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Infinite measure renewal theorem and related results

Dmitry Dolgopyat and Péter Nándori

Abstract

We present abstract conditions under which a special flow over a probability preserving map with
a non-integrable roof function is Krickeberg mixing. Our main condition is a version of the local
central limit theorem for the underlying map. We check our assumptions for iid random variables
(renewal theorem with infinite mean) and for suspensions over Pomeau-Manneville maps.

1. Introduction

Mixing plays a central role in studying statistical properties of transformations preserving a
probability measure. For transformations preserving an infinite measure, mixing is much less
understood. In fact, there are several different generalizations of mixing to infinite measure
setting [21]. One natural definition is to require that for a large collection of (nice) sets of
finite measure, the probability that the orbit is in this set at a given time t is asymptotically
independent of the initial distribution. This type of mixing is sometimes called Krickeberg
mixing since it has been studied for Markov chains in [20] (other early works on this subject
include [13, 18, 29]). This notion of mixing is related to classical renewal theory ([14]) and to
limit distributions of ergodic sums of infinite measure preserving transformations [10]. Recently,
there was a considerable interest in studying mixing properties of hyperbolic transformations
preserving an infinite measure in both discrete and continuous time settings (see [2, 5, 15, 23,
24, 26, 27, 28, 31] and references wherein).

The goal of this note is to describe a method of deducing mixing for flows from local limit
results for the first return map to an appropriate section. This approach goes back to [14]
in the independent setting, and in dynamical setting it was pursued in [2, 8, 9]. The plan of
the paper is the following. In Section 2, we explain how to obtain mixing for flows from the
local limit theorem and appropriate large deviation bounds for a section. Section 3 contains
tools which are helpful in verifying the abstract conditions of Section 2 in specific examples.
In particular, in Theorem 3.3 we obtain sharp large deviation bounds for quasi-independent
random variables. The last two sections contain specific examples where our assumptions hold.
Section 4 is devoted to independent random variables. The results of this section are not new
but we included this example since it allows us to illustrate our approach in the simplest
possible setting. In particular, it is known since the work of Garcia-Lamperti ([14]) that in the
independent case the regular variation of the return time with index α is sufficient for mixing
if α > 1

2 but extra assumptions are needed if α ≤ 1
2 . We will present in Section 4 a simple

argument to verify our key assumptions (2.4), (2.5) for α > 1
2 , and we will see that a more

delicate estimate (4.2) is required in the general case. In Section 5, we show how to verify our
assumptions for suspension flows over the Liverani-Saussol-Vaienti map studied in [22].

While there is a number of papers dealing with mixing of infinite measure preserving flows
(see the references at the beginning of the introduction), we use more elementary tools than
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most of the previous works. In particular, we pay a special attention to isolate the key geometric
(quasi-independence) and probabilistic (anticoncetration, exchangebility) ingredients needed in
our method. This could make our method useful also for studying more complicated systems.

2. Abstract setting

2.1. Results.

Recall that a function L : R+ → R+ is called slowly varying if for each h > 0, lim
t→∞

L(ht)

L(t)
= 1.

A function R : R+ → R+ which can be represented in the form R(t) = tγL(t) with L slowly

varying is called regularly varying of index γ. Equivalently, for each h > 0, lim
t→∞

R(ht)

R(t)
= hγ . We

refer the reader to [4] for a comprehensive discussion of regularly and slowly varying functions.
The properties of these functions needed in this paper will be recalled in a due time.

Let f : X → X be a map preserving a probability measure µ. Let τ : X → [τmin,∞), where
τmin > 0, be a function whose tail is regularly varying with index −α for some α ∈ (0, 1). That
is, we assume that there is a slowly varying function L(t) such that

µ(τ > t) ∼ L(t)

tα
. (2.1)

In particular µ(τ) =∞. Consider the suspension flow of f under the roof function τ. Recall
that the phase space of the suspension flow is

Ω = {(x, s) : x ∈ X, s ≥ 0}/ ∼, where (x, s+ τ(x)) ∼ (f(x), s) for any x ∈ X and s ≥ 0.

The suspension flow gt acts on Ω by gt(x, s) = (x, s+ t) (with a slight abuse of notation, we
write (x, s) instead of the equivalence class [(x, s)]. We also note that as T is not assumed to be
invertible, gt is sometimes called semiflow in the literature.) Note that gt preserves the infinite
measure ν defined by

dν(x, s) = dµ(x)ds.

Let τk(x) =
∑k−1
i=0 τ(f i(x)). We are interested in the asymptotics of ν(A ∩ g−tB) for suitable

sets A,B.
Before formulating our first main result we need some background information on regularly

varying functions. Applying [4, Theorem 1.5.12] to the regularly varying function t 7→ tα/L(t),
we find that there is a regularly varying function R(t) of index 1

α such that

lim
t→∞

tL(R(t))

Rα(t)
= 1. (2.2)

We say that two regularly varying functions R1 and R2 are asymptotically equivalent if

lim
t→∞

R1(t)

R2(t)
= 1. Clearly, the function R satisfying (2.2) is uniquely defined up to asymp-

totic equivalence. Furthermore, [4, Theorem 1.5.12] implies that R can be assumed to be
monotonically increasing.

Now we are ready to formulate our results.

Proposition 2.1. Suppose that there is an algebra X on X, a bounded continuous
probability density ρ on [0,∞) and a constant c̄, such that for any A,B ∈ X , for any ε > 0
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and for any I compact subset of R+,

lim
k→∞

sup

t≤
R(k)

ε

sup
l∈I

∣∣∣∣R(k)µ
(
x ∈ A, fkx ∈ B, τk(x) ∈ [t− l, t]

)
− c̄ρ

(
t

R(k)

)
lµ(A)µ(B)

∣∣∣∣ = 0

(2.3)
Suppose furthermore that there are constants β1, β2, β3 such that

β2 +
β3

α
< 1, β1 + β2α+ β3 = 1 (2.4)

and there is some C so that the for any l ≥ 1 and for any k ∈ Z+,

µ (τk ∈ [t, t+ l]) ≤ Cl

Lβ2(t)tβ1kβ2Rβ3(k)
. (2.5)

Then for any A,B ⊂ Ω, A = A× [a1, a2], B = B × [b1, b2] we have

lim
t→∞

ν(A ∩ g−tB)L(t)t1−α = ĉµ(A)µ(B)(a2 − a1)(b2 − b1) = ĉν(A)ν(B), (2.6)

where

ĉ = c̄α

∫∞
0

ρ(z)

zα
dz. (2.7)

Remark 2.2. Let Ω≤M = {(x, s) ∈ Ω : s ≤M}. Assume that X is a topological space, X
generates the Borel σ-algebra and every set in X has boundary of µ-measure zero. Then one
can prove by standard argument (cf. [3]) that (2.6) is equivalent to

ν(ΦΨ ◦ gt)L(t)t1−α → ĉν(Φ)ν(Ψ)

with either of the following two classes of functions:
– for any continuous functions Φ,Ψ : Ω→ R supported on Ω≤M for some M <∞;
– for any Φ = 1A, Ψ = 1B, where A,B ⊂ Ω≤M for some M <∞ and ν(∂A) = ν(∂B) = 0.

Assumption (2.3) amounts to the non-lattice (mixing) local limit theorem. In fact, the non-
lattice assumption is not necessary for mixing of the flow. To clarify the situation, we need
some definitions.

Definition 2.3. Let (Y, λ, T ) be a dynamical system. We say that an observable ϕ : Y → R
is rational if there is a real number h and two measurable functions ψ : Y → Z, h : Y → R so
that

ϕ = hψ + h− h ◦ T. (2.8)

A function, which is not rational, is called irrational.
We say that ϕ is periodic if there exist real numbers a, h and two measurable functions
ψ : Y → Z, h : Y → R so that

ϕ = a + hψ + h− h ◦ T. (2.9)

A function, which is not periodic, is called aperiodic.

