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Abstract. We consider expanding maps of the circle with an almost neutral fixed point
c. In this setting the ergodic averages of a smooth observable A satisfy the Central Limit
Theorem. If A(c) = 0 we show that the expectation and the variance behave as the
square root of the multiplier of c times rapidly oscillating functions of parameters.

1. Introduction.

Several authors investigated the regularity of parameter dependence of various dynamical
characteristics (see [11, 12, 3, 4, 14, 15, 16, 17, 6, 5, 8, 7, 9], etc.). In general one can
obtain nice dependence if the system is uniformly (partially) hyperbolic for all values of the
parameters. However, for general systems one should expect much less regularity of the
dynamical invariants. Therefore an important problem is to develop methods for obtaining
optimal regularity in the case when the invariants are not smooth.

Here we investigate a much simpler question. Recall that a map F of a compact Rie-
mannian manifold is called expanding if there are constants C > 0 and λ > 1 such that
for any tangent vector v

||dFn(v)|| ≥ Cλn||v||
(equivalently, F locally increases distances with respect to some Riemannian metric). We
consider a one parameter family fε of expanding maps of S1, ε > 0, which loses its hyper-
bolicity at ε = 0 via a saddle-node bifurcation and study how the mean and the variance
in the Central Limit Theorem change when hyperbolicity detiorates. Let us give a more
precise description of families we consider.

Let f : S1 → S1 be a C∞ map with the following properties.
(A) There exists a partition of the circle into intervals S1 =

⋃p
j=1 Qj such that f : Qj →

S1 is one-to-one, j = 1, . . . , p.
(B) There is a constant λ > 1 such that f ′(x) ≥ λ for all x ∈

⋃p
j=2 Qj .

(C) Q1 = [d, b0] where d is a hyperbolic fixed point.
(D) Inside Q1 we have f(x) > x except for a neutral fixed point c which is non-degenerate

in the sense that

(1) α :=
1

2

d2f

dx2
(c) > 0.

Let a0 be the leftmost point in Q1 where f ′(a) = 1 (observe that f ′ ≥ λ on ∂Q1 due to
(B) and that f ′(x) < 1 for x immediately to the left of c due to (C). Let a1 = f(a0), Ik =
fk([a0, a1]), (k can be either positive or negative), b−1 = f−1b0, Jk = f−k[b−1, b0]. (Here
and below we use f−1 to denote the branch of the inverse of f with range [d, b0].) Given a
segment I, let HI denote the increasing affine map I → [0, 1]. For x ∈ [a0, a1] set

g1(x) = lim
k→∞

HIk
fk(x)

1
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Figure 1. fε restricted to Q1 for (A) large positive ε, (B) positive ε near 0,
(C) ε = 0. As the title indicates we are interested in what happens slightly
before the tangency appears (Figure 1(B)).

(this limit exists because for all r the Cr distance between HIk
fk and HIk+1

fk+1 is less

than C
k2 by Lemma 2 below). Extend g1 to (d, c) by setting g1(x) = g1f

−k(x) for x ∈ Ik.
Similarly for x ∈ [b−1, b0] set

g2 = lim
k→∞

HJk
f−k.

Our last condition on f reads

(E) inf
x∈(d,c)

(g′1(x))max
x∈J0

(g′2(x)) > 1.

Let {fε} be a one parameter family such that f0 = f which is non-degenerate in the sense
that d

dε |ε=0fε(c) 6= 0. We normalize fε by requiring that d
dε(fε(c)) = 1, for ε near 0. Thus

(F ) fε(c+h) = c+h+ε+αh2+o(ε+h2).

Let us explain the meaning of the above conditions. (A) and (C) imply that f has
a Markov partition consisting of d and its preimages. Condition (B) implies that f is
expanding outside of Q1. By (D) for small ε most points spend most of the time near c and
so if they pick up a strong contraction where. Hence under conditions (A)–(D) and (F) fε

may fail to be expanding in spite of (B). Condition (E) ensures overall expansion.

Proposition 1. If {fε} satisfies (A)–(F) then fε is expanding for small positive ε.

