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Abstract. We review several recent results showing that small piecewise smooth pertur-
bations of integrable systems may exhibit unstable behavior on the set of initial condition
of large measure. We also present open questions related to this subject.

1. Introduction.

The two most important discoveries of the theory of dynamical systems in the 20th century
are stability of quasi periodic systems (Kolmogorov-Arnold-Moser theory) and possibility of
stochastic behavior in deterministic systems.

Fortunately for us, most systems we encounter are stable. In the context of Hamiltonian
system this means that many systems appearing in applications are either integrable or close
to integrable. Some immediate examples that come to mind are the pendulum, the spring,
and the 1 +N body problem in celestial mechanics.

The Kolmogorov-Arnold-Moser theory guarantees that most orbits of small perturbations
of integrable systems are stable, while Nekhoroshev theory says that even the orbits which
wander away from the unperturbed motion do so extremely slowly.

Another manifestation of the prevalence of stable behavior is that in order to obtain a
uniformly hyperbolic system–the most studied class of stochastic systems one needs either
to have a manifold with complicated topology or the map itself has to be topologically
complicated.

The above mentioned topological restrictions do not appear for piecewise smooth sys-
tems since to study a piecewise smooth system we need to cut the phase space into continuity
regions killing the topological complexity. Intuitively it is also clear that systems with sin-
gularities may posses more stochasticity than smooth systems. Indeed, it is well understood
now that the stochastic behavior is caused by a sensitive dependence on the initial condi-
tions, that is, by the presence of large entires in the derivative matrix. For systems with
singularities derivatives are effectively infinite near the singularities which make it easier for
stochastic behavior to emerge.

The goal of this survey is to discuss the presence of stochastic behavior for small piecewise
smooth perturbations of integrable systems.

2. Examples.

In this section we present several examples of systems which in the smooth case are stable
(and their stability follows from the KAM theory), while if singularities are allowed they
can exhibit stochastic behavior. We note that our examples have one and a half degrees of
freedom. The reason for this is that one and a half degree of freedom systems are easier to
analyze, and so more examples are available in the literature. However the phenomenon we
are interested in is in no way limited to one and a half degree of freedom systems, and it
would be interesting to investigate higher dimensional examples.
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2.1. Types of final motions. In many examples below we will deal with the orbits defined
on the plane or the cylinder. We will be interested in how the orbits behave at infinity. Fix
some point p (for example the origin) and let dn denote the distance between the orbit and
p at time n. There are three possible behaviors at infinity.

We say that the orbit is bounded if dn is bounded, that it is oscillatory if

lim inf
n→+∞

dn < +∞ but lim sup
n→+∞

dn = +∞

and escaping if limn→+∞ dn = +∞. We will denote the set of bounded orbits by B, the set
of oscillatory orbits by O and the set of escaping orbits by E .

2.2. Motion in periodic potential. Consider the following system.

ẍ+
2m+1∑
j=0

aj(t)x
j = 0, where aj(t+ 1) = aj(t) and a2m+1(t) ≥ c > 0.

Theorem 1. (Dieckerhoff-Zehnder (1987), Laederich-Levi (1991) [11, 26]) If the
coefficients aj are smooth then all orbits are bounded.

The reason why this is true is that for particles having large energy, the averaging theory
allows to replace aj by their averaged values over the period, and so the KAM theorem can
be applied.

Theorem 2. (Levi-You (1997) [28]) For typical piecewise smooth aj, there exist both
oscillatory and escaping orbits.

Question 1. What is the measure of O and E in the above example?

2.3. Billiards. Consider a particle moving smoothly inside some domain and bouncing elas-
tically from the boundary.

Recall that a caustic for the billiard map is a curve γ which has the property that if one
segment of the billiard orbit is tangent to γ, then all orbit segments are also tangent to it.

Theorem 3. (Lazutkin (1973) [27]) If boundary is smooth and strictly convex, then there
exist caustics arbitrary close to the boundary.

In particular caustics prevent billiard orbits from approaching the boundary.

