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Abstract. We discuss upper and lower bounds for the size of gaps in the length spectrum of
negatively curved manifolds. For manifolds with algebraic generators for the fundamental group, we
establish the existence of exponential lower bounds for the gaps. On the other hand, we show that
the existence of arbitrarily small gaps is topologically generic: this is established both for surfaces of
constant negative curvature (Theorem 3.1), and for the space of negatively curved metrics (Theorem
4.1). While arbitrarily small gaps are topologically generic, it is plausible that the gaps are not too
small for almost every metric. One result in this direction is presented in Section 5.

1. Introduction: geodesic length separation in negative curvature

On negatively curved manifolds, the number of closed geodesics of length ≤ T grows exponentially
in T. (We refer the reader to [Mar04, P-P, P-S] for a comprehensive discussion about the growth
and distribution of closed geodesics).

The abundance of closed geodesics leads to the natural question about the sizes of gaps in the
length spectrum. In the current note we present a number of results related to this question. In
some situations we are able to control the gaps from below, while in others we show that such
control is not possible in general.

We note that a presence of exponentially large multiplicities in the length spectrum of a Riemann-
ian manifold (which can be considered as a limiting case of small gaps) changes the level spacings
distribution of Laplace eigenvalues on that manifold, see e.g. [L-S].

For generic Riemannian metrics, the length spectrum is simple [Abr, A2], so for any closed
geodesic γ, only its time reversal, γ−1 will have the same length. So, by the Dirichlet box principle,
there exist exponentially small gaps between the lengths of different geodesics.

Accordingly, it seems interesting to investigate manifolds where the gaps between the lengths of
different geodesics have exponential lower bound: there exist constants C, β > 0, such that for any
l1 6= l2 ∈ Lsp(M) (length spectrum of the negatively curved manifold M), we have

(1.1) |l2 − l1| > Ce−β·max(l1,l2).

This assumption is satisfied for arithmetic hyperbolic groups by the trace separation criterion (cf.
[Tak] and [Hej, §18]). In Section 2 we explain (see Theorem 2.6) why the assumption (1.1) holds
for hyperbolic manifolds whose fundamental group has algebraic elements.

In particular, the surfaces satisfying (1.1) form a dense set in the corresponding Teichmuller
space. On the other hand the existence of arbitrarily small gaps is topologically generic as is shown
in Theorem 3.1 for surfaces of constant negative curvature and in Theorem 4.1 for the space of
negatively curved metrics endowed with Cr-topology, for any r > 0.

While arbitrarily small gaps are topologically generic, it is plausible that the gaps are not too
small for almost every metric. One result in this direction is presented in Section 5 there we obtain
an explicit lower bound for the gaps valid for almost every hyperbolic surface.
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Length separation between closed geodesics is relevant for the study of wave trace formulas on
negatively-curved manifolds: to accurately study contributions from exponentially many closed
geodesics to the wave trace formula, it is necessary to separate contributions from geodesics which
differ either on the length axis, or in phase space. We remark that a suitable version of (1.1)
always holds in phase space: small tubular neighbourhoods of closed geodesics in phase space are
disjoint, as shown in [JPT]. Since there exist metrics for which the size of the length gaps cannot
be controlled (Theorem 4.1), the authors in [JPT] established microlocal wave trace formula, and
used the separation of closed trajectories in phase space in the proof.

2. Diophantine results for hyperbolic manifolds.

2.1. Distances between algebraic numbers. In this section we consider gaps in the length
spectrum for manifolds whose fundamental group admits algebraic generators. But first we provide
a few general results about the algebraic numbers.

Lemma 2.1. If α is a root of P (x) = xD + aD−1x
D−1 + · · ·+ a0 then

|α| ≥ |a0|(
1 +

∑D−1
j=0 |aj|

)D−1
.

