e, then the Lemma follows from the Birkhoff ergodic theorem. In the more
general case m(Q) < oo, the lemma follows from the well-known fact that invertible ergodic
measure preserving maps on non-atomic measure spaces are conservative. We supply the de-
tails, for completeness.
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If A is not equal to 0 a.e., then there is € > 0 s.t. E := {® € 2 : A(w) > €} has positive
measure. We claim that
Y 16(T"®) =0 (8.3.2)

n>0

almost everywhere on E. Since A > €1 (8.3.2) implies that Z A(T"w) = 0 almost everywhere
n>0
on E, and, by ergodicity, almost everywhere on 2, proving the lemma.

It remains to prove (8.3.2). Suppose by way of contradiction that it is not true that Z 1g(T"®)
n>0
oo almost everywhere on E. Then there exists N s.t.

W:={weckE: i 1g(T"w) =N}
n=0

has positive measure. The invertibility and measurability of T implies that 7" (W) is measurable
for all n € Z, and that {T" (W)}, <z are pairwise disjoint.

Since (2,.%,m) is non-atomic, we can break W = W UW, where W; are measurable, disjoint,
and with positive measure. By invertibility, W, = Upez T"W; are disjoint T-invariant sets with
positive measure. But this contradicts ergodicity. U

Part 1: V\? is bounded, or tends to infinite almost surely. Recall that K is a bound for
ess sup | f|, and & is a uniform ellipticity constant for X®. By Theorem 2.7 and (8.3.1) there
are positive constants C; = C;(&,K) (i = 1,2) such that for all N,

N N
'Y (o) -G v < Y u(T"0)*+C,.
n=3 n=3
If u(w) = 0 m-a.e., then for a.e. w, V, < C; for all N. Otherwise, by Lemma 8.11,
N o u(T"w)? PSS whence V,? — oo almost everywhere.
—>00

Part 2: Linear growth of variance when V) — o a.e. and m(£) = 1. Suppose m(£) = 1 and
Vi) — oo almost surely. We claim that

362 > 0s.t. V2 ~ No? as. (8.3.3)

Let 0f := [ou?dm. This is a finite number, because |/u[l« < 6K and m(Q2) = 1. This is
a positive number, because as we saw in part 1, if u = 0 a.e., then V\ = O(1) a.e. contrary
N
to our assumptions. By the pointwise ergodic theorem, Z u(T"w)* = [1 4 o(1)]6N. Hence
n=3
V@ > [1+40(1)]Ci(&0,K) " 'Nog — oo.
Let F, := f(T" '0,X®,X® ) and let E®, Var®, Cov® denote the expectation, variance and

n+1
covariance with respect to X, then

N N N
VW =) Var®(F)+2) ) Cov®(F,Fy)

n=1 n=1m=n+1

N N N-n
=) Var®(F)+2Y Y Cov®(Fu, Foip).
n=1 n=1 k=1
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By assumption (S) {i} are stationary, so {X7 ©};>; has the same distribution as {X};>.
Therefore Var®(F,) = Var”" ' ©(F;) and Cov®(F,,F,,) = Cov!" '®(F|,Fyt). Thus

N—1 —1IN—n
W= ("o +2Z Zwk (T"w
n=0 n=0 k=

where yo(®) := Var®[f(w,X",X;’)] and
Wk(w) = COV(D[f(wvxl(l)a)(ZCO)?f(Tkw?Xka—)H’Xka—)O—Z)]'

N
By the ergodic theorem Allim IL\, Y v (T"w) = [ wodm. To find the limit of the normalized
—° " n=1

double sum we first recall that by the uniform mixing of {X”} (a consequence of the ellipticity
assumption), || Willeo < Cix|| f1|26% With Cpir,0 < 8 < 1 which only depend on &) (Proposition
1.11). Therefore for every M,
| N=IN=n —1M—1
lim — Y Y y/(T"0) [hm 1y L w(r'o o)| +0(6"),
P

N—oo N =0

| N=IN=n oo
whence by the ergodic theorem hm — Z Z wi(T"w Z / Y.dm, with the last sum con-
k=1

verging exponentially fast. In summary,

1
—Ve 2
NN /

N—oo

vo+2Y, lI/k] dm.
k=1

Since as we saw above liminfl%,VA‘," > (C 0'5 and Gg > 0, it must be the case that 62 > 0, and
(8.3.3) is proved.

We now relate the following two properties:

(a) f 1s relatively cohomologous to a constant;
(b) V3 is bounded m-a.e.

Part 3: (a)=-(b): Suppose f is relatively cohomologous to a constant. By Fubini’s theorem, for
m-a.e. @, for every n,

O(X0.X2) = a(T"0,X0) — (T @,X%,,) +c(T"0) as

with respect to the distribution of {X®}.3
Summing over n, we obtain that for a.e. @, for every N,

N Zc (T"w a(@,X") —a(TV0,X. )| < 2esssupa(-,-).

In particular, for every @, VY is bounded. By the first part of the proof, for a.e. @, for all N,
V| < Ca(&0,K).

