
METHOD OF PARAMETER EXCLUSION. SOME

RECOLLECTIONS AND SOME NEW RESULTS

MICHAEL JAKOBSON

Abstract. I start by some recollections about Sinai-Alexeev seminar
in 60’s and 70’s and about several occasions when Sinai ideas influenced
my work.
Then I review basic technique of parameter exclusion for families of one-
dimensional maps with one critical point and with several critical points.
In the last part some Hénon-like maps are discussed.

1. Some recollections

During my first year at the Moscow University V.M.Alexeev was my pro-
fessor at the advanced calculus course. I was quite impressed by his style
and asked him to be my adviser. That’s how I joined Sinai-Alexeev seminar
in Ergodic Theory and Dynamical Systems.
Alexeev suggested that I study classical works of Julia [21] and Fatou [8] [9]
on iterations of rational functions from the point of view of modern dynam-
ical systems.
During 60’s and 70’s dynamics became very popular thanks to the famous
works of Kolmogorov, Rohlin, Sinai, Arnold, Anosov, and simultaneous
works of Smale’s school in USA.
Participants of the Sinai-Alexeev seminar met every week to present and
discuss recent published works or preprints. Sinai, Alexeev, Anosov, Gure-
vich, Katok, Margulis, Oseledetz, Ratner, Stepin and many other speakers
from Leningrad ( now Saint Petersburg), Gorkii ( now Nizhny Novgorod)
and other cities and countries presented their new results many of which
later became famous. One can find some recollections of that period in [22].
So I was lucky to be at the right place at the right time.
In particular topics in structural stability and technique of symbolic dynam-
ics were introduced by Smale [31], Anosov [3], Anosov and Sinai [4], Sinai
[30], Alexeev [2].
In my PhD I applied these new methods to study structural stability of
polynomial and rational maps based on fundamental works of Julia [21] and
Fatou [8], [9]. When studying works of Fatou I was amazed to see how his
vision and approach were similar to our approach in 60’s.
At some point Fatou clearly stated his famous conjecture and described
main steps needed to check it. In modern language the question is:
are rational maps R(z) of given degree d ≥ 2 (in particular polynomials
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P (z)) with hyperbolic dynamics, dense in the space of all complex rational
maps (polynomials) ?
In spite of significant progress of the last 50 years, that problem remains
unsolved even for quadratic polynomials.
Another topic which started to develop at that time was dynamics of real
one-dimensional maps, where I proved density of hyperbolic dynamics in C1

topology [12]. In full generality it was solved in [23].
In the space of one-dimensional maps with critical points the set of maps
with non-hyperbolic dynamics was not very well understood. In few cases
existence of smooth invariant measures with good stochastic properties was
proved by Ulam and von Neumann [33], Bunimovich [7] and Ruelle [27].
I started to work on ergodic theory of maps similar to the Chebyshev map
but in a more general C2 context.
It happened that for several years during the Summer Sinai and I used the
same railway station to go to our houses. Once we met in an overcrowded
bus and I mentioned difficulties related to the critical point. Then Sinai
suggested a new idea, he said: ” use the first return map ”. By that time
expanding map with countably many pieces of continuity were studied in
the works of Adler [1] and Walters [34]. It turned out that the first return
maps induced by Chebyshev-like transformation generate expanding maps
with countably many pieces and uniformly bounded distortions, and as a
result the existence of absolutely continuous invariant measures with strong
mixing properties was proved, see [16].
At some point after my presentation of several results of that type at the
seminar Sinai asked what do I think about the measure of parameters such
that respective systems have absolutely continuous invariant measures. My
answer at that time was that it should be zero.
After the seminar Sinai, Bunimovich and I walked to the nearest metro sta-
tion which took about 20-30 minutes. Then we continued our discussion for
a while until it became too cold. They tried to convince me that the measure
of stochastic parameters should be positive. They argued by analogy with
the construction of infinite Markov partitions for Sinai billiards where new
elements were constructed in decreasing neighborhoods of images of singu-
larities. Later they suggested that similar ideas could be used to prove the
positivity of the measure of parameters such that smooth perturbations of
the stadium billiard system are ergodic. Actually that question about bil-
liards is more difficult or similar to the famous unsolved Chirikov standard
map problem .
I started to work on that problem for one-dimensional maps, developed what
is now called a parameter exclusion method, and eventually proved that for
families of maps close to x → ax(1 − x) the measure of parameters with
stochastic behavior is positive, see [13].
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2. Dimension one, case of one critical point.