Theorem 4. (Hubacher (1987) [22]) If the boundary has points with curvature jumps,
then there exist orbits approaching the boundary.

Theorem 5. (Mather (1982) [31]) If the boundary has points with zero curvature, then
there exist orbits approaching the boundary.

To see why Theorem 5 fits into our setting we note that if the boundary of the domain is
smooth, but has points of zero curvature then the billiard map itself is not smooth.

2.4. Outer billiards: approach to the boundary. An outer billard map F is defined
outside a closed convex curve Γ in the following way (see figure 1). Let z be a point on the
plane. Consider the supporting line L(z) from z to Γ such that Γ lies on the right of L.
Then F (z) lies on L(z) so that the point of contact divides the segment [z, F (z)] in half. If
Γ contains segments then F (z) is not defined if L(z) contains a segment. In this case F (z) is
defined almost everywhere but it is discontinuous. In analogy to the usual (inner) billiards
the invariant curves for outer billiard maps are also called (outer) caustics. We refer the
reader to [37] for an introduction to outer billiards.
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Figure 1. Outer billiard map

Theorem 6. (Moser (1973), Douady (1982) [32, 17]) If the boundary is smooth and
strictly convex, then there exist caustics arbitrary close to boundary.

Theorem 7. (Boyland (1996) [2]) If the boundary has points with curvature jumps, then
there exist orbits approaching the boundary.

Theorem 8. (Gutkin-Katok (1995) [21]) If Γ is smooth and strictly convex curve having
a point of zero curvature radius, then there are no caustics for outer billiards.

The reader will notice that Theorems 6, 7 and 8 are outer billiard analogues of Theorems
3, 4 and 5 respectively.

We have the following estimates for the rate of approach to the boundary in Theorem 4
and 7.

Theorem 9. (Zhong (2010) [40]) If the boundary is strictly convex and smooth except for
finitely many curvature jumps then for both inner and outer billiards

(1) For all orbits lim inf d(xn,Γ) ≥ c
n2 ;

(2) There exist orbits such that lim sup d(xn,Γ) ≤ C
n2 .

Question 2. Estimate the rate of approach to the boundary in the Theorems 5 and 8.

2.5. Stochastic billiards. It is well known that KAM theory provides obstructions to er-
godicity. Theorems 5 and 4 show for piecewise smooth convex billiards there are no KAM
obstructions near the boundary where the billiard map is near integrable. In fact, presently
there are several examples of piecewise smooth convex convex domains with ergodic billiard
maps.

One class of such billiards is given by focusing billiards discovered by Bunimovich (see
[3]). We refer the reader to the work of Wojtkowski [41, 42] for a general approach to
constructing focusing billiards with non-zero Lyapunov exponents and to Chapters 8 and 9
of [6] for discussion of their statistical properties.

A different class of billiards exhibiting stochastic properties is given by polygonal billiards.

Theorem 10. (Kerckhoff-Masur-Smillie (1986) [23]) Polygons with ergodic billiard
flows form a dense Gδ set in the space of all polygons.

The following remains one of the most challenging questions in the billiard theory.

Question 3. Do polygons with ergodic billiard flows constitute a positive measure set in the
space of all polygons?
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Outer billiards with non-zero exponents are much less studied. In fact only one example
is known so far. To describe it we need to recall the construction of tables with a given
caustic (see the left part of figure 2). Let S be a convex curve on the plane. We want to
construct a table Γ such that S is an invariant curve for the outer billiard dynamics of Γ.
Fix a parameter a and consider all segments which cut domains of the area a from S. Let
Γ(a) be the set of midpoints of those segments. Then S is a caustic for the outer billiard on
Γ(a).

Figure 2. Left: Area construction. Right: Genin table.

Theorem 11. (Genin (2006) [18]) If S is a rectangle and a is sufficiently small then the
outer billiard on Γ(a) has non-zero Lyapunov exponents.

Question 4. Prove ergodicity and mixing and investigate the rate correlation decay for the
above table.