Part 4: (b)=-(a): Next suppose that f is not relatively cohomologous to a constant. Recall that
2 2
oy = [u“dm.

3 Here we use the assumption that (2,.%,m) is o-finite. Fubini’s theorem may be false otherwise.
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We claim that Gg > 0, and deduce from the first part of the proof that Vi) — +oo a.e.

Assume by way of contradiction that Gg =0, then u(®) = 0 a.e., whence for a.e. m, for every
n, almost every position n hexagon of X® has balance zero. Applying the gradient lemma to X?,
we find bounded functions g and constants ¢ such that

[P X X0 = g0 (X)) — g1 (X)) + ¢ as.

The issue is to show that g%, c® can be given the form g% (x) = a(T"w,x) and ¢? = c(T" ®)
where a(-,-),c(+) are measurable.
This is indeed the case, because the proof of the gradient lemma shows that we can take

X,f’:z).

(@)1= | Hr2o(@)hr-10(d)p(T" 20,5 3) f(T0.5.).

ey =EC[f2 (X0, X2 )]

¢0(2) = E(f,f’_2<x,f°_2,x,f’_1> (X0, X2)

So ¢? =¢(T"®) and g% (z) = a(T" w, z) for

a(®,z) = /63 Hr 20 ()71 (dY)P(T" 2 0.%,y)p(T ™ @,3,2)
f(T20,x,y)+ (T '0,y,2)
f@z ,LLT—Zw(d)C)‘LLT—Iw(dy) [p(T”_za),x,y)p(T_la),y, Z)] .

These are measurable functions, and our standing assumptions imply that they are bounded.
We see that f is relatively cohomologous to a constant in contradiction to our assumption. So
0'(% > 0, whence by the first part of the proof V¢ tends to infinity. U

8.3.3 The local limit theorem

In this section, we prove Theorems 8.2, 8.3, 8.6 and 8.7 on the local limit theorem for Markov
chains in random environment. We need the following lemmas:

Lemma 8.12 Suppose (2 is a Borel space, S is a separable metric space, and y : 2 xS — R is
a Borel function such that for every @ € Q, y(,-) is continuous on & and positive somewhere.
Then there exists a Borel measurable x : Q — & such that y(@,x(®)) > 0.

Proof. Fix a countable dense set {x;} C &. Our assumptions on Y imply that for every ® there
exists an i such that y(,x;) > 0. So

i(w) :=min{i e N: y(w,x;) >0}
is well-defined and Borel measurable. Take x(®) := x;(¢)- O

Lemma 8.13 If W, W, are two independent random variables such that for some a,t € R, W; +
W, € a+tZ with full probability, then a = a; + a, where Wy € ay +tZ, W € ap +tZ with full
probability.

Proof. Without loss of generality a =0, t = 27. Then

E(e™)]- [B(e™)] = B ) = 1,
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whence |E(e™)| =1 (k=1,2). Choose a such that E(e/"s—%)) = 1, then E(cos(W — ay)) =
1, whence Wy, — a; € 27 almost surely. Necessarily a; +a; € 277, and there is no problem in
adjusting a; to get that the sum zero. U

Proof of Theorems 8.2 and 8.6 on the non-lattice case. Theorems 8.2 and 8.6 provide the
LLT for Markov chains in random environment with finite and infinite noise process, under the
assumption that f is not relatively cohomologous to a coset of tZ with ¢ # 0.

In this case, f is also not relatively cohomologous to a constant, and by Theorems 8.1 and
8.5, Vi — oo as N — co. Moreover, if the noise process (2,.#,m,T) satisfies m(£2) = 1, then
362 > 0s.t. V@ ~ No2.

To prove the theorems it is sufficient to show that for a.e. @, Gy (X?,f?) =R, as this will
imply the LLT by the general results of Chapter 4.

Assume by way of contradiction that G.z(X®,f?) # R on a set of @’s of positive measure.
By Proposition 8.9, G, (X?,f?) = G, a.e. where Gog3 = {0} or ZT”Z with ¢ # 0. The first
possibility cannot happen, because it implies that f® is center-tight, whence V, = O(1), whereas
V¥ — oo. So there exists 7 # 0 such that G, (X?,f?) = (27 /t)Z a.s., and H, := H(X?,f?) =tZ
a.e.

By the reduction lemma, for every o s.t. H, = tZ there are measurable functions g% (x),
h&® (x,y) with " Var[h?] < e, and constants c? such that

explit(fy (x,y) — & (x) + &1 () + hy (x,3) — )] = 1

) SO eit(f(w'/xﬂy)'i_hg)(xvy)) = A{CO a’?(x) Where

a.s. with respect to the distribution of (X*, X% i
n a11+l(y)

n+1
)‘l’?) = eitcr(t” al?(x) = eitg,‘t’(x).
But now we run into a problem: Our proof of the reduction lemma does not provide g@ and
c? of the form ¢? = ¢(T"w) , a? = a(T"w,x) with ¢(+),a(-,-) measurable, and we need to
show that 1% = 0.

