Instructions: Do each of the following problems; each is worth 20 points. You may use calculators, a notebook sheet of notes, and the tables in the back of your books. You need not give reduced numerical answers: numerical expressions which are readily evaluated on a calculator are good enough, unless a decimal answer is specifically requested. (But do not leave the answer in the form of an integral or abstract symbol). Justify your steps wherever you can: I will be much more generous with partial credit wherever you explain clearly what you are doing.

1. Definitions of densities, cdf's, mean, variance A certain continuous random variable X, with values always lying between 1 and 3 , has density $f(x)$ proportional to $1 / x^{2}$ for x between 1,3 . Find the density, cdf, mean, and variance of X.
2. Joint probabilities for discrete r.v.'s Suppose that you flip a biased coin independently, with probability p of coming up heads on each toss, 4 times. Let X denote the number of times you tossed before your first Head, and let Y denote the number of heads on the 4 tosses. Find the probability mass function of X, and the conditional probability that $Y=2$ given that $X=2$. Are X, Y independent ? Explain how you know.
3. Change of variable, simulation of continuous r.v. If we generate a r.v. Y on the computer by simulating a Uniform $[0,1]$ r.v. U_{1} and then defining $Y=1+\left(U_{1}\right)^{1 / 3}$, then find the probability density function (with careful attention to the interval over which its argument varies) and also find the median of Y.
4. Quantiles for special distributions For each of the distributions $\mathcal{N}(6,9)$ and Expon(4), find a constant c such that the respective probabilities assigned to the interval (c, ∞) is 0.1 .

5: Simulation \mathcal{E}^{2} Interpretation of Law of Large Numbers (a) Explain in detail how you would simulate 1000 independent and identically distributed random variables X_{k} with probability density $f(x)=2 x, 0 \leq x \leq 1$, (taking as given as many iid $\operatorname{Unif}[0,1]$ random variables U_{j} as you want). (b) For the random variables simulated in (a), what is the approximate value of the random variable $n^{-1} \sum_{k=1}^{n} X_{k}^{3}$?

6: Approximation of probability via CLT. A balanced die (with equal probabilities of showing $1,2,3,4,5$, or 6 dots) is tossed independently 600 times. On each toss, you win $\$ 4$ if 1 or 2 dots show up, you win $\$ 1$ if 3 or 4 dots show up, and you lose $\$ 2$ if 5 or 6 dots show up. Find the approximate probability that your total gain for the 600 plays of this game lies between $\$ 550$ and $\$ 620$.
7. If the r.v. X has Exponential(2) density, then for the random variable $Y=\sqrt{X+1}$
(a) find the distribution function of Y, and
(b) find $E\left(Y^{2}\right)$.

8: Suppose that Z_{1}, \ldots, Z_{4} are independent $\mathcal{N}(1,4)$ random variables, and that

$$
W=Z_{1}-2 Z_{2}+3 Z_{3}-Z_{4}
$$

(a) Find the mean and variance of W.
(b) Find the upper quartile $(=0.75$ quantile) for the distribution of the random variable W. (Hint: what kind of r.v. is W ?)

9: Suppose that two discrete random variables X, Y have joint probability mass function given by

$$
p_{X, Y}(j, k)=\operatorname{Pr}(X=j, Y=k)=(1+j k) / 9 \quad \text { for } \quad j, k=-1,0,1
$$

(a) Find the marginal probability mass function $p_{X}(\cdot)$ of X and the marginal expectation $E(Y)$ of Y.
(b) Are X, Y independent? Why or why not?
(c) Find the probability mass function of $X+Y$.