Question 5. Is the same result true if the rectangle is replaced by other convex polygons?

Question 6. Find analogues of Theorem 11 for inner billiards.

2.6. Outer billiards: unbounded orbits.

Theorem 12. (Moser (1973), Douady (1982) [32, 17]) If Γ is smooth and strictly convex
then all orbits are bounded.

Question 7. (Moser (1978) [33])

(1) What happens if Γ is only piecewise smooth?
(2) What happens if Γ contains flat points?

A lot of research on this subject was devoted to the case when Γ is a polygon since in
this case the plane can be divided into finitely many pieces so that on each pieces the outer
billiard map is the reflection about on of the vertices.

Theorem 13. (Kolodziej (1989) [25]) If all vertices of P are rational then all orbits are
periodic.

In fact Theorem 13 applies to a wider class of quasi-regular polygons which includes
both rational polygons and the regular polygons. We refer the reader to [25] for the definition
of quasi-regular polygons.

The first example of a polygon with unbounded outer billiard orbits was constructed in
[35]. Note that Theorem 13 implies that outer billiards on triangles have bounded orbits,
since all triangles are affine equivalent to each other and in particular to the equilateral
right triangle, and the outer billiard map commutes with affine transformations. Thus the
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Figure 3. Ulam ping-pong

simplest polygons which may exhibit unbounded orbits are quadrilaterals. Given A ∈ R+ let
K(A) be the kite. That is, K(A) is the quadrilateral with the vertices (0, 1), (−1, 0), (0,−1),
and (A, 0). Then Theorem 13 implies that all orbits are bounded if A is rational.

Let L denote the set of all points whose y coordinate is even integer. Note that this set is
invariant by outer billiard dynamics.

Theorem 14. (Schwartz (2007) [35, 36]) If A 6∈ Q then there are unbounded orbits in L.
Moreover

(1) almost every orbit in L is periodic;
(2) every orbit is either periodic or erratic in the sense that

lim inf d(xn, K) = 0, lim sup d(xn, K) = 0;

(3) the set of erratic orbits has positive Haussdorff dimension.

Question 8. Is it true that typical n-gones with n ≥ 4 have unbounded orbits?

Question 9. Is it true that for all polygons the set of unbounded orbits has measure 0?

Another example of curve with unbounded outer billiard orbits is given by the semicircular
boundary.

Theorem 15. (Dolgopyat-Fayad (2009) [14]) If Γ is a semicircle then mes(E) =∞. E.g.
x2
n + y2

n →∞ if |x0 − 1500.25| < 0.01, |y0 − 1.75| < 0.01.

Question 10. Do unbounded orbits exist for other circular caps? If so what is the speed
of escape? It is known that for any curve x2

n + y2
n < Cn. Do circular caps have orbits with

x2
n + y2

n ∼ vn? If so how v behaves as the cap approaches the circle?

Question 11. Is E nonempty for the following tables

(1) union of two circular arcs
(2) curve which is strictly convex except for one point of zero curvature?

Theorem 16. (See e.g. [13]) For the tables from Question 11

(a) x2
n + y2

n � n;
(b) mes(E) = 0.

Question 12. Do the tables from Question 11 or circle caps possess oscillatory orbits?

2.7. Ulam ping-pong. Consider a ball bouncing between two periodically moving infinitely
heavy plates.

Theorem 17. (Pustylnikov (1977), Douady (1982), Laederich-Levi (1991) [34, 17,
26]) If the motion of the wall is smooth then all ping-pong trajectories are bounded.
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Theorem 18. (Zharnitsky (1998) [39]) There is an open set of piecewise smooth wall
motions for which there exist unbounded trajectories.

Suppose that one of the walls is fixed and the velocity of the second wall has a single
discontinuity at 0. Let `(t) denote the distance between the walls at time t. Set

∆ = `(0)( ˙̀(0+)− ˙̀(0−))

∫ 1

0

ds

`2(s)
.