To this end we use the following additional structure: For a.e. @, Hp, =tZ so ¥.d(T"®,t)*> <
o 1-almost everywhere. By the ergodic theorem, this can only happen if d(®,t) = 0 almost
everywhere. Hence

w w 2
r (Zl 7§w , ;w Xy ) IEZ a.e. in Hex(w) for m-a.e. o. (8.3.4)

Recall the ladder process LY = (Z? ,,Y*,,X,’) associated with {X®}. Let P® denote its
distribution, and define as in the proof of the reduction lemma,

HL“’L =I (Z? ZwlY@X
( n+l) an’Ya) ’Xw’ n+1

r (z“’ Z 2y Yy X“’) = HO(LY,LY) + HO(LY, L?)
1anaXa)aXa)7 5 T 3944 Z4 &5
2 3 4

The last definition requires justification because the RHS seems at first sight to depend on Y;”. In
fact it does not. To see this observe that the last expression is the balance of the octagon obtained

. Zw Yy® Zw Yw .
by stacking Zw’Y“”X4‘”’Xw on top of Z?)’Y“”X“”Xw and removing the common edge

(29,7, X°) Wthh cancels out.”
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CLAIM 1. Let P?® denote the distribution of {L®}, then there exist measurable functions
{1 (), 6 (w) € & such that for a.e. @

Z3 =G (o)
Cz( ) Cl( ) . M, po| | Zo— _ae
(e 5 48 far) 2 (2o )

Proof. By (8.3.4), I € 27”2 with full P®—probability, for a.e. @. The point it to obtain this a.s.
with respect to the conditional measures.
Suppose first that & is countable, then for fixed w, the P®-distribution of (L§,LP,LY) is

purely atomic, and I € 2” £27, for every octagon with positive P®—probability. So the claim holds
for any pair ({;(®), 5 (@ )) € & such that

PO[(20,29,29) = (41(0),(0), 51 ()] >0

Such pairs exist by the ellipticity assumption. Since S is countable there is no problem to choose
such ({1, {>) measurably.

Now suppose G is uncountable but with the continuity property (C). By Fubini’s theorem
and (8.3.4), for a.e. w € Q, for a.e. ({1, {, 3) with respect to the distribution ({1, &>, 83) ~
(2,23, 23),

Epo (}e(zm/r) (ze. k.80 xe) 1‘

- ) =0. (8.3.5)

By the Markov property, this conditional expectation has canonical interpretation for every
((D, Clv Cza C3) in the set

A={(w,a,b,c): p(w,a,b)p(Tw,b,c) > 0}.

By assumption (C2), A is open. By assumption (C1), every open subset of A has positive mea-
sure with respect to the measure [ P®m(d®). By assumption (C2), the left-hand-side of (8.3.5)
depends continuously on (@, {;, {>, {3). Therefore (8.3.5) is true for all ({1, &, 83) € A.

Thus to prove the claim it remains to construct measurable functions &} (@), { (@) such that

(0,8 (), (o), () € A for all o.

By the ellipticity condition [ p(®,a,{)p(Tw,§,a)ure(ds) > €, so for every w there are

(C1,8) s.t.
v(o,(81,8)) = p(0,8,80)p(Tw, 5, 8) > 0.

By Lemma 8.12 it is possible to choose measurable {;(®), {(w) like this. Claim 1 is proved.

Given @ € Q and a,b € &, construct the bridge distribution P%, (E) = P?(Y,” € E|Z) =
a,Xy’ =b) asin §1.2.3.

CLAIM 2. For a.e. @, for a.e. (€3,84,&s) sampled from the joint distribution of (X3, X, X&),
the random variables

W3w = f(()), Cl(a))7Y2) +f(T(D7Y27§3)7 Y2 ~ P2,§3
W0 = f(T%0,51(0).Ya) + F(T20,Ya, &), Vi~ PCl .

are purely atomic, and belong to some coset of 2,—”Z with full probability. (These cosets could
be different.)

Proof. By choice of {;(®) and Fubini’s theorem, for a.e. (£3,84,85) ~ (X3°, X, X&),
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CZ( ) Cl( ) ) =4 Xs :53
F (C ( ), Ya) 9 53 64 5 G _Z IED %}7@ ;%0755 —a.c.
Notice that I" <§1(w), Czy(ac)o ), S é ), 54 55) is equal to the independent difference of W5”
2

and WSTZ“’, plus a constant which only depends on . The claim now follows from Lemma
8.13.

CLAIM 3. Given ® and (&3,&4,E5) as in claim 2, let

(0,&) = the smallest positive atom of W;° if 3 positive atoms,
377 \ otherwise, the largest non-positive atom of W5”

(@) 1= —f(@, 6 (0),5(0)) - f(To, (o), 6 (0)).