A rational function is clearly periodic with a = 0. Conversely, suppose that (2.9) holds and
a
h is rational, that is a = ph

q . In this case, ϕ = h̄ψ̄ + h− h ◦ T with ψ̄ = a+hψ
h̄

and h̄ = h
q , where

ψ̄ is integer valued and so ϕ is rational.
Thus we have three cases: ϕ can be either aperiodic, periodic irrational or rational.



Page 4 of 22 DMITRY DOLGOPYAT AND PÉTER NÁNDORI

Proposition 2.1 addresses mixing in the case τ is aperiodic. Next, we consider the simplest
case, i.e. when τ is rational.

Proposition 2.4. If τ is rational, then gt is not mixing.

Proof. Assume that (2.8) holds for ϕ = τ . Note that h is defined up to an additive constant.
Let us choose this constant in such a way that µ(A) > 0, where A = {x ∈ X : 0 < h(x) ≤
τ(x)}. Next, we consider the set A = {(x, h(x)), x ∈ A} ⊂ Ω. For x ∈ A, let ς(x) = min{s > 0 :
gs(x, h(x)) ∈ A} (for almost every x ∈ A, ς(x) is finite by the Poincaré recurrence theorem).
Furthermore, let n(x) denote the number of times the orbit {gt(x, h(x)), t ∈ (0, ς(x))} hits the
roof. Then we find that by (2.8),

ς(x) = −h(x) + h(fn(x)x) +

n(x)−1∑
i=0

τ(f i(x)) =

n(x)−1∑
i=0

hψ(f i(x)) ∈ hZ.

Thus with a sufficiently small ε and Aε = {(x, s) ∈ Ω : x ∈ A, |s− h(x)| < ε}, we have that
Aε ∩ g−tAε = ∅ whenever t ∈ hZ + h/2. This shows that gt is not mixing.

It remains to address the periodic irrational case. This is done in Proposition 2.5 below.
Given a function h : X → R and numbers k ∈ Z+, wk ∈ R, let Fk,h,wk : X → X ×X × R be

defined by

Fk,h,wk : x 7→ (x, fkx, τk(x)− h(x) + h(fk(x))− wk).

Proposition 2.5. Assume that X is a topological space. (2.6) remains valid for any A, B
with µ(∂A) = µ(∂B) = 0 if (2.3) is replaced by the following assumption

”There is a bounded and continuous function h : X → R and constants c̄,a, h such that
a

h
is

irrational and such that for any ε > 0, for any C <∞, for any φ ∈ C(X ×X × R), compactly
supported in the last coordinate, we have

lim
k→∞

sup
w∈[0,1/ε]

sup
wk∈ak+hZ:|wk/R(k)−w|<C

∣∣∣∣R(k)

∫
φd(Fk,h,wk)∗µ− c̄ρ(w)

∫
φd(µ× µ× u)

∣∣∣∣ = 0

(2.10)
where u is h times the counting measure on hZ.”

2.2. Proofs.

Proof of Proposition 2.1.

ν (A ∩ g−tB) =

∫a2

a1

∑
k

µ
(
x ∈ A, fkx ∈ B, τk(x) + b1 ≤ a+ t ≤ τk(x) + b2

)
da. (2.11)

The last condition can be rewritten as

τk(x) ∈ [t+ a− b2, t+ a− b1].

Define

N (t) = inf{s : R(s) > t} (2.12)

where R is defined by (2.2). [4, Theorem 1.5.12] implies that N (t) is asymptotically equivalent
to t 7→ tα/L(t). Clearly N (t) is monotonic.

Fix a small constant ε and decompose the sum (2.11) as I + II + III where I includes the
terms with k < εN (t), III includes the terms with k ≥ N (t)/ε and II comprises the remaining
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terms. By (2.5) and the Karamata Theorem ([4, §1.5.6])

I ≤ Const

Lβ2(t)tβ1

εN (t)∑
k=1

1

kβ2Rβ3(k)
≤ Const

Lβ2(t)tβ1

(εN (t))
1−β2

Rβ3(εN (t))
. (2.13)

Since R is regularly varying we have (see [4, §1.5.7]) that

lim
t→∞

R(N (t))

t
= 1. (2.14)

Hence

lim
t→∞

R(εN (t))

t
= ε1/α.

Thus

I ≤ Constε1−β2−β3/α
N 1−β2(t)

Lβ2(t)tβ1+β3

Comparing (2.2) and (2.14) we obtain

lim
t→∞

L(t)N (t)

tα
= 1. (2.15)

Therefore

I ≤ Const
ε1−β2−β3/α

L(t)tβ1+(β2−1)α+β3
= Const

ε1−β2−β3/α

L(t)t1−α
(2.16)

and so I is negligible in the sense that we can make it as small as we wish by choosing a
sufficiently small ε.

Next, by (2.3) and the Karamata Theorem

III ≤ Const
∑

k>N (t)/ε

1

R(k)
≤ Constε(1/α)−1 N (t)

R(N (t))
.

Using (2.14) and (2.15) we see that

III ≤ Constε(1/α)−1 tα

L(t)t

which is also negligible.
On the other hand by (2.3) we have

II ∼ c̄(a2 − a1)(b2 − b1)µ(A)µ(B)

N (t)/ε∑
k=εN (t)

ρ

(
t

R(k)

)
1

R(k)
. (2.17)

By regular variation

t

R(k)
=
R(N (t))

R(k)
(1 + o(1)) =

(
N (t)

k

)1/α

(1 + o(1))

so the sum in (2.17) is asymptotic to

1

t

N (t)/ε∑
k=εN (t)

ρ

((
N (t)

k

)1/α
)(
N (t)

k

)1/α

.

Let zk =
(
N (t)
k

)1/α

. Then zk − zk+1 ∼ N
1/α(t)

αk1+1/α . Writing

ρ

((
N (t)

k

)1/α
)(
N (t)

k

)1/α

∼ ρ(zk)α(zk − zk+1)k = αN (t)ρ(zk)
zk − zk+1

zαk
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we see that the sum in (2.17) is asymptotic to

αN (t)

t

∫L2(ε)

L1(ε)

ρ(z)

zα
dz (2.18)

where L1(ε)→ 0 and L2(ε)→∞ as ε→ 0. Combining the estimates for I, II, and III and using
(2.15) to eliminate N (t) from (2.18) we obtain the result.

Proof of Proposition 2.5. Let

C(a) = {(x, y, z) ∈ X ×X × R : x ∈ A, y ∈ B, z − h(x) + h(y) ∈ [a− b2, a− b1]}

Then

ν(A ∩ g−tB) =

∫a2

a1

∑
k

(Fk,h,t)∗µ(C(a))da

We decompose this sum into I + II + III as before, and use the same estimates for I + III.
To revisit the computation of II, first observe that µ(∂A) = µ(∂B) = 0 implies (µ× µ×
u)(∂C(a)) = 0 and thus by approximating 1C with continuous functions, we find that (2.10)
implies

II ∼
N (t)/ε∑
k=εN (t)

c̄

R(k)
ρ

(
t

R(k)

) ∫a2

a1

(µ× µ× u)({(x, y, z) : (x, y, z − ka) ∈ C(a)})da.

