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I. Introduction

We construct an example of a diffeomorphism with non-zero Lyapunov exponents with
respect to a smooth invariant measure which has countably many ergodic components.
More precisely we will prove the following result.

Theorem. There exists a C∞ diffeomorphism f of the three dimensional manifold M =
T

2 × S
1 such that

(1) f preserves the Riemannian volume µ on M ;
(2) µ is a hyperbolic measure;
(3) f has countably many ergodic components which are open (mod 0).

II. Construction of the Diffeomorphism f .

Let A : T
2 → T

2 be a linear hyperbolic automorphism. Passing if necessary to a power
of A we may assume that A has at least two fixed points p and p′. Consider the map
F = A× id of the manifold M . We will perturb F to obtain the desired map f .

Consider a countable collection of intervals {In}
∞
n=1 on the circle S

1, where

I2n = [(n+ 2)−1, (n+ 1)−1], I2n−1 = [1 − (n+ 1)−1, 1 − (n+ 2)−1].

Clearly,
∞
⋃

n=1
In = (0, 1) and int In are pairwise disjoint.

By Main Proposition below, for each n one can construct a C∞ volume preserving
ergodic hyperbolic diffeomorphism fn : T

2 × I → T
2 × I satisfying: 1) ‖F − fn‖Cn

≤ n−2

2) for all 0 ≤ m <∞, Dmfn|T
2 × {z} = DmF |T2 × {z} for z = 0 or 1.

Let Ln : In → I be the affine map and πn = (id, Ln) : T
2 × In → T

2 × I. We define the
map f by setting f |T2 × In = π−1

n fnπn for all n and f |T2 × {0} = F |T2 × {0}. Note that
∥

∥F |T2 × In − π−1
n fnπn

∥

∥ ≤
∥

∥π−1
n

(

F − fn

)

πn

∥

∥ ≤ n−2 · n = n−1.

It follows that f is C∞ on M and has the required properties.
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III. Main Proposition

The goal of this section is to proof the following statement.

Main Proposition. For any k ≥ 2 and δ > 0, there exists a map g such that:

(a) g is a C∞ volume preserving diffeomorphism of M ;
(b) ‖F − g‖Ck

≤ δ;
(c) for all 0 ≤ m < ∞ g|T2 × {z} = F |T2 × {z} for z = 0 and 1;
(d) g is ergodic with respect to the Riemannian volume and has non-zero Lyapunov

exponents almost everywhere.

Before giving the formal proof let us outline the main idea. The result will be achived
in two steps. First by a method of [SW] we obtain a diffeomorphism with non-zero average
central exponent

∫

χc(x)dµ(x) 6= 0, where χc(x) denotes the Lyapunov eponent of x on
Ec. We then further perturb this diffeomorphism using a method of [NT] to ensure that
our diffeomorphism has accessibility property and is therefore ergodic.

Conjecture. Consider a one parameter family gε with g0 = F. Then for small ε gε satis-
fies the conditions of the Main Proposition except for a positive codimension submanifold
in the space of one parameter families.

Proof. Consider the linear hyperbolic map A. We may assume that its eigenvalues are η
and η−1, where η > 1. Let p and p′ be fixed points of A. Choose a number ε0 > 0 such
that d(p, p′) ≥ 3ε0. Consider the local stable and unstable one-dimensional manifolds for
A at points p and p′ of “size” ε0 and denote them respectively by V s(p), V u(p), V s(p′),
and V u(p′).

Let us choose the smallest positive number n1 such that the intersection A−n1(V s(p′))∩
V u(p)∩B(p, ε0) consists of a single point which we denote by q1 (here B(p, ε0) is the ball
in T

2 of radius ε0 centered at p). Similarly, we choose the smallest positive number n2

such that the intersection An2(V u(p′)) ∩ V s(p) ∩ B(p, ε0) consists of a single point which
we denote by q2.

