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Chapter 1

Counting Processes, with

Statistical Heuristics

This chapter treats the simple counting processs, that is, the class of random right-

continuous increasing step-functions N(t) with isolated jumps of unit height which occur

at random times T1, T2, . . . . Much of the chapter is taken up with examples and applica-

tions, and the terminology of ‘hazards’ and ‘compensators’ is introduced and interpreted.

Although this chapter is less formal than those that follow, two crucial formulas (Theo-

rems 1.1 – 1.3 are proved by calculation, namely the general formulas for the compensator-

and variance-process of the simple counting process.

1.1 The Indicator Counting-Process

The simplest nontrivial example of a counting processis

N(t) ≡ I[T≤t] =

{
1 if T ≤ t

0 if T > t
, t ≥ 0

where T is a nonnegative-valued (waiting time) random variable with distribution func-

tion F (u) ≡ P{T ≤ u} = P{N(u) = 1}. The only randomness in the function N(·) is

in the location of T , its single jump. The graph of N looks like

As a matter of notation, let F̄ (u) = 1−F (u−) denote the probability P{T ≥ u}.
Then F (·) is right-continuous while F̄ (·) is left-continuous with F̄ (0) = 1. When F

has density f(·) with respect to Lebesgue measure on [0,∞), the hazard intensity h(·)
of T is defined Lebesgue almost everywhere by

h(t) ≡ lim
δ→0+

δ−1P{T < t + δ | T ≥ t} = f(t)/F̄ (t).

1
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Figure 1: Graph of an indicator counting process N(·).

For small δ, δ · h(t) can be interpreted as the approximate conditional probability

that the random waiting time T is at most t + δ time units, given that it is least t.

More generally, without any restrictions on the distribution function F (·), the cumulative

hazard function H(·) for T is defined by

H(t) ≡ HT (t) ≡
∫ t

0−
[1/F̄ (x)] dF (x). (1.1)

We give this formula a precise meaning in the following subsection. For justification of all

assertions given there, see Apostol (1957), pp. 191-224.

1.1.1 Digression on Riemann-Stieltjes Integrals.

Say that a real-valued function r of a real variable x has isolated discontinuities if for

every x there is a sufficiently small positive δ such that r is continuous on (x− δ, x)

and on (x, x + δ). Suppose that G is a nondecreasing right-continuous function on

(a, b] , that q is a left-continuous function for which the right-hand limits q(x+) exist

on (a, b] , and that both G and q have isolated discontinuities. If both G and q are

uniformly bounded on (a, b] , then define for a < t ≤ b the Riemann-Stieltjes integral∫ t

a
q(x) dG(x) ≡ lim

{xj : 0≤j≤m}

m−1∑
j=0

q(xj) [G(xj+1)−G(xj)]

where the limit is taken over finite strictly increasing sequences {xj}m
j=1 in (a, t], for

which as m −→∞,

mesh({xj}) ≡ max
j

(xj+1 − xj) −→ 0
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The limit does exist, and is equal to

∑
x∈(a,t]:∆G(x)>0

q(x) ∆G(x) +
∫ t

a
q(x) dGc(x)

where

∆G(x) ≡ G(x)−G(x−) , Gc(x) ≡ G(x)−
∑

s∈(a,x]:∆G(x)>0

∆G(s)

respectively denote the jumps in G and the continuous nondecreasing part of G .

If G(·) is piecewise continuously differentiable with G′ = g, then Gc = G, and∫ t
a q(x)dG(x) =

∫ t
a q(x)g(x)dx. If G(t) =

∫ t
a r(x)dL(x) is given by a Riemann-Stieltjes in-

tegral as just defined, then G is piecewise continuously differentiable, and
∫ t
a q(x)dG(x) =∫ t

a q(x)r(x)dL(x).

The definition of Stieltjes integral is extended to unbounded q and G first

for nonnegative q, then in general by decomposing into positive and negative parts

of q whenever
∫ t
a |q(x)| dG(x) < ∞. Another extension — to allow right-continuous

integrands r with left limits r(x−) and isolated jumps — is given by∫ t
a r(x) dG(x) ≡

∫ t
a r(x−) dG(x) +

∑
x∈(a,t] ∆r(x) ·∆G(x)

= limmesh({xi})→0

∑
j r(xj+1) · [G(xj+1)−G(xj)]

where the limit is taken over partitions of (a, t] as before. These definitions agree precisely

with the abstract Lebesgue integral
∫

I(a,t](x)r(x)dµ(x) on the Borel sets of the real line,

where µ is the measure defined to satisfy µ((a, x]) ≡ G(x)−G(a) for each x ≥ a.

An easy consequence of the foregoing statements is the integration-by-parts formula,

valid if r and L are each right-continuous nondecreasing, and therefore also if r and

L are each the difference of two such functions.

∫ t
a r(x) dL(x) +

∫ t
a L(x−) dr(x) = r(t)L(t)− r(a+)L(a+)

= lim{xj}
∑

j { r(xj+1) [L(xj+1)− L(xj)] + L(xj) [r(xj+1)− r(xj)] }

A good exercise for the interested reader is to extend by limiting arguments the

foregoing definitions and results to integrators G for which the discontinuities need not

be isolated. See the solution to Exercise 1 for an indication of how such limiting arguments

are made.
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1.1.2 First Theorems about Compensators.

Consider again the indicator N(·) = I[T≤·] and the cumulative hazard function H

defined in (1.1). If F ′(t) ≡ f(t) exists and is piecewise continuous, then

H(t)−
∫ t

0
(1− F (u))−1f(u) du = − log(1− F (t))

Exercise 1 Show in general that

1− F (t) = e−Hc(t) ·
∏

x∈(0,t]:∆H(x)>0

(1−∆H(x))

Use the result to conclude that always 1− F (t) ≤ exp(−H(t)). 2

The importance of the function H derives in large part from:

Theorem 1.1 Let cs be any bounded left-continuous function on [0,∞) which takes

the constant value c on (s,∞). Then the process

M(t) ≡ N(t)−
∫ t

0−
I[T≥u] dH(u) = N(t)−H(min{t, T}), t ≥ 0

satisfies: E{cs(T ) · (M(t)−M(s))} = 0 for all t ≥ s.

Remark 1.1 In this Theorem, the r.v. cs(T ) serves as a general way of assigning weights

to the successive increments M(u)−M(v) for u > v, using only information about N(·)
available by watching up to time v. This information consists of the exact value of the

r.v. T if T ≤ v, but otherwise only of the single fact T > v. 2

Proof. Note first that E
{∫ t

0− I[T≥u]dH(u)
}

= E {H(min{t, T})}

=
∫ ∞

0−
H(min{t, s}) dF (s) =

∫ ∞

0−

∫ min(t,s)

0−
dH(x) dF (s)

Now switch the order of integration in the last double integral by the Fubini-Tonelli The-

orem (A.1 in Appendix A), obtaining∫ t

0−

∫ ∞

x−
dF (s) dH(x) =

∫ t

0−
F̄ (x) [F̄ (x)]−1 dF (x) = F (t)

Now

E{cs(T ) · (M(t)−M(s))} = E{I[T≤s] · cs(T ) · 0 + I[T>s] · c · (M(t)−M(s))}
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since M(t) = M(s) by definition whenever T ≤ s, and cs(T ) = c by assumption

whenever T > s. The last expectation is equal to

c · E{N(t)−N(s)−
∫ t

s
I[T≥u] dH(u)} = c · (P{s < T ≤ t} − F (t) + F (s)) = 0

2

Theorem 1.1 says essentially that the increments N(s+ δ)−N(s) and H(min{s+

δ, T} − H(min{s, T}), which are 0 unless T > s, have the same expected values.

This can be interpreted to say that the conditional distribution of N(s + δ) − N(s)

given the value T if T ≤ s, but otherwise given only that T > s, is approximately

Binom(1, I[T>s] · [H(s + δ)−H(s)]). Thus the conditional variance of N(s + δ)−N(s)

is

I[T>s] · [H(s + δ)−H(s)] · [1−H(s + δ) + H(s)]

and we define an accumulated or integrated conditional-variance process

V (t) ≡
∫ t

0−
I[T≥u] · [1−∆H(u)] dH(u).

Theorem 1.2 Let ds(·) be any bounded left-continuous function with a constant value

d on (s,∞). Then for t ≥ s, E{ds(T )(M2(t)− V (t))} = 0.

Proof. Fix s < t. Observe that M2(t) = M2(s) − V (t) + V (s) = 0 by definition

whenever T < s. Then by Theorem 1.1 with cs(T ) ≡ M(s) ds(T ) I[T≥s],

E{ds(T ) · [M2(t)−M2(s)− V (t) + V (s)]}

= d · E
{(

[M(t)−M(s)]2 − V (t) + V (s)
)
I[T≥s]

}
= d · E

{
[I[s<T≤t] −

∫ t
s I[T≥u]dH(u)]2 −

∫ t
s I[T≥u](1−∆(u))dH(t)

}
By expanding the square, recalling ∆H(x) = ∆F (x)/F̄ (x), and rearranging terms,

we find the last line equal to

d ·
(
F (t)− F (s)− 2 ·

∫ t
s P{u ≤ T ≤ t} dH(u) +

∫ t
s

∫ t
s P{T ≥ max(u, v)}dH(u) dH(v)

−
∫ t
s F̄ (u) dH(u) +

∫ t
s F̄ (u) ∆H(u) dH(u)

)
= d ·

(
−2 ·

∫ t
s (F (t)− F (u) + ∆F (u)) dH(t) + 2 ·

∫ t
s F̄ (u) ∆H(u) dH(u)

)
+ 2 ·

∫ t
s

∫ t
u F̄ (v) ∆H(v) dH(u)

)
= d ·

(
−2 ·

∫ t
s (F (t)− F (u) + ∆F (u)) dH(u) + 2 ·

∫ t
s ∆F (u) dH(u)

+ 2 ·
∫ t
s (F (t)− F (u)) dH(u)

)
= 0
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1.2 Some Formal Definitions

This section provides a mathematical glossary to connect the heuristics of this chapter

with the formal mathematical prerequisites sketched in Appendix A. For more detailed

mathematical information, see Appendix A and the references cited there.

1. [Conditional Expectation]. Let (Ω,F , P ) be a probability space; let

V1, V2, . . . , Vk and X be real-valued random variables defined on (Ω,F , P ) such that

E|X| ≡
∫
|X| dP < ∞, and let

G ≡ σ(V1, . . . , Vk) ≡ σ([V1 ≤ x] : 1 ≤ i ≤ k, x ∈ R})

be the σ-algebra generated by the r.v.’s Vi, i =, . . . , k. Then by the Radon-Nikodym

Theorem, Section A.3, there is a random variable E{X|G} ≡ E{X|V1, . . . , Vk} on (Ω,F)

called the conditional expectation of X given G and uniquely characterized P -almost

surely by the property:

for every bounded continuous function γ : Rk 7−→ R,∫
γ(V1, . . . , Vk) ·X dP =

∫
γ(V1, . . . , Vk) · E{X | G} dP

Throughout the chapter and the book, the reader can make the definitions and

calculations more concrete by imagining all σ-algebras to be generated by finitely many

random variables V1, . . . , Vk, and by expressing all conditional expectations via ‘regular

conditional probability densities’ (see A.3) as integrals with respect to a conditional

probability density given V1, . . . , Vk. In this spirit, while Theorem 1.1 asserts that

E{M(t)−M(s) | Fs} − 0 whenever 0 ≤ s ≤ t, where

Ft ≡ σ(N(s) : 0 ≤ s ≤ t) = σ(I[t≥t], T · I[T≤t])

the calculations in its proof have been carried out in terms of conditional densities given

[T ≤ s] together with the value of T or given [T > s].

2. [Stochastic Process]. A stochastic process {M(t) : t ∈ S} defined on the

probability space (Ω,F , P ) and the set S is simply a family of F -measurable real-valued

random variables indexed by elements of S . The index-sets S used in this book are

(subsets of) Z, [0,∞], R, and (in Chapter 12) R2. Although our notations suppress the

dependence of the random variables M(t) ≡ M(t, ω) on ω ∈ Ω, the stochastic process

{M(t) : t ∈ S} can also be regarded as a function M : S × Ω 7−→ R about which some

further regularity conditions, such as joint measurability or ‘separability’, are explicitly

imposed (as in Doob 1953). In this book, we adopt the much stronger and intuitively
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more meaningful restriction (when S ⊂ R):

for all ω in a measurable subset ω1 of Ω for which

P{Ω1} = 1, the function M(·, ω) : S 7−→ R is right-

continuous and has limits from the left at every point x ∈ S.

(1.2)

This means that not only do each of the events

{ω ∈ Ω : lim
s→x+

M(s, ω) = M(x, ω)} and {ω ∈ Ω : lim
s→x−

M(s, ω) exists}

for x ∈ int(S) have P -probability 1, but also that all these events are contained in a

single event Ω1 of probability 1. Denote by D(S) the set of real-valued functions f

on a subset S of R which are right-continuous and have left-hand limits. The statement

(1.2) says just that the random function M(·) ≡ M(·, ω) : S 7−→ R is almost surely

an element of D(S), i.e., for each ω belonging to some F -measurable set Ω1 with

P -probability 1, the function M(·, ω) : S 7−→ R belongs to D(S). Many books on

stochastic processes call the graph {(t, M(t, ω)) : t ∈ S} of the random function M(·, ω)

its path or time-trajectory, and we will too.

3. [Process adapted to a σ-algebra family]. Suppose that the collection {Ft :

t ∈ S} of sub-σ-algebras of F on Ω, where S is a Borel subset of R, are increasing

in the sense that whenever s, t ∈ S and s < t, also Fs ⊂ Ft. (Two σ-algebras

G ≡ σ(Y1, . . . , Yk) and H ≡ σ(Z1, . . . , Zm) generated by finite collection of random

variables satisfy G ⊂ H if and only if each of the r.v.’s Y1 can be expressed as a Borel-

measurable function of Z1, . . . , Zm.) A stochastic process {M(t) : t ∈ S} on (Ω,F , P )

is said to be adapted to {Ft} if each r.v. M(t) ≡ M(t, ω) for t ∈ S is Ft measurable

as a function of · ∈ Ω.

4. [Martingale]. A stochastic process M(t) on (Ω,F , P ) which is adapted to

an increasing σ-algebra family {Ft : t ∈ S} is called a martingale with respect to {Ft},
or simply an Ft martingale, if all expectations E|M(t)| are finite and if

for all s, t ∈ S with s < t, E{M(t) | Fs} a.s. (P )

This definition applies equally well to the discrete-time where the parameter-set S is a

discrete subset of R such as Z, as to the continuous-time case where S is a subinterval

of R.

In sophisticated treatments of continuous-time martingales, it is usually assumed

that each Ft contains all subsets of Ω which are contained in F-measurable sets of

P-probability 0, i.e., that each Ft is complete with respect to P , and that
⋂
s>t

Fs = Ft,

i.e., that {F} is right-continuous. These assumptions are used primarily to guarantee
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that each Ft martingale M(t) is equivalent to some Ft martingale M∗(t) satisfying

(1.2), in the sense that P{M(t) 6= M∗(t)} = 0 for each t. Since the processes M(·)
in this book will always be assumed to satisfy (1.2), we dispense with these technical

assumptions on Ft .

In the foregoing terminology, Theorems 1.1 and 1.2 respectively say that the pro-

cesses M(t) and M2(t)− V (t) are Ft martingales. Another calculation which can be

similarly summarized is the following.

Exercise 2 Suppose that T1, T2, . . . , Tn are independent and identically distributed ran-

dom variables with distribution function F , and let

F̂n(t) = n−1
n∑

i=1

I[Ti≤t] and Ft ≡ σ(I[Ti≤t], TiI[Ti≤t], i = 1, . . . , n)

Show that [F̂n(t)− F (t)/[1− F (t)] is a {Ft} martingale on the interval [0, τF ), where

τF ≡ sup{s : F (s)}, by fixing s < t < τF and calculating

I[F̂n(s)<1] · E

(
F̂n(t)− F (t)

1− F (t)
− F̂n(s)− F (s)

1− F (s)

∣∣∣∣ Fs

)
.

2

5. [Counting Process]. A (simple) counting process {N(t)}t≥0 on (Ω,F , P ) is

a right-continuous nondecreasing random step-function with isolated jumps of unit height

and N(0) = 0. It is uniquely determined by the times T1, T2, . . . at which jumps take

place. With probability 1,

N(t) = n if and only if Tn ≤ t < Tn+1, n ≥ 0 (1.3)

where T0 ≡ 0 by convention, and for n ≥ 0,

Tn+1 ≡ inf{t : N(t) > n} (possibly = ∞) (1.4)

By assumption P{Tn+1 − Tn > 0 | T1, . . . , Tn} = 1 whenever Tn < ∞.

6. [Compensator and Variance-Process of a Counting Process]. Let N(t)

be any counting process such that E{N(t)} < ∞ for all finite t. As will be proved in

Theorem 3.4 and Remark 5.2, there is a uniquely determined stochastic process {A(t) :

t ∈ [0,∞)} adapted to Ft ≡ σ(N(s) : s ≤ t) = σ(N(t), {Ti : 1 ≤ i ≤ N(t)}), called the

compensator of N(·), such that A(·) ∈ D([0,∞)) P-a.s., and
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(i) A(0) = 0, and for s < t, A(s) ≤ A(t)

(ii) A(t−) = A(t) whenever P{∆N(t) = 0 | Ft−} = 1, and ∆A(t) is measurable with

respect to Ft− ≡ σ(Fs : s < t)

(iii) M(t) ≡ N(t)−A(t) is a Ft martingale.

Similarly, if E(N2(t)) < ∞ for all t < ∞ , there is a unique {Ft}-adapted stochastic

process V (·) called the (predictable-variance process for N(·), with paths almost surely

in D([0,∞)) and satisfying (i) and (ii) almost surely, for which

(iii′) (N(t)−A(t))2 − V (t) is a {Ft} martingale.

A lot of effort (e.g., in Liptser and Shiryayev 1977, Chapters 4–5) often goes into

characterizing A(·) and V (·) uniquely within a much larger class of processes — the class

of Ft ‘predictable’ processes be described in Section 5.2 — and into supplying conditions

under which A(·) essentially determines (the probability law of) N(·) . Although such

questions are of interest in applications to filtering of the theory we develop, they are

irrelevant to us here, since we exhibit A(·) and V (·) explicitly in Theorem 1.3 and

then prove results about the martingales of (iii) and (iii′). Nevertheless, we make implicit

reference to uniqueness by talking about ‘the’ compensator and variance-process associated

with a counting process.

In the terminology of the present paragraph, Theorems 1.1 and 1.2 say:

if N(t) is a simple counting process with precisely one jump

at the random time T, then its compensator A(t) and

variance-process V (T ) are given in terms of T and H by

A(t) = H(min{t, T}) , V (t) =
∫

0
I[T≥u] · (1−∆H(u))dH(u)

(1.5)

1.3 Another Class of Examples — Poisson Processes

Let h be a deterministic nonnegative Borel-measurable function of [0,∞) such that

H(t) ≡
∫ t
0 H(s)ds < ∞ for each t < ∞. The counting process N(·) adapted to an

increasing family Ft of σ-algebras generated by N alone, is called a Poisson counting

process with intensity h if for all real numbers s, t, u with 0 ≤ s < t,

E{eiu(N(t)−N(s)) | Fs} = e(eiu−1)(H(t)−H(s)) a.s.

or equivalently, if all increments N(t)−N(s) with s < t are independent of Fs and if

for each integer k ≥ 0,

P{N(t)−N(s) = k} =
1
k!

(H(t)−H(s))ke−(H(t)−H(s))
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For such a counting process, the independence of increments implies for any integrable

Fs-measurable random variable cs that when s < t,

E{cs · (N(t)−N(s))} = E{N(t)−N(s)} · E{cs} = E(cs) · (H(t)−H(s))}

Therefore, in the case A(t) ≡ H(t) =
∫ t
0 h(x) is a deterministic compensator. Similarly

E{c1 · [N(t)−N(s)−H(t) + H(s)]2 = E(cs) · (H(t)−H(s))}

so that the variance-process V (·) is also nonrandom and equal to H(·).