Fixing some Q large positive integer and writing

N (t)/ε∑
k=εN (t)

=

( 1
ε−ε−1)

N(t)
Q∑

i=0

εtα+(i+1)Q−1∑
k=εtα+iQ

,

we find that

II ∼ c̄Q
tα( 1

ε−ε−1) 1
Q∑

i=0

ρ

(
t

R(εN (t) + iQ)

)
1

R(εN (t) + iQ)∫a2

a1

1

Q

εtα+(i+1)Q−1∑
k=εtα+iQ

(µ× µ× u)({(x, y, z) : (x, y, z − ka) ∈ C(a)})da

Since a
h is irrational, Weyl’s theorem implies that the integrand in the second line of the last

display is µ(A)µ(B)[b2 − b1](1 + oQ→∞(1)), uniformly in a, t, ε and i. Thus II is asymptotic to
a Riemann sum and the proof can be completed as in the case of Proposition 2.1.

Remark 2.6. The conclusions of Propositions 2.1 and 2.5 remain valid if
(2.5) is replaced by the assumption that for some r ∈ Z+ there exists constants
C, β1,1, β2,1, β3,1, . . . , β1,r, β2,r, β3,r such that for each l ≥ 1

µ (τk ∈ [t, t+ l]) ≤
r∑
j=1

Cl

Lβ2,j (t)tβ1,jkβ2,jRβ3,j (k)
, (2.19)

where β1,j β2,j and β3,j satisfy (2.4) for each j. Indeed, (2.5) was only used to derive (2.16).
Under (2.19) we can replace (2.16) by

I ≤ Const

r∑
j=1

εN (t)∑
k=1

1

Lβ2,j (t)tβ1,jkβ2,jRβ3,j (k)
≤ Constε

1−maxj
(
β2,j+

β3,j
α

)
tα−1

L(t)

which shows that I remains negligible.
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According to a common terminology, τ satisfies a mixing local limit theorem if either τ is
aperiodic and (2.3) holds or τ is periodic (either rational or irrational) and (2.10) holds. The
results of this section could be summarized as follows.

Theorem 2.7. If τ is irrational, satisfies a mixing local limit theorem and (2.19), then
(2.6) holds.

In other words, if the appropriate local limit theorem and large deviation bounds hold for
the base map, then the special flow is mixing in both the aperiodic and the periodic irrational
cases but not in the rational case. A similar result holds in the finite measure case (see [9,
Section 2]).

In Sections 4 and 5 we provide examples of systems satisfying the conditions of Theorem 2.7.

2.3. Power tail.

Here we consider an important special case where the function L is asymptotically constant.
Thus we assume that there is a constant c such that

µ(τ > t) ∼ c

tα
for 0 < α < 1. (2.20)

In this case one can take R(k) = (ck)1/α and the statements of Propositions 2.1 and 2.5 can
be simplified as follows.

Proposition 2.8. Suppose that (2.20) holds and there is a bounded continuous density ρ
on [0,∞) such that either

(i) τ is aperiodic and there is a constant c̄, such that for any A,B ∈ X , for any ε > 0 and
for any I compact subset of R+,

lim
k→∞

sup

t≤
(ck)1/α

ε

sup
l∈I

∣∣∣∣(ck)1/αµ
(
x ∈ A, fkx ∈ B, τk(x) ∈ [t− l, t]

)
− c̄ρ

(
t

(ck)1/α

)
lµ(A)µ(B)

∣∣∣∣ = 0,

(2.21)
or
(ii) τ is periodic irrational and there is a bounded and continuous function h : X → R and

constants c̄,a, h such that
a

h
is irrational and such that for any ε > 0, for any C <∞, for any

φ ∈ C(X ×X × R), compactly supported in the last coordinate, we have

lim
k→∞

sup
w∈[0,1/ε]

sup
wk∈ak+hZ:|wk/(ck)1/α−w|<C

∣∣∣∣(ck)1/α

∫
φd(Fk,h,wk)∗µ− c̄ρ(w)

∫
φd(µ× µ× u)

∣∣∣∣ = 0

(2.22)
where u is h times the counting measure on hZ.

Assume in addition that for some r ∈ Z+ there exist constants C, γ1,1, γ2,1, . . . γ1,r, γ2,r such
that for all l ≥ 1

µ (τk ∈ [t, t+ l]) ≤
r∑
j=1

Cl

tγ1,jkγ2,j
. (2.23)

where for each j = 1 . . . r

γ2,j < 1, γ1,j + γ2,jα = 1. (2.24)



Page 8 of 22 DMITRY DOLGOPYAT AND PÉTER NÁNDORI

Then for A,B satisfying the assumptions of Proposition 2.1 we have

lim
t→∞

ν(A ∩ g−tB)t1−α = ĉν(A)ν(B), (2.25)

where ĉ is defined in (2.7).

3. Tools.

3.1. Anticoncentration inequlity.

Here we obtain a useful a priori bound.

Proposition 3.1. Suppose that there exists some δ > 0 so that for |s| ≤ δ∣∣µ (eisτk)∣∣ ≤ (1− cL
(

1

|s|

)
|s|α

)k
. (3.1)

Then there exists a constant D > 0 so that for any interval I of unit size

µ (τk ∈ I) ≤ D

R(k)
. (3.2)

Proof. Without loss of generality we may assume that δ ≤ 1. Denote Z(s) = L(1/|s|)|s|α.
Note that by (2.2), Z

(
1

R(k)

)
=

1 + ok→∞(1)

k
. We have

Z(1/R(k))

Z(s)
= (|s|R(k))−α

L(R(k))

L(1/|s|)
. (3.3)

Note that by the Potter bounds ([4, §1.5.4]), for any fixed β < α, there is a constant C1(β)

such that for
1

R(k)
≤ |s| ≤ δ, we have

L(R(k))

L(1/|s|)
≤ C1(β)(R(k))α−β |s|α−β . (3.4)

Combining (3.3) and (3.4) we conclude that

Z(s) ≥ 1

C 1
(β)Z

(
1

R(k)

)
(|s|R(k))β ≥ C2(β)

(|s|R(k))β

k

for a suitable C2(β).
Thus (3.1) implies that for s with |s| ∈ [1/R(k), δ]∣∣µ (eisτk)∣∣ ≤ e−C3(β)(sR(k))β . (3.5)

Clearly, (3.5) holds for s with |s| ≤ 1/R(k) as well since the left hand side is bounded by 1.

Let H(x) = 1−cos δx
πδ2x2 . Then Ĥ(s) = 1|s|<δ

(
1
δ −

|s|
δ2

)
. Therefore for each a

µ(H(τk − a)) ≤ 1

2π

∫ δ
−δ

∣∣µ (e−isτk)∣∣ Ĥ(s)ds ≤ 1

2πδ

∫ δ
−δ

∣∣µ (e−isτk)∣∣ ds ≤ C4

R(k)
,

where the last step uses (3.5).
On the other hand H(x) ≥ 47

96π if |x| ≤ δ/2. Therefore

µ

(
τk − a ∈

[
−δ

2
,
δ

2

))
≤ 96π

47
µ(H(τk − a)) ≤ C5

R(k)
.
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This proves our claim for intervals of size δ. Since any interval of unit size can be covered by
a bounded number of intervals of size δ, the result follows.

3.2. Large deviations.

Proposition 3.2. Suppose (2.1). Then there is a constant D > 0 so that for any k ∈ Z+,

µ(τk(x) > t) ≤ DkL(t)

tα
. (3.6)

Proof. Let us write

τ− = τ1τ≤t, τ+ = τ1τ>t, τ±k (x) =

k−1∑
j=0

τ±(f jx).

Then

µ(τk > t) ≤ µ(τ−k > t/2) + µ(τ+
k > t/2) ≤ µ(τ−k > t/2) + µ(τ+

k > 0)

where the last step uses that τ+
k > 0 implies τ+

k > t. By (2.1), we have the following estimate
for sufficiently large t and for any k

µ(τ+
k > 0) = µ(∃j ∈ 0, . . . k − 1 : τ(f jx) > t) ≤ kµ(τ+ > 0) ≤ 2kL(t)t−α.

