Math 405 – Fall 2024 – Harry Tamvakis PROBLEM SET 8 – Due October 31, 2024

Reading for this week: Sections 6.1-6.36, 6.39-6.45, 6.46-6.56, 7.44-7.53.

Problems

From the textbook: Section 6.A, Exercises 25, 26, 27.

 $\bf{A1)}$ Let P_3 be the vector space of polynomials with real coefficients of degree at most 3, equipped with the inner product

$$
\langle f, g \rangle := \int_0^1 f(x) g(x) \, dx.
$$

(a) Find the orthogonal complement of the subspace of scalar polynomials.

(b) Apply the Gram-Schmidt process to the basis $\{1, x, x^2, x^3\}$.

 $\bf{A2})$ Let V be a finite dimensional real inner product space, W a subspace of V , and v an arbitrary vector in V . A best approximation to v by vectors in W is a vector $v' \in W$ such that $||v - v'|| \le ||v - w||$ for every $w \in W$. Prove that there is a *unique* best approximation v' to v by vectors in W and in fact $v' = \text{proj}_{W} v$ is the orthogonal projection of v onto W .

A3) The distance $||v - v'||$ between v and v' in Problem (A2) is the distance from v to the subspace W. Note that $v - v'$ is the component of v in W^{\perp} . Use this fact to prove that the distance d from a point $(x_0, y_0, z_0) \in \mathbb{R}^3$ to the plane with equation $ax + by + cz = 0$ is given by

$$
d = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}.
$$

A4) Let $V = M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices over \mathbb{R} , with the inner product $\langle A, B \rangle := \text{Tr}(AB^t)$. Find the orthogonal complement in V of the subspace of all diagonal matrices.

A5) Find a 3×3 orthogonal matrix whose first row is a multiple of the vector $(1, 1, 1)$.

A6) Prove that if an upper triangular matrix \vec{A} is orthogonal, then \vec{A} is a diagonal matrix.

A7) Equip $M_n(\mathbb{C})$ with the inner product $\langle A, B \rangle := \text{Tr}(AB^*)$. For any matrix M in $M_n(\mathbb{C})$, let $T_M : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be the linear operator on $M_n(\mathbb{C})$ defined by $T_M(A) = MA$. Prove that T_M is unitary if and only if M is a unitary matrix.

Extra Credit Problems.

EC1) Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. In case the equation $Ax = b$ has no solution, it is often desirable to find the next best thing, an \hat{x} that makes $A\hat{x}$ as close as possible to b. Call \hat{x} a nearest solution if

$$
||A\widehat{x} - b|| \le ||Ax - b||
$$

for all x in \mathbb{R}^n (where the norm is the usual one coming from the dot product). Prove that \hat{x} is a nearest solution of $Ax = b$ if and only if $A^t A \hat{x} = A^t b.$

EC2) Suppose that A and b are as in Problem (EC1). Show that A^tA is invertible if and only if A has linearly independent columns. In this case there is a unique nearest solution of $Ax = b$, namely $\hat{x} = (A^t A)^{-1} A^t b$.

EC3) Suppose that we are given points $(x_1, y_1), \ldots, (x_n, y_n)$ in the Euclidean plane \mathbb{R}^2 . A line $y = \alpha x + \beta$ passes through each point exactly when the system

$$
\alpha x_i + \beta = y_i, \quad 1 \le i \le n
$$

has a solution in α and β . If there are more than two points then this system may not have a solution. What condition on the points guarantees that there is a unique nearest solution $(\widehat{\alpha}, \widehat{\beta})$ for the system? In the latter case derive formulas for $\hat{\alpha}$ and β in terms of the x_i 's and y_i 's.