These functions are well-defined, measurable, and

(720,86, )+ /(70,6 6)] + 4(0,6) — ¢(TP0.85) +e(@) € 72 8.36)

for u-a.e. w, for a.e. (&3,84,85) ~ (X3°, X, X2).
Proof. The function g(®,&3) is well-defined for a.e. @ because of claim 2. To see that it is

measurable, we note that (@, &3) — P(W5® € (a,b)) are measurable, and

8(0,&) > a] = {(w,&) : PO < W® < a) =0 ,P(W5® > a) # 0} (a>0)
8(@,8) > a] = {(,&) : P(W3® > a) # 0} (a<0)

are measurable. The measurability of ¢(®) is clear.
Equation (8.3.6) holds because the left-hand-side of (8.3.6) is, up to a sign, an atom of the
random variable

20— G1(@) X9 =&

&H(w) C1< ) 0| |70 _ o _

and we chose ({1(w), & ()) so that this random variable takes values in ZT”Z a.s.

Claim 3 gives us measurable functions a(®, x) :=exp(—itg(T 2®,x)) and A (®) := exp(—itc(T*w))
such that °
(I (OXP XD+ (T0XP X)) _ ) () a(@,X{") .
a(T?w,X{)

Multiplying both sides of the equation by ¢/l/*~/“°T] gjves

b(w, X", X7")
b(T o, XL, XP)

2 (OXPXP) — ) (@)

where b(®,x,y) 1= a(®,x)a(T ®,y)e (@)
This not quite a relative cohomology to a coset of (7 /1)Z, because b(®, x,y) seems to depend
not just on x but also on y. In fact there is a bounded measurable function 3(®,x) such that

b(w,X?,X5’) = B(w,X{") P— almost everywhere,
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where PP is given by (8.2.1). This can be seen as follows. Rearrange terms to see that
b(Tw, XL X{) = A(w)e 2 @XX )b, XO XP).

By the Markov property of X?, for fixed o, the left-hand-side and the right-hand-side of this
equation are conditionally independent given X;°. Two independent random variables which are
equal, must be constant. So for m-a.e. @,

b(Tw, Xy’ X5") =E°(b(Tw,X5°, X5)|X5").

Setting
Blo,X°) :==E°(b(w, X7, X7°)[X°)

and using stationarity to shift indices where needed, we find that
b(w,X{,X5’) =B(w0,X") P—ae., b(Tw,Xy Xy)=B(Tw,Xy) P—a.e.

Hence B(0,X0)
LiFOXPXE) _ 4 (o) PR b
)BT 0,x¢)

So f is relatively cohomologous to a coset of ZZ.

We obtained a contradiction to our assumptions. This contradiction shows that G (X®,f?) =
R for a.e. ®. The local limit theorem now follows from Theorem 4.1, applied to (X®,f?), since
Theorem 8.1 gives the a.s. asymptotic V) ~ N o2 for some 62 > 0 independent of ®. U

Proofs of Theorem 8.3 and 8.7 on the lattice case. Theorems 8.3 and 8.7 provide the LLT for
Markov chains in random environment with finite and infinite noise processes for integer valued
additive functionals, under the assumption that f is not relatively cohomologous to a coset of
t7, with t # 1.

The proof is similar to the proof in the non-lattice case, except that now to check irreducibility
we need to show that Hy, = Z almost surely. Since f is integer valued, 1 € Hy, so if this is not
the case then necessarily Hy, = tZ for t = ,ll and n € N. Now repeat the proof of Theorems 8.2
and 8.6 verbatim. O

8.3.4 Log-moment generating functions and rate functions

We prove Theorem 8.4 on the a.s. convergence of the log-moment generating functions of
(X®,f?) and their Legendre transforms. Suppose f is an essentially bounded additive functional
on a MCRE with a finite noise space (2, %, m,T). Without loss of generality, m(Q2) = 1.

Part (1): Convergence of log-moment generating functions: We are asked to show that for
ae. 0,92 (&) = xlog E(e55V) converge pointwise on R. To do this we recall three facts from
chapter 6:

FACT 1: Given & ER, for every o € L there are unique numbers p,, (é ,®) € R and unique non-
negative functions h,(-,&, ) € L*(&,B(6), Uyn-14) such that [hy(x,&,0)Urn1,(dx) =1
foralln > 1, and

Ef(T"0.xy) n+1(y,§ o) 0 _
/ ePr(& O, (x, &, ) n(T"w,x,dy) = 1. (8.3.7)



198 8 LLT for Markov chains in random environment

Furthermore, p,(&,®) = p(&,T" ) for all n, where and p(&, ®) is measurable.

Proof. The existence and uniqueness of /,,, p,, follows from Lemma 6.7, applied to (X®,f®) with
a, = 0. Writing (8.3.7) first for (n, ®) and then for (n — 1,T®), and then invoking uniqueness,
we find that p, (¢, 0) =P, (§,Tw). So

Pu(6.0)=P,1(§,Tw)=--- =7 (§,T" ' 0) = p(£,T" ),

where p(&,®) := p;(§,T ' ). The proof of Lemma 6.7 represents hy,(x,&,®) as a limit of
expressions which are measurable in (x,§,®), so (x,&,®) — hy(x,&,®) is measurable. By
(8.3.7), (0,&) — p(&, ) is measurable.

