Math 404 – Spring 2025 – Harry Tamvakis PROBLEM SET 7 – Due April 3, 2025

Reading for this week: Section 7.2, except Theorem 7.12. The statement of the Fundamental Theorem 7.34. We gave some first examples in the class lectures; read Section 7.7 for a more involved one.

Problems

- 1) Let $q = p^n$ be a prime power and \mathbb{F}_q denote the field with q elements. Prove that the algebraic closure of \mathbb{F}_q is the union of the finite fields \mathbb{F}_{q^k} over all $k \geq 1$.
- 2) Let $K \supset F$ be a finite field extension. Prove that the Galois group G(K/F) is a finite group (for this problem, you may only use the results that we have proved thus far in class/lecture).
- **3)** Let K be the splitting field of the polynomial (a) $x^6 27$; (b) $x^6 + 27$ over \mathbb{Q} . In both cases, compute $[K : \mathbb{Q}]$ and determine the Galois group of K over \mathbb{Q} up to isomorphism.
- **4)** Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic polynomial with exactly one real root, and let K be the splitting field of f over \mathbb{Q} . Prove that $[K:\mathbb{Q}]=6$.
- **5)** Let f(x) be an irreducible cubic polynomial in $\mathbb{Q}[x]$ with exactly one real root α . Prove or disprove: the other two roots of f form a complex conjugate pair β , $\overline{\beta}$, and the field $\mathbb{Q}(\beta)$ has an automorphism σ which interchanges β with $\overline{\beta}$.
- **6)** Find all subgroups of the Galois group $G(K/\mathbb{Q})$ of the splitting field K of the polynomial f(x) over \mathbb{Q} as well as all corresponding subfields E between \mathbb{Q} and K when

(a)
$$f(x) = (x^2 - 5)(x^2 - 7)$$
; (b) $f(x) = x^4 + 1$.

- 7) Let K be the splitting field of the polynomial $x^5 1$ over \mathbb{Q} .
- (a) Show that the Galois group $G(K/\mathbb{Q})$ is a cyclic group of order 4.
- (b) Determine all fields E which are contained in K.

8) Let $\mathbb{C}(x)$ be the field of rational functions with complex coefficients (the fraction field of $\mathbb{C}[x]$, where x is an indeterminate). For each of the following four sets S of automorphisms of the field $\mathbb{C}(x)$, determine the group $H = \langle S \rangle$ of automorphisms which is generated by S, and compute the fixed field $\mathbb{C}(x)^H$ explicitly.

(a)
$$\sigma(x) = x^{-1}$$
 (b) $\sigma(x) = ix$ (c) $\sigma(x) = -x$, $\tau(x) = x^{-1}$ (d) $\sigma(x) = ix$, $\tau(x) = x^{-1}$.

Extra Credit Problems.

EC1) Let F be a finite field, and let f(x) be a non-constant polynomial whose derivative is the zero polynomial. Prove that f is not irreducible over F. [Hint: First show that for any $a \in F$, the equation $x^p = a$ has a solution in F, where p denotes the characteristic of F.]

EC2) (a) If F is a field of characteristic p > 0 and if L is an extension of F, let

$$K = \{a \in L \mid a^{p^n} \in F \text{ for some } n\}.$$

Prove that K is a subfield of L.

(b) With F, K, and L as above, prove that any automorphism of L which leaves every element of F fixed also leaves every element of K fixed.