(1) Here we outline several features of a method based on [13], [14].
After some preliminary construction, which includes transition to a
first return map and taking several iterates of that map we get a fam-
ily of one-dimensional C2 mappings Ft depending on the parameter
t ∈ T0 = [t0, t1] with the following properties.

For each t, Ft is piecewise continuous with a finite number of
branches. The union of the domains of these branches is an interval
I independent of t. The branches of Ft are of three types.
(a) There is a critical branch h = h(t, x), whose domain is called

central domain . Central domain δ0(t) contains a single critical
point O1 of Ft. Without loss of generality one can assume that
the critical point does not depend on t, for all t

hx(t, O1) = 0

(b) Monotone expanding branches which we also call good branches

(1) fi : ∆i → I

satisfying for all t

(2) |fix| > R0

where R0 > 1 is a large constant.
(c) Branches gi which map preimages of central domain δ0 diffeo-

morphically onto δ0

(3) gi : δ
−ni
0 → δ0

satisfying for all t

(4) |gix| > a0 > 0

(2) The above domains form a partition ξ0 of I and we assume that
the elements of that partition vary continuously with t . All new
branches in the inductive process are constructed inside δ0 and preim-
ages δ−ni

0 . We assume the maps defined above satisfy the following
properties for all t ∈ T0.
(a) Let W (t) = h(t, O1) be the critical value of h. We assume its

speed is bounded away from zero by some V0 > 0.

(5) |Wt| > V0

When t varies in T0, the critical value W (t) moves through the
elements of some partition η0. We assume that partition η0
consists of domains ∆i and δ−ni

l of the same type as elements
of ξ0. Elements of η0 are mapped by some powers of F onto
respective elements of ξ0. It is convenient to consider ξ0 as a
partition on the x-axis and and η0 as a partition on the y-axis.
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(b) Let f : ∆f → I or g : δ−ni
0 → δ0 be maps defined on elements

of η0. We assume their domains are moving much slower than
the critical value:

(6)
|ft|
|fx|

,
|gt|
|gx|

< ε0 � V0.

(c) The distortion Θ(f) of a diffeomorphism f defined on a domain
∆f is the following supremum over z ∈ ∆f

(7) Θ(f) = sup
|fxx(z)|
|fx(z)|

|∆f |

We assume the maps f, g satisfy the above properties (2) and (4)
and have uniformly bounded distortions. There exists D0 > 0
such that all good maps f : ∆f → I satisfy

(8) Θ(f) < D0

and there exists a small ε0 > 0 such that all maps g : δ−ni
0 → δ0

satisfy

(9) Θ(g) < ε0

(d) For all t the measure of the union of good branches in I is close
to one

(10) meas
⋃

∆f > 1− ε0

(e) We assume the variations of lengths of elements in ξ0 and in η0
are small

(11) 1− ε0 <
|∆(t1)|
|∆(t2)|

,

∣∣δ−ni
0 (t1)

∣∣∣∣δ−ni
0 (t2)

∣∣ < 1 + ε0

for all t1, t2 ∈ T0.
Then we get the following theorem, [14].

Theorem 2.1. There exist R̄0, ε̄0 such that if the above conditions
are satisfied with R0 > R̄0 and ε0 < ε̄0 and D0 uniformly bounded,
then there is a set of parameters of positive measure such that the
respective maps Ft have SRB measures and the relative measure of
such parameters tends to one when R̄0 →∞ and ε̄0 → 0.

For families considered in [14] one can use a preliminary construc-
tion and get a family of maps Ft satisfying the above conditions,
where ε0 can be made arbitrary small, R0 arbitrary large and other
parameters uniformly bounded. That implies theorem (2.1). In ap-
plications one can vary the preliminary construction and use com-
puter assisted estimates.
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3. Dimension one, case of several critical points.

