Instructions: Do each of the following problems; each is worth 20 points. You may use calculators, a notebook sheet of notes, and the tables in the back of your books. You need not give reduced numerical answers: numerical expressions which are readily evaluated on a calculator are good enough, unless a decimal answer is specifically requested. (But do not leave the answer in the form of an integral or abstract symbol). Justify your steps wherever you can: I will be much more generous with partial credit wherever you explain clearly what you are doing.
(1). Suppose that computer-account passwords consist of strings of 6 characters (like TT5bBW), where each character is either a number $0 \ldots 9$, an upper-case letter $A \ldots Z$, or a lower-case letter $a \ldots z$ (62 possible characters in all). What is the probability that a randomly selected password
(i) contains at least 2 upper-case letters ?
(ii) contains 6 different characters? (Note that the upper and lower case of the same letter, such as a and A, count as different characters.)
(2). In a certain population of 1,000 people, exactly 55 happen to know who the current Vice-President is. What is theprobability that if you drew a random sample of 20 people from that population of 1000 , at most 2 of those sampled would know the name of the Vice-President ? Give your answer (a) if the sampling were done without replacement, (b) if sampling were done with replacement, and (c) give the best approximate answer you can to the probability in (b).
(3). Box 1 contains 5 gold and 1 silver coins, and Box 2 contains 2 gold and 3 silver coins. A random experiment is carried out in two stages. First a balanced (6-sided) die is thrown; then a coin is drawn at random from Box 1 if the number of dots showing on the die is 1 or 2 ; otherwise (if the number of dots showing on the die is $3,4,5$, or 6) a coin is drawn at random from Box 2.
(a) Find the probability that the coin drawn at the second stage is silver.
(b) Given that a gold coin is drawn at the second stage, find the conditional probability that the coin came from Box 1 .
(4). Suppose that X is the number of dots (1 to 6) showing on the uppermost face when a single balanced die is thrown. Let Y be the winnings in a gambling game played with the die, expressed as a function of X by: $Y=(X-4)^{2}-3$. Find the probability mass function of Y, the expectation of Y, and the probability that $Y>0$.
(5). (Give decimal answers here !) Suppose that events A, B, and D belong to the sample space S. Assume that with respect to the probability-rule P defined on S
(i) A and B are independent, with $P(A)=0.3, P(B)=0.4$,
(ii) B and D are disjoint, with $P(D)=0.2$, and
(iii) $P(D \mid A)=0.2$.

Then find $P\left(D \cap A^{c}\right)$ and $P(D \cup(A \cap B))$.
Hint: draw a Venn diagram!

