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Abstract. We study the asymptotic behaviour of occupation times of a transient random walk in a
quenched random environment on a strip in a sub-diffusive regime. The asymptotic behaviour of hitting
times, which is a more traditional object of study, is exactly the same. As a particular case, we solve a
long standing problem of describing the asymptotic behaviour of a random walk with bounded jumps on
a one-dimensional lattice. Our technique results from the development of ideas from our previous work [6]
on the simple random walks in random environment and those used in [1, 2, 12] for the study of random
walks on a strip.
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1. Introduction

The main goal of this work is to describe the asymptotic behaviour of a random walk (RW) in a
quenched random environment (RE) on a strip in a sub-diffusive regime. As a corollary we obtain a
solution to a long standing problem about the asymptotic behaviour of a RW with bounded jumps in
RE on a one-dimensional lattice. These two models are natural generalizations of the one-dimensional
RWRE with jumps to the nearest neighbors - the so called simple RWRE (SRWRE). The techniques
and ideas used in this paper resulted from the development and combination of those used in [6], where
we studied the limiting behaviour of the SRWRE, and in [1, 2, 12], which studied RWRE on a strip.
Our main model is the RWRE on a strip and the main quantitative characteristic of the walk that is
the occupation time TN of a large box (see (1.10) for exact definition). In [6] we also studied TN , but on
a strip the approach we use is very different from the one used for SRWRE. The important difference
between SRWRE and other models can be roughly explained by the fact that a transient simple walk has
to visit every point on its way to ∞, while on a strip it can miss any point with a positive probability.
Due to this fact, the expectations of the occupation times of the sites form a Markov process in the
’simple’ case but this is not true for a walk on a strip. In order to resolve these difficulties, we have to
use methods inspired by the theory of dynamical systems such as products of random transformations,
Lyapunov exponents, transfer operators combined with more probabilistic techniques such as coupling,
large deviations, Poisson processes etc. We believe that the new point of view presented in this paper
makes the proofs more transparent even in the classical SRWRE setting.

We now recall the exact definitions of all three models.
Model 1. In the simplest 1D case, a random environment is a sequence of independent identically

distributed (i.i.d.) random variables ω = {pn}n∈Z, where pn are viewed as probabilities of jumps from n
to n+ 1. Given ω and X0 = z, one defines a Markov chain Xt, t = 0, 1, ..., on Z with a transition kernel
given by

(1.1) Pω(Xt+1 = k + 1|Xt = k) = pk, Pω(Xt+1 = k − 1|Xt = k) = 1− pk.

Model 2. The RWRE on a strip S
def
= Z × {1, . . . ,m} was introduced in [1] and will be the main

object of our study. We say that the set Ln
def
= {(n, j) : 1 ≤ j ≤ m} ⊂ S is the layer n of the strip (or

just layer n). The walker is allowed to jump from a site in Ln only to a site in Ln−1, Ln, or Ln+1. Let
Xt = (Zt, Yt) denote the coordinate of the walk at time t, where t = 0, 1, 2, ..., Zt ∈ Z, 1 ≤ Yt ≤ m.
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An environment ω on a strip is a sequence of triples of m × m matrices ω = {(Pn, Qn, Rn)}n∈Z with
non-negative matrix elements and such that Pn +Qn +Rn is a stochastic matrix:

(1.2) (Pn +Qn +Rn)1 = 1,

where 1 is a vector whose all components are equal to 1. The transition kernel of the walk is given by

(1.3) Pω(Xt+1 = z′|Xt = z) =


Pn(i, j) if z = (n, i), z′ = (n+ 1, j)),

Qn(i, j) if z = (n, i), z′ = (n− 1, j)),

Rn(i, j) if z = (n, i), z′ = (n, j))

The corresponding Markov chain is completely defined if we set X(0) = z.
Throughout the paper we suppose that the following conditions are satisfied:

(1.4) {(Pn, Qn, Rn)}n∈Z is an i.i.d. sequence

(1.5)
There is an ε > 0 such that P-almost surely for all i, j ∈ [1,m]

‖Rn‖ < 1− ε, ((I −Rn)−1Pn)(i, j) > ε, ((I −Rn)−1Qn)(i, j) > ε.

Remarks. 1. The matrices Pn, Qn, and Rn are comprised of probabilities of jumps from sites in Ln to
sites in Ln+1, Ln−1, and Ln respectively. Condition (1.2) is equivalent to ‘the nearest layer jumps only’
property of the walk.

2. Note that ((I − Rn)−1Pn)(i, j) and ((I − Rn)−1Qn)(i, j) are the probabilities for a RW starting
from (n, i) to reach (n+ 1, j) and, respectively, (n− 1, j) at its first exit from layer n.

3. We chose to work under conditions (1.5) in order to simplify the proofs. In fact all main results
can be proved under the following much milder conditions.

(1.6)
There is ε > 0 and integer l ≥ 1 such that P-almost surely ∀ i ∈ [1,m]∥∥Rl

n

∥∥ < 1− ε, ((I −Rn)−1Pn)(i, 1) > ε, ((I −Rn)−1Qn)(i, 1) > ε.

Let us describe explicitly the probability spaces hidden behind the above definitions. By (Ω,F ,P)
we denote the probability space describing random environments, where Ω = {ω} is the set of all
environments, F is the natural sigma-algebra of subsets of Ω and P is a probability measure on (Ω,F).
The RWRE is specified by the choice of Ω and P. Next, let Xz = {X(·) : X(0) = z} be the space of all
trajectories of the walk starting from z ∈ L0. A quenched (fixed) environment ω thus provides us with a
conditional probability measure Pω,z on Xz with a naturally defined probability space (Xz,FXz ,Pω,z). In
turn, these two measures generate a semi-direct product measure Pz := P n Pω,z which is the annealed
probability measure on (Ω× Xz,F × FXz) .

The expectations with respect to Pω,z, P, and Pz will be denoted by Eω,z, E, and Ez respectively.

Remark. The notations Xz, Pω,z, Ez etc. emphasize the dependence of these objects on the starting
point z of the walk. However, we often use the simplified version of these notations such as Pω, Eω, etc.
because the asymptotic behaviour of the walk does not depend on z and it is usually clear from the
context what the starting point of the walk is.

Model 3. The random walk on Z with uniformly bounded jumps is another natural extension of the

nearest neighbour model. The random environment ω
def
= {p(x) = (p(x, k))−m≤k≤m}x∈Z, where p(x) is a

stationary in x sequence of vectors with
∑m

k=−m p(x, k) = 1 and p(x, k) ≥ 0. For a given environment ω
the transition kernel of the walk is defined by

(1.7) Pω (X(t+ 1) = x+ k |X(t) = x) = p(x, k), x ∈ Z
The following geometric construction transforms this walk into a walk on a strip. Let us view Z as a
subset of the X-axis in a two-dimensional plane. Cut the X-axis into equal intervals of length m so
that each of them contains exactly m consecutive integer points. Turn each such interval around its left
most integer point anti-clockwise by π/2. The image of Z obtained in this way is a part of a strip with
distances between layers equal to m. Re-scaling the X-axis of the plane by m−1 makes the distance
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between these layers equal to one and the RW on Z transforms into a RW on a strip with jumps to
the nearest layers only. The relevant formulae for matrices Pn, Qn, Rn can be found in [1], where this
construction was described in a more formal way.

It is obvious that if p(x), x ∈ Z, is an i.i.d sequence then the just defined triples of matrices
(Pn, Qn, Rn) are i.i.d. It is also easy to see that (1.5) is satisfied if for some ε > 0

(1.8) P{p(x, 1) > ε, p(x,−1) > ε, p(x,m) > ε, p(x,−m) > ε} = 1.

A much wider class of one-dimensional RW with bounded jumps is obtained if instead of (1.8) we
suppose only that

(1.9) P{p(x, 1) > ε, p(x,−1) > ε} = 1.

In this case (1.5) may not be satisfied but (1.6) is satisfied.

Brief comments on the history of the subject. Two pioneering papers which initiated the
development of the theory of RWRE were published in 1975 by Solomon [31] and Kesten, Kozlov,
Spitzer [17]. In [31] the asymptotic properties of the SRWRE were discussed at the level of the Law
of Large Numbers and the surprising fact that for a wide class of parameters the SRWRE would be
escaping to ∞ at a zero speed was discovered. In [17] the limiting distributions of the hitting times and
of the position of X were found in the annealed setting. The extensions of the main results from these
papers to the RWRE on a strip are explained below in Theorems 3, 4, and 7.

In 1982, Sinai [29] described the asymptotic behaviour of a recurrent SRWRE. He discovered a phe-
nomena which is now called the Sinai diffusion.

The methods used in [31, 17, 29] rely heavily on the jumps to the nearest neighbours only property of
the walk and the limiting distributions described in [17] were obtained for annealed RWRE. Therefore
the following questions arose and were known essentially since 1975:

1. Can one describe the limiting behaviour of the quenched RW at least in the case of the SRWRE
(model 1)?

2. What are the analogues of (a) P-almost sure results from [31], (b) the annealed limiting statements
from [17] for more general models, e. g. model 3?

3. What can be said about more general classes of environments, say stationary environments with
appropriate mixing properties?

In the 1982 paper Sinai explicitly stated the questions about the possibility to extend his results to
more general models, such as model 3.

The attempts to find answers to question 1 are relatively recent. We shall not discuss them here in
any detail. The references concerned with SRWRE along with relevant discussion can be found in [11]
and [6].

Partial answers to question 2 were obtained in [3, 4, 5, 18, 22, 21]. The discussion of these results can
be found in [1, 12].

Question 3 was addressed in several publications, see e.g. [23, 1, 11, 12, 33]. And even though in
[6] and in this work we consider the so called i.i.d environments (as defined above) we believe that
the methods we use are useful for the analysis of RW in stationary RE satisfying appropriate mixing
conditions.

Finally, let us mention several results on the RWRE on a strip which are directly related to this work.
The criterion for recurrence and transience has been found in [1]. A detailed description of the limiting
behaviour in the recurrent regime was given in [2]. A criterion for linear growth and the quenched (and
hence annealed) Central Limit Theorem (CLT) was obtained in [12] for wide classes of environments;
in particular the CLT for hitting times was established for stationary environments.

Quantities characterizing the asymptotic behaviour of a RWRE

Remember that Xt = (Zt, Yt) is the coordinate of the walk at time t with Zt being its Z component.
Denote by T̃N the hitting time of layer LN – the time at which the walk starting from a site in L0 reaches
LN for the first time. It is both natural and in the tradition of the field to consider the understanding
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of the main asymptotic properties of the walk as achieved if the asymptotic behaviour of Zt as t → ∞
and T̃N as N →∞ is known.

There is of course a strong connection between the asymptotic behaviour of Zt and T̃N . Obviously
T̃N is strictly monotone in N and ZT̃N = N . This and some other, less trivial relations between these
random variables were used in a very efficient way in the study of transient RWs already in [31, 17]. In
particular in [17] the asymptotic distribution of Zt was deduced from that of T̃N .

In our recent work [6] on SRWRE we studied a different quantity as the main way of describing the
asymptotic behaviour of the RW. Namely, we considered the occupation time TN of the interval [0, N−1].
The asymptotic behaviour of T̃N is exactly the same as that of TN since |TN − T̃N | is a stochastically
bounded random variable (see Lemma 2.1 from [6]). In this paper, we study a similar quantity - the

occupation time of a box [L0, LN−1]
def
= {(n, i) : 0 ≤ n ≤ N − 1}.

Definition. The occupation time TN of the box [L0, LN−1] is the total time the walk Xt starting from
a site in L0 spends on this box during its life time. In other words

(1.10) TN = #{t : 0 ≤ t <∞, Xt ∈ [L0, LN−1]},

Remark. Note that TN ≡ TN,z depends on the starting point z of the walk. Also, we use the convention
that starting from a site z counts as one visit to z.

The paper is organized as follows. We start (Section 2) by reviewing the results from [1, 12] which
are used in this paper. In Section 3 we derive formulae for the expected value of occupation times and
state their asymptotic properties; the latter play a major role in the analysis of the asymptotic behaviour
of the RW on a strip. In Section 4 we define traps and state the main results of the paper (Theorems
5 and 6) which are followed by Theorem 7 extending to the case of the strip the classical results from
[17]. Section 5 is devoted to the proof of the properties of traps followed by the derivation of Theorem
5. The proof of Theorem 6 is given in Section 6. Since this proof is similar to that of the main result
in [6], we focus our attention on the differences which are due to the fact that this time we deal with a
strip. Section 8 contains the extensions of our results which are not needed in the analysis of the hitting
time but are important for understanding of other properties of RWRE (cf [8, 10, 16, 20] for related
work in the context of SRWRE) and will be used in the future work. The paper has four appendices
containing results which are not specific to RWRE. Most of these results are not completely new, but we
present them in the form convenient for our purposes. Namely, Appendix A contains the estimates of
occupation times for general transient Markov chains. Standard facts about the Poisson processes and
their relation to stable laws are collected in Appendix B. In Appendix C we prove a renewal theorem
for a system of random contractions. The fact that the assumptions of Appendix C are applicable in
our setting is verified in Section 7. Appendix D contains results about the mixing properties of random
walks on the strip satisfying ellipticity conditions.
Some conventions and notations.

Letters C, C̄, c, c denote positive constants, ε is a strictly positive and small enough number, and
θ is a constant from the interval (0, 1). The values of all these constants may be different in different
sections of the paper.