(1) Here we follow [15] and outline the construction in the case of several
critical points.
There are m critical branches hl, l = 1, . . .m, whose domains are
called central domains. Each central domain δl contains a single
critical point Ol of Ft. Without loss of generality one can assume
that Ol do not depend on t and so for l = 1, . . .m and for all t we
have

hlx(Ol) = 0

Let Wl(t) = hl(Ol, t) be the l-th critical value. We consider m pa-
rameter intervals Tl corresponding to the motion of Wl(t) through

elements of partitions ηl = {∆f, δ−ki } with the same properties as in
the case of one critical point.
As an example one can include the third Chebyshev polynomial
T = 4x(x2 − 3

4) in a one-parameter family Ta = ax(x2 − 3
4), and

consider a close to 4. To make it more general one can consider a
small C2 perturbation of T .
As in the case of one critical point, when a approaches 4 critical
values Wl(t) cross consecutively intervals Iln(t) which accumulate to
the respective repelling fixed points ql. Let Tl = ∪Tnl be the union
of parameter intervals corresponding to the motion of Wl(t) through
Iln(t). If Wl(t) are moving independently we do not expect Tnl1 to
coincide with Tnl2 . We need to consider parameter values such that
the motion of all Wl(t) is defined T = ∩l=1...mTl.
However for the purpose of inductive estimates we want Wl(t) to
move through entire elements of ηl. In order to reconcile these con-
tradictory requirements we first refine some elements of ηl. Then as
discussed in the next subsection we can exclude some small propor-
tion of parameters so that the remaining parameter intervals corre-
spond to the motion of Wl(t) through entire elements of ηl.

We assume our family satisfies assumptions similar to (5)-(11)
from the previous section.
That allows to prove a theorem similar to (2.1) for families with
several critical points, see [15].

(2) Specifics of parameter exclusion in the presence of several critical
points.

For maps with several critical points the inductive construction
in the phase space is is similar to the one for Unimodal Maps, see
[13], [14]. However in the parameter space there are some specifics
which reappear in the case of Hénon-like maps, where the number of
critical branches grow at consecutive steps of induction. Below we
outline main ideas of the construction in the parameter space.
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(a) At a given step of induction we define admissible and non-
admissible domains in the phase space for each critical value
Wl(t). As the endpoints of the elements of ηl move slower than
Wl(t) it follows that to each element ∆ ∈ ηl(t) corresponds a
parameter interval D such that Wl(t) ∈ ∆ when t ∈ D.
In order to keep distortions of maps g : δ−ni

k → δk small we po-

sition critical values outside of some enlargements δ̃−ni
k ⊃ δ−ni

k

and consider as inadmissible the locations of Wl(t) inside δ̃−ni
k .

Then admissible parameter values Wl(t) belong to the remaining
D. Let

(12) Tl =
⋃
D

be the union of l- admissible parameter intervals.
As the measure of the union of δ−ni

k is small one can choose
relatively big enlargements which imply (9) and at the same
time satisfy

(13)
|Tl|
|Tl|

> 1− ε0,

where ε0 is small.

Let us define

(14) A0 =
m⋂
l=1

Tl.

Then A0 is the initial set of parameters that are admissible for
all critical values simultaneously. If ε0 is sufficiently small then
the relative measure of A0 in each Tl satisfies

(15)
|A0 ∩ Tl|
|Tl|

> 1− ε1

which is arbitrary close to one if ε0 is sufficiently small. where
ε1 is another small constant.

(b) When we choose parameter values we require in particular that
Wl(t) do not belong to central domains δk. That means we
delete a fixed proportion of parameters. If we do it at every step
of induction then we end up with a set of admissible parameters
of measure zero. Therefore at some step of induction we must
construct new good elements inside each central domain δk and
allow Wl to enter these elements.
We get a partition ξl1 of the central domain δl by considering
the pullback

(16) ξl1 = h−1l ηl.
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Consider W l(t) which is moving through an admissible domain
∆l

1. Let Dl
1 be the respective interval of parameters . For t ∈ Dl

1

the new central domain, which contains the critical point Ol, is
δl1 = h−1l ∆l

1.

Note that differently from the partitions ξ0 and ηl, which are
defined and vary continuously for all t, the partitions ξl1 are
defined and vary continuously only for t ∈ Dl

1.
(c) In our construction in order to get consecutive refinements of

the central domains δln at steps n = 1, 2, . . . we first pull back
some partition onto a domain ∆l

n−1, which contains the critical

value W l(t), and after that we pull back that new partition from
∆l
n−1 onto δln−1 by h−1l .

