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Abstract. We find a normal form which describes the high en-
ergy dynamics of a class of piecewise smooth Fermi-Ulam ping
pong models. Depending on the value of a single real parameter,
the dynamics can be either hyperbolic or elliptic. In the first case
we prove that the set of orbits undergoing Fermi acceleration has
zero measure but full Hausdorff dimension. We also show that for
almost every orbit the energy eventually falls below a fixed thresh-
old. In the second case we prove that, generically, we have stable
periodic orbits for arbitrarily high energies, and that the set of
Fermi accelerating orbits may have infinite measure.

In this paper we study the dynamics of piecewise smooth
Fermi-Ulam ping pongs. Fermi and Ulam introduced such
systems as a simple mechanical toy model to explain the oc-
currence of highly energetic particles coming from outer space
and detected on Earth (the so-called cosmic rays, see [22, 23]).
The model describes the motion of a ball bouncing elasti-
cally between a wall that oscillates periodically and a fixed
wall, both of them having infinite mass. Fermi and Ulam per-
formed numerical simulations for that model and conjectured
(see [31]) the existence of orbits undergoing what is now called
Fermi acceleration, i.e. orbits whose energy grows to infinity
with time; we refer to such orbits as escaping orbits. Several
years later, KAM theory allowed to prove that the conjec-
ture is indeed false. Namely, provided that the wall motion is
sufficiently smooth, there are no escaping orbits because in-
variant curves prevent diffusion of orbits to high energy (see
[25, 30, 29]). It was not many years (see [34]) before the ex-
istence of escaping orbits was proved in some examples of
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piecewise-smooth motions. It is worth noting that these ex-
amples were essentially the same that Fermi and Ulam were
forced to investigate in their numerical simulations, due to the
relatively limited computational power they could use1. In
this paper we study a more general class of piecewise smooth
motions and we investigate existence and abundance of es-
caping orbits in this setting. Our main result is that, for all
possible wall motions having one discontinuity, there is a sin-
gle parameter ∆ which allows to describe the dynamics of the
ping pong for large energies. Moreover, there exists a sharp
transition so that for ∆ ∈ (0, 4) the system looks regular for
large energies while for ∆ 6∈ [0, 4] the system is chaotic for large
energies (see Figure 2 in Section 1). Similar phenomena hap-
pen in a wide class of piecewise smooth mechanical systems
which for large energies can be viewed as small (non-smooth)
perturbations of integrable systems such as, for example, the
impact oscillator [17]. However, in order to demonstrate the
methods and techniques in the simplest possible setting, we
restrict our attention to the classical Fermi-Ulam model.

1. Results.

We consider the following one-dimensional system. A unit point
mass moves horizontally between two infinitely heavy walls. Between
collisions the motion is free, so that kinetic energy is conserved, colli-
sions between the particle and the walls are elastic. The left wall moves
periodically, while the right one is fixed. The distance between the two
walls at time t is denoted by `(t) which we assume to be strictly pos-
itive, Lipshitz continuous and periodic of period 1. It is convenient to
study the orbit only at the moments of collisions with the moving wall.
Let t denote a time of a collision of the ball with the moving wall, since
` is periodic we take t ∈ T = R/Z. Let v ∈ R be the velocity of the
ball immediately after the collision. Introduce the notation A = T×R.
The collision space is given by

M = {(t, v) ∈ A s.t. v > − ˙̀(t)}.

We can thus define the collision map f :M→M

(1) f(tn, vn) = (tn + δt(tn, vn), vn − 2 ˙̀(tn + δt(tn, vn))) = (tn+1, vn+1)

1The processing power of the 1940’s state-of-the-art computers used by Fermi and
Ulam is about ten thousand times inferior than that of a low-end 2010 smartphone
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where, for large2 v, the function δt solves the functional equation

(2) δt(t, v) =
`(t) + `(t+ δt(t, v))

v
.

It is a simple computation to check that the map f preserves the volume
form ω = (v + ˙̀(t))dt ∧ dv. Throughout this work we assume ˙̀ to be
piecewise smooth with a jump discontinuity at t = 0 only. Define the
singularity line S ⊂M as S = {t = 0} and R ∈M as the infinite strip
of width O (v−1) bounded by S and fS. Introduce also R̃ = f−1R.

As a first step to study the dynamics of the mapping f we describe
the first return map of f to the region R, which will be denoted by
F : R→ R. Our main result is a normal form for F for large values of
v. Denote `0 = `(0), ˙̀± = ˙̀(0±) and similarly for all derivatives. Define

∆ = J `0( ˙̀+ − ˙̀−) and ∆1 = 1
2
J 2`3

0(῭+ − ῭−) where J is given by

J =

∫ 1

0

`−2(s)ds.(3)

We introduce a useful shorthand notation. Let ψ ∈ Cs(A ⊂ A), then
we use the notation ψ = Os

(
v−k
)

to indicate that vkψ is bounded for
sufficiently large v and the same is true for all derivatives up to order
s included. For our analysis it is important to ensure that all sub-
leading terms vanish sufficiently fast for v →∞ along with all partial
derivatives up to the fifth order.

Theorem 1. There exist smooth coordinates (τ, I) on R, such that the
first return map of f on R is given by

F (τ, I) = F̂ (τ, I) + F1(τ, I) + r(τ, I)

where F̂ (τ, I) = (τ̄ , Ī) with

τ̄ = τ − I mod 1, Ī = I + ∆(τ̄ − 1/2),

F1 is a correction of order O (I−1) of the form

F1(τ, I) = I−1(0,∆1((τ̄ − 1/2)2 − 1/12))

and r = O5 (I−2). Finally ω = dτ ∧ dI.

Consequently, up to higher order terms, F coincides with F̂ , where
F̂ is Z2-periodic in appropriate “action-angle” variables and moreover

dF̂ = A is constant. Thus F̂ covers a map F̃ : T2 → T2. The map F̃ is
known in the literature as the “sawtooth map” or the “piecewise linear
standard map” and it has been the subject of a number of studies, see

2large here means that the ball bounces off the fixed wall before the next collision
with the moving wall
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e.g. [2, 4, 5, 7, 6, 28, 33]. We will call F̂ cylinder sawtooth map and F̃
toral sawtooth map. Notice that we have

Tr(A) = 2−∆.

Accordingly, dF̃ is elliptic if ∆ ∈ (0, 4) and it is hyperbolic otherwise.

Example 1.1. Consider the case where velocity is piecewise linear,
that is

(4) `a,b(t) = b+ a ((t mod 1)− 1/2)2 .