Proof. Let αj be the roots of P counted with multiplicities. We claim that |αj| ≤ R := 1 +
∑

j |aj|.
Indeed if |x| > R then since R > 1 we get

|P (x)| ≥ |x|D −
D−1∑
j=0

|aj||x|j ≥ |x|D−1

(
|x| −

D−1∑
j=0

|aj|

)
> 0.

The result follows since
∏

j |αj| = |a0|.

Given a field K which is an extension of Q of degree d let H(L,N, p) be the set of all elements of
K of the form β

Np where β ∈ OK and for each automorphism σj of K we have |σj(β)| ≤ L.

Lemma 2.2. If 0 6= α ∈ H(L,N, p) then

|α| ≥ 1

Ld−1Np
.

Proof. Indeed |β|Ld−1 ≥ 1 because
d∏
j=1

|σj(β)| ≥ 1.

Let I(L,N, p,D) be the set of numbers which satisfy

αE + aE−1α
E−1 + · · ·+ a0 = 0

where E ≤ D and aj ∈ H(L,N, p).

Corollary 2.3. If 0 6= α ∈ I(L,N, p,D) then

|α| ≥ 1

LD−1Np(DL+ 1)D−1
.

Proof. Since α 6= 0 we can assume after possibly reducing the degree of the polynomial that a0 6= 0.
Then the result follows by combining Lemmas 2.1 and 2.2.

Proposition 2.4. (see e.g. [vW, Section 17.2]) There exist constants C and q such that if α1, α2 ∈
I(L,N, p,D) then α1 + α2 and α1 − α2 are in I(CLq, N, pq,D2).
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Combining Proposition 2.4 with Corollary 2.3 we obtain

Corollary 2.5. There exists a constant c > 0 such that if α1, α2 ∈ I(L,N, p,D) then either α1 = α2

or

|α1 − α2| ≥
c

Lq(D−1)NpqLD2 .

2.2. Manifolds with algebraic generators of π1. We now formulate the main result of this
section.

Theorem 2.6. Let X be a hyperbolic manifold such that the generators of π1(X) belong to PSOn,1(Q̄).
Then (1.1) holds. Moreover the constant β in (1.1) depends only on the degree of the extension con-
taining the generators of π1(X).

We remark that in dimension 2 groups satisfying the assumptions of Theorem 2.6 form a dense set
in the corresponding Teichmuller space Tg. This can be established, for example, by the arguments
of Section 5.

If n ≥ 3 then [G-R, Theorem 0.11] building on earlier results of Selberg [Sel] and Mostow ([Most])
shows the conditions of Theorem 2.6 are satisfied for all finite volume hyperbolic manifolds. Hence
we obtain

Corollary 2.7. (1.1) holds for finite volume hyperbolic manifolds of dimension n ≥ 3.

The proof of Theorem 2.6 is similar to the proof of Proposition 3 in [GJS], where it is shown
that the rotation matrices in SU(2) ∩M2(Q) satisfy the Diophantine condition defined in [GJS].
Related results for other Lie groups were established in [ABRS, Br11, Var]. Related questions were
also discussed in [Glu].

2.3. Proof of Theorem 2.6.

Proof. Let γ1 and γ2 be two closed geodesics. Let lj be the length of γj, Wj be the word fixing γj,
Bj be the matrix corresponding to Wj, mj be the word length of Wj and rj = lj/2. To establish
(1.1) it suffices to show that

(2.8) |er1 − er2| ≥ C̄e−c̄max(r1,r2).

Without a loss of generality we assume that mj � 1. By ([Miln, Lemma 2]) we know that

(2.9)
lj
C
≤ mj ≤ Clj

so (1.1) if trivial unless mj and m2 are comparable. Let us assume to fix our ideas that m2 ≥ m1.
By assumption there is a finite extension K of Q and numbers L and N such that all entries of the
generators belong to H(L,N, 1). Accordingly the entries of Bj belong to

H((L(n+ 1))mj , N,mj).

