Math 620 – Fall 2024 – Harry Tamvakis

PROBLEM SET 6 – Due December 3, 2024

1) Let K be a complete valuated field, and L be an algebraic and separable extension of K. This problem shows that if L is not a finite extension of K , then L , with the (unique) extension of the valuation on K , is not *complete*.

(a) Let \overline{K} be an algebraic closure of K with $L \subset \overline{K}$. Let $\alpha \in \overline{K}$ be separable over K and r be the minimal distance from α to its conjugates over K. Show that if the distance from α to the subspace L is strictly less than r, then $\alpha \in L$.

(b) Suppose L is an infinite separable extension of K . Choose a sequence of elements $\{\alpha_n\}$ of $L \setminus K$ which are not all contained in some finite extension of K. Let r_n be the minimum distance from α_n to its conjugates over K. Choose $b \in K$ with $0 < |b| < 1$ and sequences of positive integers $\{p_n\}$ and ${q_n}$ such that

$$
|b|^{p_n} < \frac{\min\{r_n, 1\}}{2} \quad \text{and} \quad |\alpha_{n+1}| \cdot |b|^{q_n} < 1.
$$

Set $\lambda_n := b^{p_1 + \dots + p_n + q_1 + \dots + q_n}$. Prove that the infinite series

$$
\alpha_1 + \lambda_1 \alpha_2 + \dots + \lambda_n \alpha_{n+1} + \dots \tag{1}
$$

converges to a limit s in the completion of L.

(c) If s_n is the sum of the first n terms of the series (1), show that

$$
|s - s_n| < |\lambda_{n-1}| \, r_n.
$$

(d) Assume s is algebraic over K. Use parts (a), (c) and induction to prove that $\alpha_n \in K(s)$, for all n, and thus arrive at a contradiction. [Hint: Consider the distance from α_n to $(s - s_{n-1})/\lambda_{n-1}$.

2) Consider the Möbius function $\mu : \mathbb{N} \to \mathbb{Z}$ defined by $\mu(1) = 1$, $\mu(n) = 0$ if *n* is not square free, and $\mu(p_1 \cdots p_r) = (-1)^r$ if p_1, \ldots, p_r are distinct primes. Let $a : \mathbb{N} \to \mathbb{C}$ be a *completely multiplicative* function, which means that $a(1) = 1$ and $a(mn) = a(m)a(n)$ for any positive integers m and n.

Assume that the Dirichlet series $f(s) = \sum_{n=0}^{\infty}$ $n=1$ $a(n)$ $\frac{\partial^{(1)}(x)}{\partial x^{s}}$ converges absolutely for $\text{Re}(s) > \sigma_0 > 0$. Prove that $g(s) = \sum_{n=0}^{\infty}$ $n=1$ $\mu(n)a(n)$ $\frac{n^s}{n^s}$ also converges absolutely for $\text{Re}(s) > \sigma_0$ and that $f(s)g(s) = 1$.

3) Compute the residue at $s = 1$ of the Dedekind zeta function $\zeta_K(s)$ when K is (i) $\mathbb{Q}(\sqrt{-1})$, (ii) $\mathbb{Q}(\sqrt{-2})$, (iii) $\mathbb{Q}(\sqrt{-3})$, (iv) $\mathbb{Q}(\sqrt{2})$, (v) $\mathbb{Q}(\sqrt{5})$.

4) Show that the Dedekind zeta function of $\mathbb{Q}(i)$ satisfies

$$
\zeta_{\mathbb{Q}(i)}(s)/\zeta_{\mathbb{Q}}(s) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{(-1)^{(n-1)/2}}{n^s}.
$$

5) Let \mathbb{F}_q be a finite field with q elements and consider the zeta function of the ring $\mathbb{F}_q[t]$:

$$
\zeta_{\mathbb{F}_q[t]}(s) := \sum_{I\neq 0} \frac{1}{N(I)^s}
$$

where the sum runs over all non-zero ideals I and $N(I) = [\mathbb{F}_q[t] : I]$. Prove that

$$
\zeta_{\mathbb{F}_q[t]}(s) = \frac{1}{1 - q^{1-s}}.
$$