This is one of the cases which have been numerically investigated in
[31]. Later numerical and heuristic analysis of this system can be found
in [13, 3, 27]. We can choose the length unit so that b = 1. In this case
` is positive for all t for a > −4. Remarkably, we can obtain an explicit
expression for ∆(a), that is, for J (a). Namely

J (a) =

∫ 1

0

(1 + a(s− 1/2)2)−2ds = 2|a|−1/2

∫ |a|1/2/2
0

(1 + sgna ·σ2)−2dσ

where σ = |a|1/2(s− 1/2). Performing the integration we obtain

J (a) =
2

a+ 4
+

{
(|a|−1/2/2) log 2+|a|1/2

2−|a|1/2 if − 4 < a ≤ 0

|a|−1/2 arctan(|a|1/2/2) if a > 0.

Recall that, by definition, ∆(a) = −2a(1+a/4)J (a). In particular, we
find that ∆(−a) = 4 and

lim
a→−4+

∆′(a) = lim
a→−4+

1

2
log

2 + |a|1/2

2− |a|1/2
= +∞.

The graph of dependence of ∆ on a is shown on Figure 1. It shows that
the dynamics is hyperbolic for a ∈ (−4,−ac) where ac ≈ −2.77927 and
a > 0 and it is elliptic for remaining parameter values.

Below we discuss the implications of the dichotomy between hyper-
bolic and elliptic regimes. Using the results of [11] we obtain the fol-
lowing

Theorem 2. If |Tr(A)| > 2 then the toral sawtooth map F̃ is ergodic,
mixing and enjoys exponential decay of correlations for Hölder observ-
ables.

On the other hand if |Tr(A)| < 2 then F̃ is not ergodic. Namely, in

this case, F̃ is a piecewise isometry for the appropriate metric. Hence

if p is a periodic point of F̃ , then a small ball around p is invariant by

the dynamics. See Figure 2 for an example of phase portrait of F̃ in
the two cases.
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Figure 1. Graph of ∆ as a function of a, where `a,b is
given by (4) with b = 1; the shaded area denotes the
elliptic regime ∆ ∈ (0, 4).

Note that if p is periodic with period N for the toral sawtooth map

F̃ , it need not be periodic for the cylinder sawtooth map F̂ . In fact we
have

F̂Np = p+ (0, n)

for some n ∈ Z. If n > 0 we say that p is a stable accelerating orbit ; if
n < 0 we say that p is a stable decelerating orbit ; finally if n = 0 then
p is periodic for F̂ .

Consider for example the case N = 1. We have a periodic orbit (1
2
, 0).

Furthermore, if ∆ > 2, we have a stable accelerating orbit (0, 1
2

+ 1
∆

)

and stable decelerating orbit (0, 1
2
− 1

∆
).

To analyze periodic points we can use the duality between the accel-
erating and decelerating periodic orbits. We have F̂ = T∆ ◦G where

G(τ, I) = (τ − I mod 1, I), T∆(τ, I) = (τ, I + ∆(τ − 1/2)).(5)

On the other hand F̂−1(τ̄ , Ī) = (τ, I) with

I = Ī −∆(τ̄ − 1/2), τ = τ̄ + I.

Introducing σ = 1− τ we rewrite the last equation as

I = Ī + ∆(σ − 1/2), σ = σ̄ − I.

In other words if J denotes the involution J(τ, I) = (1− τ, I) then

(T∆ ◦G)−1 = J ◦G ◦ T∆ ◦ J =

= J−1 ◦G ◦ T∆ ◦ J = (T∆ ◦ J)−1 ◦ (T∆ ◦G) ◦ (T∆ ◦ J).
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Figure 2. On the top: phase portrait of a single orbit of

the map F̃ for ∆ = −0.3. On the bottom: phase portrait

of selected orbits of the map F̃ for ∆ = 0.32. Notice
the strong prevalence of elliptic behavior; the “chaotic”
region is given by forward and backward images of the
singularity line.
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The existence of periodic orbits for other small periods is summarized
in table 1 (here we use parameter θ such that Tr(dF̂ ) = 2 cos θ, that

is, dF̂ is conjugated to a rotation by θ).

N periodic accelerating/decelerating
1 (0, π) (π/2, π)
2 (0, π/2) -
3 (0, π/3) (π/3, π/2)
4 (0, π/4) (3/4π, π)
5 (0, π/5) (π/2, 3/5π)
6 (0, π/6) ∪ (π/2, π) (5/6π, π)
7 (0, π/7) (3/7π, π/2)
8 (0, π/8) (7/8π, π)

Table 1. Numerically observed ranges of parameters for
which there exist a periodic or accelerating/decelerating
orbit of “period” N ; for N ≥ 9 we could find intervals
bounded by irrational multiples of π

Remark 1.2. We believe that stable escaping orbits exist for arbitrarily
small positive values of ∆, i.e. for each ∆0 > 0 there exists a 0 < ∆ <
∆0 such that the map F̂ admits stable escaping orbits. However their
“period” will necessarily grow to infinity as ∆ → 0+. The smallest
value of ∆ for which we were able to find a stable escaping orbit is
∆ = 0.0916346, for which we numerically obtained a period 501 stable
escaping orbit.

There are three possible asymptotic types of motion. Namely we in-
troduce the sets of escaping, bounded and oscillatory orbits respectively
as follows.

E = {(t0, v0) : vn →∞ as n→ +∞};

B = {(t0, v0) : vn is bounded as n→ +∞};

O = {(t0, v0) : lim inf vn <∞, lim sup vn =∞ as n→ +∞};
(More precisely we should call the orbits in the above sets forward
escaping, forward bounded and forward oscillatory respectively but we
drop the first word since in this paper we do not consider negative
times). We want to study existence and abundance of the above three
types of motion for the ping pong system (1).

Theorem 3. If |Tr(A)| < 2 then
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(a) there exists a constant C so that for each v̄ sufficiently large there
exists an initial condition (t0, v0) such that

(6) C−1v̄ < vn < Cv̄ for all n ∈ Z.
If additionally ∆1 6= 0, then the same result holds for an adequately
small ball around the point (t0, v0).

(b) If F̃ has a stable accelerating orbit then mes(E) =∞.

In particular in the elliptic case we typically have mes(B) = ∞. In
addition, mes(E) =∞ if ∆ ∈ (

√
3, 4). We do not know how to construct

oscillatory orbits in the elliptic case.
The proof of part (a) of Theorem 3 reduces to checking KAM non-

degeneracy conditions for the periodic orbits described above, the proof
of part (b) relies on perturbative expansion near infinity similar to [17].
We note that no KAM type analysis is needed for part (b) since the
perturbation decays at infinity and therefore no small denominators
appear in this problem.

Theorem 4. If |Tr(A)| > 2 then

(a) mes(E) = 0.
(b) there exists a constant C such that almost every orbit enters the

region v < C. Moreover denote by T the first time velocity falls
below C. If we fix the initial velocity v0 � 1 and let the initial
phase be random then T

v20
converges to a stable random variable of

index 1/2, that is, there exists a constant D̄ such that

P (T > D̄v2
0t)→

∫ ∞
t

e−1/2x

√
2πx3

dx as v0 →∞.