Let us denote by

(17) I1 =

m⋂
l=1

Dl
1

one of the nonempty intersections of l-admissible parameter in-
tervals at the first step of induction. We call it the intersection
of rank one. By construction at each step of induction admissi-
ble parameter intervals Dl

i1i2...ik
of rank k are partitioned into

admissible intervals Dl
i1i2...ikik+1

of the next rank k+1 and some

inadmissible intervals. Then respective intersections

(18) Ik+1 =

m⋂
l=1

Dl
i1...ik+1

are defined. By construction each Ik+1 belongs to only one Ik.
Let us consider an intersection of rank n1

(19) In1 =
m⋂
l=1

Dl
i1...in1

and a respective intersection of rank one

(20) In1 ⊂ I1 =
m⋂
l=1

Dl
1,

where

(21) Dl
i1...in1

⊂ Dl
1

When we are doing parameter choice at step n1 we want to use
that the total measure of inadmissible elements in the phase
space is small. Let us define a union of rank n1 corresponding
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to the intersection (19) of rank n1 by

(22) Un1 =
m⋃
l=1

Dl
i1...in1

.

As at step n1 we pull back partitions of rank 1, we get that
pull-backs are well defined if the union of rank n1 lies inside the
respective intersection of rank 1

(23) Un1 ⊂ I1
We delete Intersections In1 that do not satisfy (23).
Let us estimate the measure of the deleted parameter intervals.
By construction (23) is not satisfied if and only if the following
holds.
Exclusion Property.
One of the intervals Dl

i1...in1
contains a boundary point of some

Dk
1 .

Let N1 be the number of intervals D of rank 1, thus 2N1 the
number of their boundary points.
Let sn1 be the maximum of the lengths of the intervals Dl

i1...in1

of rank n1. As the length of the union of intervals with a
nonempty intersection does not exceed 2sn1 we get that the to-
tal measure deleted in order to satisfy exclusion property does
not exceed

(24) 4N1sn1

By construction sn1 decrease exponentially, thus (24) does the
same.

(d) At a general step n of induction when doing parameter choice we
pull back an earlier partition ξ[nx0], where x0 is a small constant
and [nx0] is the integer part of nx0. Then we show that for
a sufficiently small x0 the measure deleted based on exclusion
property decays exponentially. For that purpose we use uniform
scaling in the phase space, see [15]. By construction the domains
of good branches at step n of the induction satisfy

(25) c1b
n
1 < |∆fn| < c2a

n
1 ,

where

0 < b1 < a1 < 1.

Estimates of speeds imply that parameter intervals correspond-
ing to the movement of Wl(t) through ∆fn satisfy similar in-
equalities with another choice of constants:

(26) c′1b
n
1 < |Dn| < c′2a

n
1 .
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In order to get well-defined partitions we need each n-union to
be a subset of the respective [nx0]-intersection

(27) Un ⊂ I[nx0]
We delete In which do not satisfy 27. Then as above at step n1
we check that the measure of the deleted intervals is less than

(28) Cb
−[nx0]
1 an1 ,

which is exponentially small for large n if

(29)
a1
bx01

< 1.

At first steps of induction we can pull back the same initial
partition and therefore we can choose x0 arbitrary small. So it
is easy to satisfy (29), although one should note that at these
special first steps of induction, when we pullback the same par-
tition ξ0 several times, we can loose a lot of measure in the
parameter space.

4. Hénon-like maps

(1) Some historical remarks and some open problems.
As a part of a joint project with Sheldon Newhouse [19] we consider
some Hénon-like families and prove that the measure of parameters
with stochastic behavior is positive.
Here we make some historical remarks and outline some similarities
with one-dimensional technique of parameter exclusion.
In 1976 Michel Hénon who was a French mathematician and as-
tronomer and worked for a long time at the Nice Observatory studied
a map with a ”strange attractor”

xn+1 = 1− ax2n + yn, yn+1 = bxn

for parameter values a = 1.4, b = 0.3.
Later numerical estimates gave Hausdorff dimension of Hénon at-
tractor close to 1.261.
The study of Hénon map generated a lot of activity in the area of
Dynamical Systems, in particular remarkable works by Benedicks,
Carleson, Young and others, see [5], [36], [6].
However in spite of all activity rigorous results about existence and
properties of Hénon attractor were obtained only for unspecified
small values of b and values of a close to 2.

A natural question is:
For a small neighborhood of Hénon values, say

1.39 < a < 1.41
.29 < b < .31

(30)
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is there a set of parameters a, b of positive measure such that re-
spective Hénon maps have a Sinai-Ruelle-Bowen measure?

