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Abstract. We study a mechanical model known as Galton board
– a particle rolling on a tilted plane under gravitation and bounc-
ing off a periodic array of rigid obstacles (pegs). This model is also
identical to a periodic Lorentz gas where an electron is driven by a
uniform electric field. Previous heuristic and experimental studies
have suggested that the particle’s speed v(t) should grow as t

1/3

and its coordinate x(t) as t
2/3. We derive these facts mathemat-

ically and find exact limit distributions for the rescaled velocity
t
−1/3

v(t) and position t
−2/3

x(t). In addition, quite surprisingly,
our analysis shows that the particle’s motion is recurrent, i.e. the
particle comes back to the top of the board with probability one.

1. Introduction

Galton board is one of the simplest mechanical devices exhibiting sto-
chastic behavior. It consists of a vertical (or inclined) board with in-
terleaved rows of pegs. A ball thrown into the Galton board moves
under gravitation and bounces off the pegs on its way down.

In this paper we deal with an idealized infinite Galton board; our ball
is a point particle of unit mass moving according to equations q̇ = v

and v̇ = g = const and colliding elastically with immobile convex ob-
stacles of infinite mass (scatterers), which are positioned periodically
on the board and satisfy the ‘finite horizon’ condition to prevent ‘bal-
listic’ (collision-free) motion. We neglect friction and the spin of the
ball.

This model is identical to a 2D periodic Lorentz gas [7], which illus-
trates the transport of electrons in metals in a spatially homogeneous
electric field. Without external field (i.e., when g = 0), the periodic
Lorentz gas reduces to a billiard system on its fundamental domain
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(a torus minus scatterers). This is a dispersing billiard (Sinai billiard)
[13]; it preserves a Liouville (equilibrium) measure and has strong er-
godic and statistical properties. The position q(t) of the Lorentz par-
ticle at time t evolves as a 2D Brownian motion [1, 5], in particular,
q(t)/

√
t → N (0,D), where D is a positive definite diffusion matrix

determined by the geometry of scatterers.
Under a constant external field, which we denote by g = (g, 0), where

g > 0, the moving particle is allowed to accelerate indefinitely, thus the
system does not even have a stationary measure. The system preserves
the total energy

(1) E = 1
2
[v(t)]2 − gx(t) = const,

where v(t) denotes the particle’s speed and x(t) its displacement in
the direction of the field. Thus the farther the particle travels, the
faster it moves. On the other hand, higher speed leads to a stronger
scattering effect, thus increasing the chances that the particle bounces
back and hence temporarily decelerates (this is similar to Fermi, or
diffusive shock acceleration [6, 14]).

It turns out that the backscattering effect slows down the particle’s
drift in the x direction so much that its average displacement 〈x(t)〉
at time t will only grow as ta with some a < 1. It was estimated
[8, 9, 10, 11] by heuristic and approximative arguments, as well as
computer simulation, that the displacement of the particle typically
grows as t2/3. Due to the conservation of energy, its speed then grows
as t1/3.

We prove these conjectures rigorously, and we precisely describe the
limit distributions for the rescaled velocity t−1/3v(t) and the rescaled
position t−2/3x(t). We also show that this mechanical model, after
a proper rescaling of space and time, is governed by a certain set of
stochastic differential equations. This provides a complete solution to
the classical Galton problem.

In addition we find, quite surprisingly, that the particle’s motion is
recurrent; precisely there are thresholds Cv > 0 and Cx > 0 such that
with probability one

(2) lim inf
t→∞

v(t) ≤ Cv and lim inf
t→∞

x(t) ≤ Cx.

In other words, the particle slows down and effectively returns to the
top of the board infinitely many times!

The recurrence in our model leads to a complication in our analysis:
if the ball bounces back up too far, its speed may drop to almost zero,
and its motion will not be chaotic enough for us to control it by our
methods. Thus we need to prevent such returns, which we can do in
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two different ways. First we can assume that our Galton board has
‘open top’ through which the ball simply escapes. Alternatively, we
can close the top with a lid reflecting the ball back down every time it
hits the lid on its way up.

