Math 404 – Spring 2025 – Harry Tamvakis PROBLEM SET 6 – Due March 27, 2025

Reading for this week: Chapters 5, 6 and Theorem 7.13.

Problems

1) Let α and β be complex numbers of degree 3 over \mathbb{Q} , and let $K = \mathbb{Q}(\alpha, \beta)$. What are the possible values of $[K : \mathbb{Q}]$? Give examples which illustrate that each of your values is indeed possible (with proof).

2) Let F be a subfield of the field \mathbb{C} of complex numbers, and let $f(x) \in F[x]$ be an irreducible polynomial over F. Prove that f(x) has no multiple root in \mathbb{C} .

3) Give an example of two different irreducible monic polynomials (a) in $\mathbb{Q}[x]$ and (b) in $\mathbb{F}_2[x]$ which have the same splitting field.

4) Factor the polynomials x^9-x and $x^{27}-x$ into a product of irreducible factors in $\mathbb{F}_3[x]$. Prove that your factors are indeed irreducible.

5) Let q be a prime power and \mathbb{F}_q be the finite field with q elements. Determine all polynomials f in $\mathbb{F}_q[x]$ such that $f(\alpha) = 0$ for all $\alpha \in \mathbb{F}_q$.

6) Let *n* be an odd positive integer, and let *F* be a field of cardinality 2^n . Prove that if $a, b \in F$ and $a^2 + ab + b^2 = 0$, then a = b = 0.

7) Let F be a finite field. Prove that the product of all the nonzero elements of F is equal to -1.

8) Show that if F is an infinite field, then the multiplicative group (F^{\times}, \cdot) is not cyclic.

Extra Credit Problems.

EC1) Let $\mathbb{C}(x)$ be the quotient field of the polynomial ring $\mathbb{C}[x]$. Let $t \in \mathbb{C}(x)$ be the rational function t = p(x)/q(x), where $p, q \in \mathbb{C}[x]$ are relatively prime polynomials and $q \neq 0$. Then $\mathbb{C}(x)$ is an extension of the field $\mathbb{C}(t)$.

(a) Show that the polynomial p(z) - tq(z) in the variable z and coefficients in $\mathbb{C}(t)$ is irreducible over $\mathbb{C}(t)$ and has x as a root. [Hint: First show that this polynomial is irreducible in $(\mathbb{C}[t])[z]$; note that $(\mathbb{C}[t])[z] = (\mathbb{C}[z])[t]$. Then use the general form of Gauss' Lemma]. (b) Show that $[\mathbb{C}(x) : \mathbb{C}(t)] = \max(\deg p(x), \deg q(x))$.

EC2) (a) In the notation of problem EC1, prove that $\mathbb{C}(t) = \mathbb{C}(x)$ if and only if

$$t(x) = \frac{ax+b}{cx+d}$$

for some $a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$.

(b) An *automorphism* of a field F is a field isomorphism $\phi : F \to F$. Determine the group G of all automorphisms ϕ of $\mathbb{C}(x)$ which are the identity map on \mathbb{C} , that is, $\phi(w) = w$ for all $w \in \mathbb{C}$ (try to identify G with a certain matrix group).