A related problem for quadratic family

fa : x→ ax(1− x)

can be formulated as follows.
Problem.
Develop an algorithm which estimates the measure of parameters a
such that fa has an SRB measure within a randomly chosen interval
of parameter (a1, a2) .
One method for finding such a inside an interval not adjacent to the
Chebyshev value a = 4 was developed in my work [14].

Based on that algorithm Yu-Ru Huang [11] proved that inside the
interval (3.99512, 3.99513) the relative measure of stochastic param-
eters is greater than 5.881582× 10−15. For the family

x→ x2 − a

Luzzatto and Takahasi [24] proved that inside the interval (2 −
10−4990, 2) adjacent to the Chebyshev value
a = 2 stochastic values of parameter a
occupy more than 97%.
In the opposite direction Tucker and Wilczak [32] obtained an esti-
mate for a lower bound of the measure of structurally stable param-
eter values in quadratic family.
Recently Golmakani, Koudjinan, Luzzatto and Pilarczyk [10] proved
that parameter intervals where most of parameter values are sto-
chastic, occupy more than 90% of the total measure of parameters
in quadratic family.

(2) Some new two-dimensional models.

Here we study some piecewise smooth models which combine hy-
perbolic behavior with small determinant together with Hénon-like
behavior with determinant b ≤ 1 .
Differently from [5] our technique does not use that the maps un-
der consideration are small perturbations of one-dimensional maps.
This approach combined with computer assisted estimates may be
useful in the study of Hénon-like maps with not so small jacobian.

As an example we consider a piecewise smooth family of maps

ft : D → D

where D = Q ∪ B, Q and B are rectangles. The domain Q =
[−A,A] × [−1, 1] where the constant A > 0 is large, so Q is like a
long strip.
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Based on the range of parameters of the construction specified below
we use the domain

(31) B = [A,A+ λk + 1]× [−2, 2]

The strip Q is a union

Q = D0 ∪Dc ∪D1

The domains D0 and D1 are long strips and the domain

(32) Dc = [−k, k]× [−1, 1]

is in the middle of Q.
We assume that restricted to D0 and D1 ft acts as an affine trans-

formation which does not depend on t. On D0 ft is defined by

f1(x, y) = λx+ S
f2(x, y) = εy + σ

(33)

On D1 ft is defined by

f1(x, y) = −λx+ S
f2(x, y) = −εy − σ(34)

Here ε > 0 is small, λ is close to 2, the horizontal shift S is of the
same order as A. Two vertical shifts ±σ are used to separate images
of D0 and D1. We use σ = 0.67.
Dc is a union of its central piece Dct and two adjacent pieces Dlt

and Drt.

On Dct the map ft acts as a composition of a parabolic map with
a constant right shift by S along the x axis. The parabolic map is
given by Hénon formula with determinant b ≤ 1 and t ∈ [t0, t1].

X = −x2 + by + t
Y = −x(35)

Respectively the map ft|Dct is defined by

X = −x2 + by + t+ S
Y = −x(36)

The central domain Dct is bounded by the lines y = 1, y = −1,
and by two pieces of the parabola

(37) by = −0.3 + x2 − t

The right boundary of Dlt coincides with the left boundary of Dct

and the left boundary of Dlt is a subinterval of x = −k. Similarly
Drt is adjacent to Dct on the right and bounded on the right by
a subinterval of x = k. Inside the domains Dlt and Drt we define
smooth bump maps G(x, y, t). On Dlt the bump map connects (36)
to (33) and on Drt the bump map connects (36) to (34).
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All our maps are compositions of local maps with the constant
right shift by S along the x axis. Therefore it is enough to define
bump maps which connect (35) to the local affine maps.