FACT 2: Let K := ess sup [f| and let & denote a uniform ellipticity bound for X®. For every
R > 0 there exists a constant C(€y,K,R) such that |p(§, )| < C(&,K,R) for all ® € Q and
<R

Proof. See the proof of Lemma 6.8.

FACT 3: Let Py(€, @) := Z ), then for a.e. ® € Q,

0]
90 (&) = (‘;\/ ) {%}éa)) +0 (VL]\‘;’)} uniformly on compact subsets of & € R.

Proof. Itis convenient to work with 9 (&) := VL“’ logE(e55V) = (N/V@ Y42 (E). Let Py(€, @) :
N
Py(&, 0)+ (E(SY) — i ‘é oPN (0,®))&. For each @ € Q such that V,? — oo,

(1) %EZOF;\,(O,_(D) exists, by Lemma 6.10.

(2) |Pyv(§,0) — Py(&,®)| = O(1) uniformly on compact subsets of & € R, by Lemmas 6.11
and 6.12.

(3) |ZR (&) —Pn(E)/VP|=0(1/V,?) uniformly on compact subsets of & € R, by Lemma 6.12.
Fact 3 follows.

We can now prove the a.s. convergence of .7 (). By the assumptions of the theorem, f is
not relatively cohomologous to a constant. Therefore, by Theorem 8.1, there exists o2 > 0 such
that V¢ ~ 62N as N — oo for a.e. 0.

Fix a countable dense set {&;, &y, ...} C R. For each i, @ — p(&;, ®) is bounded and measur-
able. So for a.e. W,

1 X 1
1 9, o’ lim — Y p(&,T*ow) = lim — ¥ p(&, T"w
im 49(6) =" Jim 5 Y. P67 0) = fim Y1 p(& 7o)
= / (&, @)m(dw), by the Birkhoff ergodic theorem.

This shows that for all i there exists 4(&;) € R such that Al]im GP (&) =9 (&) forae. w. Let Q'
—>00

denote the set of full measure of @ where this holds for all i € N.
Fix w € ©/, then the functions § — Z (&) are equicontinuous on compacts, because if
K :=ess sup|f|, then
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lé\E(!S“!eésN)
VOE(e5)

SIKN

="y =00,

Therefore for a.e. @, the functions & — % (&) are equicontinuous on compacts.

Recall that if a sequence of functions ¢, (&) which is equicontinuous on compacts converges
on a dense subset of R, then ¢,(§) converges for all & € R. Moreover, the limit is continuous.
So there is a continuous function .7 ® () such that

Allirn GP(E)=FPE&) forallE eR, € Q.
—>00

In fact #“ (&) does not depend on @, because by virtue of continuity,

FOE)=1im F9&;,) = hm %(élk) whenever §;, — &;.
k—roo k—ro0

We are therefore free to write F (&) =.7 (&).

It remains to show that .% (&) is differentiable and strictly convex on R. Fix 0 € Q'. Applying
Theorem 6.1 to (X?,f®) we find that for every R > 0 there is a C = C(R) such that C~! <
(Z3)" < C on [—R,R]. This implies that .% is differentiable and strictly convex on (—R,R)
because of the following general lemma:

Lemma 8.14 Suppose @, : R — R are twice differentiable convex functions such that C~! <

@) < C with C >0, on (—R,R). If ¢, prawa pointwise on (—R,R), then @ is continuously
—>00

differentiable and strictly convex on (—R,R).

Proof. A pointwise limit of convex functions is convex, and convex functions have one sided

derivatives. Let @', (§) denote the one-sided derivatives of at £.

DIFFERENTIABILITY: For all |§| <R,

0\ (&) —¢" ()| = lim

pE+h)—9() ¢ —h>—¢(€)‘
h

h—0+t h
— tim 1 | 226 A —@a(S)  u(€—h) — @u(S)
h—0+ n—ree h h
= lim lim |@}(&,) — @} (n,)| for some &,,n, € (& —h,&E +h)
o0t n—es
< lim lim 2Ch = 0, because |@, | < C on a neighborhood of &.
T 0t e

We find that ¢/ (&) = ¢’ (§), whence ¢ is differentiable at £.
STRICT CONVEXITY: Suppose —R < & < 1 <R, then

o'(n) — ' (€)= ¢ () — @' (&) = lim e(n+h)—e(m) ¢ —h)—e()

h—0+ h h
— tim i @A) = @) @a(E —h) —u(S)
h—0F n—eo h h
= lim ¢, (1) = @;(&,) for some & € [§ =1, &, my € [0,1 47

> hnime_lmn — &, >C7 Y (n—&), because ¢ > C ! on (—R,R).
n—>o00

It follows that ¢’ is strictly increasing on (—R,R).
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THE DERIVATIVE IS CONTINUOUS: The same calculation as before shows that if —R < & <
1N <R, then |¢'(n) — ¢'(&)| < C|E —n|, whence ¢’ is (Lipschitz) continuous on (—R,R). [
Part (2): Convergence of E(SY)/N: We need the following standard fact.