A theorem due to Watanabe (Brémaud 1981, pp. 21–25) says that if F0 is the

trivial σ-algebra, if h is any nonnegative function with H(t) ≡
∫ t

0
h(x)dx finite for finite

t, and if a counting process N is restricted only by the assumption that A(t) ≡ H(t)

is a compensator for N, i.e., satisfies conditions (i)–(iii) of Section 1.2 above, then N

must already be a Poisson counting process with intensity h. See the book of Karlin and

Taylor (1975) for extensive discussion and applications of the Poisson processes.

In this subsection, there are no essential changes in statements of results if the cu-

mulative intensity function H(t) is continuous but not necessarily absolutely continuous.

1.4 Compensator of a General Univariate Counting-Process

Theorems 1.1 and 1.2 would remain valid if F were a subdistribution function, that is, a

right-continuous function with F (0) = 0 for which F (∞) might be smaller than 1. This

would mean that the counting process N can be allowed with positive probability to make

no jumps at all. One important way in which such a zero-or-one-jump process can arise is

as an indicator N(t) ≡ I[T≤min{C,t}] , where T and C are nonnegative random variables

only the smaller of which can actually be observed. In this case F (t) ≡ P{T ≤ min(C, t)},
and the appropriate choice of σ-algebra family to describe the information observable up

to time t would be

Ft ≡ σ( I[T≤min〈C,T 〉], I[T≤min〈C,t〉], min{C < T} · I[min〈C,T 〉≤t] )

Here T might be the waiting-time until failure for an organism or device, and

C might represent a random ‘censoring’ time after which failure could not be directly

observed. In this case, we would say that [T > C] is the event that the failure-time

T is censored. Alternatively T and C might be so-called ‘latent’ waiting times to

failure from different causes, with the process N indicating only failure from the cause

associated with time T . Then [T > C] would be described as the event that the device

or individual was ‘lost to observation’ or ‘lost to follow-up’ at the time C of failure from
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a ‘competing cause’. See the solution of Exercise 3 for further discussion of the latter

situation, which is called a competing risks survival experiment.

If the (sub-) distribution function F (t) = P{T ≤ t | F0} is specified conditionally

given a nontrivial σ-algebra F0 of information known or observable at time 0, and if

Ft = σ(F0, N(s) : 0 ≤ s ≤ t) (1.6)

then the proofs of Theorems 1.1 and 1.2 given above still show that M(t) and M2(t)−
V (t) are Ft martingales.

Exercise 3 (a) Show that the compensator given in Theorem 1.1 or equation (1.5) for

N(t) = I[T≥min(C,t)] is the same as for I[T≥t] on the interval [0, C] if C is a nonrandom

constant.

(b) Find a (necessary and) sufficient condition on the joint distribution of random

variables T and C for the compensator of N(t) with respect to the family {Ft} of

display (1.6) to be almost surely equal on the random interval [0, C] to the compensator

H(min{t, T, C}) of I[T≤t] with respect to σ(I[T≤t], T · I[T≤t]).

(c) Interpret the condition you found in (b) in case a joint continuous density for

(T,C) exists. 2

The following theorem is due to Jacod (1975). For another proof, see Theorem 18.2

and Lemma 18.12 of Lipster and Shiryayev (1977, vol. 2). See Section A.3 for general

properties of the regular conditional probability distributions (with distribution functions

Fk) used here.

Theorem 1.3 Suppose that N is a counting process satisfying (1.3) and (1.4); that

EN(t) < ∞ for each t < ∞; that equation (1.6) holds and that

P{Tk+1 − Tk > 0 | T1, . . . , Tk, F0} = 1 a.s. for all k ≥ 0

Let
Fk(x) ≡ P{Tk1 − Tk ≤ x | F0, T1, . . . , Tk}

F̄k(x) ≡ 1− Fk(x−), Hk(x) ≡
∫ x
0 [F̄k(u)]−1 dFk(u)

and define nondecreasing right-continuous Fk adapted processes A(·) and V (·) by

A(0) ≡ A(T0) ≡ 0, V (0) ≡ V (T0) ≡ 0, and for Tk < t ≤ Tk+1

A(t) = A(Tk) +
∫ t−T

0
dHk(u), V (t) = V (Tk) +

∫ t−T

0
[1−∆Hk(u)] dHk(u)

Then N(t) − A(t) is a Ft martingale, and under the additional assumption that

EN2(t) < ∞ for each finite t, so is (N(t)−A(t))2 − V (t).
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Proof. The idea is to verify the compensator properties separately on each of the intervals

(Tk−1, Tk] using Theorems 1.1 and 1.2 by considering only counting processes with 0 or

1 jumps. For this purpose, define for k = 1, 2, . . . , and 0 ≤ t < ∞,

Nk(t) ≡ N(min{t, Tk})−N(min{t, TK−1}) ≡ I[Tk−1<t≤Tk]

and note that the compensator (respectively, variance-process) of Nk with respect to

Ft is obviously the same as the compensator (variance process) of Nk(·) with respect to

Gk,t ≡ σ(T1, . . . , Tk,Ft).

Then Theorem 1.1, together with the opening remarks of this subsection, say that

a compensator for the 0-or-1 jump counting process Nk(t) is given by

Ak(t) ≡ A(max{Tk−1,min{t, Tk}})−A(Tk−1)

and (the proof of) Theorem 1.2 says that (Nk(·)−Ak(·))2 is compensated by the process

Vk(T ) ≡ V (max{Tk−1,min{t, Tk}})− V (t, Tk−1).

Observe that to apply the proofs of the Theorems 1.1 and 1.2, what is needed is

actually not quite equation (1.6) but the weaker condition that for all 0 ≤ s ≤ t ≤ u < ∞,

almost surely on the event [Tn ≤ s] ( = [N(s) ≥ n] ),

P

{
Tn+1 ≥ u

∣∣∣∣{Ti}n
i−1,Ft

}
= P

{
Tn+1 ≥ u

∣∣∣∣{Ti}i=1, I[Tn+1>t],Fs

}
This observation will be exploited in Chapter 3, specifically in Theorem 3.5. An important

application where the σ-algebras Ft satisfy this more general condition but not (1.6)

will be given in Section 5.4.

Now for each finite integer L define the processes

mL(t) ≡
L∑

k=1

(Nk(·)−Ak(·)) , vL(t) ≡
L∑

k=1

{(Nk(t)−Ak(t))2 − Vk(t)}

Each of these processes is a finite sum of Ft martingales and is therefore itself a martingale.

Moreover, by inspection

N(min{t, TL} =
L∑

k=0

Nk(t), A(min{t, TL}) =
L∑

k=0

Ak(t) (1.7)

By monotone convergence these two processes respectively converge to N(t) and A(t) as

L →∞. For fixed s < t > ∞, dominate the random variables mL(t) by the integrable

random variables N(t)+A(t) to conclude by the Dominated Convergence Theorem from

the martingale property of mL(·) that

N(s)−A(s) = lim
L→∞

mL(s) = lim
L→∞

E{mL(t) | Fs}
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and

E{ lim
L→∞

mL(t) | Fs} = E{N(t)−A(t) | Fs}

i.e., that N(·)−A(·) is also a Ft martingale.

For each L, and fixed s < t,

E{[mL(t)]2 − [mL(s)]2 | Fs}

= E{mL(t)−mL(s)]2 | Fs} (by martingale property, c.f. (3.4))

= E

{(∑L
k=0(Nk(t)−Ak(t)−Nk(s)−Ak(s))

)2
| Fs

}
(by (1.7))

=
∑L

k=0 E{[Nk(t)−Ak(t)−Nk(s) + Ak(s)]2 | Fs}

The last equality follows by the identity for all j:

E{Nj(t)−Nj(s)−Aj(t) + Aj(s) | T1, . . . , Tj−1, F0} = 0

Then, by the martingale property for Nk − Ak and (Nk − Ak)2 − Vk for each k, we

have the last sum of conditional expectation

=
L∑

k=0

E{(Vk(t)− Vk(t) | Fs}) = E{Vk(t)− V (s) | Fl}

Thus M(min{t, TL}) − A(min{t, TL}))2 − V (min{t, TL}) is a {Ft} martingale for each

finite integer L.

Under the assumption that EN2(t) < ∞, we check that EA2(T ) < ∞. Indeed, for

each finite L and t,

EN(min{t, TL}) ≥ EV (min{t, TL})

= E(N(min{t, TL})−A(min{t, TL}))2

≥
(
[EA2(min{t, TL}))1/2 − [EN2((min{t2, TL})]I1/2

)2
where the last inequality comes from the Cauchy-Schwarz inequality. By the Monotone

Convergence Theorem, if EN2(t) < ∞, then

EA2(t) = lim
L→∞

EA2(min{t, TL}) ≤ 2{EN(t) + EN2(t)}

For t < ∞, vL(t) ≡ N(min{t, TL})−A(min{t, TL})2−V (min{s, TL}) is dominated

for all L by the integrable variable N2(t) + A2(t). By equation (1.7), the almost surely

pointwise limit of vL(·) is (N(·)−A(·))2 − V (·) as L →∞. It follows as before by the

Dominated Convergence Theorem that (N(t)−A(t))2 − V (t) is a {Ft} martingale. 2
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1.5 Mantel’s Successive Contingency-Table Method for Two-

Sample Survival Data.

This section shows in the context of censored survival data the striking notational simplic-

ity achieved by expressing relevant statistics as Stieltjes integrals with respect to com-

pensated counting processes.

Suppose that we can observe

ti ≡ {Xi, Ci}, δi ≡ I[xi≤ci], i = 1, . . . , n

sj ≡ min{Yj , Dj}, εj ≡ I[Yi,Di], j = 1, . . . ,m

where {Xi}n
i=1 is a sequence of independent and identically distributed random variables

independent of the independent and identically distributed sequence {Yi}m
j=1, and {C1}

and {Dj} are known censoring times. Here the Xi and Yj are regarded as the waiting

times for two differently treated groups A and B of medical patients, from entry into

a clinical trial until death. If it is known in advance exactly when all the data from the

trial will be collected and analyzed, then the administrative censoring time is simply the

duration from the entry into the trial of the i’th patient of group A until the end of the

trial, and Dj can be understood similarly. Since it may make sense to think of the times

of entry as random variables, upon which any statistical analysis of the clinical trial should

be made conditional, we define F0 as the σ-algebra generated by the Ci and Dj . A

statistical null hypothesis in this experiment might be that all Xi and Yj have the same

distribution function F .

Mantel’s (1966) idea was to analyze data of the form described above by considering

a series of 2×2 contingency tables summarizing the survival experience of all patients

stillunder observation at various amounts of time after entry into the trial. Define

NA
i (t) ≡ δiI[ti≤t], i = 1, . . . , n; NB

j (t) ≡ εjI[sj≤t], j = 1, . . . ,m;

NA(t) ≡
∑

i=1 NA(t), NB(t) ≡
∑

j=1 NB(T ), N(t) ≡ NA(t) + NB(t)

RA(t) ≡
∑n

i=1 I[ti≥t], RB(t) ≡
∑m

j=1 I[sj≥t], R(t) ≡ RA(t) + RB(t)

The processes NA(t) and NB(t) count deaths, respectively in patient groups A and

B, which can be observed before the end of the trial among patients who have been in the

trial for time t or less. The processes RA(t) and RB(t), called the groupwise numbers at

risk at time-on-test t, count the numbers of patients in groups A and B who had been

in the trial for at least time t and who had not died by time t. The very natural idea

of summarizing the survival experience of all those in the trial with respect to duration

t under study by means of the counting processs NA, RA, NB, RB is called the life-table

method and is standard in analyzing survival data. Mantel (1966) formed the following
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type of contingency-table, one at each of the distinct times t of jumps in N(·), i.e., at

the distinct times ti for which δ = 1 or the times s for which ε = 1.

#Deaths at T #Survivors past T Totals at risk

Group A xA(t) RA(t)− xA(t) RA(t)

Group B XB(t) RB(t)− xB(t) RB(t)

Totals over 2 groups ∆N(t) R(t)−∆N(t) R(t)

In this table, the number of group A deaths observed at time t is xA(t) ≡∑n
i=1 ∆NA

i (t). Under the null hypothesis that all Xi and Yi are independent and

identically distributed with distribution function F , the lifetimes of the R(t) individuals

‘at risk’ at time-on-test t are invariant under permutation of labels, or exchangeable

(Feller 1971, p. 228). Thus conditionally given the marginal table-totals ∆N(t), RA(t),

and R(t), as well as the other data (ti, δi) and sj , εj observable before time t, i.e.

for which ti or sj is less than t, the random variable xA(t) is hypergeometrically

distributed (Feller 1957, pp. 43 ff.) with parameters RA(t),∆N(t), and R(t). Therefore,

xA(T ) has conditional expectation RA(t) ∆N(t)/R(t) and conditional covariance

RA(t) RB(t) ∆N(t) · (R(t)−∆N(t))/[R2(t) ·R(t)− 1)]

With a motivation which is retrospect is very similar to that of the running con-

ditional expectation A(T ) and accumulated conditional variance V (t) of the previous

sections, Mantel formed what is now called the Mantel-Haenszel or logrank statistic by

summing xA(t) over all distinct jump-times t for N , centering the sum by the sum of

null-hypothetical conditional expectations, and scaling it by the square root of the sum of

conditional variance, obtaining

∑
t≥0:∆N(t)>0

[
xA(t)− RA(t)∆N(t)

R(t)

]/(∑
t

∆N(t){R(t)−∆N(t)}RA(t)RB(t)
R2(t){R(t)− 1}

)1/2

We focus now on re-expressing the numerator of Mantel’s statisticin terms of the

N and R processes, using the identities

NA(t) ≡
∑

0≥s≤t:∆N(s)>0

xA(s)

and

xA(t)− ∆N(t) ·RA(t)
R(t)

= xA(t)− RA(t)
R(t)

(xA(t) + xB(t) =
RB(t)
R(t)

xA(t)− RA(t)
R(t)

xB(t)
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It is not hard to show from Theorem 1.1, although we will not do it until Section

5.4, that under our null hypothesis the processes

MA(t) ≡ NA(t)−
∫ t

0
RA(u) dH(u) , MB(t) ≡ NB(t)−

∫ t

0
RB(u) dH(u)

are martingales with respect to the σ-algebra family Ft generated by all r.v.’s which

would be observable by time t. Here H is the cumulative-hazard function associated

with F , and the integrals are defined as Stieltjes integrals. This fact lends added interest

and statistical importance to the following expressions for Mantel’s numerator.

∑
s: 0≤s≤t
∆N(s)>0

[
xA(s)−∆N(s)

RA(s)
R(s)

]
=
∫ t

0−

[
dNA(u)− RA(u)

R(u)
dN(u)

]
(1.8)

=
∫ t

0−

(
RB(u)
R(u)

dNA(u)− RA(u)
R(u)

dN(u)
)
−
∫ t

0−

(
RB

R
RA(u)− RA

R
RB(u)

)
dH(u)

=
∫ t

0−

(
RB(u)
R(u)

dMA(u)
)
−
∫ t

0−

(
RA(u)
R(u)

dMB(u)
)

The martingale behavior of expression (1.8) turns out to have a special relationship

to its large-sample behavior. The standard techniques to be developed in Chapters 4

and 5 apply naturally to prove that formula (1.8) has asymptotically normal distribution

for large m and n, under simple regularity conditions on {Ci} and {Dj}. The

same techniques show quite generally that Mantel’s denominator squared is a consistent

asymptotic-variance estimator for expression (1.8) under the null hypothesis.

1.6 Further Examples of Martingale-Related Test Statistics

While the previous example shows how martingale and compensator formalism relates

to an important test statistic originally introduced on more intuitive grounds, there are

many more recent examples of statistics, conceived for use in special hypothesis-testing

situations, which completely owe their existence to thinking based on martingales. Two

such examples will be presented in this section, one due to Diaconis and Graham (1981)

in the context of ESP experimentation with feedback to the experimental subjects, and

the other a new nonparametric test for trend in time-sequence data.
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1.6.1 ‘Skill-Scoring’ in Card-Guessing Experiments with Feedback [following Dia-

conis and Graham 1981]

Consider an experiment in which a human subject is to be tested for possible ESP by being

asked to guess successively the colors of a deck of n shuffled cards in order, where the

deck is composed of cards r colors: c1 of the first color, . . . , cr of the r’th color. The

card-guesser will successively, for 1 = 1, 2, . . . , n, announce his guess gi of the color of the

i’th card, based on ‘partial feedback’ information concerning earlier cards and guesses. Let

the shuffled order of the cards be π(1), . . . , π(n), where the random permutation π(·)
of the symbols {1, 2, . . . , n} is assumed to be distributed uniformly over all n! possible

permutations. This corresponds to an assumption of perfect shuffling. The guesser may

use auxiliary randomization such as flipping a coin. The feedback is assumed to be of

such a form that after each guess gi, the guesser is told whether his guess is right or

wrong, i.e., the value of δi ≡ Igi=color of π(i)], as well as the value fi of some function of

π(1), . . . , π(i) and g1, . . . , gi which is specified as part of the experimental design.

For example, if there are two colors, red and black, then these rules dictate that the

guesser know after guess gi exactly which of the cards π(1), . . . , π(i) were red (‘complete

feedback’). If the colors are understood as the four suits of ordinary playing-cards, then

the guesser’s information as of just after the i’th guess might be nothing more than which

of the first i guesses are correct, or might, for example, include also either the exact

values π(1), . . . , π(i − 4) (full information after a delay of four guesses) or the exact

values π(1) mod 2, . . . , π(i) mod 2.

The point of this formulation, as indeed of the article of Diaconis and Graham

(1981), is the great flexibility of experimental designs which allow a rigorous and intuitively

sensible analysis. Diaconis and Graham propose to base the hypothesis test of whether

the guesses {gi} are no better than ‘purely random’ upon their skill-scoring statistic

Sn =
{

n · r − 1
r2

}−1/2 n∑
i=1

(δi − E{δi | (fj , gj , δj : 1 ≤ j < 1)}) (1.9)

where the conditional expectations are calculated as though the next guess gi is purely

random given the present state of knowledge. That is, expectations are calculated under

the null hypothesis that gi is a possible guess which is conditionally independent of

π(i) given Fi−1 ≡ σ((fj , gj , δj) : 1 ≤ j < i). The statistic(1.9), which evidently has

expectation 0 under the null hypothesis, makes sense because its increments adjust the

number of correct guesses by the expected number under purely random guessing given

the available information.

Our methodological interest in this and the next example arises from the fact that

δi are event-indicators whose values are naturally referred under a null hypothesis to a
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changing conditional-information base. Formally, this is expressed through the observation

that

{ (δi − E[δi | (fj , gj , δj : 1 ≤ j < i)]) }n
i=1

forms a martingale difference sequence, i.e., that the sequences Sn of its partial sums over

i form a martingale. Using the martingale central limit theorem of McLeish (1974), to be

proved in chapter 4, one concludes that under the null hypothesis, Sn is asymptotically for

large n distributed as a standard normal random variable. To apply McLeish’s Theorem,

one needs to know

n−1
n∑

i=1

E{δi | Fi−1} · (1− E{δi | Fi−1})
P−→ r − 1

r
as n →∞

which Diaconis and Graham prove cleverly (pp. 12–20 of their paper) by comparing the

best and worst guessing-strategies under the null hypothesis.