Given a sufficiently small number ε ∈ (0, ε0), ε ≤
1
2

min{d(p, q1), d(p, q2)}, there is ` ≥ 2
such that

A`(q1) 6∈ B(p, ε), A`+1(q1) ∈ B(p, ε). (3.1)

We now choose ε′ ∈ (0, ε) such that A`+1(q1) ∈ B(p, ε′).
Finally, let q ∈ T

2 be such that

B(p, ε) ∩
(

A−n1(V s(p′)) ∪An2(V u(p′))
)

= ∅, Ai(B(q, ε)) ∩ B(q, ε) = ∅, i = 1, . . . , N,

where N > 0 will be determined later.
Set Ω1 = B(p, ε0) × I and Ω2 = Buc(q̄, ε0) × Bs(q̄, ε0), where q̄ = (q, 1/2) and

Buc(q̄, ε0) ⊂ V u(q) × I and Bs(q̄, ε0) ⊂ V s(q) are balls of radius ε0 about q̄.
After this preliminary considerations we describe the construction of the map g.
Consider the coordinate system in Ω1 originated at (p, 0) with x, y, and z-axes to be

unstable, stable, and neutral directions respectively. If a point w = (x, y, z) ∈ Ω1 and
F (w) ∈ Ω1 then F (w) = (ηx, η−1y, z).
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Choose a C∞ function ξ : I → R
+ satisfying:

(1) ξ(z) > 0 on (0, 1);
(2) ξ(i)(0) = ξ(i)(1) = 0 for i = 0, 1, 2, . . . ;
(3) ‖ξ‖Ck ≤ δ.

We also choose two C∞ functions φ = φ(x) and ψ = ψ(y) which are defined on the interval
(−ε0, ε0) and satisfy

(4) φ(x) = φ0 if x ∈ (−ε′, ε′) and ψ(y) = ψ0 if y ∈ (−ε′, ε′), where φ0 and ψ0 are
positive constants;

(5) φ(x) = 0 if |x| ≥ ε; ψ(y) ≥ 0 for any y and ψ(y) = 0 if |y| ≥ ε;
(6) ‖φ‖Ck ≤ δ, ‖ψ‖Ck ≤ δ;

(7)
∫ ±ε

0
φ(s)ds = 0.

We now define the vector field X on Ω1 by

X(x, y, z) =
(

−ψ(y)ξ′(z)

∫ x

0

φ(s)ds, 0, ψ(y)ξ(z)φ(x)
)

.

It is easy to check that X is a divergence free vector field supported on (−ε, ε)×(−ε, ε)×I.
We define the map ht on Ω1 to be the time t map of the flow generated by X and we

set ht = id on the complement of Ω1. It is easy to see that ht is a C∞ volume preserving
diffeomorphism which preserves the y coordinate (the stable direction).

Consider now the coordinate system in Ω2 originated at (q, 1/2) with x, y, and z-axes to
be unstable, stable, and neutral directions respectively. We then switch to the cylindrical
coordinate system (r, θ, y), where x = r cos θ, y = y, and z = r sin θ.

Consider a C∞ function ρ : (−ε0, ε0) → R
+ satisfying:

(8) ρ(r) > 0 if 0.2ε′ ≤ r ≤ 0.9ε and ρ(r) = 0 if r ≤ 0.1ε′ or r ≥ ε;
(9) ‖ρ‖Ck ≤ δ.

We define now the map h̃τ on Ω2 by

h̃τ (r, θ, y) = (r, θ + τψ(y)ρ(r), y). (3.2)

and we set h̃τ = id on M\Ωe. It is easy to see that for every τ the map h̃τ is a C∞ volume
preserving diffeomorphism.

Let us set g = gtτ = ht ◦F ◦ h̃τ . For all sufficiently small t > 0 and τ , the map gtτ is Ck

close to F and hence, is a partially hyperbolic (in the narrow sense) C∞ diffeomorphism.
It preserves the Riemannian volume in M and is ergodic by Lemma 1. It remains to show
that gtτ has non-zero Lyapunov exponents almost everywhere.

Denote by Es
tτ (w), Eu

tτ (w), and Ec
tτ (w) the stable, unstable, and neutral subspaces at a

point w ∈M for the map gtτ . It suffices to show that for almost everywhere point w ∈M
and every vector v ∈ Ec

τ (w), the Lyapunov exponent χ(w, v) 6= 0.
Set κtτ (w) = Dgtτ |E

u
tτ (w), w ∈M . By Lemma 2, for all sufficiently small τ > 0,

∫

M

logκ0τ (w) dw < log η.
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The subspace Eu
tτ (w) depends continuously on t and τ (for a fixed w; for details see the

paper by Burns, Pugh, Shub, and Wilkinson in this volume) and hence, so does κtτ . It
follows that for all sufficiently small τ > 0, there is t > 0 such that

∫

M

logκtτ (w) dw < log η.