Closed geodesics on X correspond to loxodromic elements of π1(X) ⊂ PSOn,1 (also called boosts)
that that fix no points inHn and fix two points in ∂Hn. It is shown in the proof of [F-LJ, Thm. I.5.1]
that Bj has precisely two positive real eigenvalues α1,j = erj and α2,j = e−rj ; all other eigenvalues
of Bj have modulus one. Since the coefficients of the characteristic polynomial of Bj are the sums
of minors we have

erj ∈ I((L(n+ 1))(n+1)mj(n+ 1)!, N,mj(n+ 1), n+ 1).
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Reducing to the common denominator we see that both er1 and er2 belong to

I((L(n+ 1))(n+1)m2Nm2−m1(n+ 1)!, N,m2(n+ 1), n+ 1).

Now (2.8) follows by Corollary 2.5 and (2.9).

Remark 2.10. In dimension two the proof can be simplified slightly by remarking that 2 cosh(lj/2) =
trBj ∈ K. An alternative proof of Theorem 2.6 could proceed by using explicit formulas for the
lengths of closed geodesics on hyperbolic manifolds (see e.g. [P-R, (3), p. 246]) and the estimates
for linear forms in logarithms (see e.g. [B-W, Chapter 2]). The proof we give is more elementary,
using only basic facts about algebraic numbers and matrix eigenvalues; and fairly concrete.

3. Small gaps for surface of constant negative curvature.

Let

Gg = {(A1, . . . A2g) ∈ (SL2(R))2g : [A1, A2][A3, A4] . . . [A2g−1, A2g] = I}.

Theorem 3.1. The set of tuples (A1, A2 . . . A2g) ∈ Gg where (1.1) fails is topologically generic.

Proof. Let γA denote the closed geodesic whose lift to the fundamental cover joins q and Aq. Let
L denote the length spectrum of the geodesics γA where A belongs to a subgroup generated by A1

and A2. Note that for a dense set of tuples it holds that for each δ there exists L such that for l > L
the set [l, l + δ] intersects L. One way to see this is to consider the geodesics γAk1Am2 . Observe that
matrix powers are of the form

(Anl ) = A+
l e

λln + A−l e
−λln

where eλl is the leading eigenvalue of Al and A±l are some matrices. Since a length of the geodesic
fixed by a hyperbolic matrix A satisfies

tr(A) = 2 cosh(lA/2)

the length of γAk1Am2 equals to

κ(A1, A2) (kλ1 +mλ2) (1 + o(1))

where κ(A1, A2) = tr(A+
1 A

+
2 )/2. Note that for typical A1, A2 we have κ(A1, A2) 6= 0 and λ1 and λ2

are non commensurable. Consider a geodesic γ̄ = γA3An1
where n is very large. By the foregoing

discussion there exists l ∈ L such that |l − Lγ̄| < δ. Now consider the perturbations of A3 of the

form A3(η) =

(
1 η
0 1

)
A3. Assume that A3A

n
1 =

(
a b
c d

)
. After applying a small perturbation

to A3, if necessary, we can assume that all entries of this matrix have the same order as its trace.
Then

tr(A3(η)An1 ) = tr(A3A
n
1 ) + ηc,

so by a small perturbation we can make LγA3(η)A
n
1

as close to l as we wish. Now the result follows

by a standard Baire category argument (cf. Section 4).

4. Constructing metrics with small gaps in the length spectrum

This section is devoted to the proof of the following fact.
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Theorem 4.1. For any r > 3 for any negatively-curved Cr metric g, for any function F (t) (which
we assume is monotone and fast decreasing), and a number δ > 0, there exists a metric ḡ, such
that ||ḡ − g||Cr < δ and there exists an infinite sequence of pairs of closed ḡ-geodesics γ1,j, γ2,j with
Lḡ(γi,j)→∞ as j →∞, and

(4.2) 0 < |Lḡ(γ1,j)− Lḡ(γ2,j)| < min{F (Lḡ(γ1,j)), F (Lḡ(γ2,j))}.