Lemma 8.15 Suppose ¢,(&), ¢(x) are finite, convex, and differentiable on (—R,R). If ¢,(&) —
O(E) on (~R.R), then g}(&) — ¢'(E) on (~R.R).

Proof. Fix & € (—R,R). By convexity, for every h > 0 sufficiently small,

To see this note that the LHS is at most (¢,)" (&), the RHS is at least (¢,)’ (§), and both
one-sided derivatives equal @] (&).
Passing to the limit n — oo in (8.3.8), we find that

(&) —(E—h) o(E+h)—o(&)
h ’ h

(8.3.8)

limsup @, (&), liminf ¢, (&) € [

We now invoke the differentiability of @, pass to the limit 2 — 07, and discover that lim sup ¢/, (&)
and liminf ] (&) are both equal to ¢’ (&). O

Forae. o, (V{?/N)Z3 (&) =9 (&, 0) = Z (&). So by the lemma
—>00

A calculation shows that the derivative equals E(SY)/V,y. So E(SY)/N — .Z'(0).

Part (3): Convergence of Legendre transforms. Again, the proof is based on a general prop-
erty of convex functions.

Lemma 8.16 Suppose ¢,(&), 9(E) are finite, strictly convex, continuously differentiable func-
tions on R, s.t. (&) = @ (&) forall & € R. Ler ¢/ (Fo0) := élim ©'(&). Let @, * denote the
—too

Legendre transforms of @, @. For all 1 € (¢/(—0), @' (+)), @5(n) is well-defined for all n
sufficiently large, and @;i(n) — @*(n).

Proof. Fix ) € (¢/(—0), ¢'(4)). By assumption, ¢’ is continuous and strictly increasing.
Therefore, there exists & such that ¢'(n) = €.

Fix € >0 and & < & < & such that |§; —&| < €. Then ¢@'(&)) < < ¢'(&). By Lemma
8.15, ¢/ (&) — ¢'(&), and therefore there exists N such that for all n > N,

P'(&)—1<,(&)<n<oi(&) <9 (&)+1.

Since n € (¢,,(&1),¢,(&)) and @), is continuous and strictly increasing, there exists a unique
&n € (&1,&) so that @) (&,) = n. So ¢ (n) is well-defined, and

<P;(7‘I) = énn - (Pn(gn)

Similarly, ¢*(17) = ¢n — ¢(&).
We now estimate the distance between @, (1) and ¢*(n). Recall first that for all n > N,

0'(&1) — 1 < @p(&1) < 9,(&) < 9'(E) +1. Let
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M = max{|¢'(&) —1],|¢'(&) + 1]},
then |@)| <M on (&;,&,) for all n > N. Consequently,

10, (M) — @™ (M) <& — &I+ n]+10u(E) — 9(E)]
< |81 =&l I+ 9a(8n) — €u(E) |+ [@u(E) — 9(E)]
<en|+M|E —&E[+10u(8) —@(E)| < e(M+|n|) +o(1), asn — oo,

because @,(&) — @(§), &,&, € (&1,&), and |&; — &;| < €. Since € is arbitrary, we have that
@, (M) = @*(n). 0

Part (4): Properties of .# (7). Fix o such that gy (&) := ]%,log E(e55V) converges pointwise to
Z.By Lemma 8.16, @5, converges pointwise to .. Since @y, is uniformly bounded away from
zero and infinity on compacts (see the first part of the proof), (¢y)” is uniformly bounded away

from zero and infinity on compacts. Hence by Lemma 8.14
& = lim @y is strictly convex and continuously differentiable.

By Lemma 8.15, (%) (n) o #'(n) for all n in the interior of the range of ¢’, and
—»00
on(§) ~ F'(&) forall & € R. The convergence is uniform on compacts, because (¢@y)"”, oy
—>00

are bounded on compacts.

It is easy to verify that @y is twice differentiable. Therefore by Lemma 6.17, ¢y, is twice
differentiable and (@y) (@ (&)) = & for all &. Passing to the limit as N — oo we obtain the
important identity .#'(.%"(£)) = & for all £ € R.

One consequence of the identity &' (.Z'(&)) = & is that #/(Z'(0)) =0,s0n = F'(0) is a
critical point of .#(+). By strict convexity, .# attains its global minimum at .%’(0). The value
there is zero:

F(Z'(0))=0-Z'(0)—.Z(0)=0.
We conclude that .# (1) = 0 when n = .%7(0), and .# (n) > 0 for n # .%7(0).

Another consequence of the identity .#/(.%#(£)) = £ (and the fact that %' is increasing) is
that .#7(&) é—i> +oo, and therefore .# has compact level sets. O

—+too

Part (5): Large deviation threshold. We prove the identity for .%' (o), the identity for %’/ (—oo)
follows by replacing f — —f.

Step I. ¢ > F'(+o0).
Proof. Given 1] € (F'(—c0),.F (40)) choose

F'(—0) <~ <n<nt < F(+0).
Take £F be s.t. .Z/(EF) = n*. By Lemma 8.15,

FL(E7)<n < Fn(ET) and so 7 is reachable.