[La, Lb]
def
= {(n, i) : a ≤ n ≤ b} is the part of the strip (a box) contained between layers La and Lb,

where a < b. We use the notation [a, b] and the term interval [a, b] for the box [La, Lb] when the meaning
of this notation is clear from the context.
Fa,b is the σ-algebra of events depending only on the environment in [La, Lb].
ey is a vector whose y-th coordinate is 1 and all others are zeros.
1 is a column vector with all components equal to 1.
If x = (x(j)) is a vector and A = (a(i, j)) a matrix we put

‖x‖ def
= max

j
|x(j)| which implies ‖A‖ = max

i

∑
j

|a(i, j)|.
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We say that A is strictly positive (and write A > 0) if all its components satisfy a(i, j) > 0. A is
called non-negative (and we write A ≥ 0) if all a(i, j) are non-negative. A similar convention applies to
vectors. We shall make use of the following easy fact:

if A ≥ 0 then ‖A‖ = ‖A1‖ .
X denotes the set of non-negative unit vectors, X = {x : x ∈ Rm, x ≥ 0, ‖x‖ = 1}.
Eµ(f), ν(g) denote the expectations of functions f and g over measure µ and ν respectively defined

on the relevant probability spaces.
We often deal with N ε, lnN , ln lnN , etc which are viewed as integer numbers. Strictly speaking, we

should write bN εc, bln lnNc, etc. However, our priority lies with the simpler notation and the exact
meaning is always obvious from the context.

2. Review of related results from previous work.

The purpose of this review is to list those results from [1] and [12] which will be used in this work
as well as to put the results of the present work into the right context. We note that many of the
statements listed below were proved in [1, 12] under assumptions which are much milder than (1.5).

2.1. Auxiliary sequences of matrices. Let us fix a ∈ Z and define for n ≥ a two sequences of

matrices: ϕn and ψn. To this end put ϕa
def
= 0 and let ψa be a stochastic matrix. For n > a matrices ϕn

and ψn are defined recursively:

(2.1) ϕn
def
= (I −Rn −Qnϕn−1)−1Pn, ψn

def
= (I −Rn −Qnψn−1)−1Pn

Note that the existence of (I −Rn −Qnψn−1)−1 follows from (1.5).

Properties of matrices ϕn. We start with the probabilistic definition of ϕn ≡ ϕn,a = (ϕn,a(i, j))
(which implies equation (2.1) for ϕn):

ϕn,a(i, j) = Pω (RW starting from (n, i) hits Ln+1 at (n+ 1, j) before visiting La) .

Obviously these probabilities are monotone functions of a and hence the limits ηn
def
= lima→−∞ ϕn,a exist

for all (!) environments ω. Lemma 4 in [1] implies that if (1.5) is satisfied then ηn > 0 for P-almost
every ω and for n > a

(2.2) ϕn(i, j) > ε, ψn(i, j) > ε for P-almost every ω.

Definition of matrices ζn. It is easy to see that since ψa is stochastic, so are all the ψn, n > a (Lemma
2 in [1]). The following statement from [1] describes the a → −∞ limits of ψn ≡ ψn(ψa) and defines a
stationary sequence of stochastic matrices ζn.

Theorem 1. Suppose that Condition (1.5) is satisfied. Then
(a) For P-a.e. sequence ω there exists ζn = lima→−∞ ψn(ψa), where the convergence is uniform in ψa

and the limit ζn does not depend on the choice of the sequence ψa.
(b) The sequence ζn = ζn(ω), −∞ < n <∞, of m×m matrices is the unique sequence of stochastic

matrices which satisfies the following system of equations

(2.3) ζn = (I −Qnζn−1 −Rn)−1Pn, n ∈ Z.
(c) The enlarged sequence (Pn, Qn, Rn, ζn), −∞ < n <∞, is stationary and ergodic.

Remark. Statements (a) and (b) imply that ζn ≡ ζn(ω) depends only on the ”past” of the environment,

namely on ω≤n
def
= ((Pk, Qk, Rk))k≤n.

We need the following corollary of Theorem 1 (Remark 4 in [1]).

Corollary 2.1. Suppose that (P,Q,R) satisfies Condition (1.5) (this can be any triple of matrices from
the support of the distribution of (P0, Q0, R0)). Then there is a unique stochastic matrix ζ such that

(2.4) ζ = (I −Qζ −R)−1P.
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Proof. Consider the environment with transition probabilities which do not change from layer to layer
and are given by matrices (P,Q,R), that is ω = {(P,Q,R)}. Then for this single environment all
conditions of Theorem 1 are satisfied. Now statement (a) implies that ζn = ζn−1 and setting ζ := ζn =
ζn−1 turns equation (2.3) into (2.4). �

The non-arithmenticity condition. We are now in a position to introduce the so called non-
arithmeticity condition which will be often used in the sequel. Let (P,Q,R) and ζ be as in Corollary
2.1. Set

(2.5) A(P,Q,R) = (1−Qζ −R)−1Q

and let eλ(P,Q,R) be the leading eigenvalue of A(P,Q,R). We say that the environment satisfies the non-
arithmeticity condition if

(2.6) the distribution of λ(P,Q,R) is non-arithmetic.

Vectors πn. Our sequence of stochastic matrices ζn is such that ζn(i, j) ≥ ε > for some ε > 0. Due to
that we can always construct a sequence πn of probability vectors such that πn = πn−1ζn−1. Namely, set
πn,a = π̃aζa . . . ζn−1, where π̃a is a probability vector.

Lemma 2.2. If ζn(i, j) ≥ ε for some ε > 0 then the following limit exists and does not depend on the
choice of the sequence of probability vectors π̃a :

(2.7) πn
def
= lim

a→−∞
π̃aζa . . . ζn−1,

Moreover, for θ = 1−mε

(2.8) ||πn − πn,a|| ≤ θn−1−a and πn(i) > ε for any i ∈ [1,m].

Remarks. 1. In our case vectors πn ≡ π(ω≤n) form a stationary sequence.
2. Lemma 2.2 is a well known fact which follows from the usual contracting properties of products of
stochastic matrices. We state it here for future references.

Matrices An and Lyapunov exponents. We can finally define the following sequence of matrices:

(2.9) An
def
= (I −Qnζn−1 −Rn)−1Qn.

Obviously, An is a stationary sequence and the top Lyapunov exponent of the product of matrices An
is defined as usual by

(2.10) λ
def
= lim

n→∞

1

n
log ‖AnAn−1 . . . A1‖ .

It is well known (see [9]) that with P-probability 1 the limit in (2.10) exists and does not depend on ω.

2.2. Recurrence and transience of RWRE. The recurrence criteria was proved in [1] for a RWRE
on a strip in very general ergodic setting. We need the following particular case of this result.

Theorem 2. Suppose that Conditions (1.4) and (1.5) are satisfied. Then the following statements hold
for P-a.e. ω, Pω-almost surely:
(a) λ < 0 iff the RW is transient to the right: limt→∞Xt =∞,
(b) λ > 0 iff the RW is transient to the left: limt→∞Xt = −∞,
(c) λ = 0 iff the RW is recurrent: lim supt→∞Xt = +∞ and lim inft→∞Xt = −∞.

Remark. The proof of Theorem 2 given in [1] contains the following useful statement: the RW is
recurrent or transient to the right if and only iff

(2.11) lim
a→−∞

ϕk = ζk
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2.3. Moment Lyapunov exponents r(α). From now on we consider RWRE which are transient to
the right, that is λ < 0. Let us define a function whose properties are responsible for the speed of growth
of our RW.

Let An be a sequence of matrices defined by (2.9). For α ≥ 0 put

(2.12) r(α)
def
= lim sup

n→∞
(E||An · · ·A1||α)

1
n .

Note that if m = 1 then ζn = 1, An = qn/pn, and r(α) = E(q0/p0)α. In this form r(α) was first
introduced in [17].

Lemma 2.3. Suppose that (1.5) is satisfied. Then:
(a) the following limit exists and is finite for every α ≥ 0:

(2.13) r(α) = lim
n→∞

(E||An · · ·A1||α)
1
n .

(b) the convergence in (2.13) is uniform in α ∈ [0, α0] for any α0 > 0
(c) r′(0) = λ.

2.4. Linear and sub-linear growth of the random walk. Let as in the Introduction Xt = (Zt, Yt)
be a random walk starting from a site z ∈ L0, T̃n be the hitting time of layer Ln by this walk.

Theorem 3. Suppose that (1.5) is satisfied and that λ < 0. Then:
(i) r(1) < 1 implies that for P-a.e. environment ω with Pω,z-probability 1

(2.14) lim
n→∞

n−1(T̃n − Eω,zT̃n) = 0 and lim
n→∞

n−1Eω,zT̃n = c > 0

(ii) r(1) ≥ 1 implies that for P-a.e. environment ω with Pω,z-probability 1

(2.15) lim
n→∞

n−1T̃n =∞.

The fact that limt→∞ t
−1Zt = c−1 when r(1) < 1 and that limt→∞ t

−1Zt = 0 when r(1) ≥ 1 follows
from (2.14) and (2.15) respectively.

These results extend the relevant statements from [31] to the case of the strip. Further details can be
found in [12].

2.5. The diffusive regime (Central Limit Theorem) for the random walk.

Theorem 4. Assume that (1.5) is satisfied, λ < 0, and r(2) < 1. Then there exists D1 such that for

P-almost every environment T̃n−Eω,zT̃n√
n

converges weakly as n → ∞ to a normal distribution with zero

mean and variance D1.

Remark. It is easy to show that if in addition to the conditions of Theorem 4 also (1.4) is satisfied, then

there are constants c and D2 such that Eω,zT̃n−cn√
n

converges weakly to a normal distribution with zero

mean and variance D2. Consequently T̃n−cn√
n

converges weakly as n → ∞ in the annealed setting (that

is with respect to Pz := P n Pω,z) to a normal distribution with zero mean and variance D = D1 +D2.

3. Occupation times.

As stated in the Introduction, in this work the study the asymptotic behaviour of the RWRE is
conducted in terms of that of the asymptotic behaviour of occupation times. In this section we derive
formulae for the expectations of occupation times and discuss some of their properties. Denote the time
spent by the walk at site x = (n, y) by ξx. Obviously, the distribution of ξx depends on the starting point
of the walk, say (k, i). Since ξx conditioned on the walk starting from x has a geometric distribution,
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it is easy to find the parameters of ξx also for the walk starting from arbitrary (k, i). Namely, we shall

find Fk,i
def
= Eω,(k,i)(ξx) for all (k, i) in the strip including Fx = Eω,x(ξx). Then

Pω,(k,i){X reaches x} = Pω,(k,i){ξx ≥ 1} = Fk,iF
−1
x

and hence

Pω,(k,i){ξx = 0} = 1− Fk,iF−1
x , Pω,(k,i){ξx = j} = Fk,iF

−2
x (1− F−1

x )j−1 if j ≥ 1.

The expressions for Fk,i will be given in terms of the matrices defined in section 2. Denote by Fk the
m-dimensional vector with components Fk,i, 1 ≤ i ≤ m and let ey ∈ Rm be a vector whose yth coordinate
is 1 and all others are zeros.

Lemma 3.1. Suppose that (1.5) holds, x = (n, y). Then for P - almost all ω

(3.1) Fk ≡ Fk(n, y) =
∞∑
j=n

ζk . . . ζj−1Aj . . . An+1un,y, if k < n

(3.2) Fk ≡ Fk(n, y) =
∞∑
j=k

ζk . . . ζj−1Aj . . . An+1un,y, if k ≥ n

where

(3.3) un,y = (I −Qnζn−1 −Rn)−1ey.

Remark. In the above formulae, we use the conventions that Aj . . . An+1 = I if j ≤ n and ζk . . . ζj−1 = I
if k ≥ j. Thus the first term in (3.1) is ζk . . . ζn−1un,y and the first term in (3.2) is Ak . . . An+1un,y.

Proof. Consider a box [La, Lb] with a < k, n < b and a walk X̃ on this box starting from (k, i) with

absorbtion at layers La and Lb. Denote by F̃k
def
= (F̃k,i)1≤i≤m the vector of conditional expectations,

F̃k,i
def
= Eω,(k,i)(ξa,bx ), where ξa,bx is the occupation time of x by the walk starting from (k, i). It is easy to

see (first step analysis) that F̃k satisfy the following system of equations:

(3.4) F̃k = Φk + PkF̃k+1 +RkF̃k +QkF̃k−1 if a < k < b and F̃a = F̃b = 0,

where Φk = ey if k = n and Φk = 0 otherwise. Systems of equations of this form were studied in [12].

The idea is to look for solutions to (3.4) of the form F̃k = ϕkF̃k+1 +dk with ϕa = 0 and da = 0. A simple
calculation (see Lemma 8 in [12]) shows that ϕk satisfy (2.1) and that

(3.5) F̃k = ϕk . . . ϕn−1dn + ϕk . . . ϕndn+1 + · · ·+ ϕk . . . ϕb−2db−1.

where

dr = ũr + Ãrũr−1 + ÃrÃr−1ũr−2 + · · ·+ Ãr . . . Ãjũj−1 + . . .

and

ũr = (I −Qrϕr−1 −Rr)
−1Φr, Ãr

def
= (I −Qrϕr−1 −Rr)

−1Qr.

In our case dl = Ãl . . . Ãn+1ũn if l > n, dn = ũn and dl = 0 otherwise which turns (3.5) into a version of
(3.1), (3.2) with ζ’s replaced by ϕ’s and the sums being finite. Note that:
(a) lima→−∞ ϕj = ζj since λ < 0 (see (2.11) or [1]);

(b) moreover ϕj ↗ ζj and therefore also Ãj ↗ Aj as a→ −∞;

(c) thus F̃k is monotonically increasing as a decreases or b increases with the terms of F̃k converging to
the corresponding terms of Fk.
Series (3.1), (3.2) converge P - almost surely (once again due to λ < 0) and since they have positive
entries, it follows that F̃k converges P - almost surely to Fk as a → −∞ and b → +∞ and this proves
the Lemma. �
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One immediate corollary from (3.2) is the estimate of the probability of return from Ln+l to Ln. For
a θ0 < 1, set

(3.6) Ωn,l,θ0 =
{
ω : Pω{X visits Ln after Ln+l} ≥ θl0

}
.