Next, by the Karamata theory (see [4, Theorem 1.6.4]), there is some C so that

µ(τ−k ) = kµ(τ−) ≤ Ckt1−αL(t).

Hence by the Markov inequality, we have

µ
(
τ−k ≥ t/2

)
≤ C kt

1−αL(t)

t/2
= 2CkL(t)t−α.

The proposition follows.

As we will see, the following quasi-independence property holds in several interesting
applications. The sets {(τ ◦ f j) > t} are called quasi-independent if there is some K ∈ R so
that for any j1, j2 ∈ Z+,

µ(τ(f j1x) > t, τ(f j2x) > t) ≤ Kµ(τ(f j1x) > t)µ(τ(f j2x) > t). (3.7)

The next theorem shows that (3.6) is asymptotically sharp under the quasi-independence
assumption. In particular, we can recover a large deviation estimate for sums of independent
random variables (see [7, 32]). Theorem 3.3 is not used in other parts of this paper, however we
include this result since it is of independent interest (e.g., see related results for Young towers
in [17, 25]) and also because similar ideas will be used in Sections 4 and 5 to check (2.19).

Recall (2.12).

Theorem 3.3. Suppose that in addition to (2.1) the sets {(τ ◦ f j) > t} are quasi-
independent. Then for every ε > 0 there is some δ = δ(ε) > 0 and T = T (ε) <∞ such that
for any t > T and for every k = 1, 2, . . . bδN (t)c,∣∣∣∣ tα

kL(t)
µ(τk > t)− 1

∣∣∣∣ ≤ ε.
Proof. It is sufficient to prove the theorem with N (t) being replaced by tαL−1(t). Indeed,

recall that N (t) is asymptotically equivalent to tαL−1(t). Thus if we prove the desired estimate
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for

k ≤ δtαL−1(t), (3.8)

it immediately follows for k ≤ (δ/2)N (t) assuming that t > T0.
First, we prove the lower bound, i.e.

tα

kL(t)
µ(τk > t) ≥ 1− ε. (3.9)

Observe that

µ(τk > t) ≥ µ
(

max
j
τ(f jx) > t

)
= µ(∃j ∈ 0, . . . , k − 1 : τ(f jx) > t).

By the Bonferroni inequality this probability is bounded from below by

k−1∑
j=0

µ(τ(f jx) > t)−
k−2∑
j1=0

k−1∑
j2=j1+1

µ(τ(f j1x) > t, τ(f j2x) > t).

Using the quasi-independence, (2.1), and the f -invariance of µ we conclude that there exists a
constant T1(ε) such that

µ(τk > t) ≥
(

1− ε

2

) kL(t)

tα
− Kk2L2(t)

t2α
,

for all t ≥ T1(ε). This implies (3.9) for any δ < ε
2K .

Next, we prove the upper bound, i.e.

tα

kL(t)
µ(τk > t) ≤ 1 + ε. (3.10)

The proof is similar to that of Proposition 3.2. Namely, we choose

τ− = τ1τ≤H , τ+ = τ1τ>H , τ±k =

k−1∑
j=0

τ±(f jx)

this time with some H < t (to be specified later). Then by the Karamata theory (see [4,
Theorem 1.6.4]), there is a constant C̄ so that

µ(τ−k ) = kµ(τ−) ≤ C̄kH1−αL(H).

Hence by Markov inequality for each ε̄ > 0 we have

µ
(
τ−k ≥ ε̄t

)
≤ C̄ kH

1−αL(H)

ε̄t
. (3.11)

Next

µ
(
τ+
k ≥ (1− ε̄)t

)
≤ µ

(
τ+
k 1A1

≥ (1− ε̄)t
)

+ µ
(
τ+
k 1A2

≥ (1− ε̄)t
)

where A1 is the set where τ(f jx) > H for exactly one index j ∈ [0, k − 1] and A2 is the set where
τ(f jx) > H for at least two indices j ∈ [0, k − 1]. On A1 we should have τ(f jx) > (1− ε̄)t so

µ
(
τ+
k 1A1

≥ (1− ε̄)t
)
≤
k−1∑
j=0

µ
(
τ(f jx) > (1− ε̄)t

)
≤ kL((1− ε̄)t)

[(1− ε̄)t]α
=: U.

Now we choose ε̄ = ε̄(ε) so that (1− ε̄)−α < 1 + ε/5 and then T2 = T2(ε, ε̄) so that
L((1− ε̄)t) < (1 + ε/5)L(t) for all t > T2. Then

U ≤ (1 + ε/2)kL(t)t−α for all t > T2. (3.12)
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On the other hand the probability that there are two indices where τ ◦ f j is large can be
estimated using (3.7) as

k−2∑
j1=0

k−1∑
j2=j1+1

µ(τ(f j1x) > H, τ(f j2x) > H) ≤ Kk2L2(H)

H2α
. (3.13)

Combining (3.11), (3.12) and (3.13), we see that there is a constant C(ε) such that for
t ≥ max(T1(ε), T2(ε)) we have

µ(τk > t) ≤ C(ε)

[
kH1−αL(H)

t
+
k2L2(H)

H2α

]
+ (1 + ε/2)kL(t)t−α.

In order to verify (3.10), it remains to prove that for a suitable choice of H we have

kH1−αL(H)

t
+
k2L2(H)

H2α
≤ ε′kL(t)t−α, (3.14)

where ε′ = ε
2C(ε) . Indeed, set

η = (ε′/4)1/(1−α), H = ηt. (3.15)

Then H1−α/t ≤ (ε′/4)t−α. Since L is slowly varying, we have

L(ηt) < 2L(t) for t > T3(ε). (3.16)

Multiplying the last two inequalities, we obtain

H1−αL(H)

t
≤ ε′

2
L(t)t−α. (3.17)

Next, we show that with H given by (3.15) and δ sufficiently small, we have

kL2(H)

H2α
≤ ε′

2
L(t)t−α. (3.18)

Clearly, (3.17) and (3.18) imply (3.14).
To prove (3.18), set δ = η2αε′/8. Recalling (3.8), we obtain kL(t)t−αη−2α < ε′/8. Using

(3.16) we find that kL2(ηt)t−αη−2α < L(t)ε′/2, which proves (3.18).

4. Independent Random Variables.

Here we consider the case where tj = τ ◦ f j−1 are i.i.d. random variables having non-lattice
distribution. We will recover a result of [12]. We note that the optimal results for the infinite
measure renewal theorem for independent random variables are obtained in [6]. However, we
include the section on independent random variables in order to illustrate our approach in the
simplest possible setting.

To see how the i.i.d. case fits into our abstract setup, set X = R∞+ . Assume that a Borel
probability measure P is given on [c,∞) with c > 0 so that P([t,∞)) ∼ L(t)t−α. Furthermore,
we assume that P is not supported on any discrete subgroup of R. Let f : X → X be the
left shift, that is for (t1, t2, ...) ∈ X, f((t1, t2, ...)) = (t2, t3, ...). Let µ = P∞ (more precisely,
we consider the σ-algebra generated by finite dimensional cylinder sets on X and the unique
measure µ whose projection on the first N coordinates is equal to PN for any finite N). Finally,
let τ((t1, t2, ...)) = t1.

We need to check (2.3) and (2.5). Let us first note that (3.1) is satisfied in our case (see e.g.
[19, Eq. (2.6.38)]) and hence (3.2) holds.
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4.1. Local Limit Theorem.

In the special case A = B = X, (2.3) is proven in [30]. Now let A and B be finite dimensional
cylinder sets, i.e.