We assume that the ball starts on the line x = 0 with its initial
velocity v(0) pointing in the (general) x-direction, and its initial speed
v(0) must be high enough (then, in the closed board, it will stay high).
The initial state of the ball is chosen via a smooth probability measure.

2. Velocity process

We prove two major facts:

(A) In the open board the ball escapes through x = 0 with proba-
bility one.

(B) In the closed board, there is a constant c > 0 such that c t−1/3v(t)
converges, as t → ∞, to a random variable with density

(3)
3z

Γ(2/3)
exp

[

−z3
]

, z ≥ 0.

Accordingly, 2gc2t−2/3x(t) converges to a random variable with
density

(4)
3

2Γ(2/3)
exp

[

−z3/2
]

, z ≥ 0.

In addition, the coordinate x(t) returns to zero infinitely many
times with probability one.

The last statement means that the Galton particle evolves in a re-
current manner – its excursions into the depth of the Galton board
alternate with retreats to the starting line x = 0. As time goes on,
the particle makes longer and longer excursions that extend farther
and farther into the board (because the average coordinate 〈x(t)〉 must
grow as t2/3), but every excursion is followed by a retreat of the particle
back onto the starting line.

To derive our results we approximate the Galton dynamics in which
the kinetic energy K = v2/2 is large and may grow indefinitely with
an isokinetic system where a particle moves at a fixed speed, but its
trajectory will be close enough to that of the Galton particle. To this
end we first rescale time t → t/

√
ε, where ε will be chosen so that

the average time between collisions is O(1). This rescaling brings our
system to the form where the kinetic energy K̃ = εK is of order one,
but the force is weak g → εg; so we get a slow-fast dynamics, with a
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slow variable K̃ and a pair of fast variables X = (q, ω), where ω = v/v
denotes the particle direction. In these variables, the rescaled equations
of motion read

(5) q̇ =
√

2K̃ω, ω̇ =
ε

√

2K̃

[

g − 〈g, ω〉ω

]

+ O(ε2)

˙̃K = ε
√

2K̃〈g, ω〉.
Now we approximate (5) by an isokinetic system

(6) q̇ =
√

2Kω, ω̇ =
ε√
2K

[

g − 〈g, ω〉ω

]

, K̇ = 0.

The advantage of this approximation is that the dynamics on any en-
ergy surfaces can be reduced to that on the unit speed surface. Namely,
the solution to (6) with initial condition (q0, ω0, K0) takes the form

K(t) = K0, (q, ω)(t, ε, q0, ω0, K0) = (q̂, ω̂)(t
√

2K0, ε/2K0, q0, ω0)

where (q̂, ω̂)(t, ε, q0, ω0) denotes the solution of

(7) ˙̂q = ω̂, ˙̂
ω = ε [g − 〈g, ω̂〉 ω̂] .

with initial condition (q0, ω0). Equations (7) describe a particle moving
on a periodic Lorentz table under a constant external field εg at unit
speed with a Gaussian thermostat; this model was introduced in [9]
and studied in [2, 3, 4]. It is known that the dynamics (7) preserves
an ergodic SRB measure (steady state) µε and satisfies Central Limit
Theorem: if A is a smooth observable then

(8)

∫ T

0

A(q̂(t), ω̂(t)) dt = Tµε(A) +
√

T σε(A)Z + o(
√

T )

where Z = N (0, 1) is a standard normal random variable and µε(A)
and σε(A) are asymptotic drift and standard deviation. An important
role in our analysis is played by Ohm’s Law proved in [3]:

(9) µε(ω̂) = 1
2
εDg + o(ε)

where again D = σ2
0(ω̂). The analysis of [2, 3, 4] relies heavily on the

fact that (7) is a small perturbation of the Sinai billiard corresponding
to ε = 0. In particular we shall use the continuous dependence of the
diffusion matrix on the force strength:

(10) σε(ω̂) = σ0(ω̂) + o(1).