Step II. ¢ < F'(4o0).

Proof. Take 1 > ¢;. If N € 6% for some R we would have that for some R, for all N large
enough .%{,(R) > 1 (see Lemma 6.12(5)). However by Lemma 8.15, ﬁlirio In(R)=F'(R) <

Allim F(EE) = n*. Hence for large N
—>00

F'(+00) < M contradicting our assumption that 1) is reachable.

In(w
Step I11. Denote .y (®) = ess supS%. Then the limit s := lim 1\;\(] )

exists and is indepen-
N—oo

dent of @ with probability one.
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Proof. By our ellipticity assumption
<5”1\74_]\/1(60) < <5”1\[(()0) -l-SM(TN(D) —4K.

Thus the sequence Iy () = . (®) —4K is subadditive. Since .y (®) > —KN the Subadditive

(0] (0]
Ergodic Theorem implies that the limit lim % = lim %

exists and is independent
N—e N N—oo

of @ with probability one.

Step IV. ¢, < s because for each € > 0 we have that with probability one for large N, P?®(Sy >
(sT+€)N) =0.

Step V.cp >s5"

Proof. Fix € > 0. By Step III for each sufficiently large Ny there exists ¥ n, > 0 and a set £2¢ y,
s.t. m(Q¢ n,) > 1 — € and for all ® € Q¢ v, for py-ae. x € S,

P®(Sn, > (57 — €)NolX1 = x) > Ve, (8.3.9)

Given M let ji(®) < j2(@) <+ < ji,, (w)(®) be all the times 1 < j < M when TN () € Q¢ >
then

P (Som = nua(s* — €)No — (M — mr)NoK) = 1o -
(To see this, estimate conditional probabilities of this event given X Jf‘l’, ¢ @M using (8.3.9),

]"L

and take expectation over X7,..., X Jqu )

By the Ergodic Theorem, for a.e.  there is a limit

Blo)= tim ™ @) g / B(w)dm = m(Qe xp)-

M—o M
So for large M, and on a set ﬁg of positive measure, ny /M > 1 — 2¢€ whence
ny(s™ —€)No — (M —ny)NoK > [(1—2¢)(s" — &) —2eK]| NoM.

Now Theorem 6.7(c) shows that on Q¢, ¢t (@) > (1 —2¢)(sT —€) — 2¢K.
By steps I and II above, ¢* actually does not depend on @ (in fact, using Theorem 6.7, it is
easy to verify directly that ¢* is T-invariant, and therefore by ergodicity, constant). we get that

(o) > (1-2¢)(st —¢)—2¢eK

almost surely. Since € is arbitrary the result follows. U

8.4 Notes and references

Markov chains in random environment (MCRE) should not be confused with “random walks in
random environment” (RWRE). In the RWRE model, the transition kernel at time n depends on
the position of random walk at time n, i.e. m,(x,dy) = 7(S,,x,dy). In a MCRE, the transition
kernel at time n depends on the noise at time n, i.e. m,(x,dy) = n(T"®,x,dy). For a recent
treatment of the LLT for RWRE, see [21] and references therein.

Markov chains in random environment were introduced by Cogburn [24]. The setup is a par-
ticular case of a “random dynamical system.” For a fixed realization of noise, a Markov chain in
random environment reduces to an inhomogeneous Markov chain, and a random dynamical sys-
tem reduces to a “sequential” (aka “time-dependent” or “non-autonomous’) dynamical system.
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Various authors considered probabilistic limit theorems in these contexts. Limit theorems for
Markov chains in random environment are given in Cogburn [25], Seppélédinen [138], Kifer [79],
[80] and Hafouta & Kifer [69, chapters 6,7],[68]. Results for random dynamical systems can be
found in Kifer [80], Conze, Le Borgne & Roger [27], Denker & Gordin [37], Aimino, Nicol &
Vaienti [8], Nicol, Torok & Vaienti [111], and Dragicevi¢, Froyland & Gonzalez-Tokman [53].
For limit theorems for sequential dynamical systems, see Bakhtin [12], Conze & Raugi [28],
Haydn, Nicol & To6rok [72], Korepanov, Kosloff & Melbourne [86], and Hafouta [66, 67].

If we set the noise process to be the identity on the one point space, then the LLT in this
chapter reduce to LLT for homogeneous stationary Markov chains, as in Theorem 7.1. For more
general LLT for homogeneous Markov chains, see Nagaev [109], Guivarc’h & Hardy [65].

The results of this chapter are all essentially known in the case T preserves a finite mea-
sure. Theorem 8.1 was proved in the more general setup of random dynamical systems by Kifer
[80],[78]. Theorems 8.2 and 8.3 are close to the (earlier) results of Dragicevié, Froyland &
Gonzélez-Tokman [53], and Hafouta & Kifer [69, chapter 7, Theorem 7.1.5]. The main differ-
ence is in the irreducibility assumptions. Our condition of non-relative cohomology to a coset
is replaced in [69] by what these authors call the “lattice” and “non-lattice” cases (this is not
the same as our terminology). In the paper [53], the non-cohomology condition is replaced by a
condition on the decay of the norms of certain perturbed characteristic function operators, and
a connection to a non-cohomology condition is made under additional assumptions.