Proposition 1 implies that fε has an absolutely continuous invariant measure µε. (fε, µε)
is exponentially mixing and satisfies the Central Limit Theorem. Namely, if A : S1 → R is
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Holder continuous then

mes

(

x ∈ S1 :

∑n−1
j=0 A(f j

ε x) − nµε(A)
√

Dε(A)n
≤ z

)

→ 1√
2π

∫ z

−∞
e−s2/2ds

where mes is Lebesgue measure on S1 and

D(A, fε) = µε(A
2) − (µε(A))2 + 2

∞
∑

j=1

[

µε(A(·)(A ◦ f j
ε )) − (µε(A))2

]

(this sum is finite because of the exponential mixing). Moreover by [12] if A is C∞ then the
maps ε → µε(A) and ε → Dε(A) are C∞ for ε > 0.

We say that a function φ : R
+ → R is weakly periodic if there exists a periodic function

φ0 and a function α(t) such that for all T

lim
t→∞

sup
s∈[t,t+T ]

|φ(s) − φ0(s − α(t))| = 0.

Theorem 1. If {fε} satisfies (A)–(F), then there are functionals ωi : C∞(S1, R)×R
+ → R,

i = 1, 2 weakly periodic in the second variable such that

µε(A) − A(c) ∼
√

εω1(
√

1/ε, A),

Dε(A) ∼
√

εω2(
√

1/ε, A).

(Here and below “∼“ means that the ratio of the left hand side to the right hand side
approaches 1 as ε ↘ 0.)

The factors
√

ε in the above asymptotics reflect the fact that a typical orbit spends
time of order

√
ε outside a small neighborhood of c. Indeed outside such a neighborhood a

point has a positive probability of hitting [d, c] and points from [d, c] quickly enter a small
neighborhood of c where they get stuck for time π/

√
αε (cf. Lemma 9). Observe that the

dependence of ω1 and ω2 on ε is quite irregular. Such a phenomenon is of course well known
for logistic maps (see e.g. [13]) but here we exhibit an example in hyperbolic setting.

Section 2 contains preliminary facts about f itself. In Section 3 we treat positive ε and
prove Theorem 1.

Acknowledgments. The first studies of parameter dependence of dynamical character-
istics were performed by Tolya Katok and his collaborators motivated by Katok’s entropy
rigidity conjecture. It is a pleasure to dedicate this work to Tolya on occasion of his 60th
birthday. I am grateful to Brian Hunt for explaining to me Mather’s invariant, to Omri
Sarig for explaining to me the dynamics of systems with indifferent fixed points, to Kolya
Chernov for discussions of similar problems in a different context and to Misha Brin for
reading carefully the preprint version of this paper and suggesting numerous improvements.
This work is partially supported by IPST, NSF and Sloan Foundation.

2. Tangency.

Here we collect some properties of f used in the proof of Theorem 1. In order to simplify
the computations below we assume from now on that A(c) = 0.

Let L =
⋃p

j=2 Qj be the union of the elements of the Markov partition not containing c.
We want to approximate the first return map Fε : L → L by a map F : L → L. The problem
is that for ε = 0, almost all points are eventually attracted to c so not all of them return
to L. Fix s ∈ [0, 1]. Let Rs(y) = y + s mod 1 be a rotation of [0, 1]. We define F̃s : L → L
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as follows. If the f -orbit of x ∈ L returns to L we let F̃sx be the point of the first return.
If not, then f(x) ∈ Im for some m (positive or negative). Let k1(δ) be the first moment k
when length(Ik) < δ. Let k2(δ) be the first moment when length(Jk) < δ. We define

(2)

F̃s(x) = limδ→0 fk2(δ)+1H−1
Jk2(δ)

RsHIk1(δ)
fk1(δ)−m+1(x)

= fg−1
2 Rsg1f(x).

We say that {F̃s} is the Mather family associated to {fε}. Constructions similar to this
are used in [1, 2, 10, 18]. We refer to these papers for a more detailed exposition of some
computations similar to the ones presented below.

Recall (1). Given x let xn = fnx, set tn(x) = αn + 1
|x−c| where α = 1

2
d2f
dx2 (c). Let

x−n = f−nx, where f−1 denotes the branch with range [d, b0]. We also let xn,ε = fn
ε x where

again n can be either positive or negative.