The proof of second part of the last theorem relies on the following
result which is of independent interest.

Theorem 5. Fix the initial velocity v0 � 1 and let the initial phase
be random then Fix 0 < a < 1 < b. Consider the process defined by

Bv0(t) =
v(v20t)

v0
if v2

0t is an integer with linear interpolation in between

which is stopped when velocity goes above bv2
0 or below av2

0. Then, as
v0 → ∞, Bv0(t) converges to a Brownian Motion started from 1 and
stopped when it reaches either a or b.

Remark 1.3. Note that Bv0(t) is equal to
v(v20t)

v0
only if v2

0t is an integer.
It seems more natural to use this formula for all values of t however this
would lead to a different limit since as we shall see in the next section
the ratio v(n+ 1

2
)/v(n) has oscillations of order 1 while v(n+1)/v(n)−1

is of order 1/v(n).
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Theorem 5 makes Theorem 4 plausible since the time the Brownian
Motion reaches a certain level has a stable distribution of index 1/2.
However an extra work is needed to deduce Theorem 4 from Theorem
5 since Theorem 4 concerns the time when Bv0(t) comes near 0 and 0 is
excluded from consideration in Theorem 5 since the proof of Theorem
5 relies on perturbative expansion near infinity.

Theorem 4 shows that the set of escaping orbits has zero measure
so it is natural to ask about its Hausdorff dimension. The next result
extends the work [15] where a similar statement is proven for a smooth
model of Fermi acceleration.

Theorem 6. If Tr(A) > 2 then HD(E) = 2.

In other words, even though the set of escaping points is small from
the measure theoretical point of view, it is large from the point of view
of dimension. We note that invariant sets of large Hausdorff have been
constructed, in different contexts, in [21, 20, 24].

The conclusion of Theorem 6 also holds for oscillatory and bounded
orbits. We believe that the majority of orbits are oscillatory. However
such orbit would typically come to the region of low velocities there
the normal form of Theorem 1 is no longer valid. The behavior in the
low velocity region is thus not universal. For example for many choices
of ` elliptic islands may be present ([27]) giving rise to bounded orbits.
The coexistence of positive measure of quasiperiodic bounded motions
and stochastic oscillatory motions will make the rigorous analysis of
ping pong system quite difficult.

2. The first return map

If ` were a smooth function, KAM theory would allow to conjugate
the dynamics of f for most initial conditions with large values of v to
the dynamics of the completely integrable map g : T× R+ → T× R+

g : (ϑ, J) 7→ (ϑ+ J−1, J).

Consider the vertical line S ′ ⊂ T × R+ given by S ′ = {ϑ = 0}; let
moreover R′ be the infinite strip of width O (J−1) bounded between S ′

and gS ′ i.e.
R′ = {0 ≤ ϑ < J−1}.

As a preparatory step we study the first return map of g to the region
R′.

Proposition 2.1. Let τ = Jϑ and consider coordinates (τ, J) on R′.
Then the first return map of g to the region R′ is given by the map G
defined in (5).
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Proof. Let k = bJc and J = k + Ĵ . We claim that

G(τ, J) =

{
gk(τ, J) if τ ≤ 1− Ĵ
gk+1(τ, J) otherwise.

In fact, we can check by simple inspection that, denoting gk(ϑ, J) =
(ϑk, J) we have

ϑk = ϑ+
k

k + Ĵ
= ϑ+ 1− Ĵ

J
, ϑk+1 = ϑ+ 1 +

1− Ĵ
J

which implies our claim. �

In our systems, ` is only piecewise smooth, consequently we expect
to be able to define action-angle coordinates outside R̃ only.

Lemma 2.2 (Approximate reference coordinates). There exists a smooth
coordinates change h : (t, v) 7→ (ϑ, J) such that if (t, v) 6∈ R̃, h con-
jugates the collision map f to the reference map g up to high order
terms

(7) g − h ◦ f ◦ h−1 = (rϑ, rJ)

with rϑ = O5 (v−4) , rJ = O5 (v−3).

Proof. Recall the definition of J given by (3) and introduce the no-
tation (t′, v′) = f(t, v). Define the two functions (see e.g. [34] for a
motivation of the formula defining ϑ)

ϑ(t) = J −1

∫ t

0

`−2(s)ds, I(t, v) = J

[∫ t′

t

`−2(s)ds

]−1

.(8)

It is immediate to observe that ϑ(t′) = ϑ(t) + I−1(t, v). Since the
expression defining I is implicit, we find it convenient to use a suitable
approximation in our computations. Define J : A \ S → R as

(9) 2J −1J(·, v) = v`+ ` ˙̀ +
1

3

`2 ῭

v
.

We claim that h : (t, v) 7→ (ϑ(t), J(t, v)) is the required change of
coordinates. The first step is to obtain an approximate solution of (2).
Since ` is Lipshitz continuous, we can find the solution by iteration.
Let δt(0) ≡ 0 and define for n > 0

δt(n)(t, v) =
`(t) + `(t+ δt(n−1)(t, v))

v
.
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Then ‖δt(n) − δt(n−1)‖ = O (v−n) and thus δt(n) → δt uniformly. Con-
sequently, if we express the solution as

(10) δt =
∞∑
n=1

δtn with δtn(t, v) =
an(t)

vn
,

we can then find the functions an by the previous argument. In partic-
ular, outside R̃ we obtain that

δt1(·, v) =
2`

v
, δt2(·, v) =

2`

v2
˙̀, δt3(·, v) =

2`

v3
( ˙̀2 + `῭).(11)

Assume now that (t, v) 6∈ R̃. By expanding (8) in Taylor series and
using equations (11) it is immediate to check that

(12) J = I +O5

(
v−2
)
.

Recall that

rϑ(t, v) = ϑ(t′)− ϑ(t)− J(t, v)−1, rJ(t, v) = J(t′, v′)− J(t, v).

Thus estimate (12) immediately yields rϑ = O5 (v−4) . The proof of
Lemma 2.2 is thus complete once we prove that

J(t′, v′)− J(t, v) = O5

(
v−3
)
.

We begin by introducing a convenient notation. Fix (t, v). Recall that
rJ = J ◦ f − J ; denote J = J(t, v), J ′ = J(t′, v′), ` = `(t), `′ = `(t′)
and likewise for all derivatives. Notice that Jv−1 is a polynomial in
v−1 with coefficients given by smooth functions of t. Using (10) we
can express δt in similar form, thus, by expanding in Taylor series the
smooth function ` and its derivatives we can write

rJ(t, v) = b0(t) +
b1(t)

v
+
b2(t)

v2
+ r∗J(t, v)

where r∗J = O5 (v−3). It amounts to a simple but tedious computation
to show that our choice of J implies b0 ≡ 0, b1 ≡ 0 and b2 ≡ 0. Here we
will only sketch the main steps of the computation. First, we obtain
an expression for δv

δv = v′ − v = −2`′ = δv0 + δv1 + δv2 +O
(
v−3
)

where

δv0 = −2 ˙̀ δv1 = −4
`῭

v
δv2 = −4

` ˙̀῭+ `2
...
`

v2
.
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Next, we expand rJ in Taylor series and collect terms of order v−3 or
higher in the function r∗J

rJ = ∂tJ(δt1 + δt2 + δt3) + ∂vJ(δv0 + δv1 + δv2)+

+
1

2
∂ttJ

(
δt21 + 2δt1δt2

)
+ ∂tvJ(δt1δv1 + δt1δv2 + δt2δv1)+

+
1

6
∂tttJδt

3
1 +

1

2
∂ttvJδt

2
1δv1 + r∗J .

