
SAMPLE PATH PROPERIES OF RANDOM
TRANSFORMATIONS.

DMITRY DOLGOPYAT

1. Models.

Let M be a smooth compact manifold of dimension N and X0, X1 . . .Xd,
d ≥ 2, be smooth vectorfields on M.

(I) Let {wj}+∞

j=−∞
be a sequence of independent random variables

such that wj is a pair wj = (ξj, ηj) uniformly distributed on the set
[−1, 1] × {1 . . . d}. Let φk(t) denote time t map of the flow generated
by Xk and let

fj = φηj
(ξj), Fm,n = fn−1 ◦ · · · ◦ fm+1 ◦ fm, Fn = F0,n.

(II) Let w1(t) . . . wk(t) be independent Brownian motions. Consider
Stratanovich differential equation

(1) dxt = X0(x)dt +
d

∑

k=1

Xk(x) ◦ dwk(t).

Let Fs,t be the flow of diffeomorphisms generated by (1) and Ft = F0,t.

Definition. We say that either (I) or (II) on satisfy condition (H) on
M if the Lie algebra generated by X1 . . .Xd is TM.

We assume the following condition
(A) Systems induced by either (I) or (II) on both M ×M ×M −diag

and on Grassmann bundles over M satisfy (H).
Let λ1 ≥ λ2 ≥ λN be Lyapunov exponents of our system (given x

Lyapunov exponents exist for almost all w and are independent of x
see e.g [7]).

Theorem 1. ([11, 4]) (a) Either all exponents coincide or all exponents
are different. In the former case Ft preserve a smooth Riemannian
metric.

(b)
∑N

k=1 λk ≤ 0 and if
∑N

k=1 λk = 0 then Ft preserve a smooth
volume form.

We impose the second restriction
(B) λ1 6= 0.
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Below we consider only the systems satisfying conditions
(A) and (B).

Remark. If {Xj} preserve volume then, by Theorem 1, (B) holds ex-
cept on a set of infinite codimension. It seems that (B) holds generically
also in the dissipative setting but I am not aware of the proof.

2. SRB measures.

Let m denote Lebesgue measure on M.

Theorem 2. (a) The following limits exist almost surely

νn = lim
k→−∞

Fk,nm.

{νn} are invariant in the sense that Fk,nνk = νn.
(b) ([8]) Given α > 0 there exists θ < 1, C = C(w) such that

∀A ∈ Cα(M)

∣

∣

∣

∣

∫

A(Fn(x))dm(x) − νn(A)

∣

∣

∣

∣

≤ C(w)||A||Cα(M)θ
n.

(c) ([13]) If λ1 < 0 then there is a random point x = x(w) such that
νn = δFnx(w). Moreover for Lebesgue almost all x d(Fnx, Fnx(w)) → 0
exponentially fast.

(d) ([15]) If λ1 > 0 then λ1 > 0 then νn has positive Hausdorff

dimension. Namely let Λl =
∑l

k=1 λl. Let K be the largest number such
that Λk ≥ 0. Let D be equal to N if K = N and D = K − (ΛK/λk+1)
otherwise. Then HD(νn) = D.

(e) ([8]) If λ1 > 0 then for all A ∈ C3(M) there exists D(A) such
that for almost all w

m

{

∑n−1
j=0 [A(Fjx) − νj(A)]

D
√

n
< s

}

→ 1√
2π

∫ s

−∞

e−ξ2/2dξ.

Question 1. What happens if λ1 = 0? (see [5] for partial results).

Question 2. Can the formula of part (d) be generalized to escape prob-
lem from nice domains?

3. Non-typical points.

Let E(A, w) = {x : 1
n
[
∑n−1

j=0 A(Fjx) − νj(A)] 6= 0}.

Theorem 3. ([10]) If A 6= Const then
(a) if λ1 > 0 then HD(E(A)) = N ;
(b) if λ1 < 0 then HD(E(A)) < N.
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Question 3. If λ1 > 0 what can be said about

δr = HD

{

x :
1

n

[

n−1
∑

j=0

A(Fjx) − νj(A)

]

> r

}

?

Let E =
⋂

A∈C(M) E(A).

Question 4. What can be said about HD(E) in case λ1 < 0?