1.6.2 A General Hypothesis Test for Trend

In many settings where one observes time-sequence data {Xi}n
i=1 but cannot a priori

assume independence or identical distribution, it is important to be able to distinguish

the nonparametric null hypothesis

(H0) : {Xi} satisfies P (ri = k | Xi, . . . , Xi−1) =
1
i

for 1 ≤ k ≤ i

against trend alternatives of the form

(T) : P{ri = k | X1, . . . , Xi−1}
{ increase

decrease
in k for each i

where ri ≡ 1+
∑i−1

j=1 I[xj≤xi] denotes the rank of Xi among {Xj : j ≤ i}. In particular,

suppose that X0
i =

∑p
k=1 akyki + ei for i = 1, . . . , n, where Y = (yki : 1 ≤ k ≤

p, 1 ≤ i ≤ n) is a known p × n design matrix and where {e}n
i=1 is an independent

sequence of identically and continuously distributed ‘errors’. Then for fixed p-vectors

(aj
1, . . . , a

j
p), j = 0, 1, the problem of testing

(H0)∗ : (a1, . . . , ap) = (a0
1, . . . , a

0
p)

versus

(HA)∗ : for all t, {P (X0
i ≤ t)}n

i=1 has the same rank-order as

{
p∑

k=1

a1
kyki

}n

i=1

is a special instance of testing (H0) against (T ) for

Xi = Xin = Zπ(i),n where Zj,n ≡ X0
j −

p∑
k=1

a0
kykj
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and π(·) is a permutation of {1, . . . , n} such that
∑p

k=1 (a1
k−a0

k)yk,π(i) is monotonically

increasing or decreasing in i = 1, 2, . . . , n.

A general approach to testing (H0) versus (T ) is to fix a sequence h1(·), h2(·), . . .
of increasing functions from [0, 1] to R and to form the statistic

M ≡
∑n

i=1{hi(ri/i)− i−1
∑i

j=1 hi(j/i)(∑n
i=1[i−1

∑i
j=1 h2(j/i)− (i−1

∑i
j=1 hi(j/i))2]

)
An especially simple choice for the functions hi(·), namely hi(x) ≡ i x for all i, gives

Mn a form identical of the two-simple Wilcoxon statistic(Rao 1973, p. 500). Intuitively,

one can view this Mn as a nonparametric statisticfor testing the ‘equality in distribution’

of the two ‘samples’ {Xi}n
i=1 and {1, . . . , n} by testing the correspondence between

their rank-orderings.

The generality of the statistics Mn derives from the fact that
m∑

j=1

[hi(ri/i)− i−1
i∑

j=1

hi(j/i)]


n

m=1

is a martingale sequence under (H0), and by the Martingale Central Limit Theorem of

McLeish (Theorem 4.1), the condition

max
i≤n

(∑n
j=1 [hi(ri/i)− i−1

∑i
j=1 hi(j/1)

)2

∑n
m=1

{
m−1

∑m
j=1 h2(j/m)− (m−1

∑m
j=1 hm(j/m))2]

}2 −→ 0 as n −→∞

implies that Mn
D−→ N(), 1) as n → ∞. This condition is not at all restrictive, and

makes the untried statistics Mn seem natural in time-series tests for trend.
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Chapter 2

Weak Convergence of Probability

Laws of Random Functions

2.1 Definitions and Portmanteau Theorem

This chapter provides the probabilistic machinery or talking about asymptotic distribution

theory as n −→ ∞ for sequences {Mn(T ) : 0 ≤ t ≤ T, n ≥ 1} of stochastic processs

related to compensated counting process martingales. As will appear in the examples

concluding this chapter, and in many others throughout the book, it turns out not to be

enough for statistical purposes to understand simply the behavior for large n of the finite-

dimensional distributions of Mn, that is, of the joint distributions of finite collections

(Mn(t1), . . . ,Mn(tk)) for fixed t1, . . . , tk. One must instead treat each Mn(·) ≡ Mn(·, ω)

as a random function in D[0, T ], with a view to understanding the convergence of the

sequence of probability laws to Mn defined as probability measures on suitable classes

of subsets of D[0, T ]. A theory of this kind can be built up within the more tractable

space C [0, T ] continuous functions on [0, T ] because the Mn(·) will contain normalizing

constants such as
√

n which will tend tomake the heights of its jumps uniformly small

in probability.

Now fix T = 1, and write C ≡ C [0, 1] as the metric space of real-valued continuous

functions on [0, 1], with distance between f and g in C given by ‖f − g‖ ≡
sup{|f(t) − g(t)| : 0 ≤ t ≤ 1}. Then C is complete and separable. That is, Cauchy

sequences converge in C, and by the Weierstrass Approximation Theorem (A. )

P ≡

{
N∑

k=0

akt
k : N ≥ 0, ak rational

}
is a countable set of functions dense in C. Throughout this chapter, probability measures

21
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are defined on

B ≡ σ({f ∈ C : ‖f − f0‖ < r, r rational f0 ∈ P})

which is the same as the Borel σ-algebra generated by the open subsets of C in the

supremum-norm topology.

Let {µn}n≥1 and µ be probability measures on the Borel subsets B(S) of a

metric space S which may be either C or Rk for some k ≥ 1. We say that µn

converges weakly to µ as n −→ ∞, and write µn
w−→ µ on S, if for all bounded

continuous functionals γ : S 7−→ R∫
γ(f) µn(df) −→

∫
γ(f) µ(df) as n −→∞

If Xn and X are random elements of S defined on (Ω, F, P ) such that for all A ∈ B(S)

µn(A) = P{ω ∈ Ω : Xn(·, ω) ∈ A}, µ(A) = P{X(·) ∈ A}

that is, µn and ν are the probability laws or distributions of Xn and X, then we say

Xn converges in distribution and write Xn
D−→ X in S if µn

w−→ µ when n −→∞.

For A ∈ B(S), let A0, Ā, and ∂A, respectively be defined by A0 = int(A) =

interior of A, Ā = (A0)c = closure of A, where c denotes the complement of a set,

and ∂A = Ā/A0 = boundary of A.

Theorem 2.1 (Portmanteau Theorem, Billingsley 1968.) If S is a metric space,

equal either to C[0, T ] or Rk, and if µ and µn for n ≥ 1 are probability measures

on B(S), then the following are equivalent.

(a) µn
w−→ µ on S as n −→∞;

(b) for all closed A ⊂ S, lim supn−→∞ µn(A) −→ µ(A);

(c) for all A ∈ B(S) with ∂A = φ, µn(A) −→ µ(A) as n −→∞.

Proof. ((a) =⇒ (b)) First suppose µn
w−→ µ. For each M ≥ 1 and closed A ⊂ S,

define kA,M (g) ≡ 1−min{1,M · d(g,A)} for g ∈ S, where

d(g,K) ≡ inf{‖g − f‖ : f ∈ K} for K ∈ B(S).

Then kA,M (g)−IA(g) ≤ I[g∈Ac, d(g,A)≤M−1]. Thus kA,M is bounded and converges point-

wise to IA, so by the definition of weak convergence and then the bounded convergence

theorem

lim
n−→∞

∫
kA,M dµn = lim

M−→∞

∫
kA,M dµ = µ(A)
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Therefore,

lim sup
n−→∞

µn(A) ≤ lim sup
n−→∞

∫
kA,M dµ = µ(A)

((b) =⇒ (c)) For any A ∈ B(S), apply (b) to both Ā and (A0)c to find

lim sup
n−→∞

µn(Ā) ≤ µ(Ā), lim sup
n−→∞

µn((A0)c) ≤ µ((A0)c)

Thus, since µ(A0) = 1− µ((A0)c and A0 ⊂ A ⊂ Ā,

µ (A0) ≤ 1− lim supn−→∞ µn(A0)c) ≤ lim supn−→∞ µn(A)

≤ lim supn−→∞ µn(A) ≤ lim supn−→∞ µn(Ā) ≤ µ(Ā)

from which (a) follows immediately.

((c) =⇒ (a)) Let γ : S 7−→ R be any bounded and continuous function(al) on S, and

fix δ > 0. Choose a finite sequence of real numbers ri so that

r0 ≡ inf
f∈S

γ(f)− 1
2

δ < r1 < · · · < rm ≡ sup
f∈S

γ(f)

with |ri−ri−1| ≤ δ and µ(∂{f ∈ S : γ(f) ≤ ri}) = 0 for i = 1, . . . ,m. This can be done

because only countably many numbers ri can violate the last condition. Putting Ai ≡
{f ∈ S : ri−1 < γ(f) ≤ ri}, we have µ(∂Ai) = 0 and supf∈S |γ(f)−

∑m
i=1 riIAi(f)| ≤ δ.

Now (c) implies that∫ m∑
i=1

ri IAi dµn −→
∫ m∑

i=1

ri IAi dµn as n −→∞

where
∣∣∫ γdµn −

∫
γdµ

∣∣ ≤ 3δ for all large n. Since δ was arbitrary, we have proved

the assertion of weak convergence in (a). 2

The next Theorem and Corollary, often referred to as the Continuous Mapping

Theorem, show how the weak convergence of probability measures on C or D is

ordinarily used. See Section 2.4 for some statistical applications.

Theorem 2.2 If Xn
D−→ X in C as n −→∞, and if γ : C 7−→ R is a continuous

functional, then γ(Xn) D−→ γ(X) in R.

Proof. If f : R 7−→ R is bounded and continuous, then f(γ(·)) is a bounded continuous

functional on C. By the distributional convergence of Xn,

Ef(γ(Xn)) =
∫

C
f(γ(g))dµn(g) −→

∫
f(γ(g))dµ(g) = Ef(γ(X))

as n −→ ∞. The general definition of weak convergence applied to the real random

variables γ(Xn) now implies that γ(Xn) converges in distribution to γ(X) as n −→∞.
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Now and throughout the rest of the book, we extend the definition of distributional

convergence so that if Xn for n ≥ 1 are random elements of D[0, T ] and X is a

random element of C[0, T ], then we say that Xn
D−→ X in D, if there exist random

functions X̃n(·, ω) in C defined on the same probability space (Ω, F, P ) such that

‖X̃n(·)−X(·)‖ P−→ 0, and X̃n
D−→ X in C as n −→∞.

Corollary 2.3 If {Xn} is a sequence of random functions in D[0, T ] which converges

in distribution according to our extended definition to a continuous random function X,

then for any functional γ from D[0, T ] to R which is continuous with respect to the

sup-norm.

Proof. Let X̃n be a sequence of continuous random functions assumed to exist satisfying

‖X̃n−Xn‖
P−→ 0 as n −→∞. Since γ is a continuous functional on C, Theorem 2.2)

implies

γ(X̃n) P−→ γ(X) in R as n −→∞

and norm continuity of γ on D implies |γ(X̃n)− γ(LXn)| P−→ 0. The Corollary now

follows from Slutsky’s theorem. 2

2.2 Criteria for Distributional Convergence

The purpose of this section is to develop criteria for distributional convergence as n −→∞
of stochastic processes Xn as far as possible in terms of probabilities concerning random

vectors (Xn(t1), . . . , Xn(tk)) formed by evaluating these processes at arbitrary finite sets

of times t1, t2, . . . , tk. Recall that for a continuous process X on [0, T ], i.e., a stochastic

process X(t, ω) such that each path-function X(·, ω) is continuous on [0, T ], the law

of X is the probability measure µ ≡ µX on C = C[0, t] defined by

µ(A) ≡ µX(({f ∈ C : f ∈ A}) ≡ P ({ω ∈ Ω : X(·, ω) ∈ A}), A ∈ B(C)

Where a sequence {Xn} of stochastic processes is under consideration, we shall write µn

in place of µXn for their laws. Let t ≡ t(k) = (t1, . . . , tk) denote an arbitrary k-tuple

of elements of [0, T ], where k ≥ 1. For a particular process X with law µ, define the

law of the random k-vector (X(t1), . . . , X(tk) on Borel-measurable subsets B of Rk

by

µt(k)(B) ≡ µt1,...,tk(B) ≡ µ({f ∈ C : (f(t1), . . . , f(tk)) ∈ B})

= P ({ω ∈ Ω : (X(t1, ω), . . . , X(tk, ω)) ∈ B})
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The measures µt(k) for all k and t(k) are called the finite-dimensional distributions

either for µ or for X.

For the rest of this section, let {tj}∞j=1 be a fixed enumeration (Appendix A. ) of

the set [0, T ] ∩Q, that is, of all rational numbers in [0, t]. Since for each f0 ∈ C

{f ∈ C : ‖f − f0‖ ≤ r} =
⋂
j≥1

{f : |f(tj)− f(tj)| ≤ r}

it is easy to see that B(C) = σ({f ∈ C : f(tj) ≤ r}, j ≥ 1, r ∈ Q). Since the collection

of µt(k) determines all µ-probabilities of finite intersections of the generating class of sets

just given for B, the Extension Theorem of Caratheodory (Appendix B.1) implies that

the finite-dimensional distributions µt(k) of µ determine the collection of µ probabilities

on C. Conversely, the Kolmogorov-Daniell Extension Theorem (Appendix B.5) says that

any mutually consistent family of µt(k) does uniquely determine a probability measure

ν on R∞, the space of real infinite sequences. The latter fact will be used to characterize

the distributions of infinite random sequences ξ = (ξj , j ≥ 1) obtained as distributional

limits of sequences XXn(Tj), j ≥ 1 as n −→ ∞. At that point, a further hypothesis

(“tightness”, defined in the next paragraph) on the sequence of probability laws of Xn

is needed to prove that there exists a continuous stochastic process X for which such a

limiting random sequence ξ has the same distribution on R∞ as (X(tj), j ≥ 1). These

steps are carried out in Theorem 2.4) below.

A family {να : α ∈ I} of probability measures on C is called tight if for each

δ > 0 there is a compact subset Kδ ⊂ C such that for all α ∈ I, µα(Kδ) ≥ 1 − δ.

Here K is (sequentially) compact if every countable sequence {fn} ⊂ K has some

subsequence converging uniformly to some f ∈ K. The classical and very tractable

criterion of Arzelà-Ascoli for a subset of C to be compact, will be given later in this

section.

Theorem 2.4 (Prohorov 1956) If {µα}α∈I is tight on C, then every infinite subse-

quence {µα(n)}n≥1 has a further subsequence converging weakly on C.

Proof. The Helly Selection Theorem on Rk (Appendix B.6) asserts that if {Fn} is a

sequence of joint distribution functions on Rk, then there exists a subsequence converging

pointwise, at all continuity points of the limit, to a function G which has all the properties

of a joint distribution function on Rk except that its range may be contained in a

subinterval of [0, 1]. If (−N,N)k is an open rectangle with measure ≥ 1− δ according

to all the Fn for n ≥ 1, then it follows as in Theorem 2.1)((a) =⇒ (b)) that∫
(−N,Nk)

dG(x) ≥ 1−
∫

(−N,Nk)c

dFn(x) ≥ 1− δ
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If such a rectangle exists for each δ > 0 , then G is a proper joint distribution function.

If K is a compact subset of C, then it is easy to check that

Kt ≡ Kt(k) ≡ Kt1,...,tk ≡ {(f(t1), . . . , f(tk)) : f ∈ K}

is a closed and bounded, and therefore compact, subset of Rk. Thus if {µα : α ∈ I} is

tight, and if for each δ > 0, Kδ is a compact subset of C such that µα(Kδ) ≥ 1− δ

for all α, then for each t(k)) ≡ (t1, . . . , tk), f ∈ k},

µt(k)(Kδt(k)) = µα({f : (f(t1), . . . , f(tk)) ∈ Kδt1,...,tk}) ≥ 1− δ

By the Helly Selection Theorem, for each {µδ(n)}n≥1 and k, there exists a subsequence

{muα′(n)−n≥1} such that as n −→∞,

µα′(n)t1,...,tk
w−→ some probability measure νt(k) ≡ νt1,...,tk

on Rk. Apply this argument to successive subsequences for k = 1, 2, . . .. Then the

diagonal argument (Appendix A. ), just as in the proof of the Helly Theorem, yields a

subsequence {α0(n)} of {α(n)} such that simultaneously for all k and t ≡ t(k) ≡
(t1, . . . , tk),

µα0(n)t(k)
w−→ νt(k) as n −→∞.

The laws νt(k) on Rk are mutually consistent, that is, for each (t1, . . . , tk) and

measurable A ⊂ Rk−1,

νt1,...,tk(A× R) = ν(t1,...,tk−1)(A).

By the Kolmogorov Extension Theorem (Appendix B.5), there is a probability measure

ν on R∞ with finite-dimensional distributions

ν({a = (a1, a2, . . .) ∈ R∞ : (a1, . . . , ak) ∈ A}) = νt(k)(A) ∈ B(Rk).

We will next use the key fact that for compact subsets K ⊂ C,

{(f(t1, f(t2), . . .) ∈ R∞ : f ∈ K} =
⋂
k≥1

{a ∈ R∞ : (a1, . . . , ak) ∈ Kt(k)} (2.1)

To verify (refcompact), observe first that for every k, by definition

K ⊂ {g ∈ C : for some f ∈ K, g(ti) = f(ti) for i = 1, . . . , k}

which says precisely that the left-hand side of (2.1) is contained in the right-hand side.

However, if the sequence a is an element of the right-hand side of (2.1), then for every

k ≥ 1, there is an element gk of K such that aj = gk(tj) for every j ≤ k. Since D is

compact the sequence {gk} must have a subsequence converging (in the supremum-norm
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topology) to an element f ∈ K. Since aj = gk(tj) for all k ≥ j, also f(tj) = aj . In

other words, a belongs to the left-hand side of (2.1).

By Theorem 2.1 and the weak convergence of the finite-dimensional distributions of

µα0(n) as n −→∞ for each k ≥ 1 and each δ > 0,

lim supn−→∞ µα0(n)(A) ≤ lim supn−→∞ µα0(n)(A ∩Kδ) + µα0(n)(Kc
δ))

≤ lim supn−→∞
{
µα0(n)({f ∈ C : (f((t1), . . . , f(tk)) ∈ (A ∩Kδ)t(k)}) + µα0(n)(Kc

δ)
}

≤ ν({a ∈ R∞ : (a1, . . . , ak) ∈ (A ∩Kδ)t(k)}) + δ.

Letting k −→∞ and using countable additivity of ν on R∞, along with (2.1) applied

to the compact set A ∩K, we find for each closed A ,

lim supn−→∞ µα0(n)(A) ≤ ν({a ∈ R∞ : for k ≥ 1, (a1, . . . , ak) ∈ (A ∩Kδ)t(k)}) + δ

= ν({(f(t1), f(t2), . . .) : f ∈ A ∩Kδ}+ δ.

(2.2)

Now let δ −→ 0, and conclude

lim sup
n−→∞

µα0(n)(A) ≤ ν({(f(t1), f(t2), . . .) : f ∈ A}).

Take A to be all of C shows that ν({(f(t1), f(t2), . . .) : f ∈ C}) = 1. Finally, define a

probability measure µ on C by

µ(A) ≡ ν({(f(t1), f(t2), . . .) : f ∈ A}), A ∈ B(C).

Then (2.2) and Theorem 2.1 immediately imply µα0(n)
w−→ µ on C and n −→∞, and

we have found a subsequence {µα0(n)} of {µα(n)} converging weakly on C. 2

The classical criterion for compactness of K ⊂ C is the Arzelà-Ascoli Theorem.

A set K ⊂ C has compact closure in C if and only if it is bounded and uniformly

equicontinuous, i.e., if and only if

sup
f∈K

|f(0)| < ∞ and lim
δ↓0

sup
f∈K

sup
0≤s,t≤1
|s−t|<δ

|f(s)− f(t)| = 0.

A discussion and proof of this result can be found in Billingsley (1968, p. 221) or in

Coddington and Levinson (?). The idea of the next theorem is to re-express information

about compactness from Arzelà-Ascoli in a form useful in applying Theorem 2.4.

Theorem 2.5 {µn : n ≥ 1} is tight on C if and only if for all α, β > 0 there exist

M < ∞ and δ > 0 such that for all n ≥ 1

µn({f : |f(0)| > M}) < β, µn({f : sup
|s−t|≤δ

|f(s)− f(t)| > α}) < β (2.3)
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Proof. If (2.3) holds, then for given β > 0 put

Kβ ≡ {f : |f(0)| ≤ M} ∩
∞⋂

k=1

{f : sup
|s−t|<δ(k)

|f(s)− f(t)| ≤ k−1}

where δ(k) and M are chosen by (2.3) so that

µn({f ∈ C : sup
|s−t|≤δ(k)

|f(s)− f(t)| > k−1}) ≤ β/sk+1, µn({f : |f(0)| ≤ M}) ≤ 1
2
β.