Lemma 3.2. There are C > 0, θ0, θ1 ∈ (0, 1) such that

(3.7) P {Ωn,l,θ0} < Cθl1.

Proof. It follows from (3.2) that ||Fn+l(n, y)|| ≤ Const
∑∞

j=n+l ||Aj . . . An+1||. Let ξn,l be the number of
visits to Ln by the walk starting from Ln+l. Then

Pω{X visits Ln after Ln+l} ≤ max
z∈Ln+l

Pω,z{ξn,l ≥ 1} ≤ max
z∈Ln+l

Eω,z(ξn,l)

≤ max
y
||Fn+l(n, y)|| ≤ Const

∞∑
j=n+l

||Aj . . . An+1||

Fix any α such that r(α) < 1. Then for any θ0 > 0

P{
∞∑

j=n+l

||Aj . . . An+1|| ≥ θl0} ≤ θ−αl0

∞∑
j=n+l

E(||Aj . . . An+1||)α ≤ Constθ−αl0 r(α)l.

and it remains to choose θ0 so that θ1 := r(α)θ−α0 < 1. �

Let us now discuss a corollary which follows from (3.1). This formula will quite often be used when
n − k > cN ε for some ε > 0 and N → ∞ in which case the expression for Fk(n, y) can be simplified.
Namely, by Lemma 2.2

(3.8) ζk . . . ζj−1 = πj +O(θj−k),

where πj is a rank one matrix all rows of which are equal to πj. We can now rewrite (3.1) as

(3.9) Fk(n, y) =
∞∑
j=n

(πj +O(θj−k))Aj . . . An+1un = (1 +O(θn−k))
∞∑
j=n

πjAj . . . An+1un,y.

Fix ε > 0 and θ ∈ (0, 1). Then it is easy to see that for sufficiently large N

P

{
θN

ε

max
n∈[0,N ]

∞∑
j=n

||Aj . . . An+1|| > N−50(1+s)

}
< N−100.

Since errors of such order as well as events of such small probability will not play any role for our results
and in our proofs (see the statements of the main theorems below), the dependence of Fk(n, y) on the
starting point of the walk can be neglected and this vector can be replaced by a single number

(3.10) ρn,y :=
∞∑
j=n

πjAj . . . An+1un.

We also set

(3.11) ρn :=
∑
y

ρn,y =
∞∑
j=n

πjAj . . . An+1un

where un = (I − Qnζn−1 − Rn)−11. Obviously, ρn is the expectation of the time spent by the walk in
layer n.

Since Aj is a stationary sequence of positive matrices there exists a stationary sequence of vectors
vj > 0, vj ∈ X and numbers λj > 0 such that

(3.12) Ajvj−1 = λjvj
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and there is a sequence of functionals lj and a θ < 1 such that for any vector u

Aj . . . An+1u = ln(u)λj . . . λn+1(1 +O(θn−j))vj.

Moreover ln is well approximated by local functions, that is, there exists Fn,n+r measurable functions
ln,r such that ||ln − ln,r|| ≤ θr whenever r > r0 (r0 depends only on θ and ε from Condition (1.5)) .

The foregoing discussion allows us to write

(3.13) ρn = ln(un)wn +Rn

where

(3.14) wn =
∑
j≥n

λj . . . λn+1(πj, vj)

and Rn denotes the contribution of subleading terms. Denote

wn1,n2 =

n2∑
j=n1

λj . . . λn1+1(πj, vj).

The following lemma characterizes the tail behaviour of the distribution of wn and thus also of ρn(y) and
ρn. It adjusts to our needs some well known results from [15]; the latter played a major role in many
previous studies of the asymptotic behaviour of the RWRE, in particular in [17, 6]. The derivation
of this lemma will be given in Section 7 using the results of Appendix C. The lemma relies on the
assumption that

(3.15) there is s > 0 such that r(s) = 1.

Note that ln(r(·)) is a strictly convex function (see e.g. section C.3) and therefore the existence of the
solution s to (3.15) implies its uniqueness. On the other hand if (3.15) has no positive solutions then
r(α) < 1 for all α > 0. In particular, the walk is diffusive in that case in view of Theorem 4.

For the rest of the paper we suppose that (3.15) is satisfied.
Further analysis will heavily rely on the asymptotic properties of the of tails of distributions of ρn

which will follow from those of wn. The latter are described by the following lemma.

Lemma 3.3. Suppose that (1.5) is satisfied. Then there are constants C̄ and s̄ > s such that
(a) If n2 − n1 > C̄ ln t then

P(wn1 − wn1,n2 ≥ 1|ζn1 = ζ, πn1 = π, vn1 = v) ≤ Ct−s̄.

(b) If n2−n1 > C̄ ln t and the non-arithmeticity condition (2.6) holds (in addition to (1.5)) then there
is a function f(ζ, π, v) > 0 such that

P(wn1,n2 ≥ t|ζn1 = ζ, πn1 = π, vn1 = v) ∼ f(ζ, π, v)t−s.

(Here and below ’∼’ means the bound which is uniform in the parameter involved. That is, given ε there
exists t0 such that if t > t0 and n2 − n1 > C̄ ln t then

|tsP(wn1,n2 ≥ t|ζn1 = ζ, πn1 = π, vn1 = v)− f(ζ, π, v)| < ε.)

In particular

P(wn ≥ t|ζn = ζ, πn = π, vn = v) ∼ f(ζ, π, v)t−s.

(c) There exists s̄ > s and C̄ > 0 such that

P(Rn > t|ζn = ζ, πn = π, vn = v) ≤ Ct−s̄.

The proof of Lemma 3.3 is given in Section 7.
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4. Main Results.

The description of the asymptotic behaviour of TN (defined by (1.10)) will be derived from the
asymptotic properties of traps. Our first main result describes these properties. Let us introduce the
exact definition of a trap on [0, N ].

Definition. Let M = MN := ln lnN and δ > 0 be a given (small) number, wn is defined by (3.14).
We say that n is a massive site if wn ≥ δN1/s. A site n ∈ [0, N − 1] is marked if it is massive and

wn+j < δN1/s for 1 ≤ j ≤ M. For n marked the interval [n −M,n] is called the trap (or δN
1
s -trap)

associated to n. We call the number mn =
∑n

j=n−M ρj the mass of the trap.

Note that this definition implies that distinct traps are disjoint.
The asymptotic distribution of traps is described by the following

Theorem 5. Assume that the non-arithmeticity condition (2.6) holds. Then there exists a constant c
such that the point process

(4.1)
{(nj

N
,
mnj

N1/s

)
: nj is δN1/s-marked and 0 ≤ nj ≤ N

}
converges as N → ∞ to a Poisson process on [0, 1] × [δ,∞)with the measure csdt′µδ(dt), where µδ
converges to a measure with density cs

ts+1 as δ → 0.

Remarks. 1. Each component of the point process (4.1) is itself a point process converging to a Poisson
process.

2. Theorem 5 extends certain statements from [6] (see Lemma 4.4 there) to the case of the walk on a
strip. It may be worth mentioning that in [6] we used the term cluster for what we have now decided
to call a trap; the latter term seems to better reflect the main properties of this object.

3. The measure µδ will be described in more explicit terms later. However, its explicit description
depends on the choice of the definition of a trap and is only important because it helps to find the limit
of µδ as δ → 0.

The above theorem plays a major role in the description of the asymptotic behaviour of the walk in
the subdiffusive regime s ∈ (0, 2). To state our second main result, we define tN which is a normalized
version of TN , namely we set

(4.2) tN =

{
TN
N1/s if 0 < s < 1,
TN−Eω(TN )

N1/s if 1 ≤ s < 2.

The definition of tN implies that complete understanding of its asymptotic properties should include the
study of those of Eω(TN). The corresponding normalized quantity is defined as follows:

(4.3) uN =


Eω(TN )

N1/s if 0 < s < 1,
Eω(TN )−uN

N
if s = 1,

Eω(TN )−E(TN )

N1/s if 1 < s < 2,

where uN = NE(ρnIρn<xN ) with xN defined by P {ρn > xN} = N−1.
To state our next theorem, we set

(4.4) Θ(N,δ) =
{

Θ
(N,δ)
j :=

mnj

N1/s
: 0 ≤ nj ≤ N and nj is δN1/s-marked

}
Theorem 6. Assume that the non-arithmeticity condition (2.6) holds. Then for 0 < s < 2 and a δ > 0
there is a sequence ΩN,δ ⊂ Ω such that limN→∞P(ΩN,δ) = 1 and a sequence of random point processes

(Θ(N,δ),Γ(N,δ)) =
({

Θ
(N,δ)
j ,Γ

(N,δ)
j

})
such that
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(i) The component Γ(N,δ) = {Γ(N,δ)
j } is a collection of asymptotically i.i.d. random variables with mean

1 exponential distribution.
(ii) The tN and uN can be presented in the following form:
(a) If 0 < s < 1 then for ω ∈ ΩN,δ

(4.5) tN =
∑
j

Θ
(N,δ)
j Γ

(N,δ)
j +RN , where RN ≥ 0 and E(1ΩN,δRN) = O(δ1−s),

uN =
∑
j

Θ
(N,δ)
j + R̂N , where R̂N ≥ 0, E(R̂N) = O(δ1−s).

(b) If s = 1 then for ω ∈ ΩN,δ and a given 1/2 < κ < 1

tN =
∑
j

Θ
(N,δ)
j (Γ

(N,δ)
j − 1) +RN , where E

[
1ΩN,δEω(R2

N)
]κ

= O(δ2κ−1),

uN =
∑
j

Θ
(N,δ)
j − c̄| ln δ|+ R̂N , where E(|R̂N |2) = O(δ).

(c) If 1 < s < 2 then for ω ∈ ΩN,δ

tN =
∑
j

Θ
(N,δ)
j (Γ

(N,δ)
j − 1) +RN , where E

[
1ΩN,δEω(R2

N)
]

= O(δ2−s),

uN =
∑
j

Θ
(N,δ)
j − c̄

(s− 1)δs−1
+ R̂N , where E(R̂2

N) = O(δ2−s).

Remarks. 1. Theorem 6 was proven in [6] for SRWRE. The next two remarks are similar to those
following Theorem 2 in [6]; we nevertheless believe that they are worth of being repeated.

2. The estimates of the remainders in the statements of Theorem 6 hold for all δ > 0 but are not
uniform in N . More precisely, e. g. the relation E(|R̂N |2) = O(δ) in (b) means that for any δ > 0 there

is Nδ and a constant C (which does not depend on δ) such that E(|R̂N |2) ≤ Cδ if N > Nδ.
3. The dependence of Θ(N,δ) on ω persists as N →∞ whereas Γ(N,δ) becomes “almost” independent

of ω. More precisely, for K � 1 and sufficiently large N the events BN
k := {|Θ(N,δ)| = k}, 0 ≤ k ≤ K,

form, up to a set of a small probability, a partition of Ω. If ω ∈ BN
k then Γ(N,δ) ≡ Γ(N,δ)(ω,X) is a

collection of k random variables which converge weakly as N → ∞ to a collection of k i.i.d. standard
exponential random variables. Thus the only dependence of Γ(N,δ)(ω,X) on ω and δ which persists as
N →∞ is reflected by the fact that |Θ(N,δ)| = |Γ(N,δ)|. (Remember that X is the trajectory of the walk
and the purpose of our notation is to emphasize the dependence of Γ(N,δ) on both ω and X.)

The following statement is a corollary of Theorem 6. In the case of the SRWRE, Theorem 7 is one of
the main results of [17].

Theorem 7. The annealed walk has the following properties:
(a) If s < 1 then the distribution of TN

N1/s converges to a stable law with index s.

(b) If 1 < s < 2 then there is a constant u such that the distribution of TN−Nu
N1/s converges to a stable law

with index s.
(c) If s = 1 then there is a sequence uN ∼ cN lnN (defined as in (4.3)) such that the distribution of
TN−uN

N
converges to a stable law with index 1.

The proof of this theorem will not be given because its derivation from Theorems 5 and 6 is easy (cf
Lemma B.2 in Appendix B) and also was carried out in [6].
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5. The asymptotic properties of traps and roof of Theorem 5.

5.1. Auxiliary Lemmas. The proof of Theorem 5 requires understanding of the asymptotic behaviour
of traps. The following five lemmas describe the properties of traps that shall be used in the sequel.

We start with wn defined by (3.14). Observe that we have

(5.1) wn = λnwn+1 + (πn, vn).

Lemma 5.1. There exist ε1 > 0, ε2 > 0, 0 < β < 1 and C > 0 such that for any (ζ̄ , π̄, v̄) we have
(a) If k ≤ ε1 ln t then

P(wn ≥ t, wn+k ≥ t|ζn = ζ̄ , πn = π̄, vn = v̄) ≤ Cβk

ts
;

(b) If k ≥ ε1 ln t then

P(wn ≥ t, wn+k ≥ t|ζn = ζ̄ , πn = π̄, vn = v̄) ≤ Ct−s(ε2+1).

Proof. For brevity we shall denote P̄ = P(·|ζn = ζ̄ , πn = π̄, vn = v̄).
(a) From (5.1) we have

wn = λn . . . λn+k−1 +O(Kk).

So if Kk � t then

P̄(wn ≥ t, wn+k ≥ t) ≤ Ē(1λn...λn+k−1≥1/2Pζn+k,πn+k,vn+k
(wn+k ≥ t))

≤
Ē(1λn...λn+k−1≥1/2f(ζn+k, πn+k, vn+k))

ts

≤ CP̄(λn . . . λn+k−1 ≥ 1/2)

ts
≤ Cβk

ts
.