Facts (A) and (B) follow from a more general result:
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(C) Let K̄ ≥ 0. Suppose the initial state (X(0), K̃(0)) of our parti-
cle (in the closed Galton board) is chosen according to a smooth
probability measure such that K̃(0) = K̄, then the (rescaled)

kinetic energy K̃(τε−2), where 0 < τ < 1 is ‘slow time’, weakly
converges, as ε → 0, to an Ito diffusion process K(τ) on [0,∞)
satisfying stochastic differential equation (SDE)

(11) dK =
σ2

2
√

2K
dτ + (2K)1/4σ dWτ , K(0) = K̄

where Wτ is the standard Brownian motion and σ2 = 〈g,Dg〉.
Eq. (11) has a singularity at 0, which can be eliminated by changing

variable Q = K3/2, after which standard theorems [12, Section IX.3]
guarantee the existence and uniqueness of Q, and hence of K. Actually,
Q is known as a square Bessel process of index −1/3, see [12]. For the
reader’s convenience, we derive (A) and (B) from (C) in Appendix.

A crucial property of Eq. (11) is its self-similarity: it remains in-
variant under the transformation t → ct, K → c2/3K. As a result,
not only the rescaled kinetic energy K̃, but the original one K is well
approximated by (11); in fact one can study the evolution of K(t) for
0 < t < T by substituting ε = T−2/3 in (C).

We now derive (C) from (5)–(10). Let T = δε−2 with a small δ > 0;
then approximations (5)–(7) give

K̃(T ) − K̃(0) ≈ ε
√

2K̄

∫ T

0

〈g, ω〉 dt ≈ ε

∫ T̂

0

〈g, ω̂〉 dt,

where T̂ = T
√

2K̄. Using (8), (9) and (10) we obtain

K̃(T ) − K̃(0) ≈ 〈g,Dg〉δ
2
√

2K̄
+ (2K̄)1/4

√
δ 〈g, σ0(ω̂)Z (2)〉,

where Z (2) denotes a normal 2-vector; and note that 〈g, σ0(ω̂)Z (2)〉 =
〈g,Dg〉1/2Z. Likewise, if we divide a longer time interval (0, τε−2) into
segments of size δε−2, we obtain

(12) K̃j+1 − K̃j ≈
σ2δ

2
√

2K̃j

+ (2K̃j)
1/4σ

√
δZj

where K̃j = K̃(jδε−2) and Zj are independent (due to strong chaotic
properties of (7)); and (12) is a discrete approximation to (11).
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3. Coordinate process

Here we determine the limit distribution for the y coordinate of the
Galton particle. Let h be a unit vector in the y direction. For simplicity,
assume that our fundamental domain is symmetric about the x axis, so
that the Lorentz gas diffusion matrix D is diagonal, i.e. 〈h,Dg〉 = 0.
Let σ2

y = 〈h,Dh〉. For the rescaled system (5), we have dỹ/dt =

ε〈v,h〉, where ỹ =
√

εy. Now the same argument as in the previous
section shows that ỹ can be approximated by the solution of SDE

(13) dY(τ) = (2K)1/4σy dW̃τ +
〈h,Dg〉
2
√

2K
dτ = (2K)1/4σy dW̃τ

with Y(0) = 0, here W̃τ stands for a standard 1D Brownian motion
independent from Wτ (thus (11) naturally decouples from (13)).

For any fixed trajectory of K(τ) the conditional distribution of Y(τ)
is such that its increments are independent and

Y(τ + ∆) − Y(τ) = N
(

0, σ2
y

√

2K(τ) ∆ + o(∆)
)

,

therefore Y(τ) is (conditionally) a Gaussian random variable with zero

mean and variance σ2
y

∫ τ

0

√
2K(ζ) dζ. Thus Y(τ)/

(∫ τ

0

√

2K(ζ) dζ
)1/2

is

N (0, σ2
y), independently of K(τ).