Theorem 19. (de Simoi-Dolgopyat (2012) [9])

(1) If ∆ ∈ (0.5, 4) then mes(E) =∞
(2) If ∆ < 0 or ∆ > 4 then mes(E) = 0 but HD(E) = 2.

Conjecture 13. mes(E) =∞ for all ∆ ∈ (0, 4).

Thus in case ∆ 6∈ [0, 4] most orbits can not accelerate indefinitely. In fact almost every
orbit eventually drops energy below a fixed threshold.

Theorem 20. (de Simoi-Dolgopyat (2012) [9])

(1) ∆ 6∈ [0, 4] then there exists a constant C such that almost every orbit enters the region
v < C.

(2) If ∆ ∈ (0, 4) and a non-degeneracy condition is satisfied then there is C > 0 such
that for each v̄, there exists an orbit such that for all n, we have

v̄/C < vn < Cv̄.

The results of [9] show that pingpongs with ∆ ∈ (0, 4) and pingpongs with ∆ 6∈ [0, 4] have
very different behaviors. This is also clear from looking at the phase portraits.

Figure 4. On the left: phase portrait of a single orbit of the map F from
definition 1 (see below) for ∆ = −0.3. On the right: phase portrait of selected
orbits of the map F for ∆ = 0.32.

Example. We now consider pingpongs with piecewise linear velocity. That is, we assume
that

`a,b(t) = b+ a ((t mod 1)− 0.5)2 .

This is one of the cases which have been numerically investigated in [38]. Later numerical
and heuristic analysis of this system can be found in [7, 4, 29]. We can scale the space so
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that b = 1. Then `(t) ≥ 0 for all t iff a > −4. In this case ∆ can be computed explicitly.
Namely, ∆(a) = −2a(1 + a/4)J(a) where

J(a) =
2

a+ 4
+

{
(|a|−1/2/2) log 2+|a|1/2

2−|a|1/2 if − 4 < a ≤ 0

|a|−1/2 arctan(|a|1/2/2) if a > 0.

−4 −2 0 2

ac 0

−4

0

4

Figure 5. Graph of ∆ as a function of a. The shaded area denotes the elliptic
regime ∆ ∈ (0, 4). We have ac ≈ −2.77927

Theorem 21. (de Simoi-Dolgopyat (2012) [9]) If ∆ 6∈ [0, 4] let T denote the first time
the velocity falls below C, where C is the constant from Theorem 20. Fix the initial velocity
v0 � 1, and let the initial phase be uniformly distributed on [0, 1].

As v → ∞, T
v20

converges to a stable random variable of index 1/2, i.e., there exists a

constant D̄ such that

P (T > D̄v2
0t)→

∫ ∞
t

e−1/2x

√
2πx3

dx as v0 →∞.

Moreover consider the process

Bv0(t) =

{
v(v20t)

v0
if v2

0t is an integer
v(n)(n+1−v20t)+v(n+1)(v20t−n)

v0
if v2

0t ∈ (n, n+ 1) for some integer n.

Stop Bv0 at time t = T
v20
. Then, as v0 →∞, Bv0(t) converges to W (t) where W is a Brownian

Motion started from 1 and stopped when it reaches 0.

The second part of the last theorem implies the first part since the time the Brownian
Motion drops 1 unit has stable distribution of index 1/2.

Conjecture 14. The stopping is not necessary for convergence to the Brownian Motion.

The difficulty in the last theorem is that if the particle has low energy, there is no scale
separation between the wall motion and the particle motion, so the system is not close to
integrable, and we have little control on the dynamics. One situation where we have better
understanding of the dynamics is the case of piecewise convex wall motion discussed below.

Let us summarize the results about the existence of various types of orbits. In the case
∆ ∈ (0, 4), we know that there is an infinite measure set of bounded orbits, and we believe
(see Question 13) that there is an infinite set of escaping orbit as well.
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Conjecture 15. Oscillatory orbits exist for all ∆ ∈ (0, 4).