(b) Consider two cases
(I) k > C̄ ln t where C̄ is the constant from Lemma 3.3. Then

P̄(wn ≥ t, wn+k ≥ t) ≤ P̄(wn,n−k−1 ≥ t− 1, wn+k ≥ t) + P̄(wn − wn,n−k−1 > 1).

The second term is O(t−s̄) while the first term equals to

Ē(1wn,n+k−1≥t−1Pζn−k,πn−k,vn−kwn+k ≥ t) ≤ C

ts
P̄(wn,n+k−1 ≥ t− 1) ≤ C

t2s
.

(II) ε1 ln t < k ≤ C̄ ln t. Fix ε̃� 1. Then

P̄(wn ≥ t, wn+k ≥ t) ≤ P̄(wn+k ≥ t1+ε̃) + P̄(wn ≥ t, t ≤ wn+k ≤ t1+ε̃).

The first term is O(t−(1+ε̃)s) while the second term is less than

P̄(λn . . . λn+k−1 ≥ t−ε̃/2, wn+k ≥ t) + C̄ ln t max
1<≤j<k

P̄(λn . . . λn+j ≥ t1−ε̃, wn+k ≥ t).

Both terms are estimated in the same way so we only discuss the first one

P̄(λn . . . λn+k−1 ≥ t−ε̃/2, wn+k ≥ t) ≤ Ē(1λn...λn+k−1≥tε̃/2Pζn−k,πn−k,vn−k(wn+k ≥ t))

≤ C

ts
P̄(λn . . . λn+k−1 ≥ tε̃/2) ≤ Cts(1+ε2)

as claimed. �

It may happen that not all massive sites belong to one of the clusters. This situation is controlled by
the following

Lemma 5.2. There is β < 1 such that for n ∈ [0, N − 1]

(5.2) P
(
ρn ≥ δN1/s and n is not in a trap

)
≤ Const

βM

N
.
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Proof. Suppose that n is a massive point which is not in a trap. Then consider all massive points ni
such that n < n1 < ... < nk < n+M . Note that such points exist because otherwise n would have been
a marked point. Let now n∗ > nk be the nearest to nk massive point. Then by construction n∗ ≥ n+M .
Also n∗ ≤ n + 2M because otherwise nk would have been a marked point and n would belong to the
nk-trap. Hence the event

{n is massive and not in a trap} ⊂
⋃

n′∈[n+M,n+2M ]

{wn ≥ δN1/s, wn′ ≥ δN1/s}.

By Lemma 5.1(b) we obtain

P (n is massive and not in a trap)

≤
n+2M∑
n′=n+M

P
(
wn ≥ δN1/s, wn′ ≥ δN1/s

)
≤ Const

βM

N

which proves our statement. �

Our next goal is to show that P(n is massive) and P(n is marked) are of the same order.

Lemma 5.3. (a) For each l, R ≥ 1 the following limit exists

fl(ζ̄ , π̄, v̄, R) = lim
t→∞

tsP(wn ≥ tR, wn+j < t for j = 1 . . . l|ζn = ζ̄ , πn = π̄, vn = v̄).

(b) Let1 f̄ = liml→∞ fl(ζ̄ , π̄, v̄, R). Then |f̄(ζ̄ , π̄, v̄, R)− fl(ζ̄ , π̄, v̄, R)| = O(θl).

Proof. By (5.1)
P̄(wn ≥ tR, wn+j < t for j = 1 . . . l) ∼

Ē

(
Pζn+l,πn+l,vn+l

(
wn+l ∈

[
tR

λn . . . λn+l−1

,
t

maxj(λn . . . λn+j−1)

]))
so the result follows from Lemma 3.3.

(b) Since

P̄(wn ≥ Rt, wn+j < t for j = 1 . . . l)− P̄(wn ≥ Rt, wn+j < t for j = 1 . . . l + 1)

≤ P̄(wn ≥ t, wn+l+1 ≥ t)

the result follows by Lemma 5.1(a). �

Lemma 5.4. P(f̄(ζ, π, v, 1) > 0) > 0.

Proof. Assume to the contrary that P(f̄ > 0) = 0. Then for each ε there is n0 such that for N ≥ N0 we
have P(n is marked) ≤ ε

N
. Combining Lemma 3.3 and Lemma 5.2 we obtain that there is a constant c

such that

(5.3) P(Tn) ≥ c

N
, where Tn = {n is marked and belongs to a trap}.

If n is in a trap let Dn be the distance to the nearest marked point to the left of n. Given D we write

P(Tn) = P(Tn and Dn < D) + P(Tn and Dn ≥ D).

The first term equals to
D−1∑
j=0

P(n is massive and n+ j is marked) ≤
D−1∑
j=0

P(n+ j is marked) ≤ εD

N
.

On the other hand

P(Tn and Dn ≥ D) ≤
M∑
j=D

P(n and n+ j are massive) ≤ CβD

N
.

1the limit exists since fl is decreasing
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Thus

P (Tn) ≤ εD + CβD

N
.

Taking D so large that CβD ≤ c
3

and then choosing ε ≤ c
3D

we obtain a contradiction with (5.3). �

We now turn our attention to the mass of the trap. Observe that for j ≤M we have

ρn−j ∼ wnλn−j . . . λnln−j(vn−j).

Accordingly introduce

an =
∞∑
j=0

λn−j . . . λnln−j(vn−j) and an1,n2 =

n2−n1∑
j=0

λn2−j . . . λn2ln2−j(vn2−j).

In the next result proven in Section 7 we use the same notation as in Lemma 3.3.

Lemma 5.5. (a) If k > C̄ ln t then

P(an − an−k,n ≥ 1) ≤ Ct−s̄ and

(b) P(an−k,n ≥ t) ∼ ĉt−s.

(c) Moreover there exists a measure ν such that if k > C̄ ln t then

tsE
(

1an−k,n≥tf
(
ζn, πn, vn,

an−k,n
t

))
∼ ĉ

∫∫
f(ζ, π, v, z)

dzdν(ζ, π, v)

zs+1
.

Corollary 5.6. (a) The following limit exists

h(t, δ) = lim
N→∞

N1/sP(n is marked and mn > tN1/s).

(b) There is c > 0 such that limδ→0 h(t, δ) = ct−s.

Proof. Take W such that if n is marked then wn ∈ [δN1/s, δWN1/s]. We have

P(n is marked and mn > tN1/s) = E

(
1an−M,n> t

δW
Pζn,πn,vn

(
wn > min

(
1,

t

δan

)
δN1/s

))
∼ 1

δsN
E

(
1an−M,n> t

δW
f̄

(
ζn, πn, vn,min

(
1,
δan
t

)))
.

This proves (a). To prove (b) we use Lemma 5.5(c) to get

1

δs
E

(
1an−M,n> t

δW
f̄

(
ζn, πn, vn,min

(
1,
δan
t

)))
∼ ĉ

W s

ts

∫∫
f̄(z, π, v,min(1,W/z))

dνdz

zs
.

�

5.2. Proof of Theorem 5. We are now in a position to prove Theorem 5. The following lemma
essentially repeats the statement of Theorem 5 with the difference that we can now state it in terms of
h(·, δ) studied above (Corollary 5.6).

Lemma 5.7. Suppose that all conditions of Theorem 5 are satisfied. Then
(a) For a fixed δ > 0 the point process

{(nN−1,mnN
− 1
s ) : n is δN

1
s -marked}

converges as N → ∞ to a Poisson process on [0, 1] × [δ,∞) with measure dt′µδ such that µδ([t1, t2]) =
h(t2, δ)− h(t1, δ).

(b) As δ → 0 µδ converges to a measure with density cs
ts+1 .
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Proof. To prove (a) we use Bernstein’s big block-small block method. Namely, we divide [0, N ] into big
blocks Ij of length N ε3 separated by small blocks of length N ε3/2. We take ε3 < ε2, where ε2 is the
constant from Lemma 5.1. By Lemma 3.3 the probability that there is a trap inside the union of the
short intervals tends to 0 so it suffices to consider the union of long intervals. We claim that for each
j the probability that Ij contains two or more traps is o(N ε3−1). Indeed due to Lemma 5.1, the above
probability is bounded by ∑

n∈Ij

∑
MN<k<N

ε3

P(both n and n+ k are marked)

≤
∑
n∈Ij

∑
MN<k<N

ε3

P(both n and n+ k are massive)

≤ C

N

∑
n∈Ij

[
ε1 lnN∑
k=MN

βk +
Nε3∑

k=ε1 lnN

N−ε2

]
≤ CN ε3−1

[
βMN +N ε3−ε2

]
proving the claim.

Next, let {Jl} be a collection of d non-intersecting open intervals in [δ,∞) and K = (t′1, t
′
2) be an

open interval from [0, 1]. Let

Nl = Card(n ≤ N : n is marked and (n,mn) ∈ NK ×N1/sJl).

We need to show that, as N → ∞, {Nl} converge to independent random variables having Poisson
distribution with parameter (t′2− t′1)µδ(Jl) (the proof for all other finite collections of open quadrangles
in [0, 1]× [δ,∞) easily follows from this case). Weshall now replace mn by m̃n which are defined similarly

to mn but have the property of being i.i.d. random variables and, at the same time, |mn− m̃n| ≤ N−
100
s .

Namely, we do the following:
1. Define Markov process (ψn, π̂n) starting with initial conditions π̂nj and ψnj which have all entries

equal to 1
m

, where nj is the middle of the short interval preceding Ij. This process is defined for n > nj
with the ψ component given by (2.1) and π̂n = π̂n−1ψn−1.

2. Similarly to (3.11), set for n ∈ Ij

ρ̂n :=

nj+1∑
j=n

π̂jÂj . . . Ân+1ûn,

where Âj, ûn are define as the corresponding As and ûs with ζs replaced by ψs.
3. Finally m̃n is defined similarly to mn but with ρ̂n replacing ρn.
The independence mentioned above is obvious from the construction and the approximation property

now follows from Proposition D.1:

||ζn − ψn|| ≤ Constθn−nj .

Let now {Γj} be a sequence of random d-dimensional vectors such that

Γj =

{
el ifIj ⊂ NK, there is exactly one trap ñ ∈ Ij, mñ ∈ N

1
sJl,

0 in all other cases.

Then Γj are iid random vectors and

P(Γl = el) ∼ (t′2 − t′1)µδ(Jl)N
ε3−1, P(Γl = 0) = 1− (t′2 − t′1)µδ(Jl)N

ε3−1 + o(N ε3−1).

Therefore part (a) follows from the Poisson Limit Theorem for independent random vectors. Part (b)
follows from part (a) and Corollary 5.6(b). �
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6. Proof of Theorem 6.

The proof of Theorem 6 is to an extent similar to that of Theorem 2 in [6] and we shall give only an
outline of it putting emphases at those parts which are new. As in [6], we start with a lemma which

allows us to show the smallness of the contribution to TN which comes from the sites where ρn < δN
1
s .

We then compute the main contribution to TN which comes from the traps in [0, N ] described in Theorem
5.

Within this section we shall use the following notation: ξn =
∑m

i=1 ξ(n,i). Obviously, ρn = Eω(ξn). In
these notations, Lemma 6.1 becomes an exact copy of Lemma 4.1 from [6].

Lemma 6.1. Let δ > 0. Then there is Nδ such that for N > Nδ the following holds:
(a) If 0 < s < 1 then

E

 ∑
wn<δN1/s

ξn

 ≤ ConstN1/sδ1−s.

(b) If 1 < s < 2 then there is a set Ω̃N,δ such that P(Ω̃c
N,δ) ≤ N−100 and

E

1Ω̃N,δ
Eω

 ∑
wn<δN1/s

(ξn − ρn)

2 ≤ ConstN2/sδ2−s.

(c) If 0 < s < 1 then

E

 ∑
wn<δN1/s

ρn

 ≤ ConstN1/sδ1−s.

(d) If 1 < s < 2 then

Var

 ∑
wn<δN1/s

ρn

 ≤ ConstN2/sδ2−s.

(e) If s = 1 then given 1
2
< κ < 1 there is a set Ω̃N,δ such that P(Ω̃c

N,δ) ≤ N−100 and

(6.1) E

(
1Ω̃N,δ

(
Varω

( ∑
wn<δN

(ξn − ρn)

))κ)
≤ ConstN2κδ2κ−1,

(6.2) E

( ∑
wn<δN

(ρn − E (ρIρ<δN))

)2
 ≤ ConstN2δ.

Proof. Parts (a) and (c) follow from Lemma 3.3 and Markov inequality (cf. the proof of Lemma 4.1 in
[6]).

The proofs of (b), (d), and (e) in Lemma 4.1 in [6] do not go through directly in the case of the strip.
We shall give a complete proof of (b). The required adaptations in the cases (d) and (e) are the same.

Proof of (b). Set χn = Iwn<δN1/s ; this notation will be used only within the proof of Lemma 6.1. De-

note Ỹδ =
∑

wn<δN1/s(ξn− ρn). Then Eω(Ỹn) = 0 and so it suffices to show that Varω(Ỹδ) = O(δ2−sN2/s)
except for ω from a set of small probability. It follows from Lemma 3.2 that if K is sufficiently large,
n2 − n1 > K lnN , and ω 6∈ Ωn1,K lnN,θ0 (see (3.6) for the definition of this set) then

Covω (ξn1 , ξn2) ≤ CN−100.
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Therefore

(6.3)

Varω(Ỹδ) =

∣∣∣∣∣o(1) +
∑

n2−K lnN<n1<n2

2χn1χn2Covω (ξn1 , ξn2) +
∑
n

χnVarω (ξn)

∣∣∣∣∣
≤ 1 + Const

∑
n2−K lnN<n1≤n2

ρn1ρn2χn1χn2

where the summation is over pairs with ρni < δN1/s. The last step uses

|Covω (ξn1 , ξn2)| ≤
√

Varω (ξn1) Varω (ξn2) ≤ Cρn1ρn2 .

