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Abstract. We survey some recent progress in the theory of dynamical zeta-functions

and explain its implications for counting problems.

0. The results

One particularly elegant aspect of dynamical zeta functions, particularly in the
context of hyperbolic flows, is the analogy with the Riemann zeta function in num-
ber theory.

Following different earlier definitions by Selberg and Smale[1967], Ruelle [1976b]
proposed a formal definition of a dynamical zeta function for such a flow of the
following form

ζ∗(s) =
∏

τ

(

1 − e−sh·l(τ)
)−1

, s ∈ C (0.1)

where τ denotes a closed orbit of least period l(τ) (and the extra factor h > 0, de-
noting the topological entropy of the flow, has been introduced for our convenience.
Cf. Baladi [1997], equation (2.14)). This definition should be compared with that
of the more familiar Riemann zeta function

ζ(s) =

∞
∏

n=1

(

1 − p−s
n

)−1
, s ∈ C (0.2)

where {pn}
∞
n=1 = {2, 3, 5, 7, 11, . . .} is the enumeration of the prime numbers.

In the case of both zeta functions, the formal products converge to analytic
functions in the region Re(s) > 1 and have extensions with simple poles at s = 1.
However, this correspondence remains a formal one and there are no examples of
hyperbolic flows for which ζ∗(s) = ζ(s). The Riemann zeta function is an object of
profound study in prime number theory and its analytic features hold the key to
many important results on the distribution of prime numbers. Probably the best
known statement is the following.
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Prime number theorem. ζ(s) has no zeros on the line Re(s) = 1. Equiva-
lently the counting function N(x) = Card{pn ≤ x} is asymptotic to x

log x
(i.e.

limx→+∞
N(x)

x/ log x = 1).

Undoubtably the best known conjecture is the following.

Riemann hypothesis (or conjecture). ζ(s) has no zeros in the half-plane Re(s)
> 1/2: Equivalently, for any 1/2 < θ < 1 we can write π(x) = li(x)

(

1 +O
(

xθ
))

(i.e. lim supx→+∞
|π(x)−li(x)|

xθ < +∞).

We recall that li(x) =
∫∞

2
du

log u is asymptotic to x
log x as x→ +∞.

The correspondence between the analytic properties of ζ(s) and the estimates
of N(x) is based on the following simple identity for the related quantity ψ1(T ) =
∫ T

1
ψ(x)dx, where ψ(T ) =

∑

pk
n≤T log pn: For any c > 1

ψ1(T ) =
1

2πi

∫ c+i∞

c−i∞

(

−
ζ ′(s)

ζ(s)

)

T s+1

s(s+ 1)
ds. (0.3)

To estimate this quantity one moves the curve of integration past the line Re(s) = 1
to a curve Γ in the pole free region for (ζ ′/ζ)(s). The pole at s = 1 then contributes
the principal term and the error term comes from dominating the remaining integral
over Γ. (We shall return to this point, in the context of the dynamical zeta functions,
in §2.)

By additional features of the Riemann zeta function ζ(s) (in particular, the
existence of functional equations) the Riemann hypothesis is equivalent to the zeros
for ζ(s) in the critical strip 0 < Re(s) < 1 lying on the line Re(s) = 1/2.

In order to formulate similar statements for the dynamical zeta function we
need to first introduce a condition. We say that a flow is topologically weak-
mixing if there are no non-trivial solutions to the identity F ◦ φt = eiatF , where
F ∈ C0(M,C). Parry and Pollicott [1983] showed that for a topologically weak-
mixing hyperbolic flow φt : M →M the analogue of the the prime number theorem
is true (earlier Margulis [1970] obtained this result in the context of Anosov flows).
That is, that on the line Re(s) = 1 there are no poles (or zeros) for ζ∗(s) except
for the simple pole at s = 1. Using a similar analysis to that in the case of prime
number theory, it follows that π(x) = {τ : l(τ) ≤ x} is asymptotic to ehx/hx (cf.
Baladi [1997], Theorem 2.8; see also Margulis [1969]). If φt is not weak-mixing, the
situation can be reduced to the case of hyperbolic diffeomorphism (see Baladi[1997]
Theorem 2.4).