By contrast, the orbits with different behaviors are easily constructed in case ∆ 6∈ [0, 4].

Theorem 22. (de Simoi-Dolgopyat (2012) [9]) If ∆ 6∈ [0, 4] then

HD(E) = HD(O) = HD(B) = 2.

Conjecture 16. If ∆ 6∈ [0, 4] then the oscillatory behavior is prevalent in the sense that the
compliment to O has finite measure.

Currently we are working on proving this result under the (strong) additional assumption
that

῭≥ c > 0. (∗)

Note that in this case ˙̀ is increasing on [0, 1] so ˙̀(0+) < ˙̀(0−) and hence ∆ < 0.

Definition 1. We denote by F the Poincare map corresponding to taking the first collision
of the wall with the moving wall after passing the singularity (that is, if there are several
collision on the interval [m,m+ 1) for some m then we skip all collision except for the first
one).

Theorem 23. (de Simoi-Dolgopyat (2013) [10]) If Assumption (*) holds then F has a
positive Lyapunov exponent in the sense that

λ(x) = lim inf
n→∞

ln ||dF n(x)||
n

is positive for almost x.

Recall that in view of Theorem 20 the first return map R to the region {v < C} is well
defined if C is large enough.

Conjecture 17. If Assumption (*) holds then R is ergodic.

In view of Theorem 23 and the general theory of piecewise hyperbolic maps developed by
Chernov, Sinai, Liverani, Wojtkowski and others (see [6, 30]) in order to prove Conjecture
17 one needs to check certain non-degeneracy conditions on the dynamics of singularities.
Thus, under Assumption (*) we have a strong evidence in favor of ergodicity.

On the other hand ergodicity implies a positive answer to Conjecture 16. Indeed by
Theorem 20 almost all orbits visit {v < C.} Next fix any v̄. Due to measure preservation and
the above mentioned recurrence we have that, conversely, there is a positive set of orbits in
{v < C} which visit {v > v̄} before the next return to {v < C}. By ergodicity, this set of
orbits passing eventually through {v > v̄} has full measure. Thus, in the piecewise convex
case we are close to proving a stronger version of Conjecture 16. Namely we expect that
in that case almost all orbits are oscillatory. On the other hand, without Assumption (*),
Conjecture 16 seems much more difficult.

The results presented above deal with the case where the velocity of the wall has jump.

Question 18. What happens when the wall velocity is continuos but the wall acceleration
has a jump?



PIECEWISE SMOOTH PERTURBATIONS OF INTEGRABLE SYSTEMS. 9

3. Theory

3.1. Normal form. Consider the following map of the annulus

f(I, φ) = (I + Ika(φ) + . . . , φ+ Imb(φ) + . . . ), b > 0, I � 1

where a(φ) and b(φ) are piecewise smooth and . . . denote the higher order terms. Let D be
the fundamental domain bounded by γ and fγ, where γ is a vertical curve. Let F : D → D
be the first return map.

Theorem 24. (cf [14]) In suitable coordinates, F can be represented as a composition of
maps of the form

G(J, ψ) = (J̃ , ψ̃) where ψ̃ = ψ + J, J̃ =
{
J̃ + Aψ̃ +B

}
.

Here

(A,B)→


∞ k < m+ 1 (i)

Const k = m+ 1 (ii)

(Id, 0) k > m+ 1 (iii)

as I → 0.

Thus we have several universality classes, depending on which alternative of Theorem
24 holds for our system. In case (ii), we have to further distinguish the cases where the
linear part of the normal form is hyperbolic or elliptic (see Figure 4). For example, particles
in piecewise smooth potential, inner and outer billiards with curvature jump (for orbits
near the boundary) belong to class (i), outer billiards with segments and pingpongs with
velocity jump belong to class (ii), and outer billiards without segments and pingpongs with
continuous velocities belong to class (iii). Class (i) is well studied in physics literature under
the name of antiintegrable limit (see [1, 8] and references wherein). Class (ii) is quite well
understood in the hyperbolic case ([5]). In the elliptic case we have to deal with piecewise
isometries. Paper [19] contains a review of this subject. Finally for class (iii) much less is
known. A formal perturbation theory suitable for class (iii) is discussed below.