This shows that, in general, one cannot obtain good lower bounds for gaps in the length spectrum
for a Cr open set of negatively curved metrics.

Theorem 4.1 follows from the lemma below by a standard Baire category argument.

Lemma 4.3. Given a metric g and numbers L and δ there is a metric g̃ such that ||g − g̃||Cr ≤ δ
and there are two g̃-geodesics γ1 and γ2 such that

Lg̃(γ1) = Lg̃(γ2) > L.

We also need the following fact

Lemma 4.4. Let g and g̃ be two negatively curved metrics such that ||g− g̃||∞ ≤ δ and γ and γ̃ be

two closed geodesics for g and g̃ respectively of lengths L and L̃. If γ and γ̃ are homotopic then

L

1 + δ
≤ L̃ ≤ L(1 + δ).

Proof. Recall that for negatively curved there exists a unique geodesic in each homotopy class and
this geodesic is length minimizing. The second inequality follows since the length of γ with respect
to g̃ is at most L(1+δ) and γ̃ is shorter. The first inequality follows from the second by interchanging
the roles of g and g̃.

Proof of Theorem 4.1. We claim that given metric g and numbers k ∈ N and δ > 0 there exists a
metric ḡ such that ||ḡ − g||Cr < δ and for each j = 1 . . . k there are geodesics γ1,j, γ2,j such that

(4.5) Lḡ(γi,j) > j, |Lḡ(γ1,j)− Lḡ(γ2,j)| ≤ F (max(Lḡ(γ1,j), Lḡ(γ2,j))).

It follows that the space of metrics satisfying the second inequality in (4.2) is topologically generic
and hence dense. Since the space of metrics satisfying the first inequality in (4.2) is topologically
generic by [A2], (4.5) proves Theorem 4.1.

It remains to construct ḡ satisfying (4.5).
By Lemma 4.3 we can find g1 such that ||g− g1||Cr < δ

2
and there are two geodesics γ1,1 and γ2,1

such that
Lg1(γi,1) > 1 and Lg1(γ1,j) = Lg1(γ2,j).

For j ≥ 1 we apply Lemma 4.3 to find gj such that

||gj − gj−1||Cr ≤ min

(
δ

2j
,
j−1

min
l=1

F (Lgl(γ1,l)) + 1)

Lgl(γ1,l)2j−l+1

)
and there are two geodesics γ1,j, γ2,j such that

Lgj(γ1,j) = Lgj(γ2,j) > j.

Then gk satisfies the required properties since, by Lemma 4.4, the lengths of gi,l have changed by
less than F (Lgl(γ1,l) + 1)/2 in the process of making consecutive inductive steps.

Remark 4.6. In particular if we continue the above procedure for the infinite number of steps then
the limiting metric will satisfy the conditions of Theorem 4.1.
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The proof of Lemma 4.3 relies on two facts. If γ is a closed geodesic let νγ denote the invariant
measure for the geodesic flow supported on γ. Let h denote the topological entropy of the geodesic
flow. Let µ denote the Bowen-Margulis measure. Recall [P-P] that µ is the measure of maximal
entropy for the geodesic flow. It has a full support in the unit tangent bundle SM.

Lemma 4.7. [P-P, Theorem 6.9 and Proposition 7.2] Lhe−Lh
∑

L(γ)≤L νγ converges as L → ∞ to
µ.

Lemma 4.8. For each q0 ∈ M there exists ε such that for each L there is a periodic geodesic γ
such that L(γ) > L and γ does not visit an ε neighborhood of q0.