Now we describe the case where an almost optimal result is known. Some
partial results are discussed at the end of the paper. Let V denote a compact
smooth surface of strictly negative, possibly variable, curvature. Set M = {(x, v) ∈
TV : ||v|| = 1} be the unit tangent bundle and we define the geodesic flow φt :
M → M by φt(x, v) = (γ(t), γ̇(t)) where γ : R → V is the unique unit speed
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geodesic γ : R → V with γ(0) = x and γ̇(0) = v. φt is known to satisfy Axiom A.
The following result describes the distribution of poles for the associated dynamical
zeta function ζ∗(s).

Theorem 1 (Dolgopyat). Let φt : M → M be a geodesic flow on a compact
surface of negative curvature. There exists ε > 0 such that ζ∗(s) has no zeros or
poles in the half-plane Re(s) > 1 − ε, except for the simple pole at s = 1.

Previously, it had been shown that ζ∗(s) has a meromorphic extension to a larger
such half-plane Re(s) > 1− ε0 (where 0 < ε ≤ ε0), but without any information on
the location of poles (Pollicott[1986]).

Note. The above theorem is true under somewhat more general hypothesis. For
example, the following hypothesis on the hyperbolic flow φt : M → M suffice for
the proof:

(1) The strong stable and strong unstable sub-bundles Eu and Es are C1;
(2) The splitting is not locally-integrable;
(3) φ is weak-mixing.
(4) The measure of maximal entropy m0 satisfies the Federer condition: there

is a constant C so that for any x in non-wandering set and any r > 0
m0(B(x, 2r)) ≤ Cm0(B(x, r)).

These conditions hold automatically for a geodesic flow for a compact negatively
curved surface V . In higher dimensions they can only be verified in very special
cases. (See Hirsch and Pugh [1975] concerning hypothesis (1)).

Note. Local non-integrability means that the flow is not a suspension by a locally
constant roof function. The necessity of this condition is shown by the following
statement.

Proposition 1.

(a) (Ruelle [1983], Pollicott [1985]) If a hyperbolic flow is locally integrable then
ζ∗(s) has poles arbitrary close to the line Re(s) = 1;

(b) (Pollicott [1990]) For generic locally integrable hyperbolic flows the error
term has polynomial decay.

1. The method of extending the zeta function

There are two principal tools in extending the domain of the dynamical zeta
function ζ∗(s). The first involves replacing the flow by a simplified model. The
second involves analyzing the zeta function for this model using transfer operators.

1.1. The simplified model. Given the flow φt : M → M we can choose a finite
number of co-dimension one transverse sections T1, . . . , TN . Let T = ∪iTi then we
can consider the Poincaré map P : T → T and the return time f : T → R (i.e.
φf(x)(x) = P (x) for x ∈ T ).
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We can introduce a new zeta function ζ∗0 (s) for the map P : T → T and the
function f : T → R which is defined formally by

ζ∗0 (s) = exp

∞
∑

n=1

1

n

∑

T nx=x

exp

(

−sh

n−1
∑

k=0

f(T kx)

)

(1.1)

(compare with Baladi [1997], equation (2.16)). Although at first sight this appears
to be of a different form from the zeta function ζ∗(s) given in (0.2), they are
intimately related. In particular, a periodic orbit {x, Px, . . . , P n−1x} gives rise
to a closed orbit τ of period l(τ) = f(x) + f(Px) + . . . + f(P n−1x). By also
arranging for these sections to have an appropriate Markov property we have that
ζ∗(s) = ζ∗0 (s)η(s), where η(s) is analytic for Re(s) > 1 − ε2, for some ε2 > 0 (Cf.
Bowen [1973] §5). The function η(s) is a correction for the overcounting of closed
orbits which pass through the boundaries of the sections T1, . . . , TN .