Here, apart of the Cauchy-Schwartz inequality, we use the fact that if the walk starts from z ∈ Ln0 ,
then Pω,z{ξn,j ≥ 1} ≥ ε0 for n ≥ n0 (the existence of ε0 is due to (1.5)). The latter inequality implies

that
√

Varω (ξn,i)) ≤ Constρn,i with the constant depending only on ε0. We use here elementary explicit
expressions for all involved quantities, see (A.8) and (A.15).

Next, we have to estimate the expectation of the last sum in (6.3). To this end introduce

rn = 1 + ||An+1||+ ||An+2An+1||+ ... ≡
∞∑
j=0

||An+j...An+1||.

It is clear from (3.11) and the strong ellipticity condition (1.5) that there are constants c1, c2 such that
c1rn < wn < c2rn. Hence there is a C and t0 such that for t > t0 uniformly in ζ

(6.4) P{rn > t|ζn = ζ} ≤ Ct−s and E
[(
r2
n|ζn = ζ

)
I(rn|ζn=ζ)≤t

]
≤ Const t2−s.

We also have that for k > 0

ρn−k ≤ C
∞∑
j=0

||An−k+j...An−k+1|| ≤ C
k−1∑
j=0

||An−k+j...An−k+1||+ C||An...An−k+1||rn.

and

ρn−kρn ≤ C
k−1∑
j=0

||An−k+j...An−k+1||rn + C||An...An−k+1||r2
n.

To estimate E(rn−krn) we condition on ζn and use the fact that the conditioned random variables
||An−k+j...An−k+1|||ζn and rn|ζn are independent. Therefore

E (||An−k+j...An−k+1||rn) = E [E (||An−k+j...An−k+1|||ζn) E (rn|ζn)] ≤ Cβj,

where β := r(1) < 1 and E (rn|ζn) < Const since s > 1.
Similarly, but this time using also (6.4) we obtain

E
(
||An...An−k+1||r2

nχn
)
≤ E

[
E (||An...An−k+1|||ζn) E

(
r2
nI(rn|ζn=ζ)≤CδN

1
s
|ζn
)]

≤ Cβkδ2−sN
2−s
s .

Hence
E (ρn−kρnχn) ≤ Const

(
1 + βkδ2−sN

2−s
s

)
and therefore for N > Nδ

E

(
K lnN∑
k=0

(ρn−kρnχn)

)
≤ Const

(
lnN + δ2−sN

2−s
s

)
≤ Cδ2−sN

2−s
s .

Finally

E

( ∑
n2−K lnN<n1≤n2

ρn1ρn2χn1χn2

)
≤ E

( ∑
n2−K lnN<n1≤n2

ρn1ρn2χn2

)
≤ CNδ2−sN

2−s
s = Cδ2−sN2/s.



SUBDIFFUSIVE RANDOM WALKS ON A STRIP 19

Part (b) is proven. The proofs of parts (d) and (e) follow the proof of the corresponding statement of
Lemma 4.1 in [6] with the modifications similar to ones presented here. �

We are now prepared to explain the main steps of the proof of Theorem 6.
We consider the case s ∈ (0, 1); other cases are treated similarly. Present the time spent by the walk

in [L0, LN−1] as

(6.5) TN =
N−1∑
n=0

ξn ≡
N−1∑
n=0

m∑
i=1

ξ(n,i) = S1 + S2 + S3,

where

S1 =
∑

n:wn<δN1/s, n 6∈ any trap

ξn

S2 =
∑

n:wn≥δN1/s, n is not in a trap

ξn

S3 =
∑

n:n is in a trap

ξn.

By Lemma 6.1, (a) we have that E(S1) ≤ ConstN1/sδ1−s.
Next, denote

Ω̄
(1)
N,δ := {ω : there is n ∈ [0, N − 1] s. t. wn ≥ δN1/s, n is not in a trap}.

It follows from (5.2) that

P
(

Ω̄
(1)
N,δ

)
≤ NP

(
wn ≥ δN1/s and n is not in a trap

)
≤ ConstβM .

But then

P(S2 6= 0) ≤ P
(

Ω̄
(1)
N,δ

)
≤ ConstβM → 0 as N →∞.

We thus have that for ω 6∈ Ω̄
(1)
N,δ

tN = N−
1
sS3 +N−

1
sS1 = N−

1
sS3 +RN ,

where RN := N−
1
sS1 and satisfies the requirements of (a), Theorem 6.

It remains to analyze S3 which is the main contributor to TN coming from the sum over the traps in
[L0, LN−1]. Let us present it as follows:

N−
1
sS3 =

∑
n:n is marked

N−
1
s

M∑
j=0

ξn−j.

Since n is marked, we can choose a k such that ρn,k ≥ m−1δN
1
s . Now present

M∑
j=0

ξn−j =
M∑
j=0

m∑
i=1

(
ξn−j,i
ρn−j,i

− ξn,k
ρn,k

)
ρn−j,i +

ξn,k
ρn,k

M∑
j=0

ρn−j.

Next, we shall use Corollary A.2 to estimate
∥∥∥ ξn−j,iρn−j,i

− ξn,k
ρn,k

∥∥∥, where ‖f‖ :=
√
Eω(|f |2) for a function f

on the space of trajectories of the walk. We have:∥∥∥∥ ξn−j,iρn−j,i
− ξn,k
ρn,k

∥∥∥∥ ≤ n−1∑
r=n−j

∥∥∥∥ ξr,iρr,i
− ξr+1,i

ρr+1,i

∥∥∥∥+

∥∥∥∥ ξn,iρn,i
− ξn,k
ρn,k

∥∥∥∥ ≤ C

n−1∑
r=n−j

1
√
ρr,i

+
C
√
ρn,k

.
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Condition (1.5) together with (3.1) imply that there is ε0 > 0 such that ρn−j,i ≥ ε0||An−j . . . An||ρn,k.
Hence for n−j belonging to a trap, that is (n−j) ∈ [n−M,n], we have that ρn−j,i ≥ cεM0 ρn,k ≥ cN−ε̄ρn.
(Remember that M = ln lnN and therefore these inequalities hold for any ε̄ > 0 and N > Nε̄.) Thus∥∥∥∥∥

M∑
j=0

m∑
i=1

(
ξn−j,i
ρn−j,i

− ξn,k
ρn,k

)
ρn−j,i

∥∥∥∥∥ ≤ Const
N ε̄/2

√
ρn

M∑
j=1

Mρn−j ≤ Const
N ε̄

√
ρn

M∑
j=1

ρn−j

If for n marked we set

an = m−1
n

M∑
j=0

m∑
i=1

(
ξn−j,i
ρn−j,i

− ξn,k
ρn,k

)
ρn−j,i

then ‖an‖ ≤ Const N ε̄
√
ρn
→ 0 as N →∞ and we have∑M

j=0 ξn−j

N1/s
=

(
ξn,k
ρn,k

+ an

)
mn

N1/s
.

Set Γ
(N,δ)
j =

ξnj,kj
ρnj,kj

+ anj , where {nj} is the collection of marked points. To finish the proof of statement

(a) from Theorem 6, it remains to check that

{ξnj ,kj/ρnj ,kj}nj is marked

form a collection of asymptotically independent random variables which also are asymptotically expo-
nential with mean 1.

The convergence to the exponential distribution is an immediate corollary of two facts: the conditional
random variable ξn,k|(ξn,k ≥ 1) is geometric and Pω(ξn,k = 0)→ 0 as N →∞ (to prove this last assertion
apply (A.19) with a = (n, k) and b the first point visited by the walker inside layer Ln).

To establish the asymptotic independence remember the construction used in the proof of Theorem
5. We have established there that the marked points belong to the blocks of length N ε3 which are
separated from each other by the blocks of length N

ε3
2 and, moreover, there is at most one marked point

in a large block. By Lemma 3.2, the Pω probability that the walk would ever return to block Ij−1 after

having reached Ij is of order O
(
θN

ε3
2

0

)
, where θ0 < 1, it follows that any random variables which are

functions of the part of trajectory of the walk starting at the left end of Ij and restricted to the N ε3/2/2
neighbourhood of Ij are independent.

Part (a) of Theorem 6 is proved. Parts (b) and (c) are dealt with in a similar way.

7. Tail asymptotics.

Proof of Lemma 3.3. Parts (a) and (b) of the lemma follow from the z+ part of Theorem 9 in appendix
C applied to the following Markov process:

(7.1) Φn = (πn, vn, ζn), gn = (Pn+1, Qn+1, Rn+1).

Note that due to (1.5) there exists ε̄ such that both An and ζn map X into Xε̄ = {v ∈ X : vj ≥ ε̄}. In
(7.1) πn and vn are regarded as elements of Xε̄ and ζn is an element of the set of stochastic matrices.
Recall that given Φn and gn we can reconstruct Φn+1 using (2.3), (2.7), (2.9) and (3.12).

In order to apply Theorem 9 we need to check three conditions. The first one is eventual contraction
(equation (C.1)). Since both An and ζn map X into Xε̄ we can apply Birkhoff Theorem (see e.g. [22])
which tells us that there is a constant θ̄ = θ̄(ε̄) < 1 such that An and ζn contract the Hilbert metric on
Xε̄ at least by factor θ̄ (the contraction of πn part also follows from Lemma 2.2). The contraction of ζn
part is proven in Appendix D.

Second, we need to check (C.2). In our setting we have to show that for each t there is n such that
P(||An . . . A1|| > t) > 0. If this were false then there would exist t0 > 1 such that ||An . . . A1||α < tα0 for
all n with probability 1. This would imply r(α) ≤ 1 for all α > 0. Since r(0) = 1 and ln r(α) is strictly
convex we would actually have r(α) < 1 for all positive α contradicting (3.15).
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Lastly we need to show that (C.3) has no solutions. In our setting (C.3) takes form

(7.2) eiūh(πn−1, vn−1, ζn−1) = eiu ln ||Anvn−1||h(πn, vn, ζn).

Take (P,Q,R) in the support of the environment measure. Let ζ(P,Q,R) and A(P,Q,R) be defined by (2.4)
and (2.5) respectively and denote by π(P,Q,R) and v(P,Q,R) the positive eigenvectors of these matrices.
Then

Φn ≡ (π(P,Q,R), v(P,Q,R), ζ(P,Q,R)), gn ≡ (P,R,R)

is an admissible trajectory. Evaluating (7.2) along this trajectory we get

eiūh(π(P,Q,R), v(P,Q,R), ζ(P,Q,R)) = eiu lnλ(P,Q,R)h(π(P,Q,R), v(P,Q,R), ζ(P,Q,R)).

From this we conclude that

λ(P,Q,R) −
ū

u
∈ 2π

u
Z

contradicting the non-arithmeticity condition (2.6).
Hence Theorem 9 is applicable giving parts (a) and (b) of the lemma. To prove part (c) note that

Rn =
∑
j≥n

πjAj . . . An+1[un − ln(un)vn].

Pick a small ε̃ and split Rn = R′n +R′′n where the first term contain the terms with j < n + ε̃ ln t and
the second term contain the terms with j ≥ n + ε̃ ln t. Choosing ε̃ small enough we can ensure that
R′n ≤ t

2
. On the other hand for terms in R′′n we have θn−j ≤ t−ε̃| ln θ| and hence R′′n < Ct−ε̃| ln θ|wn. Thus

P(Rn > t) ≤ P
(
wn > Ct1+ε̃| ln θ|)

and so part (c) follows from part (b). �

Proof of Lemma 5.5. The result follows from z− part of Theorem 9 applied to the same Markov process
(7.1) as in the proof of Lemma 3.3. �

8. Extensions.

Here we discuss some extensions of our results which are not used in the proof of Theorem 6 but are
helpful in studying other properties of the walk. Applications of these results will be presented in a
separate paper.

8.1. Environment inside the trap. Fix R ≥ 1. Let Tj = [nj −MN , nj] be the j-th trap. We call
n̄j ∈ Tj R-center of Tj if n̄j is the rightmost point in Tj such that wn̄j > wn/R for all n ∈ Tj. We
choose R so that for each k we have

P(λn . . . λn+k ∈ {R,R−1}) = 0.

In particular, if for each k we have P(λn . . . λn+k = 1) = 0 then we can take R = 1 so that n̄j will be
the point with the maximal value of wn. Denote ω(j) = τ n̄jω, where τ is the standard shift on the space
of environments. Theorem 5 can be strengthened in the following way.

Theorem 8. Assume that the non-arithmeticity condition (2.6) holds. Then there exists a probability
measure ν̃δ on Ω and a constant c such that the point process

(8.1)
{( n̄j

N
,
mnj

N1/s
, ω(j)

)}
converges as N →∞ to a Poisson process on [0, 1]× [δ,∞)×Ω with the measure cdt′dµδ(m)dνδ(ω). As
δ → 0 µδ converges to a measure with density cs

ms+1 and ν̃δ converges to some measure ν̃.
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In other words if the walker is trapped, then he sees the environment distributed according to a
measure ν̃. This statement extends the results obtained in [13, 16].

To prove Theorem 8 we first show that as N →∞ and then δ → 0

(8.2)
{( n̄j

N
,
wn̄j
N1/s

, ω(j)
)}

converges to a Poisson process with measure c̃dt′
dw

w1+s
dν̃∗.

The proof of this result is similar to the proof of Theorem 5. Namely, call n (R, l)–maximal if wn >
wn+k/R for 0 < k ≤ l and for each 0 < k′ < l there exists |k′′| ≤ l such that wn+k′ ≤ wn+k′′/R.