Proof of Lemma 4.3. Pick a small δ̄ and large L. By Lemma 4.8 there exists a closed geodesic γ1 such
that Lg(γ1) > L and d(q(γ1(t)), q0) > ε). Let γ2 be a closed geodesic such that Lg(γ1) < Lg(γ2) <

Lg(γ1) + δ̄ and γ2 spends at least time
µ(B(q0, ε/2))

2
Lg(γ1) inside B(q0, ε/2) (the existence of such

a geodesic follows from Lemma 4.7). Take g̃η = (1 − ηz(q))g where z(q) = 1 on B(q0, ε/2) and
z(q) = 0 outside B(q0, ε). We can choose z so that ||z||Cr = O (ε−r) . Then ||g − g̃η||Cr = O(η/εr).
Let γη2 be the closed geodesic for g̃η homotopic to γ2. Note that γ1 is a geodesic of g̃η for each η and
Lg̃η(γ1) ≡ Lg(γ1). Also

Lg̃η(γ
η
2 ) ≤ Lg̃η(γ2) ≤ Lg(γ1) + δ̄ − µ(B(q0, ε/2)Lg(γ1)η

2
.

Accordingly there exists η < 2δ̄
Lµ(B(q0,ε/2))

such that Lg̃η(γ
η
1 ) = Lg̃η(γ

η
2 ) as claimed.

In the proof of Lemma 4.8 we need several facts about the dynamics of the geodesic flow which
we call φt. Recall [A1] that φt is uniformly hyperbolic. In particular, there is a cone field K(x) and
λ > 0 such that for u ∈ K, ||dφt(u)|| ≥ eλt||u||. Moreover the cone field K can be chosen in such a
way that if x = (q, v) and u = (δq, δv) ∈ K(x) then

(4.9) ||δq|| ≥ c||δv|| and ∠(δq, v) ≥ π

4
.

We call a curve σ unstable if σ̇ ∈ K. By the foregoing discussion if σ is an unstable curve then the
length of the projection of φt(σ) on M is longer than ceλt.

Proof of Lemma 4.8. We first show how to construct a not necessarily closed geodesic avoiding
B(q0, ε) and then upgrade the result to get the existence of a closed geodesic.

The first part of the argument is similar to [B-S, D]. Pick a small κ > 0. Take an unstable curve
σ of small length κ. We show that if κ and ε are sufficiently small then σ contains a point such
that the corresponding geodesic avoids B(q0, ε). Let T1 be a number such that |φT1(σ)| = 1 where
φ denotes the geodesic flow. Note that T1 = O(| lnκ|). Also observe that due to (4.9) there exists
a number r0 such that if σ̃ is an unstable curve and x ∈ σ̃ is such that d(q(x), q0) < ε then for all
y ∈ σ̃ such that Cε ≤ d(y, x) ≤ r0 we have

d(q(φty), q0) > ε

for |t| < r0 where d denotes the distance in the phase space (just take r0 much smaller than the
injectivity radius of q0).

Thus the set
{y ∈ φT1(σ) : d(q(φ−ty), q0) ≤ ε for some 0 ≤ t ≤ T1}

is a union of O(| lnκ|/r0) components of length O(ε/κa) for some a > 0. Therefore if κ � 1 and
ε � κ then the average distance between the components is much larger than κ. So we can find
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σ1 ⊂ φT1σ such that |σ1| = κ, and if y ∈ σ1 then d(q(φ−ty), q0) > ε for each 0 ≤ t ≤ T1. Take
T2 such that |φT2σ1| = 1. Then we can find σ2 ⊂ φT2σ1 such that |σ2| = κ, and if y ∈ σ2 then
d(q(φ−ty), q0) > ε for each 0 ≤ t ≤ T2. We continue this procedure inductively to construct arcs σj
for all j ∈ N. Taking

(4.10) x =
∞⋂
j=1

φ−(T1+T2+···+Tj) σj

we obtain a geodesic avoiding B(q0, ε). To complete the proof we need

Lemma 4.11. (Anosov Closing Lemma) (see [H-K, Section 18]) Given η > 0 there exists δ > 0
such that if for some t1, t2 such that |t2 − t1| is sufficiently large we have d(γ(t1), γ(t2)) < δ then
there exists a closed geodesic γ̃ such that |L(γ̃) − |t2 − t1|| < η and for each t ∈ [t1, t2] there exists
s such that d(γ(t), γ̃(s)) < η.