f1l(x, y) = λx
f2l(x, y) = εy + σ

(38)

on D0 and

f1l(x, y) = −λx
f2l(x, y) = −εy − σ(39)

on D1. Locally the image of Dc is contained in a rectangle B′

(40) B′ = [−λk, 1]× [−2, 2]

where k is from (32) and λ is close to 2.
Hénon map (35) maps Dct onto a parabolic region which we call a
hook and denote it Hct. For all t ∈ [t0, t1] the hook is a subset of B′

bounded by two subintervals of the vertical line X = −0.3
and by two parabolas X = −Y 2 + b+ t and X = −Y 2 − b+ t.
Then we extend smoothly Hénon map on Dct by bump maps which
map Dlt and Drt onto two curvilinear rectangles which extend the
hook’s handles up to X = −λk.
Images S0 = f(D0) and S1 = f(D1) are horizontal strips of height
2ε which have full width in [−A,A]. Local images of Si∩Dc are two
hooks and their extensions located in B′.
We choose connecting functions G(x, y, t) in such a way that their
restrictions to the left and right boundaries of Dc are two subinter-
vals of X = −λk which do not depend on t. After translation by S
extended hooks are attached to x = A on the right.
The choice of G(x, y, t) is flexible. The main restrictions are dictated
by the relation between standard and implicit coordinates , see be-
low subsection 9. These relations imply that it is enough to keep
G1x and Jacobian determinant of G(x, y, t) uniformly bounded away
from 0.

We denote l =
√

1 + by + t and define

(41) ηlk(x) = c−10

∫ x

l
exp

(
−(s− l)−1 − (k − s)−1

)
where

(42) c0 =

∫ k

l
exp

(
−(s− l)−1 − (k − s)−1

)
Then for

√
1 + by + t ≤ x ≤ k we define G(x, y, t) by

G1(x, y, t) =
(
by + t− x2

)(
1− ηlk(x)

)
− (λx)ηlk(x)

G2(x, y, t) = (−x)
(

1− ηlk(x)
)
− (σ + εy)ηlk(x)

(43)
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For −
√

1 + by + t ≥ x ≥ −k we use symmetric functions G1(x, y, t)
and G2(x, y, t). Finally the image of Dc under the Hénon map and
G(x, y, t) is translated to the right by S.
On the boundary x = A horizontal strips Si have the same heights
as the handles of the hook. They are attached to the handles along
the vertical intervals [σ − ε, σ + ε] and [−σ − ε,−σ + ε].

(3) Parameters of the construction.
A and S are large, λ is close to 2.
We assume x = −A contains a fixed saddle point. That implies

(44) λ(−A) + S = −A

or

(45) S = (λ− 1)(A)

As the image of x = −k is contained in x = A we get

(46) −λk + S = A

or

(47) S = A+ λk

We use k = 4. Then from (44), (47) we get

(48) λ =
2A

A− 4

Estimates in local coordinates are independent of A and S.
Computations with b = 0.3, parameter values 0.149 ≤ t ≤ 0.151
and various ε ≤ 0.1, resulted in G1x uniformly bounded away from 0
by a constant independent of ε and Jacobian determinant uniformly
bounded away from 0 by cε. Main restrictions on parameters of the
construction are dictated by inductive arguments near x = 0.

(4) Initial partition of Q .

Let us denote ξ00 the partition of Q into Dc, D0 and D1. Let
ξ0m be the partition of Q obtained by m consecutive pullbacks of ξ00
using compositions of f−1.
Elements of ξ0m are of two types. First type are rectangles Ei0...im =
Ei0 ∩ f−1Ei1 ∩ f−mEim where is = 0, 1 , E0 = D0, E1 = D1.

They are mapped by fm+1 linearly onto full width substrips of Q
with expansion λm+1 and contraction εm+1. We use m equal to the
integer part of logλA. Then the widths of Ei0...im are of the order 1.
Second type are preimages D−lc , l = 0, 1, . . .m of the central zone,
which are called holes.
The widths of holes decrease from |Dc| to |D−mc | which are of the
order A−1.
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We assume the map ft|B does not depend on t and maps B affinely
with the same expansion λ and contraction ε onto a horizontal strip
S̄2 ⊂ E00...0 disjoint from S0 and S1. Then fm+1 maps S̄2 onto a full
width substrip of Q.

The above model satisfies starting conditions which allow to prove
the following theorem [19].

Theorem 4.1. For a sufficiently large A there is a set of parameters
of positive Lebesgue measure M ⊂ [0.149, 0.151] such that for t ∈M
the map ft has an attractor with an ergodic SRB measure. When
A→∞ the relative measure of M in [0.149, 0.151] tends to 1.

One can use a similar construction and get a C∞ map f(x, y, t)
defined on D. Then we get a similar theorem for respective C∞

maps. Note that main restrictions are not related to the bump maps.
They arize from inductive estimates for the Hénon map.

(5) Geometric structure.