Using the explicit form (9) it is then simple to obtain

b0 = ˙̀vδt1 + `δv0

b1 = ˙̀v2δt2 + ( ˙̀2 + `῭)vδt1 +
1

2
῭v2δt21 + `vδv1 + ˙̀vδt1δv0.

and finally

b2 = ˙̀v3δt3 + ( ˙̀2 + `῭)v2δt2 +
1

3
(2` ˙̀῭+ `2

...
` )vδt1+

+ ῭v3δt1δt2 +
1

2
(3 ˙̀῭+ `

...
` )v2δt21 +

1

6

...
` v

3δt31+

+ `v2δv2 −
1

3
`῭δv0 + ˙̀v2δt1δv1 + ˙̀v2δt2δv0 +

1

2
῭v2δt21δv0.

Now it is possible to conclude by substituting bj into the formulae
obtained previously. �

Proof of Theorem 1. It is simple to check by inspection that (τ, I) with
τ = Iϑ are smooth coordinates on R for sufficiently large I. Let
(t, v) ∈ R, (t̄, v̄) = F (t, v) and (t̃, ṽ) = f−1(t̄, v̄). We use the con-
venient shorthand notation J = J(t, v), J̃ = J(t̃, ṽ) and J̄ = J(t̄, v̄)

and similarly for ϑ, ϑ̃ and ϑ̄. By iteration of Lemma 2.2 we obtain

J(t̃, ṽ)− J(t, v) = O5

(
v−2
)
.

We then claim that

J̄ − J̃ =
1

2
J ( ˙̀+ − ˙̀−)

[
t̄v̄(1−

˙̀+

v̄
)− `0

]
+(13)

+
1

4
J

῭+ − ῭−

v̄

[
(t̄v̄ − `0)2 − 1

3
`2

0

]
+O5

(
v̄−2
)
.

In fact notice that

῭(t̄) = ῭+ +O
(
ṽ−1
)

῭(t̃) = ῭− +O
(
ṽ−1
)

˙̀(t̄) = ˙̀+ + ῭+t̄+O
(
ṽ−2
)

˙̀(t̃) = ˙̀− + ῭−t̃+O
(
ṽ−2
)

`(t̄) = `0 + ˙̀+t̄+
1

2
῭+t̄2 +O

(
ṽ−3
)

`(t̃) = `0 + ˙̀−t̃+
1

2
῭−t̃2 +O

(
ṽ−3
)
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and moreover

t̃ = t̄− 2`0

ṽ
+

˙̀+ + ˙̀−

ṽ
t̄− 2`0

˙̀−

ṽ2
+O

(
v−3
)

v̄ = ṽ − 2 ˙̀(t̄).(14)

By the definition of J we thus obtain

J̄ − J̃ =
1

2
J
[
(`(t̄)− `(t̃))ṽ+

− (`(t̄) ˙̀(t̄)) + `(t̃) ˙̀(t̃)+

+
1

3

`(t̄)῭(t̄)− `(t̃)῭(t̃)

ṽ

]
+O5

(
ṽ−2
)

from which (13) follows by a straightforward computation. Notice that
by definition we have

2J −1J̄ = v̄`0 + ˙̀+v̄t̄+ `0
˙̀+ +O

(
v̄−1
)

2J −1J̃ = ṽ`0 + ˙̀−ṽt̃+ `0
˙̀− +O

(
ṽ−1
)
.

Next, by definition of ϑ

t̄ = J `2
0ϑ̄(1 + J `0

˙̀+ϑ̄) +O
(
v−2
)

from which we obtain(
t̄v̄(1 + ˙̀+/v̄)− `0

)
= 2`0(τ̄ − 1/2) +O

(
v−2
)
.

Therefore we can rewrite J̄ as follows

J̄ = J + ∆(τ̄ − 1/2) +
∆1

J
((τ̄ − 1/2)2 − 1/12) +O5

(
J−2
)
.

Using estimate (12) we thus conclude that

I(t̄, v̄)− I(t, v) = I(t̄, v̄) +O5

(
I−2
)
.

We now prove that

(15) τ̄ = τ − J mod 1.

By Lemma 2.2 and definition we have

J̃ ϑ̃ = τ − J − 1 J̄ ϑ̄ = τ̄ .

On the other hand, using the definition of ϑ and the approximate ex-
pressions for J given above, we obtain

J̃ ϑ̃ =
ṽ + ˙̀−

2`0

t̃+O5

(
J−2
)

J̄ ϑ̄ =
v̄ + ˙̀+

2`0

t̄+O5

(
J−2
)
.

From the last equation we obtain, using (14), that

J̄ ϑ̄ = J̃ ϑ̃+ 1 +O5

(
J−2
)
.

Now (15) follows from (12). �
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3. Hyperbolic case. Properties of the limiting map

The proof of ergodicity of the map F̃ has been first given in [32].
Stronger statistical properties claimed by Theorem 2 follow from the
following general result. Let G be a piecewise linear hyperbolic auto-
morphism of T2 and denote by S+ and S− the discontinuity curves of
G−1 and G, respectively; let S = S− ∪ S+. For any positive n ∈ N let
Sn = Gn−1S+ and S−n = G−(n−1)S−; assume for convenience S0 = ∅;
let S(n) =

⋃n
k=−n Sk.

Proposition 3.1 (Chernov, [11]). Assume:

(a) Si ∩ Sj is a finite set of isolated points if i 6= j;
(b) S is everywhere transversal to the invariant stable and unstable

directions;
(c) for every n ≥ 1, the number of components of S(n) meeting at a

single point is bounded by Kn for some constant K;

then G is ergodic, mixing and enjoys exponential decay of correlations
for Hölder observables.

Proof of Theorem 2. If Tr(A) > 2 then the toral sawtooth map F̃ is a
piecewise linear hyperbolic automorphism of T2. We recall the explicit
formula:

F̃ : (τ, I) 7→ (τ − I mod 1, I + ∆((τ − I mod 1)− 1/2)).

Thus it is easy to check that S− is given by the diagonal circle τ = I
and S+ is given by the vertical circle τ = 0. It is then a simple linear
algebra computation to prove that the stable and unstable slopes are
given by the solution of the quadratic equation h2−∆h+ ∆ = 0; thus
we immediately obtain item (b) in the hypotheses of Proposition 3.1.