Then µn(Kβ) ≥ 1 − β for n ≥ 1, and Kβ is compact by Arzelà-Ascoli. Conversely, if

for given β > 0, K is compact subset of C with µn(Kc) ≥ β for all n ≥ 1, and if

α > 0 is given, then Arzelà-Ascoli Theorem says that there exist M and δ for which

K ⊂ {f ∈ C : |f(0)| ≤ M, sup
|s−t|<δ

|f(s)− f(t)| ≤ α}.

This inclusion immediately implies (2.3). 2

Remark 2.1 If {µn} is a family of probability laws on C for which

(α) ((µn)t w−→ µt on Rk as n −→∞ for each t = (t1, · · · , tk), and

(β) {µn} is tight on C,

then µn
w−→ µ for some probability measure µ on C with finite-dimensional distributions

µt(k). This is so because, by Prohorov’s Theorem and (β), each subsequence of {µn}
has a weakly convergent subsequence and the weak limits must all be µ due to (α).

Condition (α) is usually the conclusion of some Central Limit Theorem, and (β) is

verified through (2.3) in particular situations. 2

In applications of weak convergence, one often encounters stochastic processes which

are not continuous but which almost surely belong to some D[a, b]. If the jumps of these

processes become small as the sequence-index goes to ∞, then condition (2.3) is enough

to ensure weak convergence in our extended sense in D, to a probability law on C.

Theorem 2.6 Suppose {Xn : n ≥ 1} is a sequence of random functions in D[a, b] such

that

(i) for each α and β > 0, there exists δ > 0 and a finite integer n0 such that for

all n ≥ n0,

P{ω : sup
|s−t|<δ

|Xn(t, ω)−Xn(t, ω)| ≥ α} < β;
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(ii) lim supM→∞ P{ω : |Xn(a, ω)| ≥ M} = 0; and

(iii) for all finite subsets (t1, . . . , tk) of rational numbers in [a, b],

(Xn(t1), . . . , Xn(tk))
D−→ (X(t1), . . . , X(tk)) in Rk as n −→∞,

where (X(r) : r ∈ [a, b] ∩Q) is some random sequence in R∞.

Then in our extended sense, Xn
D−→ X in D[a, b] as n −→ ∞, and with probability

1 the limiting process X is continuous on [a, b]. Conversely, if Xn
D−→ X in D,

with X an element of C[a, b], then conditions (i)–(iii) hold.

Proof. The idea is to approximate the random elements Xn of D by linearly-

interpolated continuous random functions X̃n(·). For each n ≥ 1 and 0 ≤ t ≤ 1,

let

X̃n ≡ (1− {nt}) Xn([nt]/n) + {nt}Xn(([nt] + 1)/n)

where [x] denotes the greatest integer less than or equal to x, and {x} ≡ x− [x] is the

fractional part of x. Then X(·) is continuous by definition, and by (i)

sup
t∈[a,b]

|X̃n(t)−Xn(T )| P−→ 0 as n −→∞

Now (i)–(iii) for {Xn} evidently imply that (i)–(iii) hold with Xn replaced by X̃n.

Note that by continuity of the random functions X̃1, . . . , X̃n0 , for fixed α and β a still

smaller δ′ can be chosen so that the probability-inequality (i) holds with X̃n replacing

Xn and with δ′ replacing δ, for all n ≥ 1. Theorem 2.5 and Remark 2.1 say that

X̃n
D−→ X as n −→∞, and that {X(r) : r ∈ [a, b]∩Q} is almost surely the sequence

of values at rational points of a continuous function on [a, b]. But this is exactly what

the extended definition of convergence in distribution in D for Xn requires.

For the converse direction, observe that distributional convergence in extended sense

in D implies the existence of continuous stochastic processes X‡
n satisfying

X‡
n

D−→ X in C, and ‖X‡
n −Xn‖

P−→ 0 as n −→∞ (2.4)

Theorem 2.5 implies (i)–(iii) hold with Xn replaced by X‡
n, and the second part of (2.4)

then implies that (i)–(iii) hold for Xn. 2

Remark 2.2 In order for (i) of Theorem 2.6 to hold, the jumps of Xn(·) must become

uniformly small in probability in the sense that

sup{|Xn(t)−Xn(r−)| : t ∈ [a, b]} P−→ 0 as n −→∞

2
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Remark 2.3 It is easy to check from the definitions that if Xn(·) for n ≥ 1 are

random functions in D[0, 1] which converge in distribution as n −→ ∞ to an almost

surely continuous random function X, and if γ : [0, 1] 7−→ [a, b] is a strictly monotone

continuous nonrandom function, then as n −→ ∞, X0
nγ−1 −→ X0γ−1 in D[a, b]. This

comment is helpful in interpreting weak convergence on D[a, b] when [a, b] is (semi-)

infinite. 2

An important extension of Corollary 2.3 and Remark 2.3 is

Corollary 2.7 Suppose {Xn}n≥1 is a sequence of D[a, b] stochastic processes which

converge in distribution as n −→∞ to the continuous D[a, b] random function X, and

suppose γ : D[a, b] −→ D[c, d] is a supremum-norm-continuous functional which sends

continuous functions to continuous functions. Then

γ(Xn) D−→ γ(X) in D[c, d] as n −→∞.

Proof. Observe first that by Corollary 2.3, for fixed c ≤ t1 ≤ · · · ≤ tk ≤ d and real

α1, . . . , αk, as n −→∞
k∑

i=1

αi γ(Xn)(ti)
D−→

k∑
i=1

αi γ(X)(ti) in R

By the Cramèr-Wold device (Appendix B.6) the finite-dimensional distributions of γ(Xn)

or γ(X‡
n) converge weakly to those of γ(X), where {X‡

n} is any sequence of stochastic

processes in C[a, b] for which (2.4) holds. From Theorems 2.5 and 2.6, it follows that

the probability laws µn of Xn form a tight family of probability measures on C and

therefore that for each β > 0, there exists a compact subset K ≡ K(β) of C such that

P{Xn ∈ K(β)} ≥ 1− β for all n ≥ 1. Then, since γ(·) is continuous on D[a, b] and

sends continuous functions to continuous functions, the set γ(K(β)) ≡ {g◦f : f ∈ K(β)}
of D[c, d] functions is actually a compact subset of C[c, d]. At the same time,

P
{

γ(X‡
n) ∈ γ(K(β))

}
≥ 1− β for all n ≥ 1

so that the family of probability laws µn ◦ γ−1 of γ(Xn) are also tight on C[c, d], and

the Corollary will follow from Remark 2.1 if we show

‖γ(X‡
n)− γ(Xn)‖ P−→ 0 as n −→∞ (2.5)

Now continuity of γ on D[a, b] in supremum norm together with sup-norm

compactness of K(β) in D[a, b] imply as δ −→ 0,

sup {‖γ(f)− γ(g)‖ : f ∈ K(β), g ∈ D[a, b], ‖f − g‖} < δ −→ 0 (2.6)
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If (2.6) were false, there would exist sequences fn ∈ K(β) and gn ∈ D[a, b], with

‖fn − gn‖ ≤ δn and δn −→ 0, such that ‖γ(fn)− γ(gn)‖ is bounded away from 0 as

n −→ ∞. Since K(β) is compact, there exists f ∈ K(β) such that some subsequence

{fn′} of {fn} converges in sup-norm to f . Thus gn′ also converges to f . By

continuity of γ, γ(gn′) and γ(fn′) converge to γ(f) in sup-norm, contradicting the

boundedness away from 0 of ‖γ(fn′)− γ(g)n′)‖. This contradiction proves (2.6).

From (2.6) and the observation that ‖X‡
n −Xn‖

P−→ 0 as n −→∞, we conclude

that for all α, β > 0 and sufficiently small δ = δ(α, β),

P{‖(X‡
n)− γ(Xn‖ > α} ≤ P{X‡

n ∈ K(β)c} + P{‖X‡
n −Xn‖ ≥ δ}

Therefore (2.5) and the Corollary have been proved. 2

Remark 2.4 If the modulus of continuity ωf (·) of each function f in D[a, b] is

defined by

ωf (r) ≡ sup{|f(s)− f(t)| : s ≤ s, t ≤ b, |s− t| < r}

then the tightness conditions (2.3) of Theorem 2.5 and (i) of Theorem 2.6 can be under-

stood as uniform in-probability bounds ωx(δ) = op(1) as δ −→ 0 on the moduli of

continuity of the random functions Xn. From this point of view, it is clear why the

tightness-conditions (2.3) and (i) ensure that any possible limiting distribution of Xn

must assign probability 1 to C. 2

For a unified and general method of deriving tightness criteria for laws of processes

Cn based on moments of |Xn(t) − Xn(s)|, see §3 of the Stroock- and Varadhan-edited

1973 NYU Seminar Notes.

2.3 Construction of the Wiener Process

The limiting continuous random functions arising in problems of statistics can in most

cases be understood as simple transformations of a single continuous random function

with Gaussian finite-dimensional distributions, namely the Wiener process or standard

Brownian motion. A straightforward construction of Wiener process using Theorem 2.6

is given in this section.

For each n ≥ 1, let {Zj,n : j = 1, . . . , 2n} be an independent and identically

distributed sequence of N(0, 1) random variables and define a random process Wn(·)
in D[0, 1] by

Wn(T ) ≡ 2−n/2

[2nt]∑
j=1

Zj,n for 0 ≤ t ≤ 1
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where [x] again denotes the greatest integer less than or equal to x. It is easy to see

that Wn has Gaussian, or multivariate-normal, finite-dimensional distributions with

EWn(t) = 0 and E = {Wn(s)Wn(t)} = [2−n ·min(s, t)]

for 0 ≤ s, t ≤ 1. As n −→ ∞, the finite-dimensional distributions of Wn converge

weakly to those of a family {W (t) : 0 ≤ t ≤ 1} of jointly normal random variables with

EW (t) = 0 and E{W (s)W (t)} −min(s, t). This follows because a sequence of normal

random vectors is easily seen to converge in distribution if the corresponding sequences of

means and covariances converge. The limiting process W is called the Wiener process,

and Theorem 2.6 will be used to show that it is almost surely a continuous random

function on [0, 1]. Indeed, (iii) of Theorem 2.6 has just been observed to hold, and since

Wn(0) = 0 for all n, (ii) is also obvious. Since the maximum jump-size |Wn(t)−Wn(t−)|
over t ∈ [0, 1] is by definition equal to 2−n/2 max{|Zj,n| : 1 ≤ j ≤ 2n}, the convergence

in Remark 2.2 can be verified directly. To check (i) of Theorem 2.6, calculate for each

m ≥ 0 and n ≥ m,

P
{

sup|s−t|<2−m |Wn(t)−Wn(s)| > 3α
}

≤ P
{
max0≤j<2−m sup0≤t≤2−m |Wn(t)−Wn(2−mj)| > α

}
since one of |Wn(s) − Wn(2−m[2ms])|, |Wn(2−m[2mt]) − Wn(2m[2m(s)])|, or |Wn(T ) −
Wn(2−m[2mt])| must be > α if |Wn(t)−Wn(s)| > 3α. The last displayed probability

is equal to

P
{

2−n/2 max0≤j<2m max1≤k≤2n−m |
∑k

i=1 Zj+2n−m+i,n| > α
}

≤ 2M
{
max1≤k≤2n−m |Z1,n + · · ·+ Zk,n| > α 2n/2

} (2.7)

where the last step has of course used the fact that Zj,n are independent and identically

distributed N(0, 1) random variables. When n ≥ m, independence and joint symmetry

of Zj,n imply for λ ≡ α 2n/2, L ≡ 2n−m, and Sk ≡
∑k

i=1 Zk
i,n for k ≥ 1, that

P {max1≤k≤L |Sk| ≥ λ} = 2P {max1≤k≤L Sk ≥ λ} = 2
∑L

k=1 P {max1≤j<k Sj < λ ≤ Sk}

≤ 4
∑L

k=1 P {max1≤j<k Sj < λ ≤ Sk ≤ SL} ≤ 4 P{SL ≥ λ}

Thus, when n ≥ m, (2.7) is ≤ 2m+2 [1 − Φ(α 2n/2/2(n−m)/2)]. Now the well-known

(Feller 1957, vol. 1, p. 166) tail-inequality

1− Φ(x) ≤ (2π)−1/2 x−1 e−x2/2 for x > 0

implies that the probabilities (2.7) for n ≥ m are bounded by

C(α) 2m/2 e−α2 2m−1
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where C(α) > 0 does not depend upon m. This last expression can be made arbitrarily

small by choosing m large.

Thus (i)–(iii) of Theorem 2.6 hold for the processes Wn, and that theorem implies

Wn
D−→ W in D[0, 1] as n −→∞, and W ∈ C[0, 1] a.s.

The definition of Wiener process W (·) is summarized by

W (0) ≡ 0 a.s., and each increment W (t)−W (s) for 0 ≤ s ≤ t ≤ 1

is a N(0, t− s) r.v. independent of {W (u) : 0 ≤ u ≤ s}.

 (2.8)

As has just been proved, W is an almost surely continuous process. In addition, the

random variables W (t) have finite moment-generating functions, and

Proposition 2.8 The Wiener process W (t) for t ∈ [0, 1] as well as the processes

W 2(t)− t and eW (t)− t/2 are martingales.

Proof. The σ-algebra family implicit in the Proposition is defined by FW
t ≡ σ(W (u) :

0 ≤ u ≤ t). The independence in (2.8) says for 0 ≤ s ≤ t ≤ 1 that for any continuous

real-valued function γ of W (t)−W (s),

E{γ(W (t)−W (s)) | FW
t } = E{γ(W (t)−W (s))} a.s.

and the normal distribution part of (2.8) says

Eγ(W (t)−W (s)) =


0 if γ(x) ≡ x

t− s if γ(x) ≡ x2

exp{1
2(t− s)} if γ(x) ≡ exp(s)

Therefore, almost surely

E{W (t)−W (s) | FW
t } = 0

E{W 2(t)−W 2(s) | FW
t } = E{W (t)−W (s))2 + 2(W (s)W (t−W (s)) | Fw

t } = t− s

E{eW (t)− 1
2
t − eW (s)− 1

2
s | FW

t } = eW (s)− 1
2
t − E{eW (t)−W (s) − e

1
2
(t−s) | FW

t } = 0.

2

Exercise 4 Let Nn(t), 0 ≤ t ≤ 1, be a Poisson counting process with cumulative rate

n∧(t), where ∧(·) is a fixed continuous increasing function, and let Xn(t) ≡ n−
1
2 (Nn(t)−

n ∧ (t)). Prove that Xn converges in distribution in D as n −→ ∞, and describe the
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limit. Hint: imitate the tightness argument of this section, this time using the special

properties of the Poisson distribution through the inequality

P{|X − λ| ≥ a} ≤ exp[
1
2
a2λ], where X ∼ Poisson (λ).

2

Note that our definition of Wiener process so far applies only to random functions

on [0, 1]. Here are two ways to extend to [0, T ], with 1 < T ≤ ∞. The simplest is

to regard the random function W0 in C[0, 1] as having been constructed and to define

W (t) ≡ T
1
2 W0(t/T ) for 0 ≤ t ≤ T .

Alternatively, one can regard independent Wiener processes W1,W2, . . . as having been

constructed on [0, 1], and define

W (t) ≡
n∑

j=1

Wj(1) + Wn+1(t− n) for 0 ≤ n ≤ t < n + 1.

The reader should verify that these two definitions of Wiener process on [0,∞) both

yield processes W with jointly normal finite-dimensional distributions, EW (t) ≡ 0, and

EW (s)W (t) = s, t for 0 ≤ s, t < T .

2.4 Examples of Statistical Uses for Weak Convergence

2.4.1 Sequential Hypothesis Test or Test Based on Boundary-Crossing.

Suppose that a test statistic Un(t) is defined for each time t ∈ [0, T ] in terms of the

information observed up to time t based on an experimental sample of potential size n.

Suppose also that the convergence Un −→ U in D[0, T ] for some random continuous

function U can be established under a null hypothesis H0 as the sample-size parameter

n goes to ∞. Then for any fixed continuous function b(·) ≥ β > 0 on [0, T ], the

hypothesis test of H0 with

rejection region ≡

{
sup

0≤t≤T
| Un(t)/b(t) ≥ 1

}
.

will have type-I error-probability α approximately equal to

P ( sup
0≤t≤T ]

|U(t)/b(t)| ≥ 1)

This follows by Theorem 2.2) and continuity of the functional γ which sends f ∈ D to

‖f(·)/b(·)‖, as long as the distribution of the random variable γ(U) has no probability

atoms.
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Suppose that Un(t) is given by n
1
2 [Fn(t)], where Fn(·) is the empirical distribution

function (defined in Exercise 2 of Chapter 1) for independent and identically distributed

random variables T1, . . . , Tn which have the continuous null-hypothetical distribution

function F . If b(·) ≡ b is a positive constant, then the boundary-crossing test just

described is the well-known one-sample Kolmogorov-Smirnov test of goodness fit of {T1 :

1 ≤ i ≤ n} to F .

2.4.2 Sampling Up to a Random Time.

Consider a survival experiment such as the two-sample experiment described in Section

1.5. We may wish to terminate the experiment not at a fixed time but, either for ethical or

economic reasons, at time τ depending on observed data. Suppose, for example, that we

intend to terminate at the time of the [cn]’th observed death, where 0 < c ≤ 1 is fixed,

or more generally at a random time τn about which we know that τn
P−→ t0 for some

nonrandom constant t0 under a null-hypothetical model as the sample-size parameter

n goes to ∞. Even if the asymptotic distribution as n −→∞ of Un(t0) were known,

one ordinarily needs to know that Un converges in D, to a continuous limiting random

function U , in order to conclude that Un(τn) − Un(t0)
P−→ 0 as n −→ ∞. In such

a case both Un(τ0) and Un(t0) have limiting distributions equal to the distribution of

U(t0). To prove this, note that if Un
D−→ U in D[0, T ] with 0 < t0 < T , then the

converse direction of Theorem 2.6 yields property (i) for {Un}. For arbitrary α > 0,

first choose δ > 0 from (i) so small that

P

{
sup

|s−t|<δ
| Un(s)− Un(t) > α

}
<

1
2
α for all n.

Next choose n so large that P{|Tn−t0| ≥ δ} < 1
2α. For all larger n, P{|Un(t0)−Un(τn)| >

α}, so that Un(τn)− Un(t0)
P−→ 0 as n −→∞.

2.4.3 Asymptotic Distribution of Level-Crossing Times. [adapted from Brook-

meyer and Crowley, Appendix 1]

Suppose that Sn(·) estimates the function S(t) ≡ P{X > t} of a survival-time random

variable X on [0, τ0], based on a data-sample of size n. Assume that as n −→∞, it

is known that

(a) m ≡ S−1(1
2) < τ0 is a point of left and right decrease for S(·), i.e., for each

small enough δ > 0, S(m− δ) > 1
2 > S(m + δ);

(b) n
1
2 (Sn − S) D−→ some random function Y in C[0, τ0];
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(c) if mn ≡ S−1
n (1

2 ≡ inf
{
x : Sn(x) ≤ 1

2

}
, then n

1
2

(
S(mn)− 1

2

)
−→ 0.

Then it is not hard to check that mn
P−→ m, and by (b) and the result proved in 2.2.2

above,

n
1
2 (S(mn)− S(mn)− Sn(m) + S(mn)) P−→ ∞

from which it follows that n
1
2 (1

2 − S(mn)) −→ −Y (m) as real random variables.