At step n of induction the main structure constructed in Q is
called Horizontal Grid, and it is denoted HGn. HGn is a union of

finitely many horizontal strips S = S
(n)
k with disjoint interiors.

Horizontal means that tangent vectors to the top and bottom are
uniformly close to (1, 0).

The heights of S
(n)
k decrease exponentially with n.

Horizontal strips S = S
(n)
k are partitioned into curvilinear rectangles

with disjoint interiors
E, Zn, Z−ki , i = 0, 1, . . . n
which create vertical structure.

In the middle of horizontal strips are located central zones Zn,
which are rectangles with top and bottom close to horizontal and
two parabolic sides making exponentially small angles with top and
bottom.
They have exponentially decreasing widths, and their heights are ex-
ponentially small comparatively to their widths. Central zones are
partitioned into small heights squeezed rectangles of the same types
E and Z−ki .

Under Hénon maps vertical intervals located in the middle of Zn
are mapped onto horizontal intervals in the middle of the hooks. We
call such horizontal intervals tips of the hooks.
Rectangles E are mapped onto full width strips by the maps which
we denote f : E → S.
Rectangles Z−ki are mapped onto central zones Zi by the maps which
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we denote g : Z−ki → Zi.

Note that images under parabolic maps pt of almost horizontal
curves are curves close to parabolas.
Let Z0 = ∪Z0. We call pt(HGn ∩ Z0) = PGn the Parabolic Grid.
Horizontal structure in HGn corresponds to parabolic structure in
PGn.
PGn consists of hooks and squeezed rectangles with almost parabolic
“ horizontal boundaries” and almost vertical ”vertical boundaries”.
By using parameter exclusion we put tips of the hooks far from holes.

(6) Tools.

We combine some new technique with various tools developed in
several preceding works.
(a) The general method of parameter exclusion goes back to [13].

Some modifications suitable for numerical estimates were intro-
duced in [14].

(b) The idea of doing distortion estimates in local adapted coordi-
nates such that at the origin the axes are tangent to the stable
and unstable manifolds and the differential takes the diagonal
form was used in [17] and [18]. In the Hénon-like situation the
angles between adapted axes converge to zero, when points are
close to the local critical lines. Respective objects are curvilin-
ear squeezed parallelograms.

(c) We use an adapted version of Palis-Yoccoz implicit coordinates
where independent coordinates are y-coordinate in the domain
and x-coordinate in the range, see [25] and [26]. In our approach
compositions between squeezed affine-like maps substitute Palis-
Yoccoz compositions between affine-like and parabolic maps.

(d) The existence of a positive measure set of parameters with SRB
measures is based on a version of the general approach devel-
oped in [13] . The technique of dealing with a growing number
of thin hooks is similar to one discussed in the previous section
for maps with several critical points.

(e) In the course of inductive construction central zones and their
preimages are filled with new rectangles E and new preimages
Z−ki . At the end of induction central zones and their preimages
disappear, and only E remain which are mapped onto full width
strips.
That collection of E form a pre-Markov partition.
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A transition F : E1 → E2 is admissible if S1 = F (E1) prop-
erly intersects E2 and F has enough contraction. As contrac-
tion in our model is stronger than expansion we get more and
more admissible transitions, which results in a construction of
a Markov partition which consists of Cantor sets of positive
measure. That was studied in [20].

(f) We get uniform distortion and parameter estimates for the power
map on two types of two-dimensional rectangles:
Full height two-dimensional rectangles - preimages of rectan-
gles E, and squeezed rectangles close to critical lines. Using full
height rectangles helps to explore contraction stronger than ex-
pansion property and we get uniform distortion and parameter
estimates on unstable curves in all rectangles E.

(g) Ergodic and statistical properties of the original map f can be
studied by using the technique of [36], [28], [29], [20].

(7) Structures in the parameter space.

At step n of induction we consider different hooks which are mov-
ing through different full height rectangles W . Such W are mapped
by power maps F onto full width strips S. We fix some small param-
eter of the construction 0 < s2 < 1 and consider an earlier partition
ξ[s2n] restricted to S and pull it back into W .

Then we get inside W of step n a pullback of a partition of step
[s2n].