To introduce the transfer operator, we need one further reduction in our model
for the flow φ. In essence, the additional Markov property of the sections allows us
to identify (or “collapse”) each of the sections Ti along the “stable direction” (in a
way that can be made completely rigorous) and so replace

(a) T by X ⊂ Rn (with dense interior);
(b) P : T → T by an expanding map T : X → X;
(c) f : T → R+ by a continuous function r : X → R+.

Here n is the dimension of the “unstable direction”, which in the present example
is one. Moreover, in this case we can identify X with a finite disjoint union of
intervals.

These reductions do not effect the zeta function ζ∗0 (s).

1.2. Transfer operators. The transfer operator (associated to complex number
s) Le−sr : C0(X,C) → C0(X,C) is defined by

Le−srk(x) =
∑

Ty=x

e−sr(y)k(y)

where k ∈ C0(X,C) (cf. Baladi [1997], equation (2.3)). For the proof of Theorem
1, we want to consider the operator acting on the smaller space of C1 functions,
i.e. Le−sr : C1(X,C) → C1(X,C). The appropriate norm on the Banach space
C1(X,R) is ||k||1 = ||k||∞ + ||Dk||∞, where || · ||∞ denotes the usual supremum
norm and Dk denotes the derivative of k ∈ C1(X,C).

A very simple estimate on the spectral radius ρ(Le−sr ) of Le−sr is that ρ(Le−sr ) ≤
eP (−σr), where s = σ + it and P (−σr) denotes the pressure of the function −σr :
X → R relative to T : X → X (cf. Baladi [1997], Theorem 2.1). In particular,
when σ = h then P (−hr) = 0 and ρ(Le−sr) ≤ 1. The following result gives stronger
estimates on this spectral radius when t 6= 0.
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Proposition 2. (Dolgopyat [1996a]) There exists C > 0, 0 < θ < 1, D > 1 and
ε > 0 such that

||Ln
e−sr ||1 ≤ C · emP (−σr) · θl

where s = σ + it, with |t| ≥ 2 and σ > h− ε, and n = l[D log |t|] +m

In particular, we have the following elegant estimate.

Corollary 2.1. For s = σ + it, with σ > h − ε and |t| ≥ 2, we have that
ρ(Le−sr) ≤ θ < 1.

The proof of Proposition 2 involves a number of steps. One of the more familiar
ingredients is the following simple inequality

||D(Le−srk)||∞ ≤ C · |t| · ||k||∞ + θn
0 ||Dk||∞ (1.2)

for some C > 0 and 0 < θ0 < 1 and all k ∈ C1(X,C) (where we assume for
convenience that L−σr1 = 1, by the simple device of modifying r up to the addition
of a coboundary u ◦ T − u and a constant).

The most important step is to show that there exists C1 > 0 and 0 < θ1 < 1
such that given any function k ∈ C1(X,R) such that ||k||0 = 1 and ||Dk||0 ≤ 2C|t|
then we can bound

∫

|Ln
e−srk|dµ ≤ C1 · θ

n
1 , ∀n ≥ 0. (1.3)

where µ is a convenient measure. (In fact, µ is simply the Gibbs measure associated
to the potential −σr : X → R.)

This L1 convergence is then converted into uniform convergence using the fol-
lowing identity

|L2n
e−srk(x)| ≤

∥

∥Ln
−σr |L

n
e−srk|

∥

∥

∞
=

∫

|Ln
e−srk| dµ+ O

(

θ2n
2 |t|

)

, (1.4)

for some 0 < θ2 < 1, where the last inequality follows from the well-known conver-
gence estimate Ln

−σrk =
∫

kdµ+O
(

θ2n
2 ||k||1

)

, say, for the transfer operator with a
real weighting (cf. Baladi [1997], Theorem 3.2 (1)).

Comparing (1.3) and (1.4) we see that ||Ln
e−srk||0 = O (θn

1 , θ
n
2 |t|) .