Take δ corresponding to η = ε/2. Consider points γ(jL) where j = 1 . . . K and γ is the geodesic
defined by the point x from (4.10). By pigeonhole principle if K is sufficiently large we can find
j1, j2 such that d(γ(j1L), γ(j2L)) < δ and so there exists a closed geodesic γ̃ avoiding B(q0, ε/2).
Since ε is arbitrary, Lemma 4.8 follows.

Suppose now that dim(M) = 2. Let Hr(M) denote the space of Cr metrics with positive topolog-
ical entropy. This set is Cr open ([K]) and dense. (If genus(M) ≥ 2 then every metric has positive
topological entropy [K]. For the torus the density of Hr(M) follows from [Ban] and for sphere it
follows from [K-W]).

Theorem 4.12. The set of metrics satisfying (4.2) is topologically generic in H(M).

Corollary 4.13. The set of metrics satisfying (4.2) is topologically generic in the space of all
metrics on M.

Proof of Theorem 4.12. By [K] if g ∈ Hr(M) then there is a hyperbolic basic set Λ for the geodesic
flow. Since Lemmas 4.3, 4.7, 4.8 and 4.11 remain valid in the setting of hyperbolic sets the proof is
similar to the proof of Theorem 4.2. (In the proof of Lemma 4.8 we need to take σ1 so that it crosses
completely an element of some Markov partition Π such that all elements of Π have unstable length
between κ and Cκ. The number of eligible segments now is not O(1/κ) but O(1/κa) for some a > 0
but this is still much larger than | lnκ|.)

5. Small gaps for hyperbolic surfaces, continued

Here we show that for Lebesgue-typical hyperbolic surface the gaps in the length spectrum cannot
be too small. Our argument is similar to [K-R]. Related results are obtained in [Var].

5.1. Small values of polynomials.

Proposition 5.1. (see e.g [M-H, Section 3.2]) Consider a degree D polynomial P (x) = aDx
D +

aD−1x
D−1 + . . . a0. Then

sup
[−1,1]

|P (x)| ≥ |aD|
2D−1

.

Corollary 5.2. Let 0 6= P ∈ Z[x1, x2 . . . xn], deg(P ) = D then

sup
[−1,1]n

|P (x)| ≥ 1

2D−1
.
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Proof. By induction. For n = 0 or 1 the result follows from Proposition 5.1.
Next, suppose the statement is proven for polynomials of n− 1 variables. If P does not depend

on xn then we are done. Otherwise let k > 0 be the degree of P with respect to xn. Then

P (x) = ak(x1, . . . , xn−1)xkn + ak−1(x1, . . . , xn−1)xk−1
n + · · ·+ a0(x1, . . . , xn−1)

where ak is the polynomial with integer coefficients of degree D − k. Let

(x̄1, . . . x̄n−1) = arg max
[−1,1]n−1

|ak(x1, . . . , xn−1)|.

Then

sup
[−1,1]n

|P (x1, . . . xn−1, xn)| ≥ max
xn∈[−1,1]

|P (x̄1, . . . x̄n−1, xn)| ≥ |a(x̄1, . . . , x̄n−1)|21−k

≥ 21+k−D21−k = 22−D

completing the proof.

Proposition 5.3. (Remez inequality) (see [B-G] or [Yom, Theorem 1.1]) Let B be a convex set
in Rn, Ω ⊂ B, and P be a polynomial of degree D. Then

sup
B
|P | ≤ CBmes−D(Ω) sup

Ω
|P |.

Corollary 5.4. Under the conditions of Proposition 5.3

mes(x ∈ B : |P (x)| ≤ ε) ≤
(

CBε

supB |P |

)1/D

.

Proof. Apply Proposition 5.3 with Ω = {x ∈ B : |P (x)| ≤ ε}.