Since dF̃ is constant at any point where it can be defined, the n-th
image of any line segment is a finite disjoint union of line segments
parallel to each other; hence each point p ∈ T2 can meet at most two
of such segments, which proves item (c). Finally, unless the initial
line segment is aligned to an invariant direction (stable or unstable),
the slopes of line segments belonging to images at different times are
different, which proves item (a) and concludes the proof. �

4. Elliptic case. Growth of energy.

Proof of Theorem 3. In order to prove item (a) we will prove that for
each v̄ sufficiently large there exists a stable periodic point (t∗, v∗) ∈ R
whose orbit satisfies condition (6); stability of the fixed point then
implies that (6) holds for any initial condition (t0, v0) in a small ball

around (t∗, v∗). We already noticed that the point (τ̂ , Ĵ) is a stable
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fixed point of the cylinder sawtooth map F̂ if τ̂ = 1/2 and Ĵ ∈ Z.
In order to prove existence of a stable fixed point of the first return
map F we would need to prove that the fixed point of F̂ satisfies the
non-degenerate twist condition. However, since F̂ is piecewise linear,
we actually need to consider the first return map F as a O (J−2) per-
turbation of the map F̄ = F̂ + F1 and check that F̄ satisfies the twist
condition. Since the perturbation term is small up to derivatives of
sufficiently high order, we can conclude.

Fix once and for all Ĵ ∈ N such that

(16) |J(0, v̄)− Ĵ | ≤ 2.

Let λ̂ = exp(iθ̂) be the multiplier at the fixed point (τ̂ , Ĵ) of F̂ .

Since ∆ ∈ (0, 4) we have λ̂ 6= 1; then F̄ will have a fixed point close

to (τ̂ , Ĵ) that we denote by (τ̄ , J̄); introduce the parameter ε = ∆1/Ĵ ;

by inspection is is easy to see J̄ = Ĵ and τ̄ = τ̂ + ε/(12∆) + O (ε2).
Introduce coordinates (σ, J) in a neighborhood of the fixed point (τ̄ , J̄)

such that (τ, J) = (τ̄ + σ, Ĵ + J). The expression for dF̄ in these new
coordinates is:

dF̄ (σ, J) =

(
1 −1

κ+ εσ 1− κ− εσ

)
where κ = ∆ + ε2/(6∆); denote by λ̄ = exp(iθ̄) the multiplier of the
map F̄ at (τ̄ , J̄): it is immediate to check that

(17) cos θ̄ = cos θ̂ − ε2/(12∆).

In order to check the twist condition we perform a complex change of
variables (σ, J) 7→ (z, z̄) such that the map can be expressed as follows

F̄ : z 7→ z + λz + A3z
2 + A4zz̄ + A5z̄

2.

Then (see e.g. [14]) we need to ensure that:

Υ = 3|A3|2
λ̄+ 1

λ̄− 1
+ |A5|2

λ̄3 + 1

λ̄3 − 1
6= 0;

Notice that from the fact that F̄ is symplectic we obtain that |A3|2 =
|A5|2; thus there are two possibilities for the twist condition to fail:
either A3 = A5 = 0 or λ̄ solves the equation

(18) 3
λ̄+ 1

λ̄− 1
+
λ̄3 + 1

λ̄3 − 1
= 0.

It is easy to check that the above condition is given by either θ̄ = 0
or cos θ̄ = −1/4. By inspection of (17) it appears that, for any value

of θ̂, there exist at most two values of ε for which the above condition
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holds. On the other hand, by definition, ε = ∆1/Ĵ , and Ĵ in (16) could
be chosen among 4 possibilities. Consequently, we can assume without
loss of generality that (18) does not hold. Therefore, we just need to
check that A3 6= 0. From elementary linear algebra we find that

z = σ + (1− λ)J, z = σ + (1− λ̄)J.

Changing variables we obtain

A3 = − λ− 1

(λ− λ̄)2
ε A4 = −1− λ− λ̄

λ− λ̄
ε A5 =

λ̄− 1

(λ− λ̄)2
ε

which implies that |A3| 6= 0 and concludes the proof of item (a).
The proof of item (b) is analogous to the proof of the corresponding

result obtained in [17], Section 3, and will therefore be omitted. �

5. Hyperbolic case. Measure of accelerating orbits.

Note that part (a) of Theorem 4 follows from part (b), however
since the proof of part (b) is rather involved we give a direct proof
in this section. We expect Lemma 5.1 below to be useful for a wide
range of mechanical systems. In particular, Theorem 4(a) is a direct
consequence of Theorem 2 and Lemma 5.1.

Let X be a Borel space and Y be a subset of X × N containing
{(x,m) : m ≥ m̄} for some m̄. Let Φ : Y → Y be the map

Φ(x,m) = (φ(x,m),m+ γ(x,m)).

Assume that Φ is asymptotically periodic in the following sense. Denote
Tk(x,m) = (x,m + k) and consider Ψk = T−1

k ΦTk. Assume that there
exist a map ψ : X → X preserving a probability measure µ, and a
function γ : X → Z such that for each M for each function h supported
on X × [0,M ] and each l we have

(19) ||h ◦Ψl
k − h ◦Ψl||L2(µ̃) → 0 where Ψ(x,m) = (ψ(x),m+ γ(x))

and µ̃ is a product of µ and a counting measure on Z.Denote (xn,mn) =
Φn(x0,m0) and let

E = {(x0,m0) : mn → +∞}.

Lemma 5.1. Assume that

(i) ψ is ergodic with respect to µ;
(ii)

∫
X
γ(x)dµ(x) = 0;

(iii) Φ preserves a measure ν̃ with bounded density with respect to µ̃;
(iv) ||γ(x,m)||L∞ ≤ K.

Then ν̃(E) = 0.
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Proof. By [1] we know that conditions (i) and (ii) imply that Ψ : X ×
Z → X × Z is conservative. That is for each subset Ȳ of finite µ̃
measure the Poincare map Ψ̂ : Ȳ → Ȳ is defined almost everywhere.
Let Ȳ = X × [0, K + 1] where K is the constant from condition (iv).

By Rohlin Lemma applied to Ψ̂ for each ε there exists a set Ωε ⊂ Ȳ
and a number Lε such that

µ̃(Ωε) < ε and µ̃((x,m) : Ψ̂l(x,m) 6∈ Ωε for 0 ≤ l ≤ Lε) < ε.

In view of (19) and condition (iii) there exists a constant C (inde-
pendent of ε) and a number k(ε) such that for k ≥ k(ε) we have
ν̃(Ω̄k,ε) < Cε where

Ω̄k,ε = {(x,m) ∈ TkȲ : Φl 6∈ TkΩε for l ∈ N}.