Lemma 2. If x ∈ [a0, c] then

xn = c − 1

tn(x)
+ ξn(x), where |ξn(x)| ≤ Const

ln tn(x)

t2n(x)
.

Proof. Consider the auxiliary equation

ż = −α(z2 + βz3).

Its solution z(t) satisfies

1

z
+ β ln

(

z + 1
β

z

)

= αt +
1

z(0)
+ β ln

(

z(0) + 1
β

z(0)

)

.

Thus, we have

(3)
1

z
=

[

αt +
1

z(0)

]

+ O

(

ln

(

αt +
1

z(0)

))

.

uniformly for β in a bounded interval. Let zn = c − xn. There are β1 and β2 such that zn

is between the time n maps of the vector fields

ż = −α(z2 + β1z
3) and ż = −α(z2 + β2z

3).

Now the result follows from (3). �

Corollary 3. If x ∈ [a0, c), then

n−1
∑

j=0

A(xj) = −A′(c) ln tn
α

+ A∗(x) + O

(

ln tn
t2n

)

,

where A∗(x) = ln |c−x|
α + O(1). Similarly if x ∈ (c, b0), then

n−1
∑

j=0

A(f−jx) =
A′(c) ln tn

α
+ A∗∗(x) + O

(

ln tn
t2n

)

,

where A∗∗(x) = − ln |x−c|
α + O(1).
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For x ∈ [d, a0] let m(x) denote the first m when xm ∈ [a0, a1]. Then

A+(x) :=

m(x)−1
∑

j=0

A(xj) =
| lnx|A(d)

ln f ′(d)
+ O(1)

Proof. The first part follows from Lemma 2 and the asymptotics A(xn) = A′(0)(xn − c) +
O((xn − c)2). To get the second part, apply the first part to f−1. To prove the last estimate
we observe that for x ∈ [a0, a1]

f−j(x) ∼ C(x)

(

1

f ′(d)

)j

since near d the map f is conjugates to x → d + f ′(d)(x − d). �

We now apply Corollary 3 to (fn)′. Suppose x ∈ [a0, c]. We have

ln(fn)′(x) − ln(fn−1)′(x) ∼ −2α(c − xn)

Thus by Corollary 3

ln(fn)′(x) ∼ −2

[

ln

(

n +
1

c − x

)

− ln
1

c − x

]

.

In other words we have

Corollary 4. There exists a constant K such that if x ∈ [a0, c] then

1

K
≤ (fn)′(x)(c − xn)2

(c − x)2
≤ K

and if x ∈ [c, b0] then

1

K
≤ (f−n)′(x)(x−n − c)2

(x − c)2
≤ K

Corollary 4 implies the following weak distortion bound: if x′, x′′ ∈ Ik then

1

Ĉ
≤ (fn)′(x′)

(fn)′(x′′)
≤ Ĉ

with Ĉ independent of k, n. We will strengthen this bound. We say that a family of piecewise
C2 maps {φα} has bounded distortion if there is a constant C such that for all x, α

(4) |φ′′
α(x)| ≤ C|φ′

α(x)|2.
Observe that (4) implies in particular that

|lnφ′
α(x′) − lnφ′

α(x′′)| ≤ C |φα(x′) − φα(x′′)|
which is a standard distortion bound. Also if {φα} has bounded distortion and is uniformly
expanding in the sense that there exists λ > 1 such that |φ′(α)| ≥ λ then the family consisting
of all compositions of maps from {φα} also has bounded distortion (with a different constant
C). When we say below that a family {Fσ} has bounded distortion we mean that (4) holds
uniformly for all x and σ.

For γ ∈ (0, 1), let Cγ(L) denote the space of Holder continuous functions with Holder
exponent γ on L and || · ||γ denote the norm on Cγ(L).
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Lemma 5. The family {F̃s}, s ∈ [0, 1], is uniformly expanding with bounded distortion.

Hence each F̃s has an absolutely continuous invariant measure νs, and there are constants
C > 0 and θ ∈ (0, 1) such that for A, B ∈ Cγ(L)

(5)

∣

∣

∣

∣

∫

A(F̃n
s x)B(x)dx − νs(A)

∫

B(x)dx

∣

∣

∣

∣

≤ C||A||Cγ ||B||Cγ θn.