If S is differentiable at m, with S′(m) < 0, this gives the asymptotic distribution

of n
1
2 (mn −m) by the “delta method” (Rao 1973, pp. 385–388). There are two points

of view from which such a result is interesting: one can think of m either as the crossing

time by the curve S of the level 1
2 , or of mn as a generalized median-estimator.
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Chapter 3

Tools From the Theory of

Martingales, I

This chapter supplies definitions, basic properties, and distribution inequalities for (sub-)

martingale stochastic processes {M(t) : a ≤ t ≤ b}. It has been shown in Chapter 1 that

counting process {N(t), t ≥ 0} have naturally associated “compensated” martingales, and

in Chapter 2 that the Wiener process W (t) as well as W 2(t)− t and exp{W (t)− 1
2 t}

are martingales for t ≥ 0. The class of statistically interesting martingales will be

dramatically enlarged with the introduction in Chapter 5 of stochastic integrals. The

primary focus of this chapter is to construct via pointwise limiting operations the com-

pensators of increasing adapted stochastic processes adapted to a filtration, including the

predictable-variation and quadratic-variation processes associated with a large class of lo-

cally square-integrable martingales. As a result, it is shown for the key examples which

arise in this book, how compensators and variation processes are calculated and what the

formulas mean intuitively.

3.1 Basic Properties and Inequalities

Recall that for a random variable X : (Ω, F, P ) 7→ R and a sub-σ-algebra G ⊂ F , the

conditional expectation E(X|G) is characterized almost surely by:∫
Y E{X|G}dP =

∫
Y X dP

for all bounded G−measurable random variables Y . The following two basic

properties of conditional expectation will be used frequently and without further comment,

but see Appendix I for references:

39
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Repeated conditioning: if H ⊂ G ⊂ F are sub-σ-algebras and Z is a bounded

G-measurable random variable, then

E(Z · E(X|G) |H) =, E(ZX |H) (3.1)

Conditional Jensen inequality: if γ : R 7−→ R is convex and G is a sub-σ-

algebra of F , then

E(γ(X) | G) ≥ γ(E(X|G) (3.2)

A particular consequence of (3.2) is that E(E(X|G))2 ≤ E(X2), while if E(X2) <

∞, then (3.1) readily implies

E( E(X|G) · {X − E(X|G)}) = 0

These two comments yield the very useful corollary:

if EX2 < ∞, then EX2 = E(E(X|G))2 + E(X − E(X|G))2 (3.3)

A stochastic process {M(t) : a ≤ t ≤ b}, which is almost surely right-continuous,

with limits from the left (i.e., is a random function almost surely in D[a, b], is said to be

adapted to an increasing family or filtration {Ft : a ≤ t ≤ b} of sub-σ- algebras of

F if for each t, M(t) is Ft measurable, and whenever s ≤ t, Fs ⊂ Ft. Such a process

M(·) is called a martingale [respectively submartingale] if each M(t) is integrable and

for each s < t, E(M(t)|Fs) = M(s) almost surely [respectively, E(M(t)|Fs) ≥ M(s)

a.s.] Whenever the increasing family Ft is not explicitly mentioned, the σ- algebras

Ft ≡ σ(M(s) : s ≤ t) will be understood.

Remark 3.1 Any right-continuous process M(·) of integrable random variables which

is almost surely nondecreasing is a submartingale. Note also that if either M(·) is a

martingale and γ any convex function on R , or if M is a submartingale and γ a

nondecreasing convex function, then (3.2) immediately implies that {γ◦M(t) : a ≤ t ≤ b}
is a submartingale.

The following two fundamental theorems are stated without proof, but all further

developments to be based upon them are self-contained. [See Appendix I for discussion of

uniform integrability.]

Submartingale Convergence Theorem [Doob 1953, pp. 324-5,358]. If M is a uniformly

integrable submartingale adapted to {Ft} on (a, b) ⊂ R , then there exist random variables
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M(b−) and M(a+) to which M(t) converges a.s. and in the mean, respectively as

t ↑ b and as t ↓ a. In addition,

E{M(b−)|Ft} ≥ M(t) a.s.foreach t ∈ (a, b)

with equality if M is a martingale.

Burkholder Inequalities [Burkholder 1973, pp. 21-3]. For each p > 1, there are constants

Cp, cp such that, if {M(t) : t ∈ [a, b]} is a martingale and {αj , βj)}m
j=1 is a finite system

of disjoint subintervals of [a, b], then

1
Cp

E
∣∣∣∑m

j=1(M(βj)−M(αj))
∣∣∣p ≤ E

[∑m
j=1(M(βj)−M(αj))

] 1
2
p

≤ cp E
∣∣∣∑m

j=1(M(βj)−M(αj))
∣∣∣p .

(3.4)

These Burkholder inequalities are essentially discrete-time results. An extension

due to Millar for continuous-time martingales, in which the pth absolute moment of

M(t) − M(a) for martingale M(·) is bounded in terms of the 1
2pth moment for the

quadratic-variation process [M ](t)− [M ](a), will be proved in Chapter 4.

One of the important uses of the (sub-) martingale property is the maximal inequal-

ity of Doob, which generalized the famous Kolmogorov Inequality (Loève 1955, p. 235) for

tail probabilities of the largest partial sum of a sequence of independent random variables

{Xi : 1 ≤ i ≤ n}.

Development of Doob’s inequality requires the concept of stopping time. A stopping

time τ with respect to an increasing family of σ-algebras {Ft : a ≤ t ≤ b} is a random

variable with values in [a, b] such that the event [τ ≤ t] is Ft-measurable for each t.

Then

[τ < t] =
⋃

{(s<t, s∈Q: τ≤s)}

and [τ = t] are also Ft measurable. It is an easy and worthwhile exercise to show that

if τ and σ are each stopping times with respect to Ft, then so are

τ ∧ σ ≡ min(τ, σ) and τvσ ≡ max(τ, σ)

Theorem 3.1 (Submartingale Maximal Inequality, Doob 1953, pp. 317-8) . If

{M(t) : a ≤ t ≤ b} is either a martingale or a nonnegative submartingale, and if p > 1,

then

E

[
sup

a≤t≤b
|M(t)|p

]
≤ (p/(p− 1))pE|M(t)|p.
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Proof. In the martingale case, |M | is a nonnegative submartingale by Remark 3.1. Hence,

we treat only the submartingale case and drop | |. It will be enough to show, for all

{t1, · · · , tn} ⊂ (a, b) and L > 0, that

E[min{L, max
1≤i≤n

M(Ti)}]p ≤ (p/(p− 1)))pEMp(b) (3.5)

since the assertion of the Theorem then follows by the Monotone Convergence Theorem

upon letting L −→ ∞ and {ti} increase to a dense set in [a, b]. Here the max tends

to the sup because M ∈ D[a, b] almost surely.

Fix L and {ti : i = 1, · · · , n} and β > 0, and let 0 < a ≤ L. Define

Y ≡ min{L, max
1≤i≤n

M(ti)} and τ ≡


min{ti ≤ b : M(ti) ≥ β}

0 if no such ti exists.

Then by definition and (3.1), E(M(b)−M(ti)) =

E
∑

i

I[τ=ti](M(b)−M(ti)) =
∑

i

E
[
I[τ=ti](M(b)−M(ti))|Fti}

]
each summand of which is ≥ 0 by the submartingale property. Therefore,

EM(b) ≥ EM(τ) = E(I[Y≥β](M(τ)) + E(I[Y <β]M(b)).

Since E(I[Y≥β] · (M(τ)) ≥ BI[Y≥β], it follows that∫
[Y≥B]

M(b)dP = E(M(b)(1− I[Y <β])) ≥ BP{Y ≥ B}.

Next, integrating by parts and substituting the last inequality gives

EY p =
∫ L

0
P{Y > B)d(βp) ≤

∫
β−1

∫
[Y≥β]

which by the Fubini-Tonelli Theorem is equal to∫
M(b)

∫ Y
0 pβp−2dβdP = 1

p−1E(Y p−1M(b))

≤ (p/(p− 1))(E(M(b)p)1/p

(EY p)(p−1)/p Hölder’s inequality, (A.)

Divide through by (EY p)(p−1)/p and raise both sides of the resulting inequality to the

power p to complete the proof. 2

Remark 3.2 The first part of the proof of Theorem 3.1 shows that if M on [a, b] is

a {Ft} submartingale and τ is a {Ft} stopping timetaking values almost surely in

a discrete (nonrandom) subset of [a, t], where t < b, then EM(t) ≥ EM(τ). The

restriction to discrete-valued τ will be removed in Lemma 3.1.



3.1. BASIC PROPERTIES AND INEQUALITIES 43

A useful corollary of Theorem 3.1 is that martingales M on [a, b] with EM2(t)

uniformly bounded, have M2(t) uniformly integrable.

Corollary 3.2 (i) If {M(t) : a ≤ y ≤ n} is either a martingale or nonnegative sub-

martingale, then it is a uniformly integrable family of random variables with {supt |M(t)| ≥
β} ≤ β−1EM(b). (ii) If {M(t) : a ≤ y ≤ n} is uniformly integrable, where M(B) ≡
M(b−).

Proof. The inequality of (i) was proved as part of the proof of Theorem 3.1. Then

respectively with k = 1 or 2 in (i), (ii), the submartingale property of |M(t)|k implies

E|M(t)|k I[|M(t)|≥β] ≤ E|M(b)|k I[|M(t)|≥β] ≤ E|M(b)|kI[supt |M(t)|≥β]

which by integrability of |M(t)|k becomes arbitrarily small as β becomes large since the

probability of the last event becomes small. (See Appendix (B.4) if further justification is

needed.) In (ii), the Martingale Convergence Theorem says that M(b) ≡ M(b−) exists

a.s. Theorem 3.1 and the Dominated Convergence Theorem tell that as t increases to

b, [M(t)−M(b−)]2 being dominated must converge in mean square to 0, and EM2(t)

converges to EM2(b−).

Because of this corollary, any martingale M defined initially on [a, b] for which

sup{EM2(t) : t ∈ (a, b)} < ∞ is called a square-integrable martingale. The con-

ventional definitions M(a) ≡ M(a+) and M(b) ≡ M(b−), allowed by the Martingale

Convergence Theorem in case M had not been defined at a or b, will apply throughout

this book. From now on, the notations x∧ y ≡ min(x, y) and xvy ≡ max(x, y) will also

be used freely.

Example. (Compound Renewal Process martingales) Since martingale theory was in

large part invented to generalize the fruitful theory of partial sums of independent random

variables, it is instructive for the reader not versed in probability theory to specialize each

martingale related theorem to the following case.

Let X ≡ {Xi : i = 1, 2, · · ·} be a sequence of independent integrable random

variables; let Y ≡ {Yj : j = 1, 2, · · ·} be an independent sequence, independent of X, of

positive random variables; and define for t ≥ 0,

M(t) ≡
∑∞

i=1 I[Y1+···+Yj≤t] Xj

Ft = σ(Yj , Xj : j ≥ 1, Y1 + · · ·+ Yj ≤ t).
(3.6)

If one imagines the increment Xj to be included in a cumulative sum at the observation-

time Y1 + · · ·+ Yj , then M(t) is the accumulated value of the sum up to time t. The
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times of successive increments form a renewal point-process on the half-line (Karlin and

Taylor 1975, Chapter 5), and the integrability for each finite t of

N(t) ≡ max{j ≥ 0 : Y1 + · · ·+ Yj ≤ t

(Karlin and Taylor 1975, pp. 181-2) ensures that N(t) is almost surely finite and thus

that M(t) is almost surely well-defined. If the random variables Xi were all equal to 1,

then M ≡ N would be a renewal counting process. If the Yj were all 1, then M

would be a random walk. The class of M defined in (3.6) is that of compound renewal

processes, which has many important applications (Karlin and Taylor 1975, Feller 1971,

pp. 180-90). For example, in actuarial (i.e., insurance) problems Xi represents the

amount of an insurance claim at the death- or accident-occurrence time Y1 + · · · + Yi.

Actuarial applications are discussed further in Sections 4.4.2 and 5.8. In Remark 5.2,

M(t) is interpreted as a stochastic integral.

Now assume that all the expectations EXi = 0. By independence of Xj from

{Xi : 1 ≤ i < j} ∪ {Yi : 1 ≤ i ≤ j} , it is easy to see that E(Xj I[s<Y1+···+Yj≤t] | Fs) = 0.

By integrability of N(t), M is a martingale on [0,∞). The inequalities of the present

section specialize to say about M that for each p > 1, with C ′
p ≡ (p/(p− 1))p Cp

E max1≤m≤n |
∑m

k=1 Xk|p ≤
(

p
p−1

)p
E |
∑m

k=1 Xk|p ≤ C ′
pE
(∑n

k=1 XkX
2
k

) 1
2
p

E sup0≤t≤T |M(t)p ≤ (p/p− 1))pE|M(T )|p ≤ C ′
pE
(∑N(T )k=1 XkX

2
k

) 1
2
p

(3.7)

The last inequality is obtained by applying Burkholder’s inequality to M(T ) decomposed

into the sum of increments M(Y1∧T ), M(Y2∧T )−M(Y1∧T ), · · · , M(Ym∧T )−M(Ym−1∧
T ), M(T )−M(Ym ∧T ), each of which has conditional expectation 0 given the previous

ones, and then letting m −→∞. Interesting information is obtained from (3.7) when Xi

takes the values ± 1 with equal probabilities 1
2 . These inequalities then tell that the

pth moments of max1≤m≤n |X1 + · · ·+ XM | and sup0≤t≤T |M(t)| are bounded by the

constant C ′
p respectively multiplying n1

2p and E{N(T )}
1
2
p.

Exercise 5 Fix an integer n, and suppose N is a Poisson(n) random variable,

independent of an independent and identically distributed sequence of random variables

{Xi}∞i=1 with distribution function F on R. Define M(t) ≡
∑N

j=1 I[Xj≤t] − nF (t)

and Ft ≡ σ(M(s) : s ≤ t). Show that M is a {Ft} martingale.

Hint:
∑N

j=1 I[Xj≤t] is a homogeneous Poisson process on R.
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3.2 Local Martingales

A local (sub-) martingale is a stochastic process {M(t), t ∈ [a, b])} adapted to a

σ−algebra family {Ft} with respect to which there exists a sequence {τn}n≥1 of

stopping times such that τn ∧ b increases almost surely to b as n −→ ∞, and such

that for each n ≥ 1 the process M(· ∧ τn) is a (sub-) martingaleadapted to {Ft} on

[a, b). Then M is said to be locally square-integrable if each of the (sub-) martingales

M(· ∧ τn) is square-integrable, that is, if for each n, sup{EM2(t∧ tn) : t ∈ [a, b)} < ∞.

It is useful to know that (sub-) martingales M on [a, b) are local (sub-) martingales

with respect to any sequence {τn} of stopping times increasing to b . That is the

central assertion of the following Lemma.

Lemma 3.1 If {X(t), t ∈ [a, b)} is an almost surely right-continuous {Ft} adapted

submartingale, then for each a ≤ s ≤ t < b and stopping time τ ,

E{X(t ∧ τ}) | Fs ≥ X(s ∧ τ) a.s.

and for each constant c, Xτ,c(·) ≡ max{c, X(·∧τ)} is a uniformly integrable submartin-

galeon [a, t].

Proof. For uniform integrability, we follow Chow, Robbins, and Siegmund (1971, pp.

14ff). For s < t and n ≥ 1, let xj ≡ s + 2−n(t − s)j for j = 0, 1, 2, · · · and let

τ(n) ≡ inf(xj : j ≥ 0, τ ≥ x}. Then τ(n) is a stopping time, and as n −→ ∞, τ(n)

decreases almost surely to τ . If a ≤ u < w ≤ b, then (3.1) and the Fxj measurability

of the event [xj < w ∧ τ ] imply that

E{X(w ∧ τ(n))−X(u ∧ τ(n))})|Fu}
= E

{∑
j(X(w ∧ xj+1 ∧ τ(n))−X(max{u, xj} ∧ τ(n))|Fu

}
= E

(∑
j I[xj+1≥u, xj<w∧τ ]E{X(w ∧ xj+1)−X(uvxj)|Fuvxj}|Fu

)
which is ≥ 0 by the submartingaleproperty of X. Thus X(·∧τ(n)) is a submartingale

for each n, and by Remark 3.1 applied to the increasing convex function γ(x) =

max{c, x},
Xτ(n),c(·) ≡ max{c,X(min{·, τ(n)})}

is a {Ft} submartingale, t ∈ [a, b). For each real β and u ∈ [a, t], if B ≡ B(n, c, u, β)

denotes the Fu measurable event [Xτ(n),c(u) > β], then

βP [Xτ(n),c(u) > β] = P{B} <
∫
B Xτ(n),c(u)dP ≤

∫
B Xτ(n),c(t)dP

=
∫
B max{c,X(t)}dP.



46 CHAPTER 3. MARTINGALE TOOLS

The two displayed inequalities respectively express the submartingale property of Xτ(n),c

and of max{c, X(·)}.

Therefore, when β is large, P{Xτn,c(u) > β} is uniformly small for all n and

all u ∈ [a, t]. The family Xτn,c(u) : n ≥ 1, u ∈ [a, t]} has now been shown to be

uniformly integrable. The decrease of τ(n) to τ and the right-continuity of X imply

Xτn,c(u) → Xτ,c(u) as n −→ ∞. It follows for each c (cf. Appendix (B.4)) that for

u ∈ [s, t]

E{Xτ,c(u) | Fs} = lim
n−→∞

E{Xτn,c(u) | Fs} ≥ lim
n−→∞

Xτn,c(s) = Xτ,c(s).

When c −→∞, the Monotone convergence Theorem yields E{Xt ∧ τ | Fs} ≥ X(s ∧ τ)

almost surely. Thus X(· ∧ τ) and Xτ,c are submartingales. The uniform integrability

of {Xτ,c(s) : s ∈ [a, t]} follows because, as n −→∞,

E{I[|Xtaun,c(u)|≥β] |Xτ(n)(u)|} → E{I|Xτn,c(u)|≥β] |Xτ,c(u)|}

The simplest example of a local submartingale which is not already a submartingale

arises as a counting process. Suppose that, conditionally given the value of a random

variable Y, N is a Poisson counting process(Sec. 1.3) with cumulative intensity function

E{N(t)|Y } = Y Λ0(t), where Λ0(·) is a nonrandom increasing continuous function with

Λ0(0) = 0 and Λ0(∞) = ∞. Then P{N(t) < ∞|Y } = 1 for each t < ∞, almost surely

with respect to Y , which implies also P{N(t) < ∞} = 1, and N is a simple counting

processas described in Section 1.4. Counting processes like this, which are conditionally

Poisson given a random cumulative intensity function Λ, are called doubly stochastic

Poisson processes and have been advocated by Cox (195?) as models for the clustering

of random occurrences. In our example, EN(t) < ∞ for finite t with intensity A(t) < ∞
if and only if EY < ∞. Whether expectations are finite or not, the process N is a

locally square-integrable submartingale, with the ‘localizing’ sequence of stopping times

τn = inf{t > 0 : N(t) = n}. The processes N(· ∧ τn) are submartingales because they

are increasing, and square-integrable because they are uniformly bounded by n.

In the preceding paragraph, the technical device of introducing a localizing sequence

τn had the effect of restricting attention to only the first n occurrences in an unfolding

random experiment. This idea suggests the possibility of measuring time for a local mar-

tingale by means of some increasing process associated with it. The predictable-variance

or cumulative-conditional-variance process to be constructed in the next section serves

as such an ‘operational time’ for a martingale. The main benefit of treating martingales

through their operational time- scales is to relate their behavior to a standard form, as

expressed for example by the following heuristic principle:
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If M is a locally square-integrable martingale, continuous or with small jumps, and V (·)
is its predictable-variance, then the large-scale distributional behavior of the graph

of (V (t),M(t)) is like that of the graph of (s,W (s)) for a Wiener process W .

Important general theorems justifying and applying (3.2) are proved in Section 3.4 and

Chapter 4.

3.3 Constructive Doob-Meyer Decomposition

We develop in this section for a large class of submartingales a more general analog of

the compensator A and variance-process V associated with counting processes N as

introduced in Chapter 1. The main result is the Doob-Meyer Decomposition (Lipster

and Shiryayev 1977, vol. 1, Chap. 3). The approach here is to obtain the compensator

as a limit in probability of a sequence of processes defined directly in terms of a given

submartingale via conditional-expectation operations. Although this approach restricts

slightly the class of submartingales for which we prove the Decomposition, the class is

still ample for statistical applications. Since the need to pass to equivalent versions of

processes will be avoided entirely, the proofs require less complicated measure theory than

in presentations done in full generality.