Denote by χs
tτ (w), χu

tτ (w), and χc
tτ (w) the Lyapunov exponents of gtτ at the point w ∈M

in the stable, unstable, and neutral directions respectively (since these directions are on-
dimensional the Lyapunov exponents do not depend on the vector). By the ergodicity of
gtτ , we have that for almost every w ∈ M ,

χu
tτ (w) = lim

n→∞

1

n
log

n−1
∏

i=0

κtτ (gi
tτ (w)).

By the Birkhorff ergodic theorem, we get

χu
tτ (w) =

∫

M

logκtτ (w) dw < log η.

Since Es
tτ (w) = Es

00(w) = Es
F (w) for every t and τ , we conclude that χs

tτ (w) = − log η for
almost every w ∈ M . Since gtτ is volume preserving,

χs
tτ (w) + χu

tτ (w) + χc
tτ (w) = 0

for almost every w ∈ M . It follows that χc
tτ (w) 6= 0 for almost every w ∈M and hence, gtτ

has non-zero Lyapunov exponents almost everywhere. This completes the proof of Main
Proposition. �

IV. Ergodicity of the Map gtτ .

Lemma 1. For every sufficiently small t and τ the map gtτ is ergodic.

Proof. Consider a partially hyperbolic (in the narrow sense) diffeomorphism f of a com-
pact Riemannian manifold M preserving the Riemannian volume. Two points x, y ∈ M
are called accessible (with respect to f if they can be joined by a piecewise differentiable
piecewise nonsingular path which consists of segments tangent to either Eu or Es. The
diffeomrphism f satisfies the essential accessibility property if almost any two points in M
(with respect to the Riemannian volume) are accessible. We will show that the map gtτ

has the essential accessibility property. The ergodicity of the map will then follow from
the result by Pugh and Shub (see [PS]; see also the paper by Burns, Pugh, Shub, and
Wilkinson in this volume).

Given a point w ∈ M , denote by A(w) the set of points z ∈ M such that w and z are
accessible. Set Ip = {p} × I.
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Sublemma 1.1. For every z ∈ (0, 1),

A(p, z) ⊃ Ip. (4.1)

Proof of Sublemma 1.1. We use the coordinate system (x, y, z) in Ω1 described above.
Since the map ht presrves the center leaf Ip, we have that

ht(0, 0, z) = (h1
t (0, 0, z), h

2
t (0, 0, z), h

3
t (0, 0, z)) = (0, 0, h3

t (0, 0, z)), z ∈ (0, 1).

It suffices to show that for every z ∈ (0, 1),

A(p, z) ⊃ {(p, a) : a ∈ [(h−`
t )3(p, z), z]}, (4.2)

where ` is chosen by (3.1). In fact, since accessibility is a transtive relation and h−n
t (p, z) →

(p, 0) for any z ∈ (0, 1), (4.2) implies that A(p, z) ⊃ {(p, a) : a ∈ (0, z]}. Since this holds
true for all z ∈ (0, 1) and accessibility is a reflective relation, we obtain (4.1).

Now we proceed with the proof of (4.2).
Let q1 ∈ V u

tτ (p) and q2 ∈ V s
tτ (p) be two points constructed in Section III. The intersection

V s
tτ (q1)∩ V

u
tτ (q2) is not empty and consists of a single point q3. We will prove that for any

z0 ∈ (0, 1), there exist zi ∈ (0, 1), i = 1, 2, 3, 4 such that

(q1, z1) ∈ V u
tτ ((p, z0)), (q3, z3) ∈ V s

tτ ((q1, z1)),

(q2, z2) ∈ V u
tτ ((q3, z3)), (p, z4) ∈ V s

tτ ((q2, z2))

and
z4 ≤ (h−`

t )3(p, z0). (4.3)