Proof. Expansion follows from the the second line of (2) and (E).
To estimate distortion let x ∈ [a0, c], say x ∈ Im. Recall the first line of (2). We shall

check that (4) holds uniformly for δ > 0. Denote ∆s,δ = H−1
Jk2(δ)

◦ Rs ◦ HIk1
. Observe that

∆s,δ is affine, so ∆′′
s,δ = 0. We have

(6)
d2

dx2

(

fk2(δ)+1∆s,δf
k1(δ)−m+1

)

=

(fk2(δ)+1)′∆′(fk1(δ)−m+1)′′ + (fk2(δ)+1)′′
[

∆′(fk1(δ)−m+1)′
]2

.

Now,

fk2(δ)+1 = f ◦ fk2(δ) = f ◦
(

fk2(δ) ◦ H−1
Jk2(δ)

)

◦ HJk2(δ)
.

The expression in parenthesis is C2–close to g−1
2 . Thus

(7) |(fk2(δ)+1)′′| ≤ Const δ−2.

By Corollary 4

(8) (fk2(δ)+1)′ ≥ Const δ−1

Next, let us estimate (fk1−m+1)′′(x). Denote ξj(x) = (f j)′′(x). Then

ξj+1 ≤ ξj(1 − 2α(c − xj)) + Const[(f j)′(x)]2.

Observe that (f j)′(x) satisfies the corresponding homogenuous equation

(f j+1)′(x) = (f j)′(x)(1 − 2α(c − xj)).

Thus the Gronwall inequality, Corollary 4 and the fact that

(fk1(δ)−m+1)′(x) ≤ Const
δ

(c − x)2

by the definition of k1(δ) imply that

(9) ξk1(δ)−m+1(x) ≤ Const
δ

(c − x)4
.

Next, by Corollary 4

(10) (fk1(δ)−m+1)′(x) ≥ Const
δ

(c − x)2

Combining (6)–(10) we get
∣

∣

∣

∣

d2

dx2

(

fk2(δ)+1∆s,δf
k1(δ)−m+1

)

∣

∣

∣

∣

≤ Const

(c − x)4

On the other hand by Corollary 4
∣

∣

∣

∣

d

dx

(

fk2(δ)+1∆s,δf
k1(δ)−m+1

)

∣

∣

∣

∣

≥ Const

(c − x)2
.
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This proves the needed distortion estimate for x ∈ [a0, c]. For x ∈ [c, b0] say x ∈ Jm we
represent

fk2(δ)+1−m
ε (x) = fk2(δ)+1

ε (f−m
ε x)

and proceed as before. Finally for x ∈ [d, a0] the distortion bound follows from the distortion
estimates on [a0, a1] and the discussion preceding the statement of Lemma 5.

Mixing follows from expansion, distortion and the fact that the image of each continuity
interval is all of L (see e.g. [19]). �

3. Unfolding.

Here we prove Theorem 1. In order to simplify the computations below we assume that
fε|∂Qj

= f |∂Qj
= d, j = 1, . . . , p (this can be achieved by an ε-dependent coordinate change).

Recall that Fε denotes the first return to L.

Lemma 6. Fε are uniformly expanding with bounded distortion. Moreover (5) holds.

Observe that Lemma 6 implies Proposition 1 because the only way an orbit may fail to
return quickly to L is by spending a lot of time near d but for such orbits expansion is
obvious.

Proof. We begin with expansion. For a large R, divide the trajectory of a point x into three
intervals (some of which might be empty)

(1) before the first visit to [c − R
√

ε, c + R
√

ε].
(2) passage of [c − R

√
ε, c + R

√
ε].

(3) return to L.

To handle the derivative on interval (1) we let δn,ε =
dfn

ε

dx . Then

δn+1,ε = δn,ε (1 + 2α (xn,ε − c)) + O
(

ε + (xn,ε − c)2
)

.