3.2. Formal perturbation theory. The last section describes the normal forms for piece-
wise smooth integrable maps with small twist. In the case of large twist the dynamics is much
less understood. In this subsection we present some questions related to formal perturbation
theory for such maps. Consider the map.

F (r, φ) = (r + εP (r, φ), φ+ α(r) + εR(r, φ)).

Then

rn = r0 + ε

n−1∑
j=0

P (r0, φ0 + jα) +HOT = r0 + ε

n−1∑
j=0

A(φ0 + jα) +HOT

where A(φ) = P (r0, φ). The starting point of the perturbation theory in the smooth case is
the fact that if A is smooth and has zero mean then for almost every α the sum

n−1∑
j=0

A(φ+ αj)

is bounded, in fact it can be written as Bα(φ+nα)−Bα(φ) for a suitable function Bα. Then

we can make the change of variables φ̃ = φ + εBα(φ) reducing the perturbation to a higher
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order. We want to see how this sum behaves for piecewise smooth A. It turns out that the
result depends only on the discontinuity set of A, and so to simplify the formulas we shall
consider the case of indicator. Let A = χΩ. Denote

Dn(Ω, φ, α) =

(
n−1∑
j=0

χΩ(φ+ jα)

)
− nVol(Ω).

The one dimensional case was analyzed by Kesten who proved the following result for the
case when Ω is a segment.

Theorem 25. (Kesten (1960) [24]) Suppose φ, α are independent and uniformly distributed
on T2. Then Dn

lnn
converges as n → ∞ to a Cauchy distribution, that is, there is a function

c(l) such that

Prob

(
Dn(Ω, φ, α)

c(|Ω|) lnn
≤ t

)
→ tan−1 t

π
+

1

2
.

Moreover c(l) does not depend on l if l is irrational.

An interesting problem is to extend this result to higher dimensions. The first question is
which sets should one consider. The least restrictive assumption is that Ω is semialgebraic,
that is, it is defined by a finite set of algebraic inequalities.

Conjecture 19. If Ω is semialgebraic then there exists a sequence an = an(Ω) such that
for translation of a random torus by a random vector, the sequence Dn/an has a limiting
distribution.

Here random translation of a random torus means that we consider the sequence xn =
x0 + nα on the torus Rd/L, where L = AZd, and we suppose that the triple (x0, α, A) has a
smooth density with compact support.

Jointly with Bassam Fayad, we have verified this conjecture in two cases described below.

Theorem 26. (Dolgopyat-Fayad (2013) [15]) Let d ≥ 2, Ω be strictly convex, φ, α and
r have smooth densities then

Dn(rΩ, φ, α)

r
d−1
2 n

d−1
2d

has limiting distribution.

Theorem 27. (Dolgopyat-Fayad (2013) [15]) If Ω is a d dimensional cube then Dn/ lnd n
converges to a Cauchy distribution.

Theorems 25, 26 and 27 describe the growth of the first term in the formal perturbation
theory.

Question 20. Compute higher order terms.

4. Conclusion

We saw that, in contrast with the smooth case, small piecewise smooth perturbations
of integrable systems may exhibit stochastic behavior on a large set of initial conditions.
This behavior is universal (that is, it is common for a diverse class of examples) due to
the fact that different systems may have a common normal form. However, in contrast
with the smooth case, the dynamics of those normal forms is not well understood. In the
cases where we have some results about the dynamics of the normal form, an extra effort
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is need to transfer the results to the actual system. Some methods to do so are developed
in, for example, [9, 12, 14, 16] but more work is needed in this direction. Finally, as it was
mentioned before, almost nothing is known in higher dimensional cases.

To summarize, the study of piecewise smooth perturbations of integrable systems is an
active area of research which already led to the discovery of several surprising phenomena
but more interesting results can be expected in the future.
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