Finally, by substituting Ln
e−srk for k in (1.2) we can bound

||L2nk|| = O (θn
0 , |t|θ

n
1 , |t|θ

n) ,

where all of the implied constants are independent of k and depend only on C > 0
in (1.3). In the event that ||k||0 = 1 and ||Dk||0 > 2C, then norm contraction
follows directly from (1.2). In either case, the estimate in Proposition 2 can be
easily deduced.
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Note. The hypothesis that the sub-bundles Es and Eu are C1 manifests itself in the
functions T and r being C1 and allows us to work in the Banach space C1(X,R).
Although the proof is “symbolic” in essence, the differential structure is important
in the details of the proofs. The hypothesis that the splitting is not integrable
is crucial to the proof of (1.3). If we knew that for each x ∈ X there exists a
continuous choice of two distinct pre-images y1 = y1(x) and y2 = y2(x) with the
property that x 7→ y1(x)−y2(x) has a gradient large enough comparing to ||r||1 and
||σ−1||1 then we would essentially be able to “integrate by parts” the expression
|Ln

e−srk|2(x) (and use the Hölder inequality) to obtain (1.3). For geodesic flows
on negatively curved surfaces the last assumption follows from contact structure
of the flow (that is horocycles are orthogonal to geodesics) (cf. Plante [1972]). In
general, one can show (cf. Sinai [1972]) that local non-integrability is equivalent
to the existence of x0 ∈ X, δ > 0 such that for all large enough n there are two
branches yn,1(x) and yn,2(x) of σ−n so that

|∇x(rn(yn1
) − rn(yn,2))| (x0) > δ

which still suffices for the proof.

1.3 Applying the transfer operators. It only remains to use the spectral esti-
mate on the transfer operators in Proposition 2 to deduce the analytic extension in
Theorem 1.

Let X = ∪iXi be the partition (into intervals) corresponding to the union T =
∪iTi. The key result relating the transfer operators to the zeta function ζ∗0 (s) is
the following.

Proposition 3. (Ruelle [1990]) There exists 0 < θ < 1 such that for any fixed
choice of points xi ∈ Xi we have that

∑

T nx=x

exp



−s
n−1
∑

j=0

r(T jx)



 =
N
∑

i=1

(Ln
e−sr (χXi

)) (xi), n ≥ 0 (1.5)

where χXi
denotes the characteristic function for Xi.

Comparing (1.5) and Theorem 1 we see that the series in (1.1) is uniformly
convergent for s = σ+ it satisfying σ > 1− ε and |t| > 2. In particular, we see that
ζ∗0 (s) is analytic in this domain and we can make the same deduction for ζ∗(s),
completing the outline of the proof of Theorem 1.

2. Applications and other results

2.1 Counting closed orbits. By analogy with the Riemann hypothesis in number
theory, one would expect that Theorem 1 would give rise to error terms in the
counting of closed orbits for geodesic flows. The appropriate statement turns out
to be the following.
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Theorem 2. Let φt : M →M be the geodesic flow on a surface of variable negative
curvature. The number of closed orbits is given by π(x) = li

(

ehx
)

(1 + O (e−ε∗x)),
for some ε∗ > 0.

If we define ψ∗(T ) =
∑

enhl(γ)≤T hl(γ) and ψ∗
1(T ) =

∫ T

1
ψ∗(x)dx then for any

c > 1 we have a formula analogous to (0.3):

ψ∗
1(T ) =

1

2πi

∫ c+i∞

c−i∞

(

−
ζ∗

′

(s)

ζ∗(s)

)

T s+1

s(s+ 1)
ds.

If we move the line of integration to Re(s) = 1 − ε∗

2 , say, then we can write

ψ∗
1(T ) =

T 2

2
+

1

2πi

∫ (1− ε∗

2 )+i∞

(1− ε∗

2 )−i∞

(

−
ζ∗

′

(s)

ζ∗(s)

)

T s+1

s(s+ 1)
ds (2.1)

and the integral in (2.1) grows with a smaller exponent then the principal term T 2

2 .
The details of Theorem 2 appear in Pollicott and Sharp [1997].