This means that (p, z4) ∈ A(p, z0). By continuity, we conclude that

{(p, a) : a ∈ [z4, z0]} ⊂ A(p, z0)

and (4.2) follows.
Since gtτ preserves the xz-plane, we have that V uc

F ((p, z0)) = V uc
F ((p, z0)). Hence, there

is a unique z1 ∈ (0, 1) such that (q1, z1) ∈ V u
tτ ((p, z0)). Notice that

g−n
tτ (p, z0) = (p, h−n

t ((p, z0)), g−n
tτ (q1, z1) = l(A−nq1, z1)

for n ≤ `. This is true because the points A−nq1, n = 0, 1, . . . , ` lie outside the ε-
neighborhood of Ip, where the perturbation map ht = id. Similarly, since the points
A−nq1, n > ` lie inside the ε′-neighborhood of Ip, and the third component of ht depends
only on the z-coordinate, we have

g−n
tτ (q1, z1) =

(

A−nq1, h
−n+l
t z1

)

.

Since d(g−n
tτ ((p, z0)), g

−n
tτ ((q1, z1))) → 0 as n→ ∞, we have d(h−n

t ((p, z0)), h
−n+l
t ((p, z1))) →

0 as n→ ∞. It follows that z1 = (h−`
t )3((p, z0)).

By the construction of the map ht (that is ht = id outside Ω1 the sets A−n1V s
tτ (p′) and

An2V u
tτ (p′) are pieces of horizontal lines. This means that z2 = z3 = z1.

Since the third component of ht is non-decreasing from (q2, z2) to (p, z4) along V s
tτ (p),

we conclude that z4 ≤ z3 = z1 = (h−`
t )3(p, z0) and thus (4.3) holds. �

The essential accessibility property follows from Sublemma 1.1 and the following state-
ment.
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Sublemma 1.2. (see [NT]). Assume that any two points in Ip are accessible. Then the
map gtτ satisfies the essential accessibility property.

Proof of Sublemma 1.2. It is easy to see that for any two points x, y ∈ M which do not
lie on the boundary of M one can find points x′, y′ ∈ Ip such that the pairs (x, x′) and
(y, y′) are accessible. By Sublemma 1.1 the points x′, y′ are accessible. Since accessibility
is a transitive relation the result follows. �

V. Hyperbolicity of the Map g0τ .

Lemma 2. For any sufficiently small τ > 0,

∫

M

logκ0τ (w)dw < log η. (5.1)

Proof. Our approach is an elaboration of an arguments in [SW].
For any w ∈ M , we introduce the coordinate system in TwM associated with the

splitting Eu
F (w)⊕Es

F (w)⊕Ec
F (w). Given τ ≥ 0 and w ∈M , there exists a unique number

ατ (w) such that the vector vτ (w) = (1, 0, ατ(w))⊥ lies in Eu
0τ (w), (where ⊥ denote the

transpose). Since the map h̃τ preserves the y coordinate, by the definition of the function
ατ (w), one can write the vector Dg0τ (w)vτ (w) in the form

Dg0τ (w)vτ (w) =
(

κ̄τ (w), 0, κ̄τ(w)ατ (gt0(w))
)⊥

(5.2)

for some κ̄τ (w) > 1. Sinse the expanding rate of Dg0τ (w) along its unstable direction is
κ0τ (w) we obtain that

κ0τ (w) = κ̄τ (w)

√

1 + ατ (g0τ (w))2
√

1 + ατ (w)2
.

Since Eu
0τ (w) is close to Eu

00(w) the function ατ (w) is uniformly bounded. Using the fact
that the map g0τ preserves the Riemannian volume we find that

Lτ =

∫

M

logκ0τ (w) dw =

∫

M

log κ̄τ (w) dw. (5.3)

Consider the map h̃τ . Since it preserves the y-coordinate using (3.2), we can write that

h̃τ (x, y, z) = (r cosσ, y, r sinσ),

where σ = σ(τ, r, θ, y) = θ + τψ(y)ρ(r). Therefore, the differential

Dh̃τ : Eu
F (w) ⊕Ec

F (w) → Eu
F (g0τ (w)) ⊕Ec

F (g0τ (w))

can be written in the matrix form

Dh̃τ (w) =

(

A(τ, w)B(τ, w)
C(τ, w)D(τ, w)

)