Using the same argument as in Lemma 5.3 one can show that

P
(wn
t
∈ [ā, ¯̄a] and n is (R, l)−maximal|ζn = ζ̄ , πn = π̄, vn = v̄

)
∼ f̂l(ζ̄ , π̄, v̄)

(
ā−s − ¯̄a−s

)
t−s

and f̂l → f̂ as l→∞. Moreover similarly to Lemma 5.4 one can show that P(f̂ > 0) > 0 (otherwise we
would get a contradiction with the fact that each trap has a center). In addition we have that for each
ḡ−l . . . ḡl

P
(wn
t
∈ [ā, ¯̄a] and n is (R, l)−maximal|ζn = ζ̄ , πn = π̄, vn = v̄, gn−l = ḡ−l, . . . gn+l = ḡl

)
∼ f̃(ζ̄ , π̄, v̄, ḡ−l, ḡl)Pζn+k,πn+k,vn+k

(
wn+k ∈

[āt, ¯̄at]

λn+1 . . . λn+k

)
This implies that if B is F−l,l measurable then

P
(wn
t
∈ [ā, ¯̄a], n is (R, l)−maximal and τnω ∈ B

)
∼ ν̃l(B)c̃(ā−s − ¯̄a−s)t−s

and ν̃l ⇒ ν̃ as l → ∞. Now the proof of (8.2) proceeds similarly to the proof of Theorem 5. To pass
from (8.2) to (8.1) we note that

mj
wn̄j

is well approximated by
∑
|k|<l ln+k(un+k)Λn,k provided that l is

sufficiently large. Here

Λn,k =


λn+1 . . . λn+k if k > 0

1 if k = 0

λn+k+1 . . . λn if k < 0

.

Accordingly, in the limit l→∞, we have mj = wn̄jH(ω(j)) for some measurable functionH. Now Lemma
B.1 shows that (8.2) implies (8.1) with dν̃ = Hsdν̃∗.

8.2. Arithmetic case. We note that condition (2.6) was used in Section 7 to show that (7.2) does not
have solutions. On the other hand if (7.2) has a non-trivial solution then the analysis of Appendix C
has to be modified. Namely, the non-arithmetic local limit theorem (Lemma C.3) has to be replaced by
its arithmetic version. This will cause replacing t−s in the estimates of Theorem 9 by t−sg({ln(t/∆)})
where {. . . } denotes the fractional part, ∆ is the step of the progression containing the distribution of
lnλ and g is some continuous function. As a result the estimates of Section 5 have to be replaced by

P(ρn > t) ∼ t−sg1({ln(t/∆)}), P(mj > t) ∼ t−sg2({ln(t/∆)}).

Thus there would exists a measure µ on R+ such that µ([t,∞)) = ḡ({ln(t/∆)})t−s and the limit points
of the distribution of the normalized hitting times will be of the form∑

j

Θj(Γj − 1)

where Γj are iid mean 1 exponential random variables and Θj is a Poisson process with measure µ∆̄ for

some 0 ≤ ∆̄ < ∆ where µ∆̄(A) = µ(e∆̄A).
In particular, we would like to note that regardless of condition (2.6) we always have

(8.3) P(ρn > t) ≤ Ct−s.
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Appendix A. Occupation times for Markov chains.

We recall two facts about general Markov chains with discrete state space. Within this section the
notation P will be used for probabilities concerned with Markov chains and E for the corresponding
expectations. First, the number of visits to a given state conditioned on the event that this state will
be visited has a geometric distribution. Second, consider a Markov chain with transition probabilities
pij. Let p̃jk be the probability that the chain starting at j ever visits k. Condition the chain on having
at least one visit to k. Then before coming to k the chain evolves as a Markov chain with transition
probabilities

(A.1) p∗ij =
pij p̃jk∑
r pirp̃rk

.

Similarly if we condition the chain on never visiting k then the chain evolves as a Markov chain with
transition probabilities

(A.2) p∗∗ij =
pij(1− p̃jk)∑
r pir(1− p̃rk)

.

We shall now use these facts to analyze the joint distribution for the number of visits to different sites.
Namely let a and b be two states of a transient chain Z such that

(A.3) pn0
ab > ε, pn0

ba > ε,

where pn0
ab denotes the transition probability after n0 steps.

Let qa (qb) denote the probability that a (respectively b) is visited at least once and pa (pb) denote
the probability that the chain started from a (respectively b) does not return to that state again. Let
ξa (ξb) be the number of visits to a (respectively b).

It is useful to consider our Markov chain only at the times when it visits either a or b. Denote the
resulting chain by Z̃. This chain is governed by the transition matrix

(A.4)

 raa rab rac
rba rbb rbc
0 0 1

 ,

where c denotes the absorbing state which is reached by the particle after the last visit of the set {a, b}.
Denote ε̃ = ε/n0. Since Z̃ is obtained from Z by skipping some states, (A.3) implies that

P(Z̃ visits b before n0|Z̃0 = a) ≥ ε.

(Note that here the time which is ≤ n0 is that of the Markov chain Z̃, not Z.) On the other hand this
probability is equal to

n0−1∑
j=0

rjaarab ≤ n0rab.

This implies that

(A.5) rab ≥ ε̃ and by symmetry rba ≥ ε̃.

Lemma A.1. Suppose that (A.3) is satisfied. Then there is a constant C depending on n0, ε > 0 such
that for all initial conditions of the chain satisfying

(A.6) qa > ε, qb > ε

the following holds:

(A.7) Corr(ξa, ξb) > 1− C

E(ξa)
.

Remark. It is implicit in the statement of the Lemma that the constant C above is uniform over all
Markov chains satisfying (A.3) and (A.6).
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Remark. Remembering that

(A.8) E(ξa) =
qa
pa
,

we see that (A.7) is equvalent to

(A.9) Corr(ξa, ξb) > 1− C̄pa
where C̄ depends only on ε and n0. Therefore this estimate is only interesting if pa is very small. In
this paper we apply Lemma A.1 to traps where the walker spends a lot of time so that the probability
of not returning to a site in a trap is small.

Of course by symmetry we also have

(A.10) Corr(ξa, ξb) > 1− C̄pb
However it is not difficult to see directly that pa and pb are of the same order. Namely we have

pa = rac + rab

∞∑
j=0

rjbbrbc = rac + rab(1− rbb)−1rbc

and similarly pb = rbc + rba(1− raa)−1rac. It is now obvious that

pa ≤ rac + (1− rbb)−1rbc ≤ rac +
rbc
ε̃

and pb ≥ rbc + rbarac ≥ rbc + ε̃rac.

This implies that

(A.11) pa/pb ≤ ε̃−1 and by symmetry pb/pa ≤ ε̃−1.

Proof. We have ξb = U + V + W , where U is the number of visits to b before the first visit to a, W is
the number of visits to b after the last visit to a and V =

∑n
j=1 Vj, where Vj is the number of visits to

b between j-th and j + 1-st visit to a. Then Vj are iid. Let vab = E(Vj). We claim that the following
uniform bounds hold

vab = O(1), E(U) = O(1), E(W ) = O(1)

where the implied constants depend only on ε and n0. Indeed, by (A.1)

P(Vj = l) = r∗ab(r
∗
bb)

lr∗ba

so the estimate of vab follows from the fact that r∗bb = 1− r∗ba < 1− rba < 1− ε̃. The estimate of E(U) is
the same and the estimate of E(V ) is similar except that we have to use (A.2) instead of (A.1).

Therefore

(A.12) E(ξb|ξa = k + 1) = kvab +O(1).

Hence

(A.13) E(ξb) = vabE(ξa) +O(1) and by symmetry E(ξa) = vbaE(ξb) +O(1),

E(ξaξb) = vabE(ξ2
a) +O(E(ξa)).

Combining the last two equalities we obtain

Cov(ξa, ξb) = vabVar(ξa) +O(E(ξa))

(A.14) = vabVar(ξa)

(
1 +O

(
1

E(ξa)

))
where the last step uses (A.8) and

(A.15) Var(ξa) =
qa(2− qa − pa)

p2
a

.

It follows from (A.8) and (A.11) that

(A.16) n−1
0 ε2 ≤ E(ξa)E(ξb)

−1 ≤ n0ε
−2.
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Therefore interchanging roles of a and b in (A.14) we get

(A.17) Cov(ξa, ξb) = vbaVar(ξb)

(
1 +O

(
1

E(ξa)

))
.

Multiplying the two expressions in (A.13) we obtain

(A.18) vabvba = 1 +O
(

1

E(ξa)

)
.

Finally, multiplying (A.14) and (A.17) and using (A.18) we get

Cov2(ξa, ξb)

Var(ξa)Var(ξb)
= 1 +O

(
1

E(ξa)

)
.

�

Let ‖ . . . ‖ denote the L2 norm.

Corollary A.2. Under the conditions of Lemma A.1 there exists a constant C̄ (depending only on ε
and n0) such that ∥∥∥∥ ξa

E(ξa)
− ξb

E(ξb)

∥∥∥∥ ≤ C̄

[
1√
E(ξa)

+ (1− qa) + (1− qb)

]
.

Proof. We have ∥∥∥∥ ξa
E(ξa)

− ξb
E(ξb)

∥∥∥∥ =

∥∥∥∥ξa − E(ξa)

E(ξa)
− ξb − E(ξb)

E(ξb)

∥∥∥∥
=

∥∥∥∥∥ξa − E(ξa)√
Var(ξa)

√
Var(ξa)

E(ξa)
− ξb − E(ξb)√

Var(ξb)

√
Var(ξb)

E(ξb)

∥∥∥∥∥
≤

∥∥∥∥∥ξa − E(ξa)√
Var(ξa)

− ξb − E(ξb)√
Var(ξb)

∥∥∥∥∥+

∣∣∣∣∣
√

Var(ξa)

E(ξa)
− 1

∣∣∣∣∣+

∣∣∣∣∣
√

Var(ξb)

E(ξb)
− 1

∣∣∣∣∣
Notice that the first term equals to

√
2(1− Corr(ξa, ξb)) and so it can be estimated by Lemma A.1 while

the last two terms can be estimated by (A.8) and (A.15). �

To use the above corollary we need to estimate 1− qa. To this end we observe that if (A.3) holds then

(A.19) Pb(ξa = 0) ≤
∞∑
l=0

rlbbrbc =
rbc

1− rbb
≤ pb
rba
≤ pb

ε̃
.

Appendix B. Poisson process and stable distributions.

Let (X,µ) be a measure space. Recall that a Poisson process is a point process with values in X such
that if N(A) is the number of points in A ⊂ X then N(A1), N(A2) . . . N(Ak) are mutually independent
if A1, A2 . . . Ak are disjoint and N(A) has the Poisson distribution with parameter µ(A). If X ⊂ Rd

and µ has density f with respect to the Lebesgue measure we say that f is the intensity of the Poisson
process.

Lemma B.1. (see [19], sections 2.3 and 5.2)
(a) If {Θj} is a Poisson process on X and ψ : X → X̃ is a measurable map then Θ̃j = ψ(Θj) is a

Poisson process. If X = X̃ = R and ψ is invertible differentiable map then the intensity of Θ̃ is

f̃(θ) = f(ψ−1(θ))

∣∣∣∣dψdθ
∣∣∣∣−1

.

(b) Let (Θj,Γj) be a point process on X × Z such that {Θj} is a Poisson process on X and {Γj} are
Z-valued random variables which are i.i.d. and independent of {Θk} then (Θj,Γj) is a Poisson process
on X × Z.
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(c) If in (b) X = Z = R then Θ̃ = {ΓjΘj} is a Poisson process. Its intensity is

f̃(θ) = E

(
f

(
θ

Γ

)
1

Γ

)
.

Lemma B.2. (see [28], Theorem 1.4.2)
(a) If 0 < s < 1 and Θj is a Poisson process with intensity θ−(1+s) then

∑
j Θj has stable distribution

of index s.
(b) If 1 < s < 2 and Θj is a Poisson process with intensity θ−(1+s) then

lim
δ→0

∑
δ<Θj

Θj

− 1

(s− 1)δs−1


has stable distribution of index s.

(c) If s = 1 and Θj is a Poisson process with intensity θ−2 then

lim
δ→0

∑
δ<Θj

Θj

− | ln δ|


has stable distribution of index 1.

Appendix C. Renewal theorem for a system of contractions.

C.1. Main result. Let M1 amd M2 be compact metric spaces, and let ω = {gj} be a sequence of iid
M2 valued random variables. Suppose that there is a Cη map G : M1 ×M2 → M1. Here and below Cη

denotes the space of Holder maps, that is

d(G(Φ1, g1), G(Φ2, g2)) < C [dη(Φ1,Φ2) + dη(g1, g2)] .

Note that later we impose a stronger condition on Φ dependence (see (C.1) below). Consider Markov
process on M1

Φj+1 = Gj(Φj), where Gj(Φ) = G(Φ, gj).

We suppose that the maps Gj are contractions in the sense that there exist constants C and θ < 1 such
that if Φ′j and Φ′′j are two realizations of this Markov chain starting from Φ′0 and Φ′′0 and evolving in the
same environment ω then with probability 1 we have

(C.1) d(Φ′j,Φ
′′
j ) < Cθjd(Φ′0,Φ

′′
0).

Denote ω̃ = {(gj,Φj)}, Ω = (M2)Z, Ω̃ = (M1 ×M2)Z. Let P be the distribution of ω. In view of (C.1)

there is a unique stationary distribution P̃ on Ω̃ whose projection onto Ω is P. Namely, conditioned on
ω the distribution of {Φj} is delta measure concentrated at {Φ̄j} where Φ̄j is constructed as follows.
Take Φ∗ ∈ M1 and let Φk,j = Gj−1 . . . Gk+1Gk(Φ

∗). Then Φ̄j = limk→−∞Φk,j. Let b(Φ, g) be a positive

Cη function on M1 × M2 and ∆(ω̃) be a positive continuous function on Ω̃. Denote bj = b(Φj, gj),
∆j = ∆(τ jω), where τ denotes the shift. For k > 0 denote

z+
n,k =

k∑
j=1

bnbn+1 . . . bn+j∆n+j, z−n,k =
k∑
j=1

bnbn−1 . . . bn−j∆j.