Note. Passing from ψ∗ to ψ∗
1 depends on our knowledge of the behaviour of ζ‘∗

ζ∗

for large Im(s). It follows from Dolgopyat [1997b] that under rather general cir-

cumstances ζ‘∗

ζ∗
(1 + it) = O(|t|N ) for some N. In this case one has to convolve ψ∗

with rapidly decreasing function in order to get integrability. However, due to the
lack of the suitable analytic continuation one is only able to estimate the rate of
convergences of ψ∗ in the space of distributions (cf. Fried [1986a]).

2.2 Decay of correlations. The prime orbit theorem is closely related to the
problem of correlation decay (or rate of mixing) for hyperbolic flows. We briefly
recall the statement. Let mF be a Gibbs measure for a Hölder potential F on the
unit tangent bundle M for the geodesic flow.

Given two smooth functions A,B : M → R we denote

ρF
A,B(t) =

∫

A ◦ φtBdmF −

∫

AdmF

∫

BdmF , t ∈ R.

Theorem 3. (Dolgopyat [1996a]) The correlation function ρF
A,B(t) tends to zero

exponentially fast as |t| → +∞ i.e. |ρF
A,B(t)| ≤ e−ε∗|t| for all t, for some ε∗ > 0.

(See Baladi[1997] Subsection 2.B for a list of earlier results.) More generally, one
can obtain asymptotic estimates for integrals of the form

IG(D, t) =

∫

D(φtx, x) exp

[

∫ φtx

x

G

]

dx,

where D is a function on M × M and G is a potential. The correlation decay
problem corresponds to taking D(x, y) = A(x)B(y) whereas if we take D = δdiag
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we get prime orbit theorems. (Of course, in the later case we have to integrate in
the time variable, since the graph of φt is not transversal to the diagonal and so
there is no asymptotic for individual values of t (See Margulis[1970] for details)).
Similarly, taking other submanifolds instead of the diagonal one can obtain other
types of counting theorems.

Theorem 3 remains true in the broader setting of Axiom A flows satisfying (1)-(4)
(with m0 replaced by mF ).

2.3 More general zeta functions. Given a Hölder function F : M → R one can

weight closed orbits τ for the geodesic flow by the real numbers
∫ l(τ)

0
F (φtxτ )dt, for

any choice xτ ∈ τ . A natural generalization of the zeta function (0.2) which takes
account of this weighting is the following:

ζ∗F (s) =
∏

τ

(

1 − e
R l(τ)
0 (G(φtxτ )−s)dt

)−1

, s ∈ C

This formal produce converges to an analytic function in the half-plane Re(s) >
P (F ), where P (F ) is the topological pressure of the function F : M → R. The
importance of generalized zeta-function is clear from the following result. Let
ρ̂F

A,B(s) =
∫

R+
e−stρF

A,B(t)dt be the Laplace transform of the correlation function.

Proposition 4. (Pollicott [1985]) There is a number ε such that
ρ̂F

A,B(s)

ζ∗

F (s−P (F ))
has

analytic continuation to Re(s) > −ε. More precisely, ρ̂F
A,B is meromorphic in this

domain, its only possible poles are the poles of ζ∗F (s) and the corresponding residues
are given by a non-degenerate bilinear form of A,B.

Note. The similar statement holds for the Laplace transform of IG(D, t) but the
corresponding formulas get more complicated. We refer the reader to Dolgopyat
[1997] for details.

The following generalization of Theorem 1 is immediate consequence of Propo-
sition 4 and Theorem 3.