A = {(t1, t2 . . . ) : (t1, t2 . . . tn) ∈ A}, B = {(t1, t2, . . . tn) ∈ B}.

for some Borel sets A,B ⊂ Rn+. Let us write AR = A ∩ [0, R]n. We have

µ(x ∈ A, fkx ∈ B, τk ∈ I) =

∫
A
µ

τk−n ∈ I − n∑
j=1

uj

 dP(u1)⊗ · · · ⊗ dP(un)Pn(B).

Decompose the above integral as∫
AR
· · ·+

∫
A\AR

· · · =: I1 + I2.

Using the Local Limit Theorem of [30] for I1, the anticoncentration inequality (3.2) for I2 and
finally letting R→∞, we obtain (2.3).

4.2. Local Large Deviations: α > 1
2 .

Next we prove (2.5) if α > 1
2 .

Proposition 4.1. There is a constant C̄ such that for any k and for any t, u with 0 < t ≤ u,
we have

µ(τk ∈ [u, u+ 1]) ≤ C̄kL(t)

tαR(k)
.

This gives (2.5) with β1 = α, β2 = −1, β3 = 1. Thus β3

α + β2 = 1
α − 1 < 1 iff α > 1

2 .

Proof. Denote I = [u, u+ 1]. Then,

µ(τk ∈ I) ≤ µ(τk/2 > t/2, τk ∈ I) + µ(τk − τk/2 > t/2, τk ∈ I).

By symmetry is suffices to consider the first term

µ(τk/2 > t/2, τk ∈ I) = µ(τk/2 > t/2)µ(τk − τk/2 ∈ I − τk/2|τk/2 > t/2).

The first term is bounded by CkL(t)
tα due to (3.6) and the second term is bounded by C

R(k) by

(3.2).

4.3. Local Large Deviations: α ≤ 1
2 .

In case α ≤ 1
2 , an example of [14] shows that the condition (2.1) alone is insufficient to obtain

the conclusion of Theorem 2.7. Since we verified all the other assumptions of that theorem,
it follows that (2.19) does not hold in general. Here we obtain (2.19) assuming an additional
control over the tail of the roof function.

Proposition 4.2. Suppose that for some (and hence all) K there is a constant C(K) such
that for any t > 0

µ(τ ∈ [t, t+K]) ≤ C(K)L(t)

t1+α
. (4.1)
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Then there are constants C1, C2 such that for any k and for any t, u with 0 < t ≤ u,

µ(τk ∈ [u, u+ 1]) ≤ C1L(t)k

t1+α
+
C2

t
. (4.2)

This gives (2.19) with

β1,1 = 1 + α, β1,2 = −1, β1,3 = 0, β2,1 = 1, β2,2 = β3,2 = 0.

We note that in case τ is integer-valued, a stronger result, namely a precise asymptotics, in
the style of Theorem 3.3, is proven in [11]. It is likely that in case (4.1) holds with asymptotic
equality, a similar result holds in the present setting as well. However, the one-sided bound
established here is sufficient for our purposes.

Proof. Choosing C2 > 2, (4.2) follows for t < 2. Thus we can assume t ≥ 2.
We proceed as in the proof of Proposition 4.1. Denote I = [u, u+ 1]. Fix large constants

L and r. Namely we will take L = 5 and will impose finitely many lower bounds on r (see
equations (4.5), (4.10), (4.11), (4.14) and (4.15) for the precise conditions on r we require).
One can then take the biggest of these lower bounds. Set

τ+
k =

k−1∑
j=0

τ ◦ f j1τ◦fj>t, τ−k =

k−1∑
j=0

τ ◦ f j1τ◦fj<R(k)Lr , τk,l =

k−1∑
j=0

τ ◦ f j1τ◦fj∈[t/Ll+1,t/Ll].

Let l̄k,t be the smallest integer l that satisfies tL−l−1 ≤ R(k)Lr. Then

τk ≤ τ+
k +

 l̄k,t∑
l=0

τk,l

+ τ−k .

Since t/4 + (
∑l̄k,t
l=0 t/(4× 2l)) + t/4 ≤ t ≤ u, we have

{τk ∈ I} ⊂ A+ ∪
l̄k,t⋃
l=0

Al ∪A−,

where

A± = {τ±k > t/4, τk ∈ I}, Al = {τk,l > t/(4× 2l), τk ∈ I}.

(In fact, we have A+ = {τ+
k > s, τk ∈ I} for any s ∈ (0, t] as τ+

k > 0 is equivalent to τ+
k > t.)

Therefore it suffices to show that µ(A−) + µ(
⋃l̄k,t
l=0Al) + µ(A+) is bounded by the right hand

side of (4.2). We thus divide the proof into three steps.
Step 1: Estimating µ(A+). To estimate µ(A+) let j be the first index j ≤ k − 1 when

τ ◦ f j > t. Conditioning on the values of τ ◦ f j for j 6= j we get

µ(A+1j=j0) = (4.3)

∫
Aj0

P

τ > t and τ ∈ I −
∑

j∈[0,k−1]
j 6=j0

vj

 dP(v1)⊗ · · · ⊗ P(vj0−1)⊗ P(vj0+1)⊗ · · · ⊗ dP(un)

where

Aj0 =

(v0, ..., vj0−1, vj0+1, ..., vk−1) : vl ≤ t for all l < j0 and
∑

j∈[0,k−1]
j 6=j0

vj + t ≤ u+ 1

 .
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Now (4.1) shows that the integrand in (4.3) is at most

C(1)L(s)

s1+α
where s = s(v1, . . . , vk) = u−

∑
j∈[0,k−1]
j 6=j0

vj ≥ t− 1.

By the Potter bounds [4, §1.5.4], there is a constant C̄ such that for all s ≥ t− 1 ≥ 1, we have
L(s)
s1+α ≤ C̄ L(t)

t1+α . Hence for each j0, we have

µ(A+1j=j0) ≤ CL(t)

t1+α
Pk−1(Aj0) ≤ CL(t)

t1+α
,

where C = C(1)C̄. Summing over j0 we obtain

µ(A+) ≤ CL(t)k

t1+α
. (4.4)

Step 2: Estimating
∑l̄k,t
l=0 µ(Al).

Note that on Al, there are at least d t
4×2l

Ll

t e = d 1
4

(
L
2

)le =: m(l) indices j such that τ ◦ f j ∈
[t/Ll+1, t/Ll]. Let j denote the first such index j. Proceeding as in Step 1, we define

Al,j0 =
{

(v0, ..., vj0−1, vj0+1, ..., uk−1) : ul /∈ [t/Ll+1, t/Ll] for l < j0

and


 ∑
j∈[0,k−1]
j 6=j0

vj

+ [t/Ll+1, t/Ll]

 ∩ I 6= ∅}.
By (4.1), we have

µ

τ +
∑

j∈[0,k−1]
j 6=j0

vj ∈ I

 ≤ C(1)
L(s)

s1+α
, where s = s(v1, . . . , vk) = u−

∑
j∈[0,k−1]
j 6=j0

vj .

From the definition of Al,j0 it follows that

t

Ll+1
≤ s(v1, . . . vk) ≤ t

Ll
+ 1

for any (v1, . . . vk) ∈ Aj0,l. By the choice of l̄k,t, we have t/Ll̄k,t+1 > Lr−1 infkR(k) (which is
equal to Lr−1R(1) as we assumed that R is monotone). Thus choosing r sufficiently large, we
can assume

sup
s∈[t/Ll+1,t/Ll+1]

L(s) ≤ 2L
(

t

Ll+1

)
(4.5)

for all l = 0, 1, ..., l̄k,t. Consequently, for any (v1, . . . vk) ∈ Aj0,l, we have

µ
(
τ +

∑
j∈[0,k−1]
j 6=j0

vj ∈ I
)
≤ C∗L

(
t

Ll+1

)(
Ll+1

t

)α+1

, (4.6)

where C∗ = 2C(1). Now arguing as in Step 1, we obtain

µ(Al1j=j0) ≤ C∗L
(

t

Ll+1

)(
Ll+1

t

)α+1

Pk−1(Al,j0). (4.7)

Now in contrast with Step 1, it is not sufficient to estimate the last factor by 1, we need a more
precise control. To this end we observe that if Y is a binomially distributed random variable
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with parameters k̄ ∈ Z+ and p ∈ (0, 1), then for every non-negative integer a,

P (Y ≥ a) ≤ k̄apa. (4.8)

Indeed, letting (i1, i2, . . . , ia) be the first a trials which result in a success, we have

P (Y ≤ a) ≤
∑

1≤i1<i2<···<ia≤k̄

P ( trials i1, . . . , ia are successful ) ≤ k̄apa.