The results for infinite noise processes seem to be new. The reason we can also treat this case,
is that the LLT we provide in this work do not require any assumptions on the rate of growth of
Vn, and they also work when it grows sub-linearly.
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R-admissible, 165

additive functional
a.s. uniformly bounded, 24
center tight, 41
equicontinuous, 179
gradient, 41
homogeneous, 171
of a Markov array, 23
of a Markov chain, 23
reducible and irreducible, 65
uniformly bounded, 24
with summable variance, 42
admissible, 165
algebraic range
arrays, 67
Markov chains, 65

balance, 31
Bernoulli noise process, 186
bridge distribution, 30

center tightness
characterization, 43
definition, 41
obstruction to the LLT, 41
center-tightness
and the co-range, 66
Central Limit Theorem, 50
change of measure, 23, 69
and large deviations, 138
characteristic functions, 90
circular mean, 72
circular variance, 72
CLT, 43
co-range, 66, 67

for Markov chains in random environment, 191

coboundary, 42
cohomologous, 188
contraction coefficient, 25
cylinders, 186

decay of correlations, 29
Dirac measure, 21
Dobrushin’s Theorem, 43

ellipticity condition, 24

ellipticity constant, 24

equicontinuous additive functional, 179
ergodic, 185

essential range, 67

for Markov chains in random environment, 191

Fourier transform, 126

gradient, 41
graininess constant, 106
Green-Kubo formula, 172

hereditary, 69
stably hereditary, 69
hexagon, 30
admissible, 31
balance, 31
distribution, 31
measure, 31
Hilbert’s projective metric
contraction properties, 140
definition, 140
homogeneous additive functional, 171
homogeneous Markov chain, 20, 171

independent o-algebras, 37
inhomogeneous Markov chain, 20
Initial distribution

of Markov chains, 19
initial distribution

of Markov array, 22
irreducible, 65, 67

joint distribution
of a Markov chain, 19

Kolmogorov two-series theorem, 44

ladder process, 34
large deviations, 131
lattice case, 65
Legendre transform, 134
definition, 159
domain, 134
Local limit theorem
mixing LLT, 89
mixing non-lattice, 105
log-moment generating function, 132

Markov array, 22
N-th row, 22
row lengths, 22
sub-arrays, 69
why study them, 23
Markov chain, 19
with finite state spaces, 20
homogeneous, 20, 171
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inhomogeneous, 20

initial distribution, 19

joint distribution, 19

random environment, 185

state spaces, 19

transition probabilities, 19

with finite memory, 21
Markov chains

Doeblin, 24
Markov operator

contraction coefficient, 25
Markov operators, 25
Markov property, 19
Markovian noise process, 186
Martingale CLT, 50
martingale difference array, 49
measure preserving transformatios, 185
mixing, 29
mixing conditions

o-mixing, 37

¢-mixing, 37

y-mixing, 37

p-mixing, 37
Mixing LLT, 89
mixing uniform distribution mod ¢, 105

Nagaev’s identities, 90, 109
Noise process, 185
Bernoulli, 186
Markovian, 186
null recurrent Markov, 187
Quasi-periodic, 186
non-lattice case, 65

normalized log-moment generating function, 132

obstructions to the LLT

center tightness, 41

gradients, 41, 42

lattice case, 65

reducibility, 66
one-step ellipticity condition, 179
oscillation, 25

perturbation operators, 90
potential, 42

power series on Banach spaces, 142

Quasi-periodic noise process, 186

range
algebraic, 65, 67
reduced, 65

rate functions, 134
reachable, 165

real-analyticity for functions on Banach spaces, 142

reduced range, 65

reducible, 65
local limit theorems, 101
reduction, 65
Reduction lemma, 70
regime
of large deviations, 131
local, 23
local deviations, 131
moderate, 132
of large deviations, 23, 131
universality, 132
relatively cohomologous, 188
restriction, 69
row lengths, 22
Rozanov’s condition, 85

simple random walk, 65
stably hereditrary, 69
State spaces, 19
state spaces
of Markov array, 22
structure constants
and center tightness, 43
and growth of variance, 43
definition, 31
sub-array, 69
summable variance, 42

a.s. convergence of {Sy }n>1, 44
symmetric multilinear function, 142

Taylor series on Banach spaces, 142

total variation distance, 25
transfer function, 42
transfer operator, 174
transition kernel, 25

contraction coefficient, 25
Transition probabilities

of Markov chains, 19
transition probabilities

of a Markov array, 22

uniform ellipticity
v-step, 36
v-step ellipticity condition, 24
and decay of correlations, 29
for Markov arrays, 24
for Markov chains, 24
one-step, 179
uniform integrability, 50
universality, 132

variance
circular, 72

Variance estimate, 43

Zero-one law, 173
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