Corollary 4.1. Given a geodesic flow on a negatively curved surface and a Hölder
continuous potential F : M → R there exists ε > 0 such that the zeta function ζ∗F (s)
has an analytic extension to the half-plane Re(s) > P (F ) − ε, except for a simple
pole at s = P (F )

The value of this ε is clearly related to ε∗ in Theorem 2 and is therefore an
important value. However, from the outline of the proof of Theorem 1 one can
see that it is difficult to estimate the value ε. It is known from the analysis of
surfaces of constant negative curvature (using very different techniques) that there
are examples for which ε0 may be arbitrarily small. On the other hand, if for some
more accessible value 0 < ε̃ < ε0 we know that ζ∗F (s) has a meromorphic extension
to Re(s) > P (F ) − ε̃ with only a finite number of poles one can still hope that to
approximate ρF

A,B(t) be a generalized trigonometric polynomial with error O(e−ε̃t).
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Denote by ε̃ the supremum of all ε̃ with this property. The following procedure
(diagonal approximation) to bound ε̃ is used in the physics literature. Consider

|Ln
eF−srk|

2
(x) =

∑

T ny1=T ny2=x

e(Fn+σrn)(y1)+(Fn+σrn)(y2)−it(rn(y1)−rn(y2))k(y1)k(y2).

When t is large one can argue that the main contribution comes from the non-
oscillatory diagonal term (cf. remark at the end of Subsection 1.2) which suggests
the following estimate

ε̃ ≈ ε̄ = P (F ) −
1

2
P (2F ).

Unfortunately, there are few (if any) rigorous results about this approximation. We
would therefore like to pose the following question.

Problem. Give a formula (or, at least, a reasonable estimate) for ε̃. In particular,
is it true that ε̃ = ε̄ for geodesic flows on manifolds of constant negative curvature
and C∞ potentials?

2.4 L-functions. So far F has been considered to be a real valued potential, but
there is one important case when we have to deal with complex valued functions.
Namely, let ~e be the vectorfield generating our flow and let ω denote a closed form.
If we set F = 2πiω(~e) then the Euler product

L(ω, s) =
∏

τ

(

1 − e
2πi

“

R λ(τ)
0 ω(~e)(φtxτ )−s

”

dt
)−1

is called a dynamical L-function. Clearly, it only depends on the cohomology class

of ω so expanding ω =
∑d

j=1 θjωj in an appropriate basis ω1, . . . , ωd ∈ H1(M,R)

we obtain a function of two variables L(~θ, s), where we denote ~θ = (θ1, . . . , θd).

Since L(~θ, s) is periodic in ~θ we can view it as a compact family of functions, each
analytic in s for Re(s) > h. The methods described above give the following result.

Theorem 4. There are constants R, ε > 0 such that for any ~θ ∈ R
d has analytic

continuation into Re(s) > h− ε, |Im(s)| > R.

For a fixed homology class γ let πγ(t) be the number of closed orbits of period

less than t in this class. Combining Theorem 4 with the analysis of L(~θ, s) for small
s given by Adachi and Sunada[1987] (cf. also Parry and Pollicott[1986]) we get the
following orbit distribution theorem.

Theorem 5. Under conditions of the previous theorem πγ(t) has asymptotic series

πγ(t) ∼ cd
eht

t
d
2 +1





∞
∑

j=0

cj
tj



 ,

d = dimH1(M).

Note. In the constant curvature case Phillips and Sarnak[1987] gave geometric in-
terpretation of the first few coefficients of this series. It would be nice to do it for
variable curvature.
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3. Concluding remarks

We hope that the technique of twisted transfer operators described here can be
useful in some other situations. Of course, there is no hope to get any satisfac-
tory results about either zeta-functions or periodic orbit asymptotics without some
hyperbolicity assumptions. However, even in the later case there are many open
problems. The references to some partial result could be found in the following
papers:

(1) Non-uniformly hyperbolic systems: Baladi[1997] Sections 5 and 6, Young[1996].
(2) Non-compact negatively curved manifolds: Pollicott and Sharp[1994], Dol-

gopyat[1997].
(3) Anosov flows in higher dimensions: Dolgopyat[1996a].

We hope that these cases will be treated in the near future.
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