=

(

rx cosσ − rσx sinσ ry cosσ − rσy sinσ
rx sinσ + rσx cosσ ry sinσ + rσy cosσ

)

,
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where

rx =
∂r

∂x
=
x

r
= cos θ, rz =

∂r

∂z
=
y

r
= sin θ,

σx =
∂σ

∂x
=

−z

r2
+
z

r
τ ρ̃r(y, r) =

sin θ

r
+ τ ρ̃r(y, r) cos θ,

σz =
∂σ

∂z
=

x

r2
+
x

r
τρ̃r(y, r) =

cos θ

r
+ τ ρ̃r(y, r) sin θ,

and ρ̃(y, r) = ψ(y)ρ(r). It is easy to check that

A = A(τ, w) = 1 − τrρ̃r sin θ cos θ −
τ2ρ̃2

2
− τ2rρ̃ρ̃r cos2 θ + O(τ3),

B = B(τ, w) = −τ ρ̃− τrρ̃r sin2 θ − τ2rρ̃ρ̃r sin θ cos θ +O(τ3),

C = C(τ, w) = τ ρ̃+ τrρ̃r cos2 θ − τ2rρ̃ρ̃r sin θ cos θ + O(τ3),

D = D(τ, w) = 1 + τrρ̃r sin θ cos θ −
τ2ρ̃2

2
− τ2rρ̃ρ̃r sin2 θ + O(τ3).

(5.4)

By Sublemma 2.1 below, we have

Lτ =

∫

M

log η − log
(

D(τ, w)− ηB(τ, w)ατ(g0τ (w))
)

dw.

By Sublemma 2.2, we have

dLτ

dτ

∣

∣

∣

τ=0
= 0,

d2Lτ

dτ2

∣

∣

∣

τ=0
< 0.

So we can choose τ so small that Lτ 6= log η. �

Sublemma 2.1.

Lτ = log η −

∫

M

log
(

D(τ, w)− ηB(τ, w)ατ(g0τ (w))
)

dw.

Proof of Sublemma 2.1. Since g0τ = h0 ◦ F ◦ h̃τ = F ◦ h̃τ , we have that

Dτ (w) = Dg0τ (w)|Eu
0τ(w) ⊕Ec

0τ (w) =

(

ηA(τ, w), ηB(cw)
C(τ, w), D(τ, w)

)

.

By (5.2),

Dτ (w)

(

1
ατ (w)

)

=

(

ηA(τ, w) + ηB(τ, w)ατ(w)
C(τ, w) +D(τ, w)ατ(w)

)

=

(

κτ (w)
κτ (w)ατ (g0τ(w))

)

. (5.5)

Since h̃τ is volume preserving, AD −BC = 1 and therefore,

A+Bα =
1

D
+
B

D
(C +Dα).
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Comparing the components in (5.5), we obtain

κτ (w) =η
(

A(τ, w) + B(τ, w)ατ(w)
)

=η
( 1

D(τ, w)
+
B(τ, w)

D(τ, w)

(

C(τ, w) +D(τ, w)ατ(w)
)

)

=η
( 1

D(τ, w)
+
B(τ, w)

D(τ, w)
(κτ (w)ατ (g0τ (w)))

)

.

Solving for κτ (w), we get

κτ (w) =
η

D(τ, w) − ηB(τ, w)ατ(g0τ (w))
.

The desired result follows from (5.3). �

Sublemma 2.2.
dLτ

dτ

∣

∣

∣

τ=0
= 0,

d2Lτ

dτ2

∣

∣

∣

τ=0
< 0. (5.6)

Proof of Sublemma 2.2. In order to simplify notations we set D′
τ = ∂D

∂τ
, B′

τ = ∂B
∂τ

, C ′
τ =

∂C
∂τ

, D′′
ττ = ∂2D

∂τ2 , and B′′
ττ = ∂2B

∂τ2 . Since the function ατ (w) is differentiable over τ (see the
paper by Burns, Pugh, Shub, and Wilkinson in this volume) by Sublemma 2.1, we find

dLτ

dτ
= −

∫

M

D′
τ − ηB′

τα(g0τ (w)) − ηB ∂ατ (w)
∂τ

(g0τ(w))