Let

Ω =
⋃
n∈N

(
Tk(1/n2)Ω1/n2

⋃
Ω̄k(1/n2),(1/n2)

)
.

Note that ν̃(Ω) < ∞. On the other hand if (x,m) ∈ E then, due
to condition (iv), its orbit Orb(x,m) visits TkȲ for all k except for
finitely many k. Hence Orb(x,m)∩ (Ω∩E) 6= ∅. Accordingly it suffices
to show that ν̃(Ω ∩ E) = 0. However, by the foregoing discussion, the

first return map Φ̂ : (Ω ∩ E) → (Ω ∩ E) is defined almost everywhere
and by Poincare recurrence theorem for almost all (x,m) ∈ Ω ∩ E we
have Orb(x,m)∩X ×{m} 6= ∅. Thus for almost all points in Ω∩E we
have (x,m) 6∈ E. Therefore ν(Ω ∩ E) = 0 as claimed. �

6. Hyperbolic case. Time of deceleration.

6.1. Plan of the proof. Here we prove Theorem 4(b). The argument
of this section has many similarities with the arguments in [9, 16, 18]
so we just indicate the key steps.

The proof relies on the notion of standard pair. A standard pair is
a pair ` = (γ, ρ) there γ is a curve such that |γ| < 1 where |γ| denotes
the length of γ, γ′ belongs to an unstable cone, |γ′′| ≤ K1, and ρ is a
probability density on γ satisfying || ln ρ||C1(γ) ≤ K2. We let |`| denote
the length of γ. We denote by E` the expectation with respect to the
standard pair

E`(A) =

∫
γ

A(x)ρ(x)dx

and by P` the associated probability measure, that is, P`(Ω) = E`(1Ω).
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An easy computation shows that if I is sufficiently large on γ then
the standard pairs are invariant by the first return map F, that is

E`(A ◦ F n) =
∑
j

cjE`j(A)

where
∑

j cj = 1 and `j are standard pairs. We need to know that

most of γj in this decomposition are long. To this end let rn(x) be the
distance from xn to the boundary of the component γj containing xn.

Lemma 6.1 (Growth lemma).

(a) There exist constants C > 0 and θ < 1 such that

P`(rn(x) < ε) ≤ Cε+ P`(r0(x) < εθn).

(b) There exists a constant ε0 such that if n0 > K| ln |γ|| then

P`(rn(x) < ε0 for n = n0, . . . , n0 + k) ≤ Cθk.

The Growth Lemma is the key element of proving exponential mixing

for F̃ (see [12, 10]) and the argument used to prove the Growth Lemma

for F̃ shows that this property is also valid for small perturbations of

F̃ .
Given a point x let Ta be the first time In < a if I0 > a and be the

first time In > a if I0 < a. Let Ta,b be the first time then either In < a
or In > b.

The proof of part (b) of Theorem 4 depends on two propositions. The
first one is an extended version of Theorem 5. It will allow to handle
large velocities. The second one gives an a priori bounded needed to
handle small velocities.

Fix 0 < a < 1 < b. Denote

(20) D2 =
∞∑

n=−∞

∫∫
T2

A(x)A(Fnx)dx

where F = G ◦ T∆ and G and T∆ are defined by (5).

Proposition 6.2. Let x be distributed according to a standard pair `
such that I ∼ I0 on ` and |`| > I−100

0 . Then

(a) The process

BI0(t) =
Imin(I20 t,TaI0,bI0 )

I0

converges to the Brownian Motion with zero mean and variance
D2t which is started from 1 and is stopped when it reaches either a
or b;

(b) There exists δ > 0 such that |E`(ITaI0,bI0 )− I0| ≤ CI1−δ
0 ;
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(c) There exists θ < 1 such that P`(TaI0,bI0 > kI2
0 ) ≤ max(θk, I−100

0 );
(d) Let T ∗a,b = min(TaI0,bI0 , I

3
0 ). Then

P`(rT ∗a,b(x) < ε) ≤ CI3
0ε.

Proposition 6.3. Given ε > 0 there exists K(ε) > 0 such that if
|`| > I−100

0 then
P`(TC > K(ε)I2

0 ) ≤ ε.

Note that Proposition 6.2 implies that

P`(TδI0 ≥ tI2
0 )→ P(TBδ ≥ t)

where TBδ denotes the first time the Brownian Motion from Proposition
6.2 reaches δ. Indeed

|P`(TδI0 ≥ tI2
0 )− P`(TδI0 ≥ tI2

0 and TδI0 ≤ TAI0)| ≤ P`(TδI0 ≥ TAI0).

By Proposition 6.2 the RHS can be made as small as we wish by taking
A large. On the other hand by Proposition 6.2

P`(TδI0 ≥ tI2
0 and TδI0 ≤ TAI0)→ P`(TBδ ≥ t and TBδ ≤ TBA )

and the last expression can be made as close to P(TBδ ≥ t) as we wish
by taking A large.

Next note that it is enough to prove Theorems 4(b) and 5 with v
replaced by I. Indeed, in view of (12), (9) and (3), we have

(21) I ≈ J `(0)

2
v

which shows that v can be replaced by I in Theorem 5. Also (21) allows
us to squeeze the first time v goes below C between the time I goes
below C1 and the time I goes below C2 and, in view of Proposition 6.3,
the times to go below C1 and C2 satisfy the same estimates.

We are now ready to derive part (b) of Theorem 4 from Propositions
6.2 and 6.3.

We have

P`(TC ≤ tI2
0 ) ≤ P`(TδI0 ≤ tI2

0 )→ P(TBδ ≤ t)

and the last expression can be made as close to P(TB0 ≤ t) as we wish
by taking δ small.

Conversely

P`(TC ≥ tI2
0 ) ≤ P`(TδI0 ≥ (t−K(ε)δ2)I2

0 ) + P`(TC(xTδI0 ) ≥ K(ε)δ2I2
0 )

where K(ε) is given by Proposition 6.3. The first term can be made
as close to P(TB0 ≥ t) as we wish by taking small δ. To estimate the
second term note that

P`(TC(xTδI0 ) ≥ K(ε)δI2
0 )
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= P(TC(xTδI0 ) ≥ K(ε)δ2I2
0 and rTδI0 (x) < (δI0)−100)

+P(TC(xTδI0 ) ≥ K(ε)δ2I2
0 and rTδI0 (x) ≥ (δI0)−100) = I + II.

Next
I ≤ P(rTδI0 (x) < (δI0)−100)) = O(I−97

0 )

by Proposition 6.2(d) and

II = P(rTδI0 (x) ≥ I−100
0 ))P`(TC(xTδI0 ) ≥ K(ε)δ2I2

0 |rTδI0 ≥ (δI0)−100))

≤ P`(TC(xTδI0 ) ≥ K(ε)δ2I2
0 |rTδI0 ≥ (δI0)−100)) ≤ ε

where the last inequality follows by definition of K(ε).
This completes the derivation of Theorem 4(b) from Propositions 6.2

and 6.3. It remains to establish the propositions. Proposition 6.2 is
proven in section 6.2 and Proposition 6.3 is proven in section 6.3.