Applying (4.8) with k̄ = k − j0 − 1 and pt,l := P([t/Ll+1, t/Ll]) and a = m(l)− 1, we obtain

Pk−1(Al,j0) ≤ µ(#{j > j0 : τ ◦ f j ∈ [t/Ll+1, t/Ll]} ≥ m(l)− 1) ≤ k̄apat,l (4.9)

Now we simply use (2.1) instead of (4.1) to estimate pt,l. Namely if r is sufficiently large so
that t/Ll is large for all l ≤ l̄k,t, then

pt,l ≤ µ
(
τ ≥ t

Ll+1

)
≤ 2

(
Ll+1

t

)α
L
(

t

Ll+1

)
. (4.10)

Combining (4.9) and (4.10), obtain

Pk−1(Al,j0) ≤
[
2k

(
Ll+1

t

)α
L
(

t

Ll+1

)]m(l)−1

.

Substituting to (4.7) and summing over j0, we obtain

µ(Al) ≤ C∗
[
2k

(
Ll+1

t

)α
L
(

t

Ll+1

)]m(l)
Ll+1

t
=: ql.

Since, m(0) = 1, it follows that there is a constant CL such that

q0 ≤
CLL(t)k

t1+α
.

Thus in order to complete Step 2, it suffices to prove that for L and r sufficiently large,

ql+1/ql ≤ 1/2 (4.11)

holds for all l ≤ l̄k,l − 1.
First observe that by (4.5), we have L

(
t

Ll+2

)
≤ 2L

(
t

Ll+1

)
. Consequently,

ql+1

ql
≤

((
4kL

(
t

Ll+1

))1/α
Ll+1

t

)α(m(l+1)−m(l))

Lαm(l+1)+1. (4.12)

Recall that by the choice of l̄k,t, we have

R(k)Lr < t/Ll̄k,t ≤ R(k)Lr+1. (4.13)

By the Potter bounds ([4, §1.5.4]) if r is large and hence t/Ll is large for all l ≤ l̄k,t, then

L(t/Ll+1) ≤ 2Lα(l̄k,t−l−1)L(t/Ll̄k,t). (4.14)

Next, we compute(
4kL

(
t

Ll+1

))1/α
Ll+1

t

(4.14)

≤
Ll̄k,t−l−1

(
8kL

(
t

Ll̄k,t

))1/α

Ll+1

t
=
Ll̄k,t

(
8kL

(
t

Ll̄k,t

))1/α

t
(4.13)

≤ Ll̄k,t (16kL (R(k)))
1/α

t
≤ Ll̄k,tC̄1/αR(k)

t

(4.13)

≤ C̄1/αL−r,
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where C̄ is such that kL (R(k)) ≤ C̄
16k

α holds for all k (such C̄ exists by (2.2)). Substituting
into (4.12), we find

ql+1

ql
≤ (C̄1/αL−r)α

1
4 (L2 −1)(L2 )lLα

1
4 (L2 )l+1+1

= (C̄1/αL−r+
L
L−2 )α

1
4 (L2 −1)(L2 )lL. (4.15)

Now choosing L = 5 and r sufficiently large, we find that ql+1/ql ≤ 1/2. We have verified (4.11)
and thus completed Step 2.
Step 3: Estimating µ(A−).
We have

µ(A−) ≤ µ

k/2∑
j=0

τ ◦ f j1τ◦fj<R(k)Lr >
t

8
, τk ∈ I

 + µ

 k∑
j=k/2+1

τ ◦ f j1τ◦fj<R(k)Lr >
t

8
, τk ∈ I

 .

We estimate the first term, the second one is similar. By the Markov inequality

µ

k/2∑
j=0

τ ◦ f j1τ◦fj<R(k)Lr >
t

8

 ≤ 8

t
µ

k/2∑
j=0

τ ◦ f j1τ◦fj<R(k)Lr

 ≤ C k (R(k))1−α L(R(k))

t

where the last step relies on Karamata theory ([4, Theorem 1.6.4]).
On the other hand by (3.2)

µ

τk ∈ I∣∣∣ k/2∑
j=0

τ ◦ f j1τ◦fj<k1/αLr >
t

8

 ≤ D

R(k)
.

Combining the last two displays we obtain

µ

k/2∑
j=0

τ ◦ f j1τ◦fj<k1/αLr >
t

8
, τk ∈ I

 ≤ D̄

t
× kL(R(k))

Rα(k)
.

and hence

µ(A−) ≤ D̃

t
× kL(R(k))

Rα(k)
.

Now (2.2) gives

µ(A−) ≤ D̂

t
. (4.16)

This completes Step 3.

5. LSV map.

5.1. The result.

Let X̃ = [0, 1] and f̃ : X̃ → X̃ be the map

f̃(x) =

{
x(1 + (2x)r) if x 6∈ X;

2x− 1 if x ∈ X

where X = [1/2, 1]. Consider the special flow g̃t of f̃ under a roof function τ̃ which is positive
and piecewise Hölder, in the sense, that its restrictions on both [0, 1

2 ) and ( 1
2 , 1] are Hölder.

Let Ω̃ be the phase space of this flow. That is,

Ω̃ = {(x, s) : x ∈ X, s ≥ 0}/ ≈, where (x, s+ τ(x)) ≈ (f̃(x), s) for any x ∈ X̃ and s ≥ 0.
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By [22], there is a unique (up to scaling) ergodic absolutely continuous f̃ -invariant measure
µ̃ on X̃. We assume r > 1. Then the invariant measure is infinite. Let us normalize it so that
µ̃([1/2, 1]) = 1. Then ν̃, defined by dν̃(x, s) = dµ̃(x)ds is an infinite invariant measure of g̃t.

Theorem 5.1. Assume that τ̃ is irrational. Then for any ε > 0 and for any Ã, B̃ ⊂ [ε, 1]
with µ̃(∂Ã) = µ̃(∂B̃) = 0, for any

0 < ã1 < ã2 < inf
x∈Ã
{τ̃(x)}, 0 < b̃1 < b̃2 < inf

x∈B̃
{τ̃(x)}, Ã = Ã× [ã1, ã2], B̃ = B̃ × [b̃1, b̃2]

we have

lim
t→∞

ν̃(Ã ∩ g̃−tB̃)t1−1/r = ĉν̃(Ã)ν̃(B̃). (5.1)

Recall from Section 2 that the irrationality condition is necessary for (5.1). We also note
that irrationality holds for typical roof functions τ̃ . In particular, a sufficient condition for the
irrationality of τ̃ is that there are two periodic orbits for the flow g̃, the ratio of whose periods
is irrational, see, for example, the discussion in [16, page 394].