D(τ, w) − ηB(τ, w)ατ(w)(g0τ (w))
dw

and therefore,

d2Lτ

dτ2
=

∫

M

(D′
τ − ηB′

τα(g0τ (w)) − ηB(τ, w)∂ατ(w)
∂τ

(g0τ (w))

D(τ, w) − ηB(τ, w)αs(g0τ (w))

)2

dw

−

∫

M

D′′
ττ − ηB′′

ττα(g0τ (w)) − ηB(τ, w)∂2ατ (w)
∂τ2 (g0τ (w)) − 2ηB′

τ
∂ατ (w)

∂τ
(g0τ (w))

D(τ, w) − ηB(τ, w)ατ(g0τ (w))
dw

Note that for all w 6∈ Ω2,

A(τ, w) = D(τ, w) = 1, C(τ, w) = B(τ, w) = 0

and for all w ∈M ,

A(0, w) = D(0, w) = 1, C(0, w) = B(0, w) = 0, α0(w) = 0.

It follows that
dLτ

dτ

∣

∣

∣

τ=0
=

∫

Ω2

D′

τ dw, (5.7)
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and also that

d2Lτ

dτ2

∣

∣

∣

τ=0
=

∫

Ω2

[

(D′

τ )2 −D′′

ττ + 2ηB′

τ

∂ατ (w)

∂τ
(g0τ (w))

]

τ=0
dw. (5.8)

By (5.4), we obtain that
D′

τ (0, w) = rρ̃r(r)sinθ cos θ

and hence,
∫

Ω2

D′

τdw = 0.

Therefore, (5.7) implies the equality in (5.6).
We now proceed with the inequality in (5.6). Applying Sublemma 2.3 below we obtain

that
∂α

∂τ
(g0τ (w))

∣

∣

∣

τ=0
=
C ′

τ (0, w)

η
+

∞
∑

n=1

C ′
τ (0, g−n

00 (w))

ηn+1
.

It follows that

2ηB′

τ (0, w)
∂α

∂τ
(g0τ(w))

∣

∣

∣

τ=0
= 2B′

τ (0, w)C ′

τ (0, w) + 2B′

τ (0, w)
∞
∑

n=1

C ′
τ (0, g−n

00 (w))

ηn
.

First, we evaluate the term

F(w) = D′

τ (0, w)2 −D′′

ττ (0, w) + 2B′

τ (0, w)C ′

τ (0, w).

Using (5.4), we find that

F(w) =
(

rρ̃r sin θ cos θ
)2

+
(

ρ̃2 + 2rρ̃ρ̃r sin2 θ
)

− 2
(

ρ̃+ rρ̃r sin2 θ
)(

ρ̃+ rρ̃r cos2 θ
)

= −ρ̃2 −
(

rρ̃r sin θ cos θ
)2

− 2rρ̃ρ̃r cos2 θ.
(5.9)

Recall that Ω2 = Buc(q̄, ε0) × Bs(q̄, ε0) and ρ̃(r) = 0 if r ≥ ε. We have

∫

Ω2

2rρ̃ρ̃r cos2 θ dw =

∫ ε0

−ε0

dy

∫ 2π

0

2 cos2 θ dθ

∫ ε

0

r2ρ̃ρ̃r dr. (5.10)

Since 0 = ρ̃(0) = ρ̃(ε) (by the definition of the function ρ), we find that

∫ ε

0

r2ρ̃ρ̃r dr =
1

2
r2ρ̃2

∣

∣

∣

ε

0
−

∫ ε

0

rρ̃2 dr = −

∫ ε

0

rρ̃2 dr. (5.11)

We also have that
∫ 2π

0

2 cos2 θ dθ =

∫ 2π

0

dθ. (5.12)
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It follows from (5.10) - (5.12) that

−

∫

Ω2

2rρ̃ρ̃r cos2 θ dw =

∫

Ω2

rρ̃2 dw ≤ ε

∫

Ω2

ρ̃2 dw. (5.13)

Arguing similarly one can show that

−

∫

Ω2

rρ̃r sin θ cos θ dw = −
1

8

∫

Ω2

(rρ̃)2 dw (5.14)

Thus we conclude using (5.9), (5.13), and (5.14) that
∫

Ω2

F(0, w) dw ≤ −(1 − ε)

∫

Ω2

ρ̃2 dw −
1

8

∫

Ω2

(rρ̃)2 dw < 0. (5.15)

We now evaluate the remaining term

G(0, w) =

∞
∑

n=1

1

ηi

∫

Ω2

2B′

τ (0, w)C ′

τ(0, g−n
00 (w)) dw.

