Stat 400 Sample for Test 3

INSTRUCTIONS: Do each of the following three problems: each counts 35 points, and 100 points is a perfect score.
\#1: A data sample X_{1}, \ldots, X_{n} is known to consist of continuous random variable values with density

$$
f_{X}(x, \vartheta)=\vartheta \cdot x^{-\vartheta-1}, \quad x>1
$$

where ϑ is an unknown parameter >1. Find an expression in terms of the data for the method of moments estimator of ϑ.
\#2 (a) Suppose that $n=120$ independent and identically distributed random variable values X_{i} result in sample mean and variance values $\bar{X}=$ 25.34, $S^{2}=36.0$. Give a two-sided approximate 95% confidence interval for the unknown mean μ of X_{i}.
(b) If there were only $n=12$ data-points in (a), with sample mean and variance as given in (a), and if the rv's X_{i} can be assumed normally distributed, then find a 95% two-sided confidence interval for μ.
\#3. A gambling game (roulette) has three outcomes - Red, Black, and Green - which are supposed to have respective probabilities 9/19, 9/19, and $1 / 19$. A state casino inspector collects data on 1900 repetitions of the game, finding 860 occurrences of Red, 910 occurrences of Black, and 130 occurrences of Green.
(a) Find a 90% two-sided confidence interval for the probability $p_{\text {red }}$ with which the outcome Red occurs on each play.
(b) Based on these data, reasoning with a 95% confidence interval, would you say that the outcome Green for the gambling game has a probability larger than the value ($p_{0}=1 / 19$) which it is supposed to have ? (Assume that the casino would never allow the possibility that $p<1 / 19$.)