As a result, t−2/3y(t) converges (in distribution) to a product of two
independent random variables Y1Y2 where Y1 = N (0, σ2

y) and Y2 =
(∫ 1

0

√

2K(ζ) dζ
)1/2

and K is the solution of (11) starting at 0. We see

that y(t) ∼ t2/3.
Lastly, we estimate the expected number of times the particle collides

with a given scatterer. In order to hit a scatterer during a time interval
[n, n+1], the particle needs to be at a distance O(1) from it at time n;
and this event has probability pn ∼ O(n−4/3), since the distributions of
both x and y coordinates have standard deviation of order n2/3. Since
∑

pn < ∞, the expected total number of returns to any scatterer is
finite. This indicates that the coordinate process is not recurrent.

4. Three dimensional process

The arguments presented here should also work in higher dimensions,
but currently we are unable to give rigorous proofs due to overcompli-
cated structure of singularities. We conclude our paper with expected
results in dimension 3. Since in 3D the analogues of (11) and (13) can
be solved explicitly, the results are even easier to formulate.
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For simplicity we assume that the fundamental domain is symmetric
across the coordinate planes, so that the corresponding Lorentz gas
diffusion matrix is again diagonal. Let W1, W2, W3, and W4 be some
independent 1D Brownian motion processes. Then we expect the fol-
lowing:

• The velocity process is recurrent.
• The coordinate process is not recurrent.
• There are constants c1, c2, c3 > 0 such that the rescaled coordi-

nate vector t−2/3(c1x(t), c2y(t), c3z(t)) converges in distribution
to

(

(W 2
1 (1) + W 2

2 (1))2/3, ΛW3(1), ΛW4(1)
)

where

Λ =
[

∫ 1

0

(

W 2
1 (s) + W 2

2 (s)
)1/3

ds
]1/2

.

Appendix

We use elements of Ito calculus [12]. An Ito diffusion process in R is
defined by a stochastic differential equation (SDE)

(14) dX = a(X, t) dt + b(X, t) dWt, X(0) = X0,

where a(X, t) is the drift coefficient and b(X, t) the diffusion coefficient.
Equation (14) has a unique solution, which is a time-homogeneous
Markov process with continuous paths. If a and b do not depend on t,
the Fokker-Plank equation for this process reads

(15)
∂ρ

∂t
=

1

2

[

∂

∂x

]2
(

b2ρ
)

− ∂

∂x
(aρ) .

Consider another process Y = λ(X, t), where λ is a smooth function.
The Ito formula asserts that

dY =
[

λ′a + 1
2
λ′′b2 + λ̇

]

dt + λ′b dWt,(16)

where the prime stands for space derivative and the dot for time de-
rivative. Thus Y is also an Ito diffusion process.

Another useful tool is changing time variable: introducing new time
dt = κ(X, t) ds transforms (14) into

dX = aκ ds + b
√

κ dWs.

Now combining (11) and (16) shows that the process W =
√
K satisfies

dW =
σ

23/4W1/2
dWτ



8 N CHERNOV AND D. DOLGOPYAT

and changing time by dη = σ2

23/2U
dτ gives dW = dWη, i.e. W(η) is a

standard 1D Brownian Motion. The latter is a recurrent process, hence
so is our K, which proves the fact (A).

Next, the process R = τ−2/3K satisfies SDE

dR =

[

1

2
√

2R
− 2R

3

]

dτ

τ
− (2R)1/4

√
τ

dWτ .

Changing time via dζ = dτ/τ gives

dR =

[

1

2
√

2R
− 2R

3

]

dζ − (2R)1/4 dWζ.

The Fokker-Plank equation for R reads, see (15),

∂ρ

∂ζ
=

[

∂

∂r

]2
(√

2rρ
)

− ∂

∂r

([

1

2
√

2r
− 2r

3

]

ρ

)

.

It is clear that any time independent integrable solution of this equation
must satisfy

∂

∂r

(√
2rρ

)

=

[

1

2
√

2r
− 2r

3

]

ρ,

thus the asymptotic density of K is (4). Lastly, (3) follows from (1).
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