Since the map g00 = F preserves the Riemannian volume we obtain that
∫

Ω2

2B′

τ (0, w)C ′

τ (0, g−n
00 (w)) dw ≤

∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, g−n
00 (w))2 dw

=

∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, w)2 dw

Applying (5.4), we find that
∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, w)2 dw

=

∫

Ω2

(ρ̃+ rρ̃r sin2 θ dw +

∫

Ω2

(ρ̃+ rρ̃r cos2 θ dw

≤4

(
∫

Ω2

ρ̃2 dw +

∫

Ω2

r2ρ̃2
r dw

)

.

It follows that for sufficiently large N > 0 (which does not depend on ε)

∞
∑

i=N

1

ηi

∫

Ω2

2B′

τ (0, w)C ′

τ(0, g−i
00 (w)) dw ≤

1

10

(
∫

Ω2

ρ̃2 dw +

∫

Ω2

r2ρ̃2
r dw

)

. (5.16)

Note that if g−n
00 Ω2 ∩ Ω2 = ∅, then B′

τ (0, w)C ′
τ (0, g−n

00 (w)) = 0 for all w. Hence,
∫

Ω2

2B′

τ (0, w)C ′

τ(0, g−n
00 (w)) dw = 0.

We may choose the point q and a small ε such that g−n
00 Ω2 ∩Ω2 = F−nΩ2 ∩Ω2 = ∅ for all

n = 1, 2, . . . , N . It follows from (5.8), (5.15), and (5.16) that

d2Lτ

dτ2

∣

∣

∣

τ=0
=

∫

Ω2

F(0, w) dw+

∫

Ω2

G(0, w) dw ≤ −
( 9

10
−ε

)

∫

Ω2

ρ̃2 dw−
1

40

∫

Ω2

r2ρ̃2
r dw < 0.

The desired result follows. �
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Sublemma 2.3.
∂α

∂τ
(g0τ (w))

∣

∣

∣

τ=0
=

∞
∑

n=0

C ′
τ (0, g−n

00 (w))

ηn+1
.

Proof of Sublemma 2.3. Define

R(τ, w, α) =
C(τ, w) +D(τ, w)α

η
(

A(τ, w) + B(τ, w)α
) .

Clearly,
ατ (g0τ (w)) = R(τ, w, ατ(w)). (5.17)

By (5.6), we have

∂R

∂τ

∣

∣

∣

τ=0
=

(

C ′
τ +D′

τα
)(

A+ Bα
)

+
(

C +Dα
)(

A′
τ +B′

τα
)

η
(

A+Bα
)2

∣

∣

∣

τ=0
=
C ′

τ (0, w)

η
.

Since A(0, w), B(0, w), C(0, w), and D(0, w) are constant functions over w = (x, y, z) we
obtain that

∂H

∂x

∣

∣

∣

τ=0
=
∂H

∂z

∣

∣

∣

τ=0
= 0

for H = A,B,C,D. This implies that

∂R

∂x

∣

∣

∣

τ=0
=
∂R

∂z

∣

∣

∣

τ=0
= 0.

Since AD − BC = 1,
∂R

∂α

∣

∣

∣

τ=0
=

AD −BC

η(A+Bα)2

∣

∣

∣

τ=0
=

1

η
.

It follows from (5.17) that

∂α

∂τ
(g0τ(w))

∣

∣

∣

τ=0
=
C ′

τ (0, w)

η
+

1

η
·
∂α

∂t
(w)

∣

∣

∣

τ=0
.

Using (5.17) again, we also obtain that

ατ (w) = R(τ, g−1
0τ (w), ατ(g−1

0τ (w)))

and hence,
∂α

∂τ
(w)

∣

∣

∣

τ=0
=
C ′

τ (0, g−1
0τ (w))

η
+

1

η
·
∂α

∂τ
(g−1

0τ (w))
∣

∣

∣

τ=0
.

Therefore the result follows by induction. �
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