Let
z+
n = lim

k→∞
z+
n,k, z−n = lim

k→∞
zn,k.

Denote a = ln b. Suppose that Ẽ(a) < 0 but for any t there exists N such that

(C.2) P̃

(
N∏
j=1

bj > t

)
> 0.
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Denote by S1 a set of complex numbers of absolute value 1.

Theorem 9. Suppose that for any numbers u, ū ∈ R, there exists no continuous function h : M1 → S1

such that the following equation is satisfied P̃ almost surely

(C.3) eiua(Φ,g) = eiū
h(Φ)

h(G(Φ, g))
.

Then there are constants s > 0, s̄ > s and C̄ > 0 such that such that
(a) If k > C̄ ln t then

P(z+
n − z+

n,k > 1) < C̄t−s̄, P(z−n − z−n,k > 1) < C̄t−s̄.

(b) There exists a function f(Φ) such that if k > C̄ ln t then

P(z+
n,k > t|Φ0 = Φ) ∼ f(Φ)t−s.

(Here and below ’∼’ means that the estimates are uniform in k, that is given ε there exists t0 such that
if t > t0 and k > C̄ ln t then ∣∣tsP(z+

n,k > t|Φ0 = Φ)− f(Φ)
∣∣ < ε.)

In particular

P(z+
n > t|Φ0 = Φ) ∼ f(Φ)t−s.

(c) There exists a measure ν̃ on Ω̃ such that for any continuous function H on Ω̃ the following
asymptotic relations hold if k > C̄ ln t and t→∞:

Ẽ(1z−n,k>t
H(ω̃)) ∼ t−sν̃(H).

In particular

Ẽ(1z−n >tH(ω̃)) ∼ t−sν̃(H).

C.2. Renewal theorem and large deviations. We will deduce Theorem 9 from a large deviation
bound. Let yn =

∑n−1
j=0 aj.

Theorem 10. Suppose that (C.3) has no solutions. Then there is a number α∗ > 0 and a strictly convex

analytic function γ : [Ẽ(a), α∗)→ R such that

(C.4) γ′(α) > 0 if α > Ẽ(a), lim
α→α∗

γ′(α) = +∞

and
(a) If α > α∗ then for each β ∈ R, PΦ(yn ≥ αn) = O(e−βn);

(b) If α ∈ (Ẽ(a), α∗) then there is a measure να on Ω̃ and a function hα : M1 7→ R such that for any
J ⊂ [0,∞] and any continuous function H : Ω̃ 7→ R

EΦ (1yn−αn∈JH (τnω̃))) ∼ e−γ(α)n

√
n

να(H)hα(Φ)

∫
J

e−γ
′(α)tγ′(α)dt,

(c) If α ∈ (Ẽ(a), α∗) then for any J ⊂ [0,∞] and any continuous functions H, Ĥ : Ω̃ 7→ R

Ẽ
(

1yn−αn∈JĤ (ω̃)H (τnω̃)
)
∼ e−γ(α)n

√
n

ν̂α(Ĥ)να(H)

∫
J

e−γ
′(α)tγ′(α)dt.

Theorem 10 is proven in subsection C.3. Here we use this theorem to obtain Theorem 9.

Let α0 = arg min γ(α)
α

and s = γ(α0)
α0

. Note that by (C.4) the minimum is achieved strictly inside (0, α∗).

Indeed from part (b) of Theorem 10 it is clear that γ is non-negative on (Ẽ(a), α∗) and since it is strictly

increasing it follows that it is in fact strictly positive on this interval. Accordingly limα→0+
γ(α)
α

= +∞
and so there exists ε1 > 0 such that the minimum can not be achived on [0, ε1]. Next we show that the
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minimum can not be achived near α∗. Notice that γ is increasing. Now if limα→α∗ γ(α) = +∞ then the
statement is obvious. Otherwise the formula(

γ(α)

α

)′
=
γ′(α)

α
− γ(α)

α2

shows that there exists some ε2 > 0 such that γ(α)
α

is increasing on (α∗ − ε2, α
∗) proving our claim that

s ∈ (0, α∗).

Lemma C.1. There exist constants C and s̃ > 0 such that
(a) for each Φ we have PΦ(max yn ≥ Y ) ≤ Ce−sY ;
(b) For each n we have PΦ(∃l > k : yn ≥ Y and yn+l ≥ Y ) ≤ C√

Y
e−(sY+s̃k). In particular, PΦ(∃n1, n2 :

n2 > n1 + k and ynj ≥ Y for j = 1, 2) ≤ Ce−(sY+s̃k).

Proof. By Theorem 10

PΦ(yn ≥ Y ) ≤ C√
n

exp

[
−
(
γ(Y/n)

Y/n

)
Y

]

(C.5) ≤ C√
n

exp[−sY ] exp

[
−c
(
Y

n
− α0

)2

Y

]
.

The main contribution to this sum comes from n ≈ Y/α0. For those n

c

(
Y

n
− α0

)2

Y ≤ c̃
(Y − α0n)2

Y
.

Since ∑
n

1√
Y

exp

[
−c̃(Y − α0n)2

Y

]
≤ C

part (a) is proved.
To prove (b) observe that by Markov property

PΦ(yn ≥ Y and yn+l ≥ Y ) ≤ C√
Y
e−(sY+s̃k) ≤ PΦ(yn ≥ Y ) max

Φ̄
PΦ̄(yl > 0).

The second term is less than C√
l
e−γ(0)l due to Theorem 10 while the first term is less than C√

Y
e−sY by

part (a). Now the first inequality of part (b) follows by summation over l > k and the second one follows
by summation over n and l. �

Lemma C.2. Suppose that n, Y →∞ so that
n− Y

α0√
Y
→ β Denote

Ωn = {yn ≥ Y, ym < Y for all 0 < m < n}.

Then for each Φ and a continuous function Ĥ : R× Ω̃→ R the following limits exist

(a) lim
n→∞

PΦ(Ωn)
√
Y esY ;

(b) lim
n→∞

EΦ(1ΩnĤ(yn−Y, τnω̃)
√
Y esY .

Moreover both limits are bounded by Conste−cβ
2
.

Proof. (a) By Lemma C.1(b) it is enough to show that for each k the following limit exists

(C.6) lim
n→∞

PΦ(yn ≥ Y, ym < Y for n− k < m < n)
√
Y esY .

The limiting expression equals to∫
PΦ(yn−k ∈ [Y − z1, Y − z2])dPΦ

k (z1, z2)
√
Y esY
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where PΦ
k is the distribution function of the random vector (yk,max0<j≤k yj) for our Markov chain

started from Φ. The integral above is the limit of Lebesgue-Stiltjes sums where each term has form

PΦ(yn−k ∈ [Y − z1, Y − z2])PΦn−k(yk ∈ [z1, z1 + ε), max
0<j≤k

yj ∈ [z2, z2 + ε))
√
Y esY .

Since for each z1, z2 the last probability is a function of Φn−k part (a) follows from Theorem 10.

For part (b) it is sufficient to restrict our attention to a dense set of functions Ĥ. In particular we can

assume that Ĥ depends only on finitely many coordinates, that is we need to compute the limit

lim
n→∞

EΦ(1yn≥Y,ym<Y for n−k<m<nH̃(Φn−k, gn−k . . .Φn+k, gn+k))
√
Y esY .

for some H̃ : (M1 ×M2)2k+1 → R. The analysis of the last limit is the same as the analysis of (C.6).

Finally the fact that above limits are O
(
e−cβ

2
)

follows from the estimates in the proof of Lemma

C.1 (see (C.5)). �

Proof of Theorem 9. Let Y = ln t. Note that z+
n − z+

n,k =
∑∞

j=k+1 ∆je
yj . Take small ε > 0. Then if t is

sufficiently large, the inequality z+
n − z+

n,k ≥ 1 implies that there is j > k such that yj > (1− ε)Y − εj.
Note that −εj < (1− ε)Y − εj < εj provided C̄ is large enough. Hence

PΦ(yj > (1− ε)Y − εj) ≤ C√
j
e−γ̄j

where γ̄ = min[−ε,ε] γ. Summing over j we get

PΦ(z+
n − z+

n,k > 1) ≤ C(ε)e−γ̄k.

Since k ≥ ∆̄ ln t and ∆̄ can be taken sufficiently large this proves the first inequlity of part (a). The
proof of the second inequlity is similar.

To prove part (b) take M � 1. We claim that terms with y−n ≤ Y −M can be ignored. Indeed for
terms with Y −M − 1 < yn < Y −M to make a contribution greater than e−M/2 there should be at
least eM/2/C such terms. By Lemma C.1 the probability of such an event is

O (exp−[s(Y −M) + s̃ exp(M/2)])

which establishes our claim. Therefore for large M and l we can approximate PΦ(z+
n,k ≥ t)ts and

PΦ(z+
n ≥ t)ts by

∑
n PΦ(1Ωn,M1Bn,l,ε)t

s where

Ωn,M = {y−n ≥ Y −M, y−m < Y −M for 0 ≤ m < n},

Bn,l =

 ∑
|m−n|<l

∆me
ym ≥ t− ε

 .

The fact that the last
∑

n PΦ(1Ωn,M1Bn,l,ε)t
s approaches the limit as t→∞ follows from Lemma C.2(b).

This proves part (b). The proof of part (c) is similar. �

C.3. Large deviations. We follow the approach of [32].
To simplify the notation we assume for the rest of this section that (C.1) holds with C = 1, the

general case can be reduced to this one by considering our Markov chains only at the times which are
multiples of a sufficiently large n0.

For κ ≥ 0 consider operators Pκ given by

Pκ(h)(Φ) = EΦ(eκa(Φ,g)h(Φ1)).

Pκ is a positive operator preserving the space of Cη functions. Moreover it has many invariant cones as
we describe below. Let

CK = {h ≥ 0 : for all Φ̃, ˜̃Φ we have h(Φ̃) ≤ eKd
η(Φ̃, ˜̃Φ)h( ˜̃Φ)}.
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A direct computation (using (C.1) with C = 1) shows that Pκ(CK) ⊂ CK̄ where K̄ = Kθη + κH and H
is the Holder constant of a with respect to Φ variable. Now [22] shows that if K is so large that K > K̄
then Pκ contracts the Hilbert metric on CK and so there exist positive eigenfunctions

(C.7) Pκhκ = eλκhκ

in CK and moreover for any two elements h′, h′′ of CK the directions of P n
κ h
′ and P n

κ h
′′ converge to each

other exponentially fast. This in turn implies that the rest of the spectrum of Pκ is contained in a disc
of radius strictly smaller than eλκ . Since eλκ is an isolated eigenvalue of Pκ, λκ depends analytically on
κ.

We need the fact that the map κ→ λκ is strictly convex. To see this we need formulas for derivatives
of λ with respect to κ. To this end let νκ be the eigenvector of the adjoint operator

νκ(Pκh) = eλκνκ(h).

Differentiating (C.7) we get

EΦ

(
a(Φ, g)eκa(Φ,g)hκ(G(Φ, g))

)
+ Pκ(h

′
κ) = λ′eλκhκ + eλκh′κ.

Applying νκ to both sides we get

(C.8) λκ =
νκ(E(a(Φ, g)eκa(Φ,g)hκ(G(Φ, g))))

νκ(eλκhκ)
.

Let
ãκ = κa− λκ + lnhκ − lnhκ(G(Φ, g)).

Then

(C.9) EΦ

(
eãκ
)

= 1

so we can consider a Markov chain with generator

P̃κ(h)(Φ) = EΦ

(
eãκh(Φ1)

)
.

Observe that
P̃κ = e−λκM−1

κ PκMκ

where Mκ denotes the multiplication by eãκ so the eigenvector of the adjoint operator (which is the
stationary measure for our Markov process) equals

mκ(h) = νκ(hhκ).

Normalize mκ by the condition mκ(1) = 1. Then mκ is the invariant measure for the Markov process
with transition operator Pκ. Denoting by mκ the corresponding invariant measure on Ω̃ we can rewrite
(C.8) as

(C.10) λ′κ = mκ(a).

Next we compute λ′′κ. Fix a κ0 and let

P̄κh = EΦ(eāκh(Φ1))

where
āκ = κ(a−mκ0(a)) + lnhκ0 − lnhκ0(G(Φ, g))− λκ0 + κ0mκ0(a).

Then the leading eigenvalue of P̄κ is

λ̄κ = λκ − (κ− κ0)mκ0(a)− λκ0

and so λ̄′′(κ0) = λ′′(κ0). Let h̄κ be the leading eigenvector of P̄κ and µ̄k be the leading eigenvalue of the
adjoint operator. Then we have

P̄ ′′κh+ 2P̄ ′κh̄
′
κ + Pκh̄

′′
κ = eλ̄κ(λ̄′κ)

′h̄κ + eλ̄κλ̄′′κh̄κ + 2eλ̄κλ̄′κh̄
′
κ + eλ̄κh̄′′κ.

Applying ν̄κ to both sides and using that

λ̄κ0 = 0, λ̄′κ0
= 0, h̄κ0 = 1, ν̄κ0 = mκ0
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we get
λ′′κ0

= mκ0(â2) + 2mκ0(â(Φ0, g0)h̄κ0(Φ1))

where â = a −mκ0(a). Applying the same argument to P n
κ , which has the leading eigenvalue enλκ we

get

nλ′′κ0
= mκ0

(n−1∑
j=0

â(Φj, gj)

)2
+ 2mκ0

((
n−1∑
j=0

â(Φj, gj)

)
h̄κ0(Φn)

)
.

Since the Markov process with transition operator P̃κ has a spectral gap the measure mκ is ergodic and
hence

1

n

n−1∑
j=0

â(Φj, gj)→ 0

almost surely. Therefore

(C.11) λ′′κ0
= lim

n→∞

1

n
mκ0

(n−1∑
j=0

â(Φj, gj)

)2
 .