6.2. Central Limit Theorem. Let

F †I (I, τ) = F̂ (I, τ) + [I]−1(0,∆1((τ̄ − 1/2)2 − 1/12)).

Note that F †I approximates the first return map F up to error O(I−2)

while the cylinder sawtooth map F̂ only approximates F up to error
O(I−1). Next consider a mapping of the T2 given by

F̄N(I, τ) = F̃ (I, τ) +N−1(0,∆1((τ̄ − 1/2)2 − 1/12)).

Then F †I locally covers F̄[I]. Also F̄N preserves the measure dIdτ. The
proof of Theorem 2 shows that F̄N is exponentially mixing. In partic-
ular, if |`| ≥ ε0 then

E`(A ◦ F̄ n
N) =

∫∫
T2

AdIdτ +O(θn).

We use this property to establish the following estimate

Lemma 6.4 (Averaging Lemma). Suppose that |`| > I−100
0 . Let n =

K ln I0 where K is sufficiently large. Let A be a piecewise smooth pe-
riodic function.

(a) E`(A ◦ F n) =
∫∫

T2 AdIdτ +O(I−2+δ
0 );

(b) There is L > 0 such that

E`(A(F nx)A(F n+kx)) =

∫∫
T2

A(x)A(F̃ kx)dIdτ +O(I−β0 Lk).

The proof of this lemma is similar to the proof of Proposition 3.3 in
[8]. The proof of part (a) proceeds in two steps. First, if |`| > ε0 then
we use the shadowing argument to show that

(22) E`(A ◦ F n) = E`(A ◦ F̄ n
[I0]) +O(I−2+δ

0 )



PIECEWISE SMOOTH FERMI-ULAM MODELS 21

and then use exponential mixing of F̄[I0]. In the general case we find a

function n(x) < K
2

ln I0 such that

E`(A(F n(x)x)) =
∑
j

cjE`j(A)

and
∑
|`j |≤ε0 cj ≤ I−100

0 and then apply (22) to all long components `j.

To prove part (b) we first use the foregoing argument to show that

E`(A(F nx)A(F n+kx)) =

∫∫
T2

A(x)A(F kx)dIdτ +O(I2−δ
0 Lk)

(the factor Lk accounts for the exponential growth of the Lipshitz norm

of A(A ◦ F k)) and then use the shadowing of F -orbits by F̂ -orbits to
show that∫∫

T2

A(x)A(F kx)dIdτ =

∫∫
T2

A(x)A(F̃ kx)dIdτ +O(I−β0 ).

It is shown in [9], Appendix A that Lemmas 6.1 and 6.4 imply parts
(a) and (b) of Proposition 6.2. We note that the error bound

O(I−(2−δ))� I−1

is needed to compute the drift of the limiting process; to compute its

variance it is enough that F = F̂ +O(I−1) and that F̂ covers F̃ which
satisfies the CLT in the sense that

In√
n
⇒ Normal(0, D2)

where the diffusion coefficient D2 is given by the Green-Kubo formula

(20). (In fact (20) is the Green-Kubo formula for F = GF̃G−1 but F

and F̃ clearly have the same transport coefficients.)
Next, part (a) of Proposition 6.2 implies part (c) with k = 1, that

is, there is θ < 1 such that

(23) E`(TaI0,bI0 < I2
0 ) ≤ θ.

For k > 1 we argue by induction applying (23) to all long components

of F (k−1)I20γ which have not escaped by the time (k − 1)I2
0 . Finally

P`(T ∗a,b ≤ ε) ≤
I30∑

m=K ln I0

P`(rm(x) < ε)

so part (d) follows from part (a) of Lemma 6.1.
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6.3. A priori bounds for the return time. Let σ0 be the first time
when |Iσ − 2m0| ≤ ∆. For j ≥ 1 we define σj inductively as follows.
Assume that σj−1 was already defined so that |Iσj−1

− 2mj−1| ≤ ∆.
Let σ̂j be the first time after σj−1 when either |Iσ − 2mj+1| ≤ ∆ or
|Iσ − 2mj−1| ≤ ∆. Let σj = min(σ̂j, σj−1 + 23mj−1). If either σ̂j ≥
σj−1 + 23mj−1 or rσj < 2−100mj or 2mj < Ī then we stop otherwise we
continue and proceed to define σj+1. If we stop we let j∗ = j be the
stopping moment. If we stop for the first or the second reason we say
that we have an emergency stop, otherwise we have a normal stop. By
the discussion at the end of section 6.1 the lower cutoff in Proposition
6.3 is not important so to prove the proposition it is enough to control
the first time when In is close to 2m̄ with 2m̄ < Ī. In other words we
need to control σj∗ , especially if it is a normal stop. Also since σ0 is
unlikely to be large by part (c) of Proposition 6.2 (in fact, part (a)
would also be sufficient for our purposes) we need to control σj∗ − σ0.

Let Fj be the σ-algebra generated by (m0, σ0), · · · , (mj, σj). Propo-
sition 6.2 implies that

P`(mj+1 = mj + 1|Fj) =
1

3
+ o(1), Ī →∞

P`(mj+1 = mj − 1|Fj) =
2

3
+ o(1), Ī →∞

P`(σj+1 is an emergency stop|Fj) = O
(
2−97mj

)
.

Let ξj be a random walk with ξ0 = m0 and

P(ξj+1 = ξj + 1) = 0.4, P(ξj+1 = ξj − 1) = 0.6

Let Λj be iid random variables independent of ξs such that

P(Λj = k) =

{
Kθk if k ≥ k0

0 otherwise

where k0 is sufficiently large and K = 1−θ
θk0
. Let Λ̄j = min(22ξjΛj, 2

3ξj).
Proposition 6.2 allows us to construct a coupling such that for j ≤ j∗

mj ≤ ξj, σj ≤ σ0 +

j−1∑
m=0

Λ̄m.

Now a standard computation with random walks shows that Propo-
sition 6.3 is valid for the random walk itself. Consequently, given ε,
there exists K(ε) such that

P`
(
σj∗ − σ0 ≥ 2m0

K(ε)

2

)
≤ ε

10
.
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Unfortunately j∗ need not to be a normal stop, it can be an emergency
stop as well. To deal with this problem let

pk = P`(j∗ is an emergency stop and mj∗ = k).

Denote Ωkl = {j∗ is an emergency stop, mj∗ = k and j∗ is the l-th visit
to k}, Vkl = {k is visited at least l times }. Then

pk ≤
∞∑
l=1

P`(Ωkl) =
∞∑
l=1

P`(Vkl)P`(Ωkl|Vkl).

By Proposition 6.2(d)

P`(Ωkl|Vkl) ≤ C2−97k

while the existence of the coupling with the random walk discussed
above implies that

P`(Vkl) ≤ θl.