Corollary 5.5. If PN ∈ Z[x1, x2, . . . , xn] are polynomials of degree DN and εN is a sequence such

that
∑
N

ε
1/DN
N < ∞ then |P (x1, . . . xn)| < εN has only finitely many solutions for almost every

(x1 . . . xn) ∈ Rn.

Proof. It suffices to show this for a fixed cube B with side 2. Then Corollaries 5.2 and 5.4 give

mes(x ∈ B : |PN(x)| ≤ εN) ≤
(
C2DNεN

)1/DN = C̄ε
1/DN
N

so the statement follows from Borel-Cantelli Lemma.

5.2. Polynomial maps on SL2(R).

Corollary 5.6. Let m be a fixed number.
(a) Let PN ∈ Z((a1, b1, c1, d1), . . . , (am, bm, cm, dm)) be polynomials of degree DN . For A1, . . . Am ∈

SL2(R) with Aj =

(
aj bj
cj dj

)
let

HN(A1, . . . , Am) = PN((a1, b1, c1, d1), . . . , (am, bm, cm, dm)).

If
∑
N

ε
1/((m+2)DN )
N <∞ then for almost every (A1, . . . Am) ∈ (SL2(R))m the inequality |HN(A1 . . . Am)| <

εN holds for only finitely many Ns.
(b) Given g ∈ N let

Gg = {(A1, . . . A2g) ∈ (SL2(R))2g : [A1, A2][A3, A4] . . . [A2g−1, A2g] = I}.
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Let PN ∈ Z((a1, b1, c1, d1), . . . , (a2m, b2m, c2m, d2m)) be polynomials of degree DN . Let

HN(A1, . . . , A2g) = PN((a1, b1, c1, d1), . . . , (a2g, b2g, c2g, d2g)).

Assume that HN is not identically equal to 0 on Gg. If
∑
N

εδNN <∞ where δN = 1
(4g−2)(g+2)DN

then

for almost every (A1, . . . A2g) ∈ Gg the inequality |HN(A1 . . . A2g)| < εN holds for only finitely many
Ns.

Proof. (a) It suffices to prove the statement under the assumption that δ ≤ |aj| ≤ 1/δ for some

fixed δ > 0. Then dj =
1+bjcj
aj

and so

H(A1, . . . Am) =
P̃N((a1, b1, c1), . . . (am, bm, cm))∏m

j=1 a
DN
j

where P̃N is a polynomial of degree D̃N ≤ (m+2)DN (since plugging bjcj in place of dj can at most
double the degree and reducing to the common denominator could increas the degree by at most

DNm). Thus if |HN | ≤ εN then |P̃N | ≤ ε̃N := εN
δmDN

. Since∑
N

(ε̃N)1/D̃N ≤ 1

δ(m/m+2)

∑
N

(εN)1/(m+2)DN <∞

the result follows from Corollary 5.5.
(b) Rewriting the equations defining Gg in the form

[A1, A2] . . . [A2g−3, A2g−2]A2g−1A2gA
−1
2g−1 = A2g

we can express the entries of A2g as rational functions of the entries of the other matrices. Arguing

as in part (a) we can reduce the inequality |PN(A1, . . . A2g−1, A2g)| < ε to |P̂N(A1, . . . A2g−1)| < ε̂N
where P̂N is the polynomial of degree (4g − 2)DN . Now the result follows from part (a).

Corollary 5.7. For each η > 0 for almost every A1, . . . Am ∈ SL2(R) the inequality

||W (A1, . . . Am)− I|| > (2m− 1)−|W |
2(m+2+η)

holds for all except for finitely many words W.

Proof. If ||W (A1, . . . Am)−I|| ≤ ε then all entries of W−I are ε close to I. Considering, for example,
the condition W11(A1, . . . Am) − 1 we get a polynomial of degree |W |. Therefore, by Corollary 5.6
it suffices to check that ∑

W

(2m− 1)−
|W |2(m+2+η)
|W |(m+2) <∞.