Since the RHS of the last expression is positive we conclude that λκ is convex. We now show following
the argument of Theorem 12 of [2] that λκ is actually strictly convex. Consider the following operator
on Cη(M1 ×M2)

(P̂κh)(Φ0, g0) = ẼκΦ0,g0
h(Φ1, g1).

Denote Γ = (1− P̂κ)−1â =
∑∞

j=0 P̂
j
κ â. Then a direct computation shows that the RHS of (C.11) equals

to mκ(Γ
2 − (P̂κΓ)2). Hence if λ′′κ0

= 0 then we have

mκ((P̂κ0Γ)2) = mκ0(Γ2).

Since mκ is stationary for P̂κ this implies that

mκ0((P̂κ0Γ)2) = mκ0(P̂κ0(Γ2)).

Now Jensen inequality tells us that Γ(Φ, g) is actually independent of g, Γ = Γ(Φ). Then

â(Φ, g) = Γ(Φ)− (P̂κ0Γ)(Φ, g) = Γ(Φ)− Γ(Φg)

contradicting (C.2) (as well as (C.3)). This proves that λκ is strictly convex.
Let α∗ = limκ→+∞ λ

′
κ. This limit exists since λ′κ is increasing and is finite since λκ ≤ κ||a||C0 . We now

prove Theorem 10 with this value of α∗.

Proof. To prove part (a) we iterate (C.9) to get

EΦ

(
eỹn
)

= 1

where
ỹn = ξyn − nλκ + lnh(Φ0)− lnh(Φn).

Hence by Markov inequality

PΦ(yn > nα) ≤ Ce−n(κα−λκ) ≤ Cenκ(α∗−α)

where the last inequality uses that λκ < κα∗. This proves part (a).

To prove part (b) suppose that κ is such that mκ(a) = α. Note that if m0(a) = Ẽ(a) so if α > Ẽ(a)
then κ is strictly positive.

Let ẼκΦ denote the expectation with respect to the Markov process with generator P̃κ.

Lemma C.3. If (C.3) has no solutions then there exists a function φ(Φ) such that

(C.12) ẼκΦ (1yn−nα∈IH(τnω̃))
√
n→ Leb(I)φ(Φ)ν(H).
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The proof of this Lemma is given in subsection C.4.
Now take I = [t, t+ ε] then the RHS equals εφ(Φ)ν(H) while the LHS equals

√
nhκ(Φ)EΦ

(
en(ακ−λκ)H(τnω̃)

hκ(Φn)
eκt
)

(1 + oε→0(1)).

Dividing J into the segments of length ε� 1 we obtain part (b). Part (c) follows from part (b) and the
Markov property. Finally observe that

γ(α) = ακ− λκ
where κ satisfies λ′κ = α. Thus

∂γ

∂α
= (α− λ′κ)

∂κ

∂α
+ κ = κ.

This proves (C.4). �

C.4. Local Limit Theorem. Consider

P̃κ,u(h)(Φ) = EΦ

(
eãκ−iu(aκ−α)h(Φ1)

)
.

Then

P̃ n
κ,u(h)(Φ) = EΦ

(
exp

[
n−1∑
j=0

ãκ − iu(aκ − α)(Φj, gj)

]
h(Φn)

)
.

Since ∣∣∣∣∣
n−1∑
j=0

[
(ãκ − iu(aκ − α))(Φ̃j, gj)− (ãκ − iu(aκ − α))( ˜̃Φj, gj)

]∣∣∣∣∣
≤ C

n−1∑
j=0

dη(Φ̃j,
˜̃Φj) ≤ C̃dη(Φ̃0,

˜̃Φ0)

we get

(C.13) ‖P n
κ,uh‖Cη ≤ [‖h‖C0 + C(u)θn‖h‖Cη ] .

Using the theory of Doeblin-Fortet operators ([22]) we conclude that for each θ′ > θ the spectrum of Pκ,u
outside the disc of radius θ′ consists of a finite number of eigenvalues with absolute values at most 1.
We claim that in fact there are no eigenvalues of absolute value 1. Indeed let eiū be such an eigenvalue
and h be the corresponding eigenfunction. Then

(C.14) EΦ(eãκ+iua(Φ)h(Φ1)) = eiūh(Φ).

Let Φ∗ = arg max |h|. Without loss of generality we can assume that |h(Φ∗)| = 1. Now (C.9) implies
that (C.14) is only possible if |h(G(Φ∗))| = 1 with probability 1. Iterating we see that for all n

(C.15) |h(Gn . . . G1(Φ∗))| = 1.

We claim that this implies that

(C.16) |h(Φ)| ≡ 1

on the support of µ̃. Indeed if |h| < 1 − ε on a relatively open subset U of supp(µ̃) then there would
exist Φ̄ ∈ M1 and nk → ∞ and such that Gnk . . . G1(Φ̄) ∈ U with positive probability. Since Gn . . . G1

contracts with speed θn for large k we would have |h(Gnk . . . G1(Φ∗))| < 1−ε/2 with positive probability,
contradiciting (C.15). Now (C.16) and (C.9) show that

eiua(Φ,g)h(G(Φ, g)) = eiūh(Φ)

which contradicts (C.3).
We are now ready to prove Lemma C.3. Since the LHS of (C.12) is monotone function of H it suffices

to prove the result for a dense set of functions. In particular we may assume that H depends only on
finitely many coordinates

H = H̃(ω−k+1, . . . , ω0, . . . ωk−1).
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Then
√
nẼκΦ (1yn−nα∈IH(τnω̃)) =

√
n

∫
ẼκΦ
(
1yn−k−(n−k)α−Z−kα∈Ih(Φn−k, Z)

)
dPk(Z)

where h(Φ, Z) = EΦ0=Φ(H̃(τ−kω)|yk = Z) and Pk(z) is the distribution function of yk. Observe that
for each Z the RHS has the same form as the LHS of (C.12) except that n is replaced to n − k and h
depends only on one coordinate. Therefore it suffices to prove (C.12) in the case where H = h(Φ0).

Let Γθ(y) = 1
π

1−cos(δy)
δy2 eiθy. Then Γ̂0(u) = (1 − |u|

δ
)+ and Γ̂θ(u) = Γ̂0(u + θ). By Section 2.5 of [7] it

suffices to show that for each θ, δ we have

(C.17)
√
nẼκΦ(Γθ(yn − αn)h(Φn))→ φ(ω)ν(h)

∫
Γθ(y)dy.

We have the following inversion formula

ẼκΦ(Γθ(yn − αn)h(Φn)) =
1

2π

∫ M

−M
Γ̂θ(u)P̃ n

κ,u(h)du

where M is such that Γ̂θ(u) = 0 outside [−M,M ].
Next, take a small ε0. Then for |u| < ε0 we have the decomposition

P̃κ,u(h) = λκ,umκ,u(h)hκ,u +Rκ,u

where

Rκ,u(hκ,u) = 0, mκ,u(Rκ,uh) = 0 and ‖Rn
κ,u‖ ≤ Kθ̄n for some θ̄ < 1.

It follows that

√
n

∫
|u|<ε0

Γ̂θ(u)P̃ n
κ,u(h)du =

√
n

2π

∫ ε0

−ε0
Γ̂θ(u)λnκ,umκ,u(h) hκ,udu+O(θ̄n).

Next, letting u = t√
n

we can rewrite above integral as

(C.18)
1

2π

∫ ε0
√
n

−ε0
√
n

Γ(t/
√
n)λnκ,t/√nmκ,t/

√
n(h)hκ,t/√ndt.

The computations of the previous section give λκ,0 = 1, λ′κ,0 = 0 so that λn
κ,t/
√
n
→ e−

σ2t2

2 , where σ2 = λ′′κ,

and this convergence is dominated, that is, if ε0 is small enough and |t| ≤ ε0

√
n we have λn

κ,t/
√
n
≤ e−

σ2t2

4 .

As u → 0 we have mκ,u → mκ, hu → 1 so that the integral (C.18) converges to σΓ̂θ(0)mκ(h). On the

other hand since for ε0 ≤ |u| ≤M the spectral radius of P̃κ,u is strictly less than 1 we have
√
n

2π

∫
ε0<|u|<M

Γ̂θ(u)P̃ n
κ,u(h)du = O(

√
nθ̄n)

and (C.17) follows.

Appendix D. Contracting property of the Markov chain ψn.

For two stochastic matrices ψ′0 and ψ′′0 define ψ′n and ψ′′n for n ≥ 1 using the second formula in (2.1).
The sequence {Pk, Qk, Rk}1≤k≤n used in (2.1) is in both cases the same one.

Our goal is to estimate the norm ||ψ′′n − ψ′n||. We shall prove the following

Proposition D.1. Assume that condition (1.5) holds. Then there are constants K = K(ε) > 0,
θ = θ(ε) < 1 such that

||ψ′′n − ψ′n|| ≤ Kθn||ψ′′0 − ψ′0||.
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Proof. Consider two walkers X ′(t) and X ′′(t) starting at the same site (n, i) in the layer Ln and moving
on [L0, Ln+1] with reflecting boundary conditions ψ′0 and ψ′′0 at L0 respectively and absorbing boundary
conditions at Ln+1.

We shall show that there exists a coupling between the walkers such that

(D.1) P(X ′(T̃ ′n+1) 6= X ′′(T̃ ′′n+1)) ≤ Kθn||ψ′′0 − ψ′0||,

where T̃ ′n+1 and T̃ ′′n+1 are the hitting times of Ln+1 for X ′ and X ′′ respectively. The statement then
follows since, according to the probabilistic meaning of ψ′n and ψ′′n,

ψ′n(i, j) = P(X ′(T̃ ′n+1) = j), ψ′′n(i, j) = P(X ′′(T̃ ′′n+1) = j)

and therefore
m∑
j=1

|ψ′n(i, j)− ψ′′n(i, j)| ≤ 2P(X ′(T̃ ′n+1) 6= X ′′(T̃ ′′n+1)).

The coupling is constructed as follows.
1. The walkers walk together until they either reach L0 for the first time or reach Ln+1 without

visiting L0 (after that they stop). Note that the trajectories which miss L0 do not contribute to the left
hand side of (D.1).

2. Let t0 be the first time the walkers reach L0 and t′1 − 1, t′′1 − 1 be the last time X ′ and X ′′ reach
L0 before reaching Ln+1. Between t0 and t′1 and between t0 and t′′1 the walkers move independently.

Note that after time t1 the walkers again move in the same environment {Pk, Qk, Rk}1≤k≤n but con-
ditioned on reaching Ln+1 before L0.

3. If X ′(t1(X ′)) = X ′′(t1(X ′′)) then they move together until they reach Ln+1.
4. Denote by t′l, t

′′
l the hitting times of Ll for X ′ and X ′′, where l ≥ 2. If X ′(t1(X ′)) 6= X ′′(t1(X ′′)) then

they continue to move independently until they reach Lk with the minimal k such that X ′(t′k) = X ′′(t′′k).
Note that the only trajectories that contribute to the left hand side of (D.1) are those for which

X ′(t′k) 6= X ′′(t′′k) for all k ∈ [2, n+ 1].
We shall use the following estimate

Lemma D.2. Let X ′(t′1) = (1, J ′), X ′′(t′′1) = (1, J ′′). There exists a constant C such that

d(J ′, J ′′) ≤ C||ψ′′0 − ψ′0||
where d denotes the variational distance between the corresponding distributions.

If at step k of the procedure described above the walkers are uncoupled then condition (1.5) guarantees
that the probability that they become coupled at Lk+1 is at least εm. Thus the probability that the
walkers were uncoupled at time t1 and remain uncoupled until step n+ 1 is less than

Cd(J ′, J ′′)θn

and the result follows from Lemma D.2. �

Proof of Lemma D.2. Denote

B(j, k) = P(X(t1) = (1, k)|X(t1 + 1) = (1, j)), a(j) = P(T̃n+1 < T̃1|X(t0 + 1) = (1, j)),

Γ(j, k) = P(X returns to (1,k) after visiting L2 but before T̃n+1|X(t̄+ 1) = (1, j)).

Also note that due to ellipticity we have

min
j
aj ≥ εmax

j
aj.

Let M be the matrix with M(j, k) = a(j).
With this notation our goal is to establish Lipshitz dependence of B on the boundary condition ψ.

We have

B = M +QψB +RB + ΓB
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that is
B = (I −Qψ −R− Γ)−1M.

Therefore if B′ and B′′ correspond to different boundary conditions ψ′ and ψ′′ respectively then

B′ −B′′ = (I −Qψ′ −R− Γ)−1Q(ψ′ − ψ′′)(I −Qψ′′ −R− Γ)−1M.

The estimate we need is a consequence of two inequalities below.

(D.2) ||(ψ′ − ψ′′)(I −Qψ′′ −R− Γ)−1|| ≤ C||ψ′ − ψ′′||

(D.3) ||(I −Qψ′ −R− Γ)−1|| ≤ C||M ||−1

To prove (D.2) let U = Qψ′′ +R+ Γ. Given a probability vector p let π′k = pψ′Uk, π′′k = pψ′′Uk. Due to
ellipticity

||π′k − π′′k || ≤ C(1− ε)k||π′0 − π′′0 || ≤ C̃(1− ε)k||ψ′ − ψ′′||
proving (D.2).

To prove (D.3) let U = Qψ′ +R + Γ. We have∑
k

U(j, k) = 1− aj.

Hence
||U || = max

j

∑
k

U(j, k) = 1−min
j
aj ≤ 1− εmax

j
aj = 1− ε||M ||.

Accordingly ||Uk|| ≤ (1− ε||M ||)k so that ||(1− U)−1|| ≤ (ε||M ||)−1 proving (D.3). �
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