Therefore

(24) pk ≤ C2−97k.

Accordingly, by choosing Ī large enough we can make the probability
of an emergency stop less than 0.1. However we can not decrease that
probability below ε/2 if Ī is fixed, so more work is needed.

First, we note that P`(mj∗ > m0/2) = O(I−50
0 ) so it can be neglected.

Secondly, an argument similar to one leading to (24) shows that

P`(rσj∗ < I−100
0 ) = O(I−50

0 ).

Next, if rσj∗ > I−100
0 , mj∗ < m0/2 and j∗ is an emergency stop let σ̄ be

the first time after σj∗ such that rσ̄(x) ≥ ε0. By the Growth Lemma

P`(σ̄ − σj∗ > K ln I0) ≤ I−100
0

if K is large enough.
If σ̄−σj∗ < K ln I0 then we can repeat the procedure described above

with x replaced by xσ̄. If the second stop is a normal one we are done,
otherwise we try the third time and so on. We have

P`(First k stops are emergency stops) ≤ (0.1)k

which can be made less than ε/10 if k is large enough. Next we have

P`(k∗ < k, TĪ ≤ K(ε)I2
0 ) ≤ ε

5

since the first try takes less than K(ε)
2
I2

0 with probability greater than
1 − ε

10
and all other tries take time O(I0) since with overwhelming

probability we start those tries below level O(
√
I0). This concludes the

proof of Proposition 6.3.
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7. Hyperbolic case. Dimension of accelerating orbits.

Proof of Theorem 6. Foliate the phase space by line segments parallel
to the unstable direction of the the cylinder sawtooth map F̂ . It suffices
to show that, given s < 1 there exists Ī such that if Γ is a leaf of our
foliation and I ≥ Ī on γ then HD(Γ ∩ E) > s.

By Theorem 2 the limiting map satisfies CLT. That is, for any un-
stable curve γ, if the initial conditions are distributed uniformly on γ

then În−I0√
n

converges to a normal distribution with zero mean and some

variance D (here we are using the notation F̂ n(τ0, I0) = (τ̂n, În)). In
particular there exists a constant κ > 0 such that, for sufficiently large
n0, we have

(25) P`(În0 − I0 > κ
√
n0) >

1

3

where ` denotes the standard pair (γ,Const). Moreover, given δ < δ̄, we
can find n0 so that (25) holds uniformly for all curves of length between

δ and δ̄. Let r̂n(x) denote the distance from F̂ nx to the boundary of the

component of F̂ nΓ containing F̂ nx. By the Growth Lemma (Lemma
6.1) if δ is sufficiently small than for sufficiently large n0 we have

P`(r̂n0(x) < 3δ) <
1

10

provided that γ is longer than δ. By Theorem 1 the cylinder sawtooth
map F̂ well approximates the first return map F. Therefore we can
take Ī so large that if I0 > Ī on γ then

P`(In0 − I0 > κ
√
n0 and rn0(x) > 3δ) ≥ 1

5

where F (I0, τ0) = (In, τn) and rn(x), as before, denotes the distance
from F nx to the boundary of the component of F nΓ containing F nx.
Note that any curve of length greater than 3δ can be decomposed
as a disjoint union of curves with lengths between δ and 2δ. Hence
F n0γ ⊃

⋃
j γj where on each γj the action grew up by at least κn0 and

the total measure of
⋃
j F
−n0γj is at least mes(γ)/5. Next, suppose that

δ ≤ |γ| ≤ 2δ. Then we have |F−n0γj| > 1
2(λ+ε)n0

|γ| and the number of

curves is at least 1
10

(λ− ε)n0 where λ is the expansion coefficient of F̂
and ε can be made as small as we wish by taking Ī large.

Continuing this procedure inductively we construct a Cantor set in-
side Γ such that each interval has at least 1

10
(λ − ε)n0 children and

ratios of the lengths of children to the length of the parent are at least
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1
2(λ+ε)n0

. It follows that the resulting Cantor set has dimension at least

ln
(

1
10

(λ− ε)n0
)

ln (2(λ+ ε)n0)
.

This number can be made as close to 1 as we wish by taking n0 large
and then taking Ī large to make ε as small as needed. �

Remark 7.1. The Cantor set above is constructed by taking as chil-
dren the sub-interval where energy grows by κ

√
n0. However, the same

estimate remains valid if we take sometimes children with increasing
energy and sometimes children with decreasing energy as long as In al-
ways stays above Ī . For example we can require that the energy grows
until it reaches 2Ī then decays until it falls below 3Ī

2
then grows above

3Ī then decays below 3Ī
2

then grows above 4Ī etc. Then the argument
presented above shows that the set of oscillatory orbits has full Haus-
dorff dimension. Finally a similar method allows to construct orbits
whose velocity oscillates between Ī and 2Ī . The dimension of the set of
such orbits can be made as close to 2 as we wish by taking Ī sufficiently
large.

8. Conclusions.

In this paper we considered piecewise smooth Fermi-Ulam ping pong
systems. Near infinity this system can be represented as a small pertur-
bation of the identity map. Small smooth perturbations of the identity
were studied in the context of inner [26] and outer ([19]) billiards. In
this case, after a suitable change of coordinates, the problem can be
reduced to the study of small perturbations of the map

τn+1 = τn + ω(Jn), Jn+1 = Jn.

This map is integrable so the above mentioned problems fall in the
context of small smooth perturbations of integrable systems (i.e. KAM
theory). In the case of piecewise smooth perturbations the normal form
also exists: it is a piecewise linear map of a torus. However in contrast
with the smooth case the dynamics of the limiting map is much more
complicated and, in fact, it is not completely understood, especially
then the linear part is not hyperbolic.

In this paper we described for a simple model example:

(i) how to obtain the limiting map and
(ii) how the properties of the limiting map can be translated to results

about the diffusion for the actual systems.
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Figure 3. Phase portrait of the region T × [12, 16] for
selected orbits of the map f where `(t) = 1−0.12 sin(πt).
Notice the similarity of the phase portrait in Figure 2 in
the elliptic case and the restriction to the shaded area of
the phase portrait for the map f . The shaded area in
fact is a fundamental domain of the map F̂

However, there are plenty of open question on both stages of this pro-
cedure. For example, for piecewise smooth Fermi-Ulam ping pongs it
is unknown if there is a positive measure set of oscillatory orbits, in
fact no such orbit is known for ∆ ∈ (0, 4). This demonstrates that
more effort is needed in order to develop a general theory of piecewise
smooth near integrable systems.
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(Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy.

E-mail address: desimoi@mat.uniroma2.it

Dmitry Dolgopyat, Department of Mathematics, University of Mary-
land, 4417 Mathematics Bldg, College Park, MD 20742, USA

E-mail address: dmitry@math.umd.edu
URL: http://www.math.umd.edu/~dmitry