Since (fn)′ are uniformly bounded on interval (1), we get by induction that xn,ε − xn =
O(εn). This gives

ln δn+1,ε − ln δn,ε ∼ 2α(xn − c) + O(εn2)

(the term O
(

ε + (xn,ε − c)2
)

gives a smaller contribution.) Since the main term does not
depend on ε we get

(11) (fn
ε )′ = (fn)′(1 + γ̃n)

where |γ̃n| can be made arbitrary small by choosing R sufficiently large. By considering f−1

we see that a similar estimate holds for interval (3). It remains to show that the derivative

on interval (2) is close to 1. Introduce yn =
xn,ε−c√

ε
. Then for |xn| ≤ R

√
ε we have

(12) yn+1 − yn =
√

ε(αy2
n + 1) + O(ε)

We now use the following standard fact.

Proposition 7. Suppose yn satisfy (12). Suppose that y0 be close to −R. Fix t < π
2
√

α
+

arctan(
√

α)R√
α

and let n = [t/
√

ε]. Then as ε → 0 the map y0 7→ yn converges in Cr to time t

map of

(13) ẏ = αy2 + 1
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This proposition shows that the derivative on interval (2) is converges to 1 (=the derivative
of time 2 arctan(

√
αR)/

√
α map of (13)). In view of (11) expansion now follows from Lemma

5.
The proof of the distortion estimate is now similar to the proof of Lemma 5 except that

now we have an extra term
√

ε3

(c−x)4 in the estimate of f ′′ (equation (6)) coming from the term

(fk2+1)′
∂2yn

∂y2
0

[(fk1−m)′]2

where n is the passage time from −R
√

ε to R
√

ε. However this does not spoil the main term.
Mixing follows as before. �

Let τε(x) denote the first return time to L and set Ã(x, ε) =
∑τε−1

j=0 A(f j
ε x). Let δ be a

small positive number.

Lemma 8.

Ã(x, ε) = A†(x, ε) + o(1) + σε(x)

where

A†(x, ε) = A(x) + A+(fx) + A∗(fm(x)x) + A∗∗(Fε)(x),

and mes(σε 6= 0) ≤ Constε1/2−δ. (Here A+ = 0 if f(x) 6∈ [d, a0], A∗ = 0 if fx 6∈ [d, c] and
A∗∗ = 0 if fx ∈ L.)

Proof. The proof is similar to the proof of Lemma 6. �

Define

τ̂ =
π√
α

1[d,c](fx)

Lemma 9. The difference between
√

ετε(x) and τ̂ (x) is uniformly small outside a set of
measure Constε1/2−δ.

Proof. The proof is similar to the proof of Lemma 6. The main contribution comes from
passage of [c−R

√
ε, c+R

√
ε]. which in view of Proposition 7 can be made as close to π√

α
as

we wish by choosing R large. At the same time
√

ε×the time spent outside of this interval
tends to 0 when we increase R. The set which we have to remove consists of points where
fε(x) ∈ [c − R

√
ε, c + R

√
ε] or fε(x) ∈ [d, d + (1/f ′(d))1/

√
ε]. �

Let al,ε = f l
εa0, b−k,ε = f−k

ε b0, Jε
k = [b−(k+1),ε, b−k,ε], and let j(ε) be the first j then

length(Jε
j ) ≤ ε. We now define s(ε) by waiting until al,ε hits Jε

j(ε) and rescaling between

the image point between [0, 1] using HJε
j(ε)

. Let νε be the absolutely continuous invariant

measure for Fε. Put

Â(x, s) = A(x) + A+(fx) + A∗(fm(x)x) + A∗∗(F̃s)(x).

Given observables A, B set

D(A, B, F∗) =

ν∗(AB) − ν∗(A)ν∗(B) +

∞
∑

j=1

[

ν∗(A(B ◦ F j
∗ )) + ν∗(B(A ◦ F j

∗ )) − 2ν∗(A)ν∗(B)
]

.
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Lemma 10.

(14) νε(Ã) ∼ νs(ε)(Â),

D(Ã, Fε) ∼ D(Â, F̃s(ε)),
√

ενε(τε) ∼ νs(ε)(τ̂ ),

εD(τε, Fε) ∼ D(τ̂ , F̃s(ε)),
√

εD(τε, Ã, Fε) ∼ D(τ̂ , Â).

Proof. Let us prove (14). Define a new norm ||| · |||. Let |||A||| = K if ||A||L1 ≤ K and given
ρ there is a function A(ρ) such that

||A − A(ρ)||L1 ≤ ε and ||A(ρ)||Cγ ≤ K

ρ4
.