To reduce Theorem 5.1 to our setting we note that g̃ can be represented as a special flow
over the first return map f : X → X. Specifically, let R(x) = min{n ≥ 1 : f̃n(x) ∈ X} be the
first return time to X and let f : X → X, f(x) = f̃R(x)(x) be the first return map. Let us
also extend the definition of R to X̃ \X with the same formula (first hitting time). For a

function φ : X̃ → R, let φX : X → R be defined by φX(x) =

R(x)−1∑
i=0

φ(f̃ i(x)). Define the roof

function τ : X → R+ by τ = (τ̃)X . As before, gt is the special flow under roof function τ , Ω
is its phase space and ν with dν(x, s) = dµ(x)ds is a gt-invariant measure. There is a natural
surjection ι : Ω→ Ω̃ which maps the class of (x, s) w.r.t. the equivalence relation ∼ to the
class with respect to the equivalence relation ≈ (note that by definition (x, s) ∼ (x′, s′) implies
(x, s) ≈ (x′, s′)). Clearly, ι is not invertible. Thus (Ω̃, ν̃, g̃t) is a factor of (Ω, ν, gt).

A cylinder of length n (or shortly, n-cylinder) is a set

{x ∈ X : R(x) = m1, R(fx) = m2 . . . R(fn−1x) = mn}.

Let us consider the topology on X generated by the cylinder sets. Let us also fix a metric
d(x, y) = θs(x,y), where s(x, y) is the smallest n so that x and y belong to different cylinders of
length n and θ < 1 is sufficiently close to 1.

Lemma 5.2. τ is rational if and only if τ̃ is rational.

Proof. Assume that τ̃ = bψ̃ + h− h ◦ f̃ holds on X̃ with g̃ : X̃ → Z. Then by definition,
τ = (τ̃)X = b(ψ̃)X + h− h ◦ f on X. Thus τ is rational if τ̃ is rational.

Next, assume that τ = bψ + h− h ◦ f on X. Define the functions ψ′, h′, τ ′ : X̃ → R by

ψ′(x) = ψ(x)1{x∈X}, h′(x) = h(x)1{x∈X}, τ ′ = bψ′ + h′ − h′ ◦ f̃ .

Observe that by construction, τ ′X = τ on X. In general τ ′ may not be equal to τ̃ on X̃. However

τ̃ − τ ′ = h′′ − h′′ ◦ f̃ on X̃, where h′′ : X̃ → R satisfies h′′(x) =

R(x)−1∑
i=0

τ̃(f̃ i(x))− τ ′(f̃ i(x)). We

conclude that τ̃ = bψ′ + h′ + h′′ − h′ ◦ f̃ − h′′ ◦ f̃ . Thus τ̃ is rational if τ is rational.
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Proposition 5.3. Assume that τ in irrational. Then for any A,B ⊂ X with µ(∂A) =
µ(∂B) = 0, for any A = A× [a1, a2], B = B × [b1, b2] we have

lim
t→∞

ν(A ∩ g−tB)t1−1/r = ĉν(A)ν(B). (5.2)

First, we prove Proposition 5.3 and then derive Theorem 5.1 from Proposition 5.3 and Lemma
5.2.

5.2. Special flow over the induced system.

Proof of Proposition 5.3. The proof of Proposition 5.3 is divided into two steps. In Step
1, we check that either (2.21) or (2.22) holds. In Step 2, we check that (2.23) holds. By the
results of Section 1 (with α = 1/r), these will imply Proposition 5.3.

Step 1: Checking (2.21) and (2.22).
First, we note that by [1, Theorem 6.3], (2.21) holds if τ : X → R is aperiodic. According

to [1], the function τ : X → R is aperiodic if there is no λ ∈ S1 (here S1 is the complex unit
circle) and measurable function g : X → S1 (other than the trivial λ = 1, g = 1) satisfying

eitτ(x) = λg(x)/g(fx). (5.3)

Observe that this definition coincides with definition of periodicity. Indeed, if τ(x) = a + h(x)−
h(f(x)) + 2π

t ψ(x) with ψ : X → Z, then (5.3) holds with g = eith. Conversely, assume that (5.3)
holds. Then, by Corollary 2.2 of [1], g is Hölder. Next, we define a Hölder function h which
satisfies eih = g. By the Hölder property of g, there is some K such that the oscillation of g on
K-cylinders is less than

√
2. For any K-cylinder ξ, fix some xξ ∈ ξ and define h(xξ) as the only

number in [0, 2π) that satisfies eih(xξ) = g(xξ). Then for any y ∈ ξ, we choose the unique h(y)
which satisfies |h(y)− h(xξ)| < π and eih(y) = g(y). By construction, h is Hölder. We have now
τ(x) = a + h(x)− h(f(x)) + ψ(x), where a = − it log λ and ψ : X → 2π

t Z. Hence (2.9) holds, so
the definition of [1] is equivalent to ours. It follows that (2.21) holds in the aperiodic case.

Let us now assume that τ is periodic irrational. By the previous paragraph, we can assume
that h is Hölder. In order to verify (2.22), it is enough to consider test functions of the form
φ(x, y, z) = 1x∈C1y∈Dφ(z), where C and D are cylinders and φ(z) is compactly supported. Then
(2.22) follows from [1, Theorem 6.5], applied to ψ, and the continuous mapping theorem.
Step 2: Checking (2.23).
We note that (3.1) is verified in [1]. In particular (3.2) holds.
The Gibbs-Markov property of f implies that there is a constant K such that if C1, C2 are

cylinders and the length of C1 is less than j

µ(C1 ∩ f−jC2) ≤ Kµ(C1)µ(C2). (5.4)

Also applying (5.4) inductively we see that if C1, C2 . . . Cl are cylinders and j1, j2 . . . jl−1 are
numbers with length(Cm) ≤ jm then

µ(C1 ∩ f−j1C2 · · · ∩ f−j1−...−jl−1Cl) ≤ Kl−1µ(C1)µ(C2) . . . µ(Cl) (5.5)

In particular (3.7) holds and so (3.6) is satisfied. This allows to check (2.5) in case r < 2 and
so α > 1

2 . In the general case we verify (2.23) which is the consequence of the Proposition 5.4
below.

5.3. Local Large Deviations

Proposition 5.4. µ(τk > t, τk ∈ I) ≤ C1k

t1+α
+
C2

t
.
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Proof. Note that (4.1) holds with α = 1
r ([22]). We follow the approach of Proposition

4.2. In particular, we shall use the notation of Proposition 4.2. We need to adapt Steps 1-3
of our proof of Proposition 4.2 to the present case. There are two differences in the proof:
now L(t) is asymptotically constant (a simplification) and the independence is replaced by
quasi-independence (a complication).

We will say that a cylinder D of length 1 is high if τ > t/3 on D. We say that the cylinders
C1 and C2 of lengths m1 and m2 respectively are compatible with D if m1 +m2 = k − 1 and
there is a point x ∈ C1

⋂
f−m1D

⋂
f−m1−1C2 such that τk(x) ∈ I. Thus

µ(A+) ≤
∑
C1,D,C2

µ
(
C1
⋂
f−m1D

⋂
f−m1−1C2

)
where the sum is over compatible cylinders. By Gibbs-Markov property

µ(A+) ≤ K2
∑
C1,D,C2

µ(C1)µ(D)µ(C2).

Next given C1, C2, I there is an interval Î of bounded size such that if C1,D, and C2 are
compatible, then τ(x) ∈ Î for each x ∈ D. (Î maybe empty if there are no high cylinders
compatible with C1 and C2). Therefore for each C1, C2∑

D:C1,D,C2 are compatible

µ(D) ≤ C

t1+α
.

