Math 620 – Fall 2024 – Harry Tamvakis

PROBLEM SET 5 – Due November 7, 2024

1) (a) Let n be a positive integer and let $\Phi_n(x)$ be the n-th cyclotomic polynomial. Let a be any integer. Show that if p is a prime that divides $\Phi_n(a)$, then either p divides n or $p \equiv 1 \pmod{n}$.

(b) Prove that for every natural number n, there are infinitely many prime numbers $p \equiv 1 \pmod{n}$ by arguing as follows. Suppose that there are only finitely many such primes and let m be their product. Choose x sufficiently large so that $\Phi_n(mnx) \neq 1$, and use (a) to arrive at a contradiction. (This is a special case of Dirichlet's prime number theorem).

(c) Prove that for every finite abelian group G, there exists a Galois extension K/\mathbb{Q} with Galois group $G(K/\mathbb{Q}) \cong G$. The same problem without the word 'abelian' is a famous open question.

2) Let $|\cdot|$ be a nonarchimedean absolute value on a field K.

(a) Define the open disk with center $a \in K$ and radius r > 0 to be the set

$$D(a, r) := \{ x \in K : |x - a| < r \}.$$

Prove that if two open disks intersect, then one of them must contain the other. Prove also that the circumference $\{x \in K : |x - a| = r\}$ of D(a, r) is a disjoint union of open disks of radius r. Show that D(a, r) is both an open and closed set in the topology determined by $|\cdot|$.

(b) Assume that $(K, |\cdot|)$ is complete. Prove that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\lim a_n = 0$.

3) Let p and q be rational primes. Prove that the field \mathbb{Q}_p is isomorphic to the field \mathbb{Q}_q if and only if p = q.

4) (a) Prove that the *p*-adic power series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ for $\log(1+x)$ converges in \mathbb{Q}_p for |x| < 1 and diverges elsewhere. This allows one to define a *p*-adic logarithm $\log_p(x) := \log[1 + (x - 1)]$.

(b) Prove that $\log_p(xy) = \log_p(x) + \log_p(y)$ for all $x, y \in 1 + p \mathbb{Z}_p$.

5) (a) Show that the p-adic valuation of n! is at most n/(p-1).
(b) Show that the p-adic valuation of (p^m)! is equal to p^m-1/(p-1).
(c) Prove that the exponential series ∑_{n=0}[∞] xⁿ/n! converges for |x| < p^{-1/(p-1)} and

diverges elsewhere.

Remark: Since the valuation v on \mathbb{Q}_p is discrete and 0 < 1/(p-1) < 1, there is no $x \in \mathbb{Q}_p$ such that v(x) = 1/(p-1). Hence $|x| < p^{-1/(p-1)}$ is equivalent to |x| < 1. However the sharper bound in the problem is useful in situations where \mathbb{Q}_p is embedded in a larger field which extends the *p*-adic absolute value.