It is easy to see from Corollary 3 and Lemma 8 and their proofs that |||Â(·, s)||| and |||Ã(·, ε)|||
are uniformly bounded. For example, to approximate Â(·, s) we set

(15) Uρ = [d, d + ρ]
⋃

[c − ρ, c + ρ],

and let Â(ρ)(x, s) = Â(x, s) for x 6∈ Uρ2 and define Â(ρ)(x, s) on the intervals (15) by
interpolating linearly between their endpoints. Then Corollary 2 implies that

||Â(·, s) − Â(ρ)(·, s)|| ≤ Const ρ2 ln ρ

and outside Uρ2 we have
∣

∣

∣

∣

d

dx
A(ρ)(·, s)

∣

∣

∣

∣

≤ Const(ρ2)−2 = Const ρ−4.

Let K = max(sup |||Â|||, sup |||Ã|||). By preceding estimates we know that both Fε and F̃s

are uniformly expanding and have bounded distortion.

Lemma 11. Uniformly with respect to the parameters

(16)

∣

∣

∣

∣

∫

A(Fn
∗ x)dx − ν∗(A)

∣

∣

∣

∣

≤ Const|||A|||θn.

(Lemmas 5 and 6 give this for Cγ norm but Â does not belong to Cγ and hence ||Ã||Cγ

are not uniformly bounded.)

Proof. Let F stand for either Fε or F̃s. Denote by L the adjoint of A → A ◦ F. Then
∫

A(FNx)dx =

∫

A(ρ)(FNx)dx +

∫

[A(FNx) − A(ρ)(FNx)]dx =

ν(A(ρ)) + O(θN |||A|||ρ−4) +

∫

(LN1)[A − A(ρ)]dx =

ν(A(ρ)) + O(θN |||A|||ρ−4) + O(|||A|||ρ||LN1||L∞ .

Now for any B ∈ L∞

LNB =
∑

I

(B ◦ F−N )(F−N
I )′
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where F−N
I denotes the branch of F−N with range I. By the distortion estimate

||LNB||L∞ ≤ C1

∑

I

|I|||B||L∞

where the constant depend only on distortion constant for F. In particular, dν
dx has density

uniformly bounded by C2 and hence

ν(A(ρ)) = ν(A) + O(ρ)|||A|||.

This implies
∫

A(FNx)dx − ν(A) = |||A|||O
(

θNρ−4 + ρ
)

.

Optimizing in ρ we obtain the result needed. �

Choose δ0. Take N such that

(17)

∣

∣

∣

∣

∫

B(FN
∗ x)dx − ν∗(B)

∣

∣

∣

∣

≤ δ0

6

for all B with |||B||| ≤ K. In particular
∣

∣

∣

∣

∫

Ã(FN
ε x, ε)dx − νε(Ã(·, ε))

∣

∣

∣

∣

≤ δ0

6

Next, given N, ε we construct a set Ω = Ω(ε) such that

mes(L − Ω) ≤ δ0

6

(18)

∣

∣

∣

∣

∫

L−Ω

Ãdx

∣

∣

∣

∣

≤ δ0

6
,

∣

∣

∣

∣

∫

L−Ω

Âdx

∣

∣

∣

∣

≤ δ0

6

and on Ω

(19)
∣

∣

∣
Ã(FN

ε x, ε) − Ã(F̃N
s(ε)x, ε)

∣

∣

∣
≤ δ0

6
,

(20)
∣

∣

∣
Ã(F̃N

s(ε)x, ε) − Â(F̃N
s(ε)x, s(ε))

∣

∣

∣
≤ δ0

6
,

Let Ω = L −
⋃N+1

j=0 F−j
ε Uρ. It then follows by bounded distortion that

mes(Ω) ≤ Constρ(N + 2)

so that by decreasing ρ we can satisfy (17). Also, Corollary 3 and Lemma 8 show that Ã

and Â are uniformly integrable, so by further decreasing ρ we can satisfy (18).
Next, the computations of Lemma 6 together with Proposition 7 imply that for a fixed

ρ, the map Fε(x) is close to F̃s(ε)(x) if x 6∈ Uρ. Now with N and ρ fixed, (FN
ε )′ is uniformly

bounded on Ω. It follows that for a small ε the map FN
s(ε) is uniformly close to FN