On the other hand for each m1,m2,
∑

Cj :length(Cj)=mj

µ(Cj) = 1. Since m1 can take k − 1 possible

values we get

µ(A+) ≤ Ck

t1+α

completing Step 1. Step 2 is similar except instead of using three cylinders to describe the
itinerary of x we use 2m(l) + 1 cylinders, where D1,D2, . . .Dm(l) are cylinders of length 1 such
that τ ∈

[
t

Ll+1 ,
t
Ll

]
on Dj and C1 . . . Cm(l)+1 are complementary cylinders. Note in particular

that for the proof of (4.8) the quasi-independence of trials is sufficient.
To complete Step 3, we need to establish (4.16). We have

µ(A−) ≤
∑
C1,C2

Kµ(C1)µ(C2),

where the sum is over all cylinders of length k/2 such that τ(f jx) ≤ 2Lrk1/α for all x in
C1
⋂
f−k/2C2 and all j < k and either τk/2(x) > t/100 for all x ∈ C1 or τk/2(x) > t/100 for all

x ∈ C2. To estimate this sum we note that∑
C1: [

∑k/2−1
j=0 (τ◦fj)1

τ◦fj∈[0,2Lrk1/α]
]>t/100 on C1

µ(C1) ≤ C(L, r)k1/α

t

by the Markov inequality. On the other hand (3.2) shows thar for each C1∑
C2:τk(x)∈I for some x∈C1∩f−k/2C2

µ(C2) ≤ C

k1/α
.

This shows that the contribution of terms where τk/2 > t/100 on C1 is O
(
t−1
)
. Likewise the

contribution of terms where τk/2 > t/100 on C2 is O
(
t−1
)
. This proves (4.16).
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5.4. Mixing away from the origin.

Here we deduce Theorem 5.1 from Proposition 5.3. DefineA = ι−1(Ã) ⊂ Ω and B = ι−1(B̃) ⊂
Ω. Since ι is a homomorphism, we have

ν̃(Ã ∩ g̃−tB̃) = ν(A ∩ g−tB) and ν̃(Ã) = ν(A), ν̃(B̃) = ν(B).

It is easy to check that for any Ẽ ⊂ Ω̃ with ν̃(∂Ẽ) = 0 (w.r.t. the usual product topology on Ω̃)
and for E = ι−1Ẽ , we have µ(∂E) = 0 (w.r.t. the product topology on Ω where the topology in
the base is defined by d). Unfortunately, A and B are not subsets of Ω≤M in general. Indeed
Ω≤M is defined by the requirement that the backward return time to the base X is bounded,
while the condition Ã, B̃ ⊂ [ε, 1] in Theorem 5.1 allows us to bound forward return time to X.
Since our system is non-invertible, the forward and backward directions play different roles.
Thus we cannot apply Proposition 5.3 directly and an additional analysis is required.

Proof of Theorem 5.1.
By Lemma 5.2, τ is irrational.
Let y0 = 1, and yn+1 be the preimage of yn in [0, 1/2]. Let xn+1 be the preimage of yn

in (1/2, 1]. The intervals Xn = (xn+1, xn] form a partition of X. In fact, Xn coincides with
the 1-cylinder {x ∈ X : R(x) = n}. Furthermore, the intervals Yn = (yn+1, yn], n ≥ 1 form a
partition of (0, 1/2]. Note that Y0 := (1/2, 1] = X (up to measure zero). For n ≥ 0 let

Ω̃n = {(x, s) : x ∈ Yn, 0 ≤ s ≤ τ̃(x)}, Ω̂N =

N⋃
n=0

Ω̃n.

Since Ã and B̃ are disjoint from [0, ε), there is a finite N = N(ε) so that Ã, B̃ ⊂ Ω̂N . So it
is sufficient to prove (5.1) for Ã, B̃ ⊂ Ω̂N with ν̃(Ã) = 0, ν̃(B̃) = 0. This will be done in three
steps.

Step 1: (5.1) holds for Ã, B̃ ⊂ Ω̂0.
Indeed, in this case A,B ∈ Ω≤M with M = ‖τ̃‖∞, so the result follows from Proposition 5.3.

Step 2: (5.1) holds if Ã ⊂ Ω̂0, and B̃ ⊂ Ω̂N for some N.
The proof is by induction on N. The base of induction was done at Step 1. So let us assume

that the result holds for Ω̂N−1 and prove it for Ω̂N . Let B̃N = B̃ ∩ Ω̃N . Since B̃ − B̃N ⊂ Ω̂N−1

it is enough to show that the pair (Ã, B̃N ) satisfies (5.1).
Partition B̃N into subsets B̃N,l of small diameter δ. It suffices to check that for each l, the

pair (Ã, B̃N,l) satisfies (5.1). Let

t−l = sup
(x,s)∈B̃N,l

min{t > 0 : g̃t(x, s) ∈ Ω̃N−1}, B̃∗N,l = g̃t−l
B̃N,l.

If δ is sufficiently small, then B̃∗N,l ⊂ Ω̃N−1 and the diameter of B̃∗N,l is less than τ̃min/2.

Consequently, the preimage of B̃∗N,l under g̃s is the disjoint union of two sets: B̃′N,l ⊂ Ω̃N and

B̃′′N,l ⊂ Ω̃0, where

s = sup{s < τ̃min/2 : ∃x ∈ YN−1 : (x, s) ∈ B̃∗N,l}.

Furthermore, the preimage of B̃′N,l under g̃t−l −s
is B̃N,l.

Thus

{(x, s) ∈ Ã : g̃t(x, s) ∈ B̃N,l} =

{(x, s) ∈ Ã : g̃t+t−l
(x, s) ∈ B̃∗N,l} \ {(x, s) ∈ Ã : g̃t+t−l −s

(x, s) ∈ B̃′′N,l}.

By the inductive hypothesis, the RHS is asymptotic to

ĉt1/r−1ν̃(Ã)
[
ν̃(B̃∗N,l)− ν̃(B′′N,l)

]
.
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Since g̃ is measure preserving, we have

ν̃(B̃∗N,l)− ν̃(B′′N,l) = ν̃(B̃′N,l) = ν̃(B̃N,l),

which proves (5.1).

Step 3: (5.1) holds for Ã, B̃ ⊂ Ω̂N for arbitrary N . It suffices to show that for any fixed
ξ > 0, we have

ĉt1/r−1ν̃(Ã)ν̃(B̃)(1− ξ) ≤ ν̃(Ã ∩ g̃−tB̃) ≤ ĉt1/r−1ν̃(Ã)ν̃(B̃)(1 + ξ) (5.6)

provided that t is large enough.
To establish (5.6), we partition Ã into sets Ãl of small diameter δ. Let

t+l = sup
(x,s)∈Ãl

min{t > 0 : g̃t(x, s) ∈ Ω̃0}, Ã∗l = g̃t+l
Ãl.

By bounded distortion, given ξ, we can find δ0(ξ) such that if δ < δ0(ξ), then the Jacobian
J(x,s) of g̃t+l

satisfies (
1− ξ

2

)
ν̃(Ã∗l )
ν̃(Ãl)

≤ J(x, s) ≤
(

1 +
ξ

2

)
ν̃(Ã∗l )
ν̃(Ãl)

.

Consequently,

ν̃(Ãl)(
1 + ξ

2

)
ν̃(Ã∗l )

ν̃(Ã∗l ∩ g̃−(t−t+l )B̃) ≤ ν̃(Ãl ∩ g̃−tB̃) ≤ ν̃(Ãl)(
1− ξ

2

)
ν̃(Ã∗l )

ν̃(Ã∗l ∩ g̃−(t−t+l )B̃).

By Step 2,

lim
t→∞

t1−1/rν̃(Ã∗l ∩ g̃−(t−t+l )B̃) = ĉν̃(Ã∗l )ν̃(B̃).

Therefore for large t

ĉt1/r−1ν̃(Ãl)ν̃(B̃)(1− ξ) ≤ ν̃(Ãl ∩ g̃−tB̃) ≤ ĉt1/r−1ν̃(Ãl)ν̃(B̃)(1 + ξ).

Summing over l we obtain (5.6) completing the proof of the theorem.
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