Question 5. Let f be a volume preserving diffeomorphism. Suppose
that λ1 > 0. Is it true that HD(E) = N? More generally, let T be an
ergodic automorphism of a probability space (Ω, µ) and

Fn(ω) = f(T n−1ω) ◦ · · · ◦ f(Tω)f(ω)

where f(ω) preserve volume. Suppose that λ1 > 0. Is it true that
HD(E) = N?

4. Stable lamination

If ν is a measure on M let

Is(ν) =

∫ ∫

dν(x)dν(y)

ds(x, y)
.

Theorem 4. (a) ([8]) If ν is a measure on M with Is(ν) < ∞ for some
s then for almost all w

∫

A(Fnx)dν(x)− νn(A) → 0 exponentially fast.
(b) Stable lamination is transitive on M.
(c) ([9]) If M = T

N and λj 6= 0 for all j then the lift of stable
lamination to R

N is transitive.

Question 6. For which over manifolds the lift of the stable lamination
to the universal cover must be transitive?

5. Tools.

The following results play important role in the proofs.

5.1. Two-point motion. Let δ > 0 be small. Denote

Ω = {(x, y) ∈ M × M : d(x, y) ≥ δ.}
Let τ(x, y) = min{n ∈ N : d(Fn(x), Fn(y) ≥ δ}.
Theorem 5. (a) ([6]) If λ1 < 0 then there exists θ < 1 such that for
all (x, y) ∈ M × M

P{τ(x, y) < ∞} < θ.

(b) ([6]) If λ1 > 0 then there exists r > 1 such that for all |ξ| < r for
all (x, y) ∈ Ω

E
(

ξτ(x,y)
)

≤ Const
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(c) ([8]) The the return to Ω process zτn
is exponentially mixing in

the sense that there exists a measure µ on Ω and a number θ < 1 such
that for all A ∈ C(M) for all (x, y) ∈ Ω

∣

∣E(x,y)(A(zτn
) − µ(A)ρn

∣

∣ ≤ Const(ρθ)n||A||C(M).

Here ρ = 1 if λ1 > 0 and ρ < 1 if λ1 < 0.

5.2. Hyperbolic times. Given numbers K, α we call a curve γ (K, α)-
smooth if in the arclength parameterization the following inequality
holds

∣

∣

∣

∣

dγ

ds
(s1) −

dγ

ds
(s2)

∣

∣

∣

∣

≤ K|s2 − s1|α.

Theorem 6. ([10]) Fix λ < λ1 then ∃r > 0, α < 1, K > 0 and n0 > 0
such that for any (K, α)-smooth γ of length between r

100
and 100r the

following holds. ∀x ∈ γ there is a stopping time τ(x) such that
(a) ||dFτ |Tγ|| > 100, l(Fτγ) ≥ r;
Let γ̄ denote a ball of radius r inside Fτγ centered at Fτ (x). Then

(b) γ̄ is (K, α)-smooth;

(c) ∀k : 0 ≤ k ≤
[

τ

n0

]

∀y1, y2 ∈ γ̄ d(Fτ,τ−kn0
y1, Fτ,τ−kn0

y2) ≤ d(y1, y2)e
−λkn0;

(d)
∣

∣ln ||(dF−1
τ |T γ̄)||(y1) − ln ||(dF−1

τ |T γ̄)||(y2)
∣

∣ ≤ Constdα(y1, y2);

(e) E(τ(x)) ≤ C0; P(τ(x) > N) ≤ C1e
−C2N where all constants do not

depend on γ.

6. Further questions.

In the models described above the distribution of the point xn =
Fn(x) has smooth component. By contrast in the deterministic case (if
Fn = fn) then xn has δ–distribution. The results described above are
either unknown or false for the generic deterministic systems.

Question 7. What can be said in the intermediate cases?

In other words where is the boundary between truly random and
almost deterministic behavior? I believe that very little randomness
is needed. For example consider the following model. Let f1 . . . fd

be smooth diffeomorphisms of M and apply the independently with
probabilities p1 . . . pd.

Conjecture. The above Markov process is ergodic for generic f1 . . . fd

in the following cases
(a) fj preserve smooth volume;
(b) fj are close to a given diffeo f.
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7. Bibliographical comments.

Properties of SRB measures for random systems are discussed in
[13, 14, 15, 18].

Properties of exceptional sets are discussed in [2, 3].
More general classes of random dynamical systems are studied in

[1, 11, 16, 17, 18].
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