The key idea of the following theorem is to treat continuous-time submartingales by

discretizing time finely but nonrandomly. See Helland (1982, pp. 86-7) for a good survey

of techniques and counterexamples related to this idea. For later reference, we define

the concept of discretizing time by sequence of stopping times. A partition sequence

{Q(k)k≥q ≡ {tjk : j ≥ 0}k≥q of subdivisions of [0, T ) adapted to Ft, for T ≤ ∞, is

defined to be a doubly indexed set of Ft stopping times tjk such that t0k ≡ 0 almost

surely, and

(i) tj+1,k ≤ tjk a.s., and for each k, tjk ↑ T as j −→∞
(ii) tjk ∈ Q(k + 1) ≡ {ti,k+1 : i = 0, 1, 2, · · ·}, all j ≥ 0, k ≥ 1

(iii) as k −→∞,

mesh Q(k) ≡ max{tj+j1,k − tjk : j ≥ 0, tjk < T} P→ 0

 (3.8)

We regard Q(k) ≡ {tjk}j as partitioning [0, T ) into the system of disjoint random

intervals [tjk, tj+1,k). Condition (i) says for each t > T that at most finitely many such

intervals intersect [0, T ]; (ii) says that the partitions Q(k) are nested in the sense that

Q(k) ⊂ Q(k + 1); and (iii) says the partitions become arbitrarily fine as the index k

increases.

Theorem 3.3 For fixed T ≤ ∞, let (X(t), t ∈ [0, T ]) be a Ft submartingale, with
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X(0) = 0 and E supt≤T X2(t) < ∞, such that

There is a nondecreasing right-continuous F0 measurable random function Λ(·) on

[0, T ) with Λ(0) = 0, and a positive adapted process h with E
∫ t
0 h dΛ < ∞ for

t < T , such that for all nonrandom times 0 ≤ s < t < T ,

E

 ∑
u∈(s,t)

∆X(u) | Fs

 ≤
∫ T

s
E{h(u)|Fs} dΛ(u). (3.9)

Then the random variables

Ak(t) =
∑
j≥0

I[tjk≤t] E{X(t ∧ tj+1,k)−X(tjk) | Ftjk
}

converge in probability for each t < T to a random variable A(t) measurable with respect

to the increasing family Ft of σ-algebras. The stochastic process (A(t), t ∈ [0, T )),

called the compensator of X, is nondecreasing and right-continuous almost surely, and

X −A is a {Ft} martingale.

Remark 3.3 In the terminology of Brown (1978), the compensator A(·) is called cal-

culable if for each t, A(t) is the limit in probability of Ak(t). Accordingly, what

we show here is that submartingales with square-integrable suprema, with sums of abso-

lute jumps square-integrable up to each finite t, and which satisfy (3.9), have calculable

compensators. Observe that for submartingales X which are nonnegative, the hypoth-

esis E sups X2(s) < ∞ is no more restrictive than EX2(T ) < ∞, by Remark 3.1 and

Theorem 3.1.

Remark 3.4 The class of processes with absolutely summable jumps can also be under-

stood as the right-continuous processes with left limits which can be obtained as the sum of

a continuous process with one of locally bounded variation over any nonrandom partition-

sequence {Q(k)}, i.e., such that for t < T ,

sup
k

∑
j

I[tjk<t] |X(tj+1,k)−X(tj+1)| < ∞ a.s. (3.10)

For any right-continuous process X with left limits, recall the notation ∆X(s) ≡
X(s) −X(s−). If

∑
s≤t |∆X(s)| < ∞ almost surely at each t < T , then the process

U(t) ≡
∑

s≤t ∆X(s) is by definition right-continuous with locally bounded variation, and

X − U is almost surely continuous. The continuous processes arising in applications

are typically derived from either the Wiener process or the continuous compensators of

counting processes.
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Proof of Theorem 3.3. The proof steps are numbered for easy reference.

(1) (Doob Decomposition). The sequence {Ak(tjk)}j is characterized uniquely for

each k by the properties that Ak(0) ≡ 0 , that Ak(tj+1,k) is Ftjk
measurable for each

j ≥ 0, and that for tjk < T, X(tjk) − Ak(tjk) is a discrete-time martingale sequence

with respect to {Ftjk
}j . This is easy to check through the formula

X(t)−Ak(t) =
∑

j

I[tjk<t]

(
X(t ∧ tj+1,k)− E{X(t ∧ tj+1,k) | Ftjk

}
)

(3.11)

The definition of Ak and the submartingale property for X immediately imply that

Ak(t) ≥ Ak(tjk) almost surely for each j, k, and tjk ≤ t ≤ tj+1,k. By definition, Ak

is almost surely right-continuous and adapted to {Ft−, t ∈ {0, T ]}.

(2) With the object of examining the convergence of Ak(t) as k −→ ∞, we find

in this step an upper bound for all expectations E((Ak(tjk)− Am(tjk))2) when integers

k < m and j are fixed. Throughout this proof-step, we denote for r = k or m and

for all i,

zir ≡ E{X(ti+1,r)−X(tir) | Ftir}. (3.12)

Now (3.8)(i) implies both that Q(k) ⊂ Q(m) and that there are only finitely many tir

which are less than tjk. Thus the variables Ak(tjk)−Am(tjk) are well defined, and by

their definition,

E(Ak(tJk)−Am(tJk))2 = E

∑
j<J

∑
l

(E{zlm | Ftjk
} − zlm)2


(3.13)

=
∑
j<J

E

{
zjk

∑
l

zlm

}2

where for each fixed j, the summations over l for which tjk ≤ tlm < tj+1,k are finite,

with E
{∑

l zlm | Ftjk

}
= zjk. In the second line of (3.13), the cross-terms involving pairs

(j′, l′) and (j, l) for j′ > j have been dropped because they are mutually orthogonal

by virtue of (3.3). By (3.1) and Ftir measurability of zir,

E(zjk
∑

l zlm) = E
∑

l zjk E {X(tl+1,m)−X(tlm) | Ftlm}

= E{zjk E
[
X(tj+1,k)−X(tjk) | Ftjk

]
} = E{Zjk}2.

Substitute the last equalities into (3.13) to obtain

E(Ak(tJk)−Am(tJk))2 =
∑

j≤J E{zjk}2

= 2
∑

j<J

∑
l,l′
∑

:l<l′ E{[X(tl′+1,m)−X(tl′m)] zlm}.
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where the double (l, l′) summation is taken first over indices l′ such that tlm < tl′m <

tj+1,k, completing the proof that

E(Ak(tJk)−Am(tJk))2 =
∑

j≤J

{∑
l Ez2

lm − Ez2
jk

}
+2

∑
j≤J

∑
l E{z2

lm (X(tj+1,k)−X(tl+1,m)} (3.14)

where zlm and zjk are as defined in (3.12) for fixed k, m, and J .

In applying (3.14), it is helpful to remember that Ak − Am is a discrete-time

martingale with respect to (Ft : t ∈ Q(k)}, so that the SubmartingaleMaximal Inequality

(Theorem 3.1) implies

E

(
max
j≤J

(Ak(tjk)−Am(tjk))2
)
≤ 4 E{Ak(tjk)−Am(tJk)}2. (3.15)

(3) Some further bounds on terms of (3.14) will be useful. To obtain them, we

appeal to the following Lemma, proved as Exercise 6.

Lemma 3.2 Suppose that {Yn, Vn : n ≥ 1} are arbitrary random variables on {Ω,F , P}
for which {Hn : n ≥ 1} is an increasing family of sum-σ-algebras of Ω,F , P ) for which

E{Yn|Hn} ≥ 0} and E{Vn|H0} ≥ 0. Suppose moreover that E{Vn|Hn} is square-

integrable for all n and that there exists a square-integrable dominating random variable

Y such that
∣∣∣∑n≥ r Yn

∣∣∣ ≤ Y almost surely. Then

E

{∑
n

E{Yn|Hn}E{Vn|Hn}

}
≤ E{Y sup

n
E{Vn|Hn}}.

Exercise 6 Prove Lemma 3.2.

In the context of the previous step, let J denote any set of indices j bounded

above by J − 1. For fixed k, apply Lemma 3.2 with n = (j, l), Hn = Ftlm , Yn =

X(tl+1,m)−X(tlm), Vn ≤ I[j∈J ] (X(tj+1,k)−X(tlm)), and Y ≤ 2 sups |Xs| to obtain∑
j∈J

∑
l E{zlm (zlm + 2 E[X(tj+1,k)−X(tl+1,m) | Ftlm ])}

≤ 2
∑

j∈J
∑

l E{zlm E[X(tj+1,k)−X(tlm) | Ftlm ])}
+ 2 E{sups≤T |X(s)| maxj∈J ,l E[X(tj+1,k)−X(tlm)|Ftlm ])}

Combining these inequalities with (3.14), we summarize the results of the last step and

this one in the assertion that for all J and all sets J of integer indices less than or

equal to J − 1,

E{Ak(tjk) − Am(tjk)2 ≤
∑

j∈J c

[∑
l z

2
lm − z2

jk

]
+ 2 E

∑
j<c, j∈J

∑
l zlm E{X(tjk)−X(tlm) | Ftjk

}
+ 4 E{sups≤T |X(s)| maxj∈J ,l E[X(tjk)−X(tlm)|Ftlm ])}.
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(4) In this and the next step, we prove that, as m, k −→ ∞ in such a way that

m > k > i,

E{sup{Ak(tjk)−Am(tjk) : j ≥ 0}}2 → 0. (3.16)

This step will accomplish several preliminary reductions, based on a fixed, arbitrarily small

ε > 0. First choose δ > 0 so small that

E

{
[sup
s≤T

|X2(s) + sup
s≤T

E{X(T )|Fs}]2 IA

}
≤ ε

10
if P (A) ≤ δ (3.17)

which can be done by Appendix (B.4), since both sup’s are integrable, by square-

integrability of sups X2(s) together with Theorem 3.1 applied to the submartingale

[E{X(T )|Fs}]2.

Next, we use (3.9) to find a finite set K ≡ {x1, · · · , xp} of atoms of Λ and an

integer k0 such that for all k ≥ k0

E sup
j,u,s

E[X(s)−X(u)|Fu] : tjk ≤ u ≤ s ≤ tj+1,k, K ∩ (u, s] = φ} ≤ δ2 (3.18)

and

E

p∑
i=1

sup{|X(s)−X(u)| : max{tjk : tjk < xi} ≤ s ≤ u < xi} ≤ δ2. (3.19)

To see that this is possible, observe that X is the sum of a pure-jump process U(s) ≡∑
u≤s ∆X(u) and a continuous process Z ≡ X(s) − U(s), and that both sups U2(s)

and sups Z2(s) are integrable. Recall by (3.8)(iii) that as k −→∞,

δk ≡ mesh(Q(k)) = sup{tj+1,k − tjk : j = 0, 1, · · ·} → 0.

Therefore, continuity of Z and integrability of sups Z2(s) imply

ωk ≡ sup{ sup{|Z(s)− Z(u)| : 0 ≤ s ≤ u < T, u− s ≤ δk} } → 0 in L2

E sup{E|Z(s)− Z(u)|Fu} : 0 ≤ s ≤ u < T, u− s ≤ δk}2 ≤ 4 E{ω2
k}0

the last inequality following from Theorem 3.1 for the submartingale [E{ωk|Fs}]2. Then

(3.9) implies

E{U(s)|Fu} ≤ E

{∫ u

s
h dΛ | Fs

}
and the integrands of (3.18) are dominated and converge to 0 as K increases to

{s : ∆Λ(x) > 0} and at the same time k −→ ∞. Thus the existence of K and k0

in (3.18) follows from the Dominated Convergence Theorem. Now, for the p-element set

K just proved to exist, each sup in the sum under the expectation of (3.19) converges

almost surely to 0 as k −→∞, since the left-hand limits of X at each xi exist. Also,
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the sum in (3.19) is dominated by 2p sups |X(s)|. Therefore, replacing k0 in (3.18) by

a sufficiently large integer, by Dominated convergence (3.19) will also be satisfied.

From now on, for fixed J and m > k > k0, with k chosen so large that at most

one element of K lies in any single interval (tjk, tj+1,k], let

J c ≡ {j ≥ 0 : j < J, K ∩ (tjk, tj+1,k] = φ}

(5) Let t ∈ Q(i) and ε > 0 be arbitrary, and fix δ, k0 ≥ i, and K satisfying

(3.17)-(3.19). By (3.16),

E(Ak(t)−Am(t))2 ≤ E
∑

j∈J c

{∑
l z

2
lm − z2

jk

}
+ 2E

∑
j∈J c

∑
l zlm E{X(tj+1,k)−X(tl+1,m) | Ftjk

}
+ 4 E{sups≤T |X(s)| maxj∈J ,l E[X(tj+1,k)−X(tlm) | Ftlm ])}.

(3.20)

The integrand in the third line of (3.20) is dominated by 2 sups X2(s) + 2 sups≤T [E{X(T )|Fs}]2,
while by (3.19) and the definition of J ,

E max
j∈J ,l

{
E
[
X(tj+1,k)−X(tlm) | Ftjk

]}
≤ δ2

Now (3.17) shows the third line of (3.20) is ≤ ε, since

P

{
ω : max

j∈J ,l
E
[
X(tj+1,k)−X(tlm) | Ftjk

]
≥ δ

}
≤ δ−1δ2 = δ.

Consider the second line of (3.20). For each j ≤ c in J , fix ξ(j) ∈ K ∩ (tjk, tj+1,k]. We

partition the inner sum into those l for which ξ(j) ≤ tl+1,m and those for which

ξ(j) > tl+1,m. By Lemma 3.2 with n = (j, l), Hn ≥ Ftjk
, Vn = (X(tj+1,k) −

X(tl+1,m)) I[j∈J c, ξ(j)≤tl+1,m] X(tlm), and Y ≤ 2 sups |X(s)|, we have∑
j∈J c

∑
l: ξ(j)≤tl+1,m

E
{
zlm E

[
X(tj+1,k)−X(tl+1,m) | Ftjk

]}
≤ 2 E{sups≤T |X(s)| maxj∈J c, ξ(j)≤tl+1,m

E [X(tj+1,k −X(tl+1,m) | Ftlm ])}.

As in the previous paragraph, by (3.18) and (3.19) the last expression is shown to be

≤ ε. Next apply Lemma 3.2 with Hn = Ftjk
, Vn ≤ X(tj+1,k) − X(tl+1,m), Yn ≡

(X(tj+1,k)−X(tlm)) I[j∈J c, tl+1,m<ξ(j)], and

Y ≡ sup
j∈J c

sup{|X(u)−X(s)| : {tjk ≤ s ≤ u < ξ(j)}}.

To check that Y does dominate
∑

n≥r Yn, recall that J c consists of all j < J

such that (tjk, tj+1,k] contains one of the elements xi = ξ(j) of K. The result, from

Lemma 3.2, is ∑
j∈J c

∑
l: ξ(j)≤tl+1,m

E
{
zlm E

[
X(tj+1,k)−X(tl+1,m) | Ftjk

]}
≤ E{Y maxj∈J c, ξ(j)≤tl+1,m

E [X(tj+1,k)−X(tl+1,m) | Ftlm ])}.
≤ 2 E{Y

∑
s≤T E[X(T )|Fs]}.
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By (3.19), P{Y ≥ δ} ≤ δ−1 EY ≤ δ. Hence (3.17) shows that the last expectation is

≤ ε.

Taken together, the estimates of this step have so far proved that

E{Ak(t)−Am(t)}2 ≤ 3ε +
∑

j∈J c, tlm≤ξ(j)

E
(
z2
lm − z2

jk

)
(3.21)

Recall that the cardinality p of J c is finite and depends only on ε and not on k or

m. As k, m −→∞, for each x ∈ K and the unique values j = j(x) and l = l(x) for

which tjk < x ≤ tj+1,k and tlm < x ≤ tl+1,m

zlm ≡ E
{
X(tl+1,m)−X(tlm) | Ftjk

}
−→ E{∆X(x)|Fx−}

(3.22)

zjk ≡ E
{
X(tj+1,k)−X(tjk) | Ftjk

}
−→ E{∆X(x)|Fx−}

by the Martingale Convergence Theorem and the right-continuity of X. The convergence

takes place both almost surely and in mean-square. We conclude immediately from (3.21)

and (3.22) that {Ak(t)−Am(t)}2 converges to 0 as k, m −→∞. Since ε > 0 and t ∈
Q(i) were arbitrary, and since none of the upper bounds developed for E{Ak(t)−Am(t)}2

depend on t, we appeal to (3.15) to conclude for all sufficiently large m > k,

E{ sup
j: tjk≤t

(Ak(tjk)−Am(tjk))2} ≤ 16ε

uniformly in t < T . Let t ↑ T and apply the Monotone Convergence Theorem to

complete the proof of (3.16).

(6) The assertion in (3.16) can be strengthened to

E{sup
s<T

(Ak(s)−Am(s))} −→ 0 as k, m −→∞. (3.23)

To prove this, fix arbitrary ε > 0 and t ∈ Q(i), and let δ, K, k0, and J be as in step

(4). Then

E

{
max
j∈J

(Ak(tj+1,k)−Ak(tjk))2
}
≤ E

∑
j∈J

{
E
[
X(tj+1,k)−X(tjk) | Ftjk

]}2
.

By Lemma 3.2 with Hn = Ftj+1,k
, YnleX(tj+1,k)−X(tjk), and Y ≡ 2 sups≤T |X(s)|, the

last displayed expression is

≤ 2E

{
sup
s≤T

|X(s)|max
j∈J

E
[
X(tj+1,k)−X(tjk)|Ftjk

]}
(3.24)

Together, (3.18) and (3.19) imply that (3.24) is ≤ ε.
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For each of the finitely many elements x of K, let j ≡ j(x) be defined as at the

end of step (5). Reasoning as for (3.22),

|Ak(x−)−Ak(tjk)|+ |Ak(tj+1,k)−Ak(x)| → 0

∆Ak(x) → E{∆X(x) E{∆X(x) | Fx−}

 a.s. and in L2

when k −→ ∞, by the Martingale Convergence Theorem and Dominated Convergence.

Since (3.24) is ≤ ε, as k becomes large and m > k,

E

{
max

x
max

tjk<s≤tj+1,k

(Ak(s)−Am(s)−Ak(tjk) + Am(tjk))2
}
→ 0

which together with (3.16) proves (3.23).

(7). By (3.23) the family of nondecreasing right-continuous functions Ak converges

uniformly in the mean. For each t ∈ [0, T ], {Ak(t)}k is a Cauchy sequence in L1(Ω, F, P ),

by (3.23) and the Cauchy-Schwarz inequality. Hence, there is a limiting random variable

A(t). For any infinite sequence of integers k, there is a nonrandom infinite sequence of

integers k(r) such that

sup
i≥r

sup
t<T

|Ak(i)(t)−Ak(r)(t)| → 0 a.s.

Then the a.s. limit of the random variables Ak(i)(t) exists for each t (cf. Appendix A.2),

and must agree with the limit-in-the-mean A(t). In particular, since A(t) is an a.s. limit

of nondecreasing Ft− adapted random variables, it is nondecreasing and Ft− measurable,

and A(0) = 0. Monotonicity implies the existence of all left limits A(t−), t ≤ T .

Letting i −→∞ in supt<T |Ak(i)(t)−Ak(r)(t)|, we have

sup
t<T

|A(t)−Ak(r)(t)| → 0 a.s. (3.25)

Since A is the uniform limit of a subsequence of an arbitrary subsequence of {Ak}, it

follows that supt<T |A(t)−Ak(t)| → 0 in probability (Appendix A.3).