ε . In
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particular, F j
s(ε)x 6∈ Uρ/2 for j = 0, 1 . . .N. Hence (FN

s(ε))
′ is uniformly bounded as well. So

for a small enough ε (19) and (20) are satisfied. Next,

νε(Ã) =

∫

L

Ã(FN
ε x, ε)dx + r1 (by (17))

=

∫

Ω

Ã(FN
ε x, ε)dx + r2 (by (18))

=

∫

Ω

Ã(F̃N
s(ε)x, ε)dx + r3 (by (19))

=

∫

Ω

Â(F̃N
s(ε)x, s(ε))dx + r4 (by (20))

=

∫

L

Â(F̃N
s(ε)x, s(ε))dx + r5 (by (18))

= νs(ε)(Â) + r6 (by (17))

where |rj | ≤ δ0j/6. This proves (14). Proofs of other asymptotics are similar using identities

D(A, B, Fε) =
1

4
[D(A + B, Fε) − D(A − B, Fε)] ,

Dε(A) = lim
N→∞

1

N

∫





N−1
∑

j=0

A(F j
ε x)





2

dx.

�

We now use formulas

(21) νε(A) =
νε(Ã)

νε(τε)
,

(22) Dε(A) =
D(Ã, Fε) +

[

ν(Ã)
ν(τε)

]2

D(τε, Fε) + 2 νε(Ã)
νε(τε)D(τε, Ã, Fε)

νε(τε)
.

Lemma 10, (21) and (22) allow us to approximate µε(A) and Dε(A) by expressions
involving correlation functions for Fs(ε). To complete the proof of Theorem 1 it remains to
establish the weak periodicity of s(ε).

Lemma 12.
ds

dε
∼ π√

αε3
.

Proof. We defined s by waiting until al,ε hits Jε
j(ε). In fact for any k we can define s(k)(ε)

by waiting until al,ε hits Jε
k and rescaling the image between 0 and 1. We claim that for

any fixed c1, c2 we have
d

dε

[

s(c1/
√

ε) − s(c2/
√

ε)
]

= O(
√

ε).

Indeed, by Lemma 2, if we replace k by k + 1 for k of order 1/
√

ε then

d

dε

[

s(k+1) − s(k)
]

= O(ε).
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Now fix R and consider d
dεs(k) with k = k(R) = [α/(R

√
ε)], so that b−k,ε ∼ R

√
ε. Let l(R, ε)

be the first moment when al(R,ε),ε > b−k,ε.

(23) s(k(R))(ε) =
al,ε − b−k,ε

b−k,ε − b−k+1,ε
.

Now as before we can show that

(24) max
m≤k(R)

√
ε

d

dε
b−m,ε → 0 as R → ∞.

On the other hand, for a large R we can approximate
√

ε
dal(R,ε),ε

dε by r(T ) where r is the
solution of

ẋ = αx2 + 1 x → −∞, t → − π

2α
, x(T ) = R,

ṙ = 2αx(t)r + 1, r → 0, t → − π

2α
.

Solving this equation we get

x(t) =
1√
α

tan(
√

αt), r(t) =

π
2
√

α
+ t

2 + sin(2
√

αt)
4
√

α

cos2(
√

αt)
.

For T near π
2α we have

x(T ) ∼ 1√
α cos(

√
αT )

, r(T ) ∼ π√
α cos2(

√
αt)

.

Hence r ∼ π
√

αx2 = π
√

αR2. This gives

(25)
dal(R,ε),ε

dε
∼ π

√
αR2

√
ε

.

On the other hand

(26) b−k,ε − b−k+1,ε ∼ αR2ε.

Combining (23)–(26) we obtain the statement of the lemma. �

Let us now explain why Lemma 12 implies the weak periodicity of s(ε). The quantity
s(ε) has jumps at the jumps of j(ε), but the magnitude of these jumps is O(ε) by Lemma
2. An argument similar to the proof of Lemma 12 shows that the distance between the
jumps is O(ε−3/2). Hence the main contribution to the growth of s comes from

∫

ds
dεdε. This

completes the proof of Theorem 1. �
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