Grouping polynomials of the same degree D togather we see that the above sum equals to∑
D

(2m− 1)D(2m− 1)−D−Dη/(m+2) =
∑
D

(2m− 1)−ηD/(m+2) <∞.

Corollary 5.8. For A = (A1 . . . A2g) ∈ Gg let SA be the surface defined by A. Given a word W
let l(W,A) be the length of the closed geodesic in the homotopy class defined by W. Then for each
η > 0 the following holds for almost all A ∈ Gg

There exists a constant K = K(A) such that for each pair W1,W2 either

l(W1,A) = l(W2,A) or

(5.9) |l(W1,A)− l(W2,A)| ≥ K(4g − 1)−[(2g+4)(4g−2)+η] max2(|W1|,|W2|).
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Remark 5.10. Recall that [Ran] shows that for any hyperbolic surface the length spectrum has
unbounded multiplicity so there are many pairs of non conjugated words there the first alternative
of the corollary holds.

Remark 5.11. Note that (2.9) shows that l(W1,A) can be close to l(W2,A) only if the lengths of
W1 and W2 are of the same order. Thus (5.9) implies that for almost every A there are constants
K, R such that

|l(W1,A)− l(W2,A)| ≥ Ke−R(A)l2(W1,A).

Proof. Let PW (A) = tr(W (A)). Since PW (A) = 2 cosh(l(W,A)/2), it follows that if l(W1(A)) is
close to l(W2(A)) then

|l(W1,A)− l(W2,A)| ≥ C|PW1(A)− PW2(A)|e−|W1|D.

Therefore it suffices to show that if l(W1,A) 6= l(W2,A) then

|PW1(A)− PW2(A)| ≥ K̃e−|W1|D(4g − 1)−[(2g+4)(4g−2)+η] max2(|W1|,|W2|).

Since η is arbitrary, we can actually check that

|PW1(A)− PW2(A)| ≥ K(4g − 1)−[(2g+4)(4g−2)+η] max2(|W1|,|W2|).

To verify this we will show that for almost all A ∈ Gm the inequality

|PW1(A)− PW2(A)| < (4g − 1)−[(2g+4)(4g−2)+η] max2(|W1|,|W2|)

has only finitely many solutions. Let PW1,W2(A) = PW1(A)− PW2(A). It is a polynomail of degree
max(|W1|, |W2|). So by Corollary 5.6(b) it suffices to check that∑

W1,W2

(4g − 1)−
[(2g+4)(4g−2)+η] max(|W1|,|W2|)

(4g−2)(g+2) <∞

There are at most (4g− 1)2k pairs (W1,W2) with k = max(W1,W2) so the last sum is estimated by∑
k

(4g − 1)2k(4g − 1)−
[(2g+4)(4g−2)+η]k

(4g−2)(g+2) =
∑
k

(4g − 1)−
ηk

(4g−2)(g+2) <∞

proving the result.

6. Open problems.

(1) A suitable version of Theorem 2.6 should hold for other symmetric spaces. In particular,
recall that arithmetic manifolds appear as fundamental domains G/Γ where G is a connected semi-
simple algebraic R-group without compact factors of R-rank ≥ 2, and Γ is a lattice in G (cf.
[Mar74, Mar75, Mar77]). Thus we expect that a version of Theorem 2.6 should hold in higher rank
setting. Note however, that for higher rank symmetric spaces closed orbits are not isolated but
appear in families.

(2) The proof of Theorem 4.1 relies on localized perturbations. Therefore it does not work in
the analytic category. We expect that Theorem 4.1 is still valid for analytic metrics but the proof
would require new ideas.

(3) It is likely that an explicit lower bound for the gaps in the length spectrum could also be
obtained for a prevalent set of negatively curved metrics (see [Kal] for related results) but we do
not pursue this question here.
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