(8) We show finally that the process A is almost surely right-continuous, and that

X − A is a martingale. Indeed, (3.25) and the bound of ε of (3.24) show, with ε > 0

fixed arbitrarily and K as in step (4), that

E
{
sup{[A(tj+1,k)−A(tjk)]2 : K ∩ (tjk, tj+1,k] = φ

}
≤ 2ε

for all sufficiently large k. For each x ∈ K, (3.25) implies that A(tj(x)+1,k)−A(x) → 0

in probability as k −→ ∞. Since ε was arbitrary, A is continuous at every t for

which ∆Λ(t) = 0, and A is right-continuous at each x for which ∆Λ(x) > 0.
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To check that X − A is a martingale, observe first that for every s, t ∈ ∪i Q(i)

with s < t, by step (1) together with (3.25),

E{X(t)−A(t)|Fs} = limk−→∞ E{X(t)−Ak(t)|Fs}
= limk−→∞ [X(s)−Ak(s)] = X(s)−A(s) a.s.

Now let 0 ≤ s < t < T be arbitrary. Find sequences {sj}, {tj} ⊂ ∪iQ(i) with

sj < tj < T for all j, and sj and tj respectively decreasing to s and to t. By

the right-continuity of X and A, together with (3.1 and the martingaleconvergence

theorem, we conclude

E{X(t) − A(t)|Fs} = limj−→∞ E{X(tj)−A(tj)|Fs}
= limj−→∞ E{X(tj)−A(tj)|Fs} = limj−→∞ E{X(sj)−A(sj)|Fs}

which is equal to X(s)−A(s). The martingaleproperty and the Theorem are proved.

Remark 3.5 The simple counting processs N with finitely many jumps clearly satisfy

(3.10). If Ft is generated by F0 together with (N(s) : s ≤ t) and possibly some

random variables independent of N , then by Theorem 1.3 there is an increasing {Ft−}
adapted process A for which N − A is a Ft martingale. If this A is assumed to be

absolutely continuous with respect to to the nonrandom F0 measurable function Λ

in the sense that A(t) =
∫ t

h(s)dΛ(s) for some necessarily Ft-adapted process h, then

the martingaleproperty of N − A implies (3.9), and Theorem 3.3 shows that A is a

calculable compensator. For a single-jump counting process N , we can by Theorem 1.1

dispense with the assumption of absolute continuity and take h ≡ 1 and Λ to be the

regular conditional sub-distribution function of the jump-time of N given F0. Piecing

together the general simple counting process by means of single-jump processes as in the

proof of Theorem 1.3, one proves that the compensator-processes derived in Theorem 1.3

are calculable.

One clear benefit of the slightly restricted class of submartingales treated in The-

orem 3.3 is that the convergence in the mean of the approximate (Doob) compensators

Ak to A is uniform. Further, the same result holds if (3.9) is replaced by a requirement

ensuring only that the compensatorbe continuous, rather than absolutely continuous with

respect to a nonrandom increasing function Λ.

Corollary 3.4 (i) Under the hypotheses of Theorem 3.3,

E sup
t<T

|Ak(t)−A(t)| → 0 as k −→∞ (3.26)

and the compensator limit A does not depend on the choice of partition-sequence {Q(k)}k

satisfying (3.9).
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(ii) Assume the hypotheses of Theorem 3.3, with (3.9) replaced by the assumption

that there exist a continuous increasing Ft adapted process B with B(0) = 0 and

EB(T−) < ∞ such that for 0 ≤ s < t < T

E

 ∑
s<u≤t

∆X(u) | Fs

 ≤ E{B(t)−B(s)|Fs} (3.27)

Then (3.26) and the assertion of Theorem 3.3 hold, with A continuous.

Proof. Steps (6) and (7) of the proof of Theorem 3.3 establish (3.26). To see that A

does not depend on the choice of {Q(k)}k, let {Q(k)} and {R(k)} be any two

partition-sequences satisfying (3.8), and define another partition-sequence {S(k)} by

S(k) ≡ Q(k)∪R(k). Denote by superscripts (as in AQ the partition being used to form

an approximate compensator for X. For each ε > 0, steps (4)-(6) show that k can be

found so large that for any m ≥ k, E supt (AQ(t)− AS(t))2 ≤ ε. Letting m −→ ∞ in

the last inequality and recalling that ε is arbitrary proves that the limiting compensator

for the {S(m)} partition sequence must coincide with that for the partition sequence

{Q(k)}.

For assertion (ii), the proof proceeds exactly as in the Theorem, except that K in

step (3) should now be taken to be the empty set (for all ε), so that J = {0, 1, 2, · · · , J−
1}. Then (3.18) is proved as before, by Dominated Convergence and (3.27), and (3.19) be-

comes vacuous. The remainder of steps (3)-(8) yield (3.26) and the compensator properties

of A , and (7) proves continuity of A. 2

The Theorem and Corollary can be generalized in two directions: Q(k) can

be allowed to consist of stopping times, and submartingales can be replaced by local

submartingales.

Theorem 3.5 Let (X(t), t ∈ [0, T )) be a Ft adapted local submartingalesuch that

i for each m, E sup{|∆X(t)|2 : t ∈ [0, T ), |X(t)| ≤ m} < ∞;

ii
∑

s<T |∆X(s)| < ∞ a.s.; and

iii for some localizing sequence σn of stopping times, (3.9) holds for each of

the submartingales X((· ∧ σn).

Let {Q(k)}k denote an arbitrary partition sequence of stopping times satisfying (3.8).

Then there exists a localizing sequence {τn : n ≥ 1} of stopping times increasing almost
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surely to T as n −→∞, and a nondecreasing right-continuous Ft adapted process A

with A(0) = 0 and X −A a local martingale, such that for each n,

lim
k−→∞

E sup
0≤t≤τn

|A(n)
k (t)−A(t ∧ τn)| = 0 (3.28)

where A
(n)
k denotes the Q(k) Doob compensator corresponding to the submartingale

X(· ∧ τn).

Proof. The numbering of steps in this Theorem continues that of Theorem 3.3.

(9) First let all hypotheses be exactly as in Theorem 3.3, except that the partition

sequence Q(k) satisfying (3.8) is now allowed to consist of stopping times. In this case,

we need a new definition to make sense of the σ-algebra Fτ representing the information

generated by values of all Ft adapted processes up to the stopping time τ . The definition

is

Fτ ≡ σ(B : for t ∈ [0, T ], B ∩ [τ ≤ t] ∈ Ft)

and the repeated-conditioning property continues to hold:

if Y is an integrable random variable and Z is a bounded Fτ measurable random

variable, where τ ≥ 0 is a Ft stopping time, then

E{E{Y Z|Fτ}} = E{Z E{Y |Fτ}} (3.29)

In addition, if X(t) is a right-continuous Ft submartingalefor t ∈ [0, T ), then for any

stopping times σ ≤ τ (a.s.),

E(X(τ)|Fσ) ≥ X(σ) almost surely (3.30)

This is easy to check via right continuity and the calculation, for arbitrary B ∈ Fσ and

positive integer n,

E

∑
j

E{[X(τ ∧ (j + 1)/2n)−X(τ ∧ j/2n)] IB∩[2nσ≤j]

 ≥ 0

which relies on Fj/2n measurability of B ∩ [2nσ ≤ j] together with the submartingale

property of X(· ∧ τ). As a result, if {τ(r)} is any family of Ft stopping times indexed

by the real parameter r, with τ(r) ≤ τ(s) a.s. whenever r < s, then X(τ(r)) is a

submartingale with respect to the σ-algebra family {Fτ(r)}. For further background on

the σ-algebras Fτ , see Lipster and Shiryayev (1977, vol. 1, pp. 25-29).

Careful inspection of the steps (1)–(8), together with repeated applications of (3.29)

and (3.30, using Ftjk
measurability of events [tjk < t] and [tjk ≤ t] for all t, and
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Flm measurability of [tjk ≤ tlm < tj+1,k] for all j and l, shows that all steps remain

valid. For this reason, we shall not mention the random or nonrandom character of Q(k)

except in Theorem 4.3 and in Chapter 9?, where it becomes crucial to introduce partitions

by stopping times.

(10). Now assume only the hypotheses of the present Theorem. Let ρn be any

sequence of Ft stopping times increasing to T , for which X(· ∧ρn) is a submartingale.

Define τ0 = 0, and for each n ≥ 1,

τn ≡ inf{t ≥ τn−1 : |X(T )| ≥ n or
∑
s≤t

|∆X(s)| ≥ n} ∪ {ρn ∧ σn}.

Denote the submartingale X(· ∧ τn) by X(n)(·), and for each k let A
(n)
k denote the

Doob compensator Ak with X replaced by X(n) for the partition Q(k). We show

in this step that X(n) satisfies all the hypotheses of Theorem 3.3. First, by (i), (ii), and

the definition of τn,

E{supt<T (|X(n)(t)|+
∑

s≤t |∆X(n)(s)|)2}
≤ 2EE{supt<τn

(|X(n)(t)|+
∑

s≤t |∆X(n)(s)|)2}+ 8 E|∆X(τn)|2

< 8n2 + 8 E supt<T |∆X(t)|2 < ∞.

By Lemma 3.1, each process X(n) is a submartingale, and (3.9) continues to hold for

X(n) because, for each n, (iii) implies that∫ t

0
hn(u) dΛ(u) −

∑
u≤t∧σn

∆X(u)

is a Ft is a submartingale and by Lemma 3.1, for 0 ≤ s < t < T

E
{∑

s<u≤t ∆X(n)(u) | Ft

}
= E

{∑
s<u≤t ∆X(u) I[un≤σ∧nτ ] | Fs

}
≤ E

{∫ t
s I[u≤τn] hn(u) dΛ(u) | Fs

}
≤ E

{∫ t
s hn(u) dΛ(u) | Fs

}
.

(11) According to the previous step, Theorem 3.3 applies to each of the processes

X(n) with approximate compensators A
(n)
k . That Theorem together with step (9)

says, for each n and partition-sequence {Q(k)} of stopping times, that X(n) has a

compensator A(n) for which

E sup
t≤τn

|A(n)
k (t)−A(n)| → 0 as k −→∞

However, Corollary 3.4(i) implies that when the partition-sequences Q(k) are replaced

by Qn(k) in calculating approximate compensators A
(n)
k , the limit is A(n). If n′ > n,

then by definition first of X
(n′)
k with respect to Qn′(k) and then by definition of X(n)
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and A
(n)
k with respect to Qn(k), we have

A
(n)
k (t ∧ τn) =

∑
j I[tjk<t∧τn] E

{
X(n′)(tj+1,k ∧ t τn)−X(n′)(tjk)|Ftjk

}
=

∑
j I[tjk<t∧τn] E

{
X(n)(tj+1,k ∧ t ∧ τn)−X(n)(tjk)|Ftjk

}
= A

(n)
k (t ∧ τn)

for all t ∈ [0, T ). Upon taking limits as k −→ ∞, it follows that the compensators

A(n) and A(n′) are identical processes on the interval [0, τn]. Thus the right-continuous

nondecreasing process A defined by

A(t) ≤ A(n)(t) for 0 ≤ t ≤ τn, all n

exists and satisfies (3.28). By the compensator property of A(n) for X(n), X − A is a

local Ft martingalewith localizing sequence τn.

Whenever a submartingale X is defined as the square of a local martingale M

with respect to a σ-algebra family {Ft, t ∈ [0, T )}, the compensator A guaranteed to

exist under the hypotheses of Theorem 3.5 is known as the variance process < M >

associated with M . We have seen in Section 1.3 the explicit calculation both of the

compensator A for a simple counting process N with respect to the σ-algebra family

Ft = σ(F0, N(s) : 0 ≤ s ≤ t), and of the variance-process V ≡< N − A > for the

compensated local martingale M ≡ N − A. In that setting, V (t) was given explicitly

by
∫ t (1−∆A(s)) dA(s). More generally, we evaluate or approximate varianceprocesses

for square-integrable martingales M , under the hypotheses of Theorem 3.5 on M2, via

the Doob compensators defined for each nonrandom t ∈ [0, T ) by

Vk(t) ≤
∑

j

I[tjk<t] E
{
M2(tj+1,k ∧ t)−M2(tjk)|Ftjk

}
(3.31)

=
∑

j

I[tjk<t] E
{
M(tj+1,k ∧ t)−M(tjk)|Ftjk

}
The last line of (3.31) follows immediately from the martingale property of M , and justi-

fies our regarding variance processes as cumulative partial sums of conditional variances.

Examples. (a) The continuous submartingales which appear most often in applications

are of the form W (G(·)) or W 2(G(·)) where G is a nondecreasing nonrandom continuous

[0, 1]-valued function on [0,∞), and W is standard Wiener process. For any such G,

if for each k ≥ 1, Q0(k) ≡ {tjk}j denotes a nonrandom partition sequence satisfying

(3.8), then define Q(k) ≡ {G(tjk}j . For X(·) ≡ W (G(·)), the Doob compensator

corresponding to Q(k) is

Ak(t) ≡
∑

j:tjk≤t

E{W (G(t ∧ tj+1,k))−W (G(tjk)) | FW
G(tjk)} ≡ 0
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where FW
s denotes σ(W (u) : 0 ≤ u ≤ s), and for the submartingale Y (·) ≡ W 2(G(·)),

the corresponding discrete-time compensators are

AY
k (t) ≡

∑
j:tjk≤t

[W (G(t ∧ tj+1,k))−G(tjk)].

These assertions follow immediately from the Gaussian-distribution properties (2.8) of

Wiener process. By taking in-probability limits as k −→ ∞ as in Theorem 3.3, the

compensatorof W (G(·)) is 0, and the compensatorof W 2(G(·)) is G(·)−G(0).

(b) The nonhomogeneous Poisson counting process also has a nonrandom compen-

sator and variance process. Let N be such a process with cumulative rate-function Λ, so

that for 0 ≤ s < t, N(t)−N(s) is a Poisson(Λ(t)−Λ(s)) random variable independent

of Fu ≡ σ(N(u) : 0 ≤ u ≤ s). Then obviously, for any nonrandom partition sequence

Q(k),∑
j:tjk≤t

E{N((t ∧ tj+1,k))−N(tjk)) | Ftjk
} =

∑
j: tjk≤t

[Λ(t ∧ tj+1,k)− Λ(tjk)] = Λ(t)

and ∑
j: tjk≤t

E{N((t ∧ tj+1,k))− Λ(t ∧ tj+1,k) + Λ(tjk))2| = Λ(t)

The compensator and the variance process are both equal to Λ. 2

Exercise 7 . Let U1, U2, · · · be an independent and identically distributed sequence of

Exponential random variables with mean 1, and define

Sk =
k∑

i=1

Ui, Nk(t) ≡ I[Sk≤t], 1 ≤ k ≤ ∞

and

Ft ≡ σ(Nk(s) : 0 ≤ s ≤ t, k ≥ 1)

Find the compensator of N∞.
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Chapter 4

Martingale Functional Central

Limit Theorems

The focus of this Chapter is a Functional Central Limit Theorem (FCLT) of Rebolledo

(1977, 1980) for continuous-time martingales. This theorem provides readily applicable

conditions on a sequence of martingales {Mn(t) : t ∈ [0, T ]} — expressed in terms of

the magnitude of the largest jumps and in terms of the convergence of variance-processes

< Mn > (·) — to converge in distribution in D[0, T ] to a process of the form σ ·W (G(t)),

where W (·) is a standard Wiener process, σ is a nonrandom constant, and G(·) is

a nonrandom function. We will continue to prove theorems on continuous-time processes

in somewhat less than their full generality, restricting ourselves throughout to the case of

locally square-integrable random functions in D[0, T ] with calculable compensators and

variance-processes. [The Rebolledo references give statements and proofs in full generality.]

4.1 Discrete time: the McLeish Theorem

Although the goal is the FCLT for continuous-time martingales, the “master theorem”

from which it is derived in this chapter applies to discrete-time [or equivalently, piecewise-

constant] processes which are sufficiently close to being martingales.

Theorem 4.1 (McLeish, 1974) Let {Xni : n ≥ 1, 1 ≤ i ≤ kn} be an array of square-

integrable random variables on (Ω,F , P ), and {Fni}kn
i=0 for each n an increasing family

of σ-algebras with Xni measurable with respect to Fni. Suppose {kn(·)}n is a sequence

of nonrandom time-scales, i.e., nondecreasing right-continuous integer-valued functions

on [0, 1] with kn(1) = kn and kn(0) = 0. For each fixed n, let Ei{·} denote

63
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E{ · |Fni}, and let
∑

i denote summation over all i = 1, . . . , kn. If as n −→∞∑
i

Ei−1{X2
ni I[|Xni>δ]}

P−→ 0 for each δ > 0 (4.1)

kn(t)∑
i=1

Ei−1{X2
ni}

P−→ t for each t ∈ [0, 1] (4.2)

∑
i

|Ei−1{Xni}|
P−→ 0 (4.3)

then

Wn(·) ≡
∑

i

Xni I[i≤kn(·)]
D−→ W (·) in D[0, 1] as n −→∞

where W is a Wiener process. If (4.1) and (4.3) hold but the convergence in (4.2) is

assumed to hold only for a single t ∈ (0, 1], then

Wn(t) D−→ W (t) ∼ N(0, t) in R.

Remark 4.1 Condition (4.1) above is known as the conditional Lindeberg condition and

reduces to the usual Lindeberg condition [see Loève 1955, p. 295; Feller 1971, p. 518] in

case the Xni for i = 1, · · · , kn form an independent sequence for each n.

Assumption (4.3) says that the random variables form an approximate martingale

difference array [or m.d.a.]: {Xni} is a {Fni} m.d.a. if Ei−1{Xni} ≡ 0 almost surely

for 1 ≤ i ≤ kn, that is, Wn(·) is approximately a martingale. If {Xni} is a m.d.a., then∑
i Ei−1{X2

ni}I[i≤kn(·)] is the discrete-time compensator [from the Doob Decomposition,

step (1) of the proof of Theorem 3.3] for the submartingale
∑

i X
2
ni I[i≤kn(·)]. 2

Throughout the proof and the Section, discrete-time partial-sum processes will be

viewed as piecewise-constant right-continuous processes in continuous time adapted to the

increasing σ-algebra family Gn(t) ≡ Fn,kn(t). When kn(t) is later assumed to be a

stopping time, the events [kn(t) > i] are simply being assumed to be Fni-measurable

for all i. When kn(·) is a nondecreasing process of stopping times, the definition

Gn(t) ≡ Fn,kn(t) still makes sense [cf. Remark 3.3] and can be reinterpreted as

Gn(t) ≡ σ(B ∩ [kn(t) ≤ i] : B ∈ Fni, i ≥ 1)

The first proof-step is a reduction: the Theorem will be proved with the following

assumptions replacing (4.1) and (4.2):

max {|Xni| : 1 ≤ i ≤ kn}
P−→ 0 as n −→∞ (4.1 ′)
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∑
i: i≤kn(t)

X2
ni

P−→ t as n −→∞, for each t ∈ [0, 1] (4.2 ′)

Proof that (4.1) and (4.2) imply (4.1 ′) and (4.2 ′). First,(4.1) evidently implies∑
i

Pi−1{|Xni| > δ} P−→ 0 as n −→∞

where Pi−1{·} ≡ Ei−1{I[·]. For arbitrary α ∈ (0, 1), observe for each i that∑i
j=1 P{|Xni| > δ} is Fni-measurable, and consider the martingale

Mn(t) ≡
kn(t)∑
i=1

(I[|Xni|>δ] − P{|Xni| > δ}) I[
P

i≤j Pj−1{|Xnj |>δ}≤α]

for which it is easy to verify that EM2
n(t) ≤ α for all t ∈ [0, 1], using (3.3) and the fact

that

Ei−1(I[|Xni|>δ] − P{|Xni| > δ})2 ≤ P{|Xni| > δ}

Now

P (
∑

i

I[|Xni|>δ] ≥ 1) ≤ P (|Mn(1)| ≥ 1− α) + P (
∑

i

Pi−1{|Xni| > δ} > α)

and since P (|Mn(1)| ≥ 1 − α) ≤ α(1 − α)−2 [by Chebychev’s inequality], where α

can be chosen arbitrarily small, (4.1 ′) follows.

It remains to show that
∑

i X
2
ni I[i≤kn(t)]

P−→ t as n −→ ∞ for each 0 < t < 1.

Observe that if Uni denotes the truncated random variable XniI[|Xni|≤δ], then [i− 1 <

kn(t),
∑

i Ei−1U
2
ni ≤ t + α] ∈ Fn,i−1, so that

Mn(t) ≡
∑

i

(U2
ni − Ei−1{U2

ni}) I[i≤kn(t),
P

j≤i Ej−1U2
nj≤t+α]

is a {Gn(t)} martingale. Again, repeated use of (3.3) shows easily that the variance of

Mn(t) is

≤ E

{∑
i

Ei−1(U4
ni) I[i≤kn(t),

P
j≤i Ej−1(U2

nj)≤(t+α)]

}
δ2

where almost surely the conditional variance U2
ni given Fn,i−1 has been bounded above

by Ei−1U
4
ni, and where U4

ni has been bounded above by δ2U2
ni. Thus for each t ≤ 1

and arbitrary α > 0, one can choose δ > 0 small enough and then n0 ≡ n0(δ) large

enough so that by (4.1 ′), (4.2) and (4.1), for all n ≥ n0 the probability is ≥ 1−α that

simultaneously

t− α ≤
∑

i

Ei−1{X2
ni I[|Xni|≤δ]} I[i≤kn(t] ≤ t + α

and ∑
i≤kn(t)

(X2
ni I[|Xni|≤δ] − Ei−1{X2

ni I[|Xni|≤δ]})
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Hence for each n ≥ n0,

P{|
∑

i

X2
ni I[i≤kn(t)] − t| ≥ 2α} ≤ α

Exercise 8 Suppose (4.1)–(4.3) hold for {Xni}, and define

Yni = Xni I[|Xni|≤ 1
2
] − Ei−1{Xni I[|Xni|≤ 1

2
]}

Show that (4.1 ′) and (4.2 ′) hold for the array {Yni}.

This exercise implies that there is no loss in generality in proving Theorem 4.1 under

the auxiliary assumption

Ei−1(Xni) = 0 and |Xni| ≤ 1 a.s. for 1 ≤ i ≤ k, n ≥ 1 (4.3′)

since (4.3 ′) does hold for the array {Yni}, and if (4.1)-(4.3) hold and s ≤ t ≤ 1, then

|
∑

i≤kn(s) (Yni −Xni)| ≤∑
i

|Xni| I[|Xni|> 1
2
] +

∑
i

|Ei−1Xni| + 2
∑

i

Ei−1{X2
ni I|Xni|> 1

2
}

the three terms of which P−→ 0 as n −→∞ by (4.1 ′), (4.3), and (4.1) respectively.

Proof of Theorem from (4.1 ′)-(4.3 ′). Weak convergence of the finite-dimensional

distributions of Wn(·) will be proved by first establishing a Central Limit Theorem

(CLT) for each sequence of random variables Wn(s) =
∑

i≤kn(s) Xni for fixed s ∈ [0, 1].

Suppose it has been proved for each s that Wn(s) −→ N(0, s) in distribution. Then fix

any 0 < s1 < s2 < · · · < sm ≤ 1 and any α1, α2, . . . αm ∈ R with
∑m

i=1 |αj | ≤ 1, and

define

Uni(α, s) ≡ Xni ·
m∑

j=1

αj I[i≤kn(s)]

Then the variables Uni(α, s) are measurable with respect to Fni, and the array

{Uni(α, s)} satisfies (4.1 ′) and (4.3 ′) by inspection. Also, by (4.2 ′) for {Xni}, when

n −→∞∑
i U2

ni(α, s) =
∑

X2
ni (
∑m

j=1 αi I[i≤kn(sj)])
2

=
∑

i≤kn(s1) X2
ni (α1 + · · ·+ αm)2 +

∑
i X

2
ni I[kn(s1)<i≤kns(2)] (α2 + · · ·+ αm)2

+ · · ·
∑

i X
2
ni I[kn(sm−1)<i≤kn(sm)] α

2
m

P−→ σ2
m(α, s) ≡

∑m
i=1 (si − si−1)(

∑m
j=i αj)2

where by convention s0 = 0. The Central Limit Theorem for arrays satisfying (4.1 ′)–

(4.3 ′) would then imply

m∑
j=1

αj Wn(sj)
D−→ N(0, σ2(α, s)) asn −→∞
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and the limiting distribution is precisely the same as that of
∑

i αiW (si) [compare (2.8)].

Therefore, by the Cramèr-Wold trick of taking joint characteristic functions and applying

the Lévy Continuity Theorem], it follows that

(Wn(s1), . . . , Wn(sm)) D−→ (W (s1), . . . , W (sm)) in Rm as n −→∞

Now if {Xni} satisfies (4.1 ′), (4.3 ′), and (4.2 ′) for the single fixed value t = s ∈ [0, 1],

then {Zni} defined by

Zni ≡ Xni I[i≤kn(s),
P

j<i X2
nj≤2]

does also; and
∑

i Z
2
ni ≤ 3 almost surely and P{Zni 6= Xni for some i = 1, . . . , kn(s)} →

0 as n −→ ∞. Thus a CLT for
∑

i≤kn(s) Zni, which is what we shall prove, implies a

CLT for Wn(s) =
∑

i≤kn(s) Xni. Define

In ≡ exp

it
∑

j

Znj

 , Tn ≡
∏
j

(1 + it Znj)

where both the summation and product range over all j = 1, . . . , kn(s), and where i

now denotes a complex square root of −1. Observe that E|In|2 = 1 and, by conditioning

repeatedly, that ETn = 1. The following fact noted by McLeish (1974) will also be used

below:

if eix ≡ (1 + ix) e−x2/2+r(x) , then |r(x) ≤ |x|3 for |x| ≤ 1 (4.4)

where x is real. Next, using 1 + x ≤ ex, calculate

E|Tn|2 = E
∏
j

(
1 + t2Z2

nj

)
≤ E exp(t2

∑
j

Z2
nj) ≤ e3t2 < ∞

On the other hand,

In = Tn e−t2/2 + Tn

exp{− t2

2

∑
j

Z2
nj +

∑
j

r(tZnj)} − e−t2/2


and by the inequality |x + y|2 ≤ |x|2 + |y|2,

E|In − Tne−t2/2|2 ≤ 2
(
E|In|2 + E|Tn|2 e−t2

)
≤ K(t) < ∞

where K(·) does not depend on n. By (4.4), (4.1 ′), and (4.2 ′), for |t| < 1

|
∑

j

r(tZnj)| ≤ |t|3 (
∑

j

Z2
nj) max

j
|Znj |

P−→ 0

Thus for large n,

P{| exp(− t2

2

∑
j

Z2
nj +

∑
j

r(tZnj)) − e−t2/2| > δ} < δ
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and

P{|Tn| > δ1/2} < δ−1 E|Tn|2 ≤ δ−1 e3 t2????

so that |In − Tne−t2/2| converges in probability to 0 as n −→ ∞ and has second

moment uniformly bounded by K(t), and hence converges to 0 in the mean. But

E{Tne−t2/2} = e−t2/2 then implies EIn → e−t2/2 as n −→∞ for each t ∈ (−1, 1). By

the Lévy Continuity Theorem, our CLT for {Znj}, and therefore the weak convergence

of the finite-dimensional distributions of Wn(·) to those of W (·), is proved.

By the weak-convergence theory of Chapter 2, all that remains in proving Wn(·) D−→
W (·) in D[0, 1] as n −→∞ is to verify condition (2.3) of Theorem 2.5, that is,that for

each α, β > 0, there exist δ > 0 and n1 < ∞ such that

for n ≥ n1, P{ sup
0<s,t<1, |s−t|<δ

|Wn(s)−Wn(t)| } > β} < α (4.5)

Condition (4.5), which we shall prove below, is apparently weaker than (2.3) of Theo-

rem 2.5. But it implies first that there exists a sequence {W̃n} of linearly-interpolated

continuous processes for which (4.5) also holds and ‖Wn − W̃n‖
P−→ 0 as n −→ ∞.

Then, by choosing δ0 = δ(α, β) still smaller, (4.5) can be seen to hold for W̃n for

all n ≥ 1. Finally, the convergence of the finite-dimensional distributions of W̃n

together with Theorem 2.5 imply that W̃n and therefore Wn converge in distribu-

tion to W in D as n −→ ∞. To prove (4.5) in the current context, again pass

from {Xni} to the equivalent [ by (4.2 ′)] sequence Zni ≡ Xni I[
P

j<i Xnj≤2]. Since

P{maxi |Zni−Xni| > 0} → 0 as n −→∞, it suffices to check (4.5) with Wn(·) replaced

by the martingale Wn(·) ≡
∑

i≤kn(·) Zni. Now P{sup|s−t| |Wn(s)−Wn(t)| > α} ≤∑
j: jδ≤1

P{ sup
jδ<t≤(j+1)δ

|Wn(t)−Wn(jδ)| > β/3} ≤ C(β)
∑

j: jδ≤1

E|Wn((j + 1)δ)−Wn(jδ)|3

by the Submartingale Maximal Inequality applied to the martingales Wn(·)−Wn(jδ) on

[jδ, (j + 1)δ]. Next, by the Burkholder Inequality applied to the same martingales, the

last expression is

≤ C(β)
∑

j: jδ≤1

E|
∑

k

Z2
nk I[kn(jδ<k≤kn((j+1)δ)]|3/2

where C(β) and C(β) do not depend upon n or δ. But as n −→ ∞, the random

variables ∑
i

Z2
ni I[kn(jδ)<k≤kn((j+1)δ)]

are uniformly bounded and converge in probability for each j with (j + 1)δ ≤ 1 to δ

as n −→∞. [This is simply (4.2 ′) for Zni. ] Therefore

lim sup
n−→∞

P{ sup
|s−t|<δ

|Wn(s)−Wn(t)| > β} ≤ C(β)(1 +
1
δ
)δ3/2
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which can be made as small as desired by choosing small δ > 0. The proofs of (4.5) and

Theorem 4.1 are complete. 2

The Central Limit Theorem used in showing weak convergence of finite-dimensional

distributions is due essentially to Brown and Dvoretzky (both 1971, cited in McLeish

1974], although the proof given here is McLeish’s. An immediate corollary of Theorem 4.1

is the famous Donsker Invariance Principle:

Corollary 4.2 If {Xi}∞i=1 is an independent and identically distributed sequence with

mean µ and finite variance σ2, then as n −→∞,

1
σ
√

n

[nt]∑
i=1

(Xi − µ) D−→ W (t) in D[0, 1]

Proof. In Theorem 4.1, take Xni ≡ (Xi − µ)/(σ
√

n), Fni ≡ σ(X1, . . . , Xi), and

kn(t) ≡ [nt], where [·] denotes the greatest-integer function. Then (4.3) is obvious, (4.2)

follows from Ei−1(X2
ni) = 1/n, and (4.1) follows from

[nt]∑
i=1

Ei−1{X2
ni I[|Xni|>δ]} ≤ σ−2 E{(X1 − µ)2 I[|X1−µ|>σδ

√
n]}

4.2 Discrete-time Theory : Extensions

There are several complements to the McLeish Theorem 4.1 which will make the later

extension to continuous-time martingale sequences easier. They concern the same setting

as Theorem 4.1, but the time-scales kn(·) will now be allowed to take infinite values or to

be random right-continuous integer-valued processes such that each kn(t) is a stopping

time. First, if kn is allowed to be +∞, there is no change in the statement or proof

of Theorem 4.1. However, to make sense of the case kn = ∞, one must observe that the

condition (4.2) or (4.2 ′) is effectively ensuring that the sum
∑

i X
2
ni is almost surely

finite. Therefore the Theorem is also valid if kn(·) is a right-continuous nondecreasing

integer-valued process such that for each s ∈ [0, 1], kn(s) is a stopping time. That is, if

(4.1) and (4.3) are assumed for the variables Xni, and if (4.2) is assumed for the random

variables X ′
ni ≡ Xni I[kn(1)≥i], then measurability of [kn(1) ≥ i] with respect to Fn,i−1

implies by (3.1) that

E{(X ′
ni)

r} = E{(Xni)r} · I[kn(1)≥i] a.s. for r = 1, 2, . . .

and assumptions (4.1)–(4.3) hold for {X ′
ni}. The reader should check that the steps in

the proof of Theorem 4.1, applied to the partial sums of the X ′
ni , remain valid without
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change when the kn(t) are stopping times, so that as n −→∞ ,∑
i

X ′
ni I[kn(·)]

D−→ W (·) in D[0, 1]

Suppose next, as in the previous paragraph, that (4.1) and (4.3) hold for {Xni}, and

that {kn(t)} is a right-continuous non-decreasing integer-valued family of stopping times

for t ∈ [0, T ], but now assume∑
i

Ei−1{X2
ni} I[kn(t)≥i]

P−→ F (t) as n −→∞ for each t ∈ [0, T ] (4.6)

where F (·) is a nonrandom nondecreasing continuous function with F (0) = 0 and

F (T ) > 1. Then define kn(t) ≡ kn(F−1(t)) for 0 ≤ t ≤ F (1), where F−1(t) ≡ inf{x :

F (x) > t}. Again {kn(t)} is a nondecreasing right-continuous family of stopping times.

Since F (F−1(t)) = t for all t, the previous paragraph implies that∑
i

Xni I[1≤i≤kn(·)]
D−→ W (·) in D[0, F (1)] as ;n −→∞ (4.7)

But continuity of F means that f 7→ f ◦F is a continuous functional from D[0, F (1)]

to D[0, 1] with respect to the topologies of uniform convergence. Hence by Corollary 2.7

and (4.7), as n −→∞∑
i

Xni I[1≤i≤kn(F (·))]
D−→ W ◦ F in D[0, 1]

In order to conclude
∑

i≤kn(·) Xni
D−→ W ◦ F in D[0, 1], we will show as n −→∞,

sup
0≤t≤1

|
∑

i

Xni I[kn(F−1(F (t)))<i≤kn(t)]|
P−→ 0 (4.8)

Making use of the same reductions as in the proof of Theorem 4.1, we assume without loss

of generality that Ei−1Xni = 0 and |Xni| ≤ 1 almost surely. Also, by replacing Xni if

necessary with XniI[
P

j≤i Ei−1(X2
ni)≤F (1)+1], we can assume

∑
i Ei−1X

2
ni ≤ F (1)+2 almost

surely. Next, since F−1(F (t)) ≥ t and F is constant on the interval [t, F−1(F (t))], for

each δ > 0 there exists a finite system {(ai, bi]}p
i=1 of disjoint intervals in [0, 1] such

that
∑

i(F (bi) − F (ai)) ≤ δ, and {t ∈ [0, 1] : t < F−1(F (t))} ⊂
⋃p

i=1(ai, bi]. To see

this, note that the measure µ on [0,∞) with F (t) = µ([0, t]) must assign measure 0

to [t, F−1(F (t))]. Now define a martingale with respect to Gn(t) ≡ Fn,kn(t) by

Snk ≡
m∑

j=1

∑
i

Xni I[kn(aj)<i≤k∧kn(bj)]

again using Fn,i−1-measurability of each event [kn(s) < i], and note that the left-hand

side of (4.8) is ≤ 2 max1≤k≤kn(1) |Snk|. But by the SubmartingaleMaximal Inequality,

E max
k
|Snk|2 = E max

k
|Sn,k∧kn(1)|2 ≤ 4 ES2

n,kn(1) = 4E
∑

k

(Snk−Sn,k−1)2 I[k≤kn(1)] [by(3.1)] = 4
m∑

j=1

E
∑

k

Ek−1X
2
nk I[kn(aj)<k≤kn(bj)]
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which converges in probability as n −→∞ to 4
∑m

j=1 (F (bj)− F (aj)), which is ≤ 4δ.

Therefore (4.8) holds, and we have proved

Theorem 4.3 (Modified McLeish Theorem) Let {Xni} be an array of square-integrable

random variables on (Ω,F , P ) and {Fni} an array of sub-σ-algebras of F such that

Fni ⊂ Fn,i+1 and Xni is Fni-measurable for all n and i. Let kn(·) for each n

be a non-decreasing right-continuous integer-valued process of {Fni} stopping times with

kn(0) = 0; and assume as n −→∞,

(i) for all δ > 0,
∑

i≤kn(1)

Ei−1{X2
niI[|Xni|>δ]

P−→ 0

(ii) for t ∈ [0, 1],
∑

i≤kn(t)

Ei−1X
2
ni

P−→ F (t)

(iii)
∑

i≤kn(1)

|Ei−1(Xni)|
P−→ 0

where F (·) is a nonrandom continuous function with F (0) = 0. Then as n −→∞,∑
i

Xni I[i≤kn(·)]
D−→ W ◦ F in D[0, 1]

where W (·) is Wiener process on [0, F (1)] .

An immediate corollary of Theorem 4.1 places it squarely in the context of the

heuristic principle (3.2). For a reference to this Corollary, where it is attributed to D.

Freedman and used to prove extensions of Theorem 4.3 to cases where the variance pro-

cesses in condition (ii) converge to possibly random limits in probability, see Durrett and

Resnick (1978).

Corollary 4.4 (Freedman) Let {Xni,Fni} be as in Theorem 4.3, except that condition

(ii) need not hold, and let kn for each n be a stopping time for which
∑

i≤kn
Ei−1(X2

ni) −→
∞ and for each δ > 0,∑

i≤kn

Ei−1{X2
ni I[|Xni|>δ]

P−→ 0 as n −→∞

Then for either of the two time-scales

kn(t) ≡ inf{j :
j+1∑
i=1

Ei−1(X2
ni) > t}

or

k
∗
n(t) ≡ inf{j :

j∑
i=1

X2
ni ≥ t}
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in place of kn(·) on [0, 1],∑
i

Xni I[i≤kn(·)]
D−→ W (·) in D[0, 1] as n −→∞

Proof. The kn(·) so defined are as required in Theorem 4.3, and (i)-(iii) are obviously

satisfied under the definition kn(·) ≡ kn(·). The proof is completed by

Exercise 9 Using the definition kn(·) ≡ k
∗
n(·) in Corollary 4.4, along with any of the

proof ideas and reductions of this Section, show that (i)-(iii) of the Modified McLeish

Theorem 4.3 are satisfied. 2

Remark 4.2 If we really are in a situation where we can say only that
∑

i≤kn
Ei−1X

2
ni −→

∞, without being able to say how large kn(t) is asymptotically, we will be wasting infor-

mation in collecting a potential experimental data sample {Xni} of size kn while basing

stopping-decisions and inference on kn(1) observations. The waste occurs because kn(1)

may well be of a smaller order of magnitude than kn. 2

4.3 Continuous time: the Rebolledo Theorem

As in Chapter 3, the passage from discrete- to continuous-time theorems can be accom-

plished by limiting operations in probability and in the mean once we have restricted

consideration to martingales whose squares have calculable compensators. The idea of

proving Rebolledo’s theorem in this way is due to Helland (1982).

Theorem 4.5 (Rebolledo, 1977, 1980) Suppose that for each n ≥ 1, Mn(·) is a

locally square-integrable {Fn(t)}t martingale on [0, T ), almost surelyin D[0, t] for each

t < T , and which satisfies any of the conditions [of Theorems 3.3 and 3.5, or of Theorem

5.4 below] for ”calculability” of the variance-process < Mn > (·). Suppose that for each

δ > 0 and fixed t0 < T ,∑
s: s≤t0

|∆Mn(s)|2 I[|∆Mn(s)|≥δ]
P−→ 0 as n −→∞ (4.9)

and that for a nonrandom continuous nondecreasing function F (·) with F (0) = 0,

< Mn > (s) P−→ F (s) as n −→∞ , for each s ∈ [0, t0] (4.10)

Then Mn
D−→ W ◦ F in D[0, t0] as n −→ ∞. If (4.9) holds, but the convergence in

(4.10) is assumed to hold only for a single fixed s ∈ (0, t0], then Mn(s) D−→ W (F (s))

in R.
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Remark 4.3 Assumption (4.9), which is equivalent to ”uniform asymptotic negligibility

in probability of jumps” ,i.e., to sup0≤s≤t0 |∆Mn(s)| P−→ 0, was called by Rebolledo an

Asymptotic Rarefaction of Jumps (ARJ) Condition. 2