Let J
(n)
i be respective parameter intervals. All elements of ξ[s2n]

are defined simultaneously for

t ∈ ∩J ([s2n])
k

At the same time for the choice of parameter we need all pullbacks
into various W to be defined simultaneously for

t ∈ ∪J (n)
i

So as for one-dimensional maps with several critical points, we re-
quire an inclusion

∪J (n)
i ⊂ ∩J ([s2n])

i

In order to have such an inclusion we eliminate unions ∪J (n)
i of

intervals J
(n)
i satisfying two conditions.

1) They have nonempty intersection.
2) One of them intersects an endpoint of some earlier constructed

interval J
([s2n])
k .
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The number of J
([s2n])
k can be controlled and the number of hooks

at step n can be controlled, so we can control the measure of param-
eter values that we loose because of such restrictions.

(8) Horizontal subdivisions and the number of hooks.

As quadratic maps interchange axes a tip of some hook has width
equal to the height of respective central zone.
At step n in order to fit tips of hooks into good rectangles where
we can maintain the inductive process, we need respective heights
to decrease fast.
That is done by horizontal subdivisions. In our construction each
central domain Z is the image of some full height post P and hor-
izontal subdivision of Z is pushed forward from the horizontal sub-
division of P .

Horizontal subdivision of P is done by using the choice of param-
eter at earlier steps.

By using that contraction in our model is stronger than expansion
we can control the number of horizontal subdivisions and get an
estimate for the number of hooks at step n. We prove that this
number does not exceed

(c
√
A)5ε2n

where ε2 is a small constant. Here 5 is the number of symbols
corresponding to initial domains D0,D1, B and +, −, corresponding
to two quadratic roots.
Then at step n the loss of parameter due to all parameter exclusions
has an exponentially small measure.

(9) Palis-Yoccoz implicit coordinates .

The key technical ingredients are inductive estimates of distor-
tions.
We use an adapted version of Palis-Yoccoz implicit coordinates, see
[25] and [26].
Adapted version means that for some fixed point (x0, y0, t0) we use
local coordinate systems with diagonal differential at that point.
In our approach compositions between squeezed affine-like maps sub-
stitute Palis-Yoccoz compositions between affine-like and parabolic
maps.
In general implicit coordinates approach which does not make dif-
ference between forward and backward iterates is compatible with
our use of both images and preimages of pre-Markov rectangles.

By using implicit adapted coordinates we prove bounded distor-
tions for two types of maps.
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1. Maps from full height rectangles E onto full width strips S.
and
2. Maps from squeezed rectangles E located in central zones δn onto
full width strips S.

Then one proves that restricted to unstable leaves in the base
of the attractor distortions of arbitrary compositions are uniformly
bounded. That implies for the power map as in the classical SRB
models existence of conditional measures with densities on unstable
leaves given by

lim
n→∞

∏n
s=1

1

| DuF (F−sz) |∫
Wu

∏n
s=1

1

| DuF (F−sz) |
Then one constructs an F -invariant measure with such conditional
measures. From there an f -invariant measure µ is obtained by a
tower construction. In order to study ergodic and statistical prop-
erties of µ one constructs Markov partitions.

(10) From pre-Markov to Markov partitions.

Rectangles E that we construct make a pre-Markov partition for
the power map F . To get a Markov partition we proceed as follows.
Consider some full height rectangle E1 of partition ξ00. Its image
under F1 is a full width strip S1 in Q of height εm. It intersects
properly many good rectangles E. Preimages F−11 (S1∩E) of proper
intersections are full height subrectangles E1i of E1.
Admissible compositions F ◦F1 have stronger contraction, so at the
second step we can exclude smaller proportion of gaps from E1i.
Similarly we consecutively exclude smaller and smaller proportions of
inadmissible intersections and get uniform estimates on a Cantor sets
C1 of positive measure, which consists of full height stable manifolds
W s.

Inside the gaps excluded at the first step we can start a similar
construction after two initial iterates. Then we get uniform esti-
mates on a Cantor set of positive measure C2. These estimates are
worse than on C1, but still uniform.
Then we repeat that argument and get a sequence of similar sets
Ck. The union of Ck has full measure on the attractor. That implies
absolute continuity of the stable foliation and as a result ergodicity
of (F, µ).

Statistical properties of the original map f can be studied by using
the technique of [36], [28], [29], [20].
In particular arguments of [36] imply the decay of correlations for
the original system faster than any power.
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Similarly to 1−d case our method does not imply exponential decay
of correlation. One possibility to get exponential decay is to delete
more parameters by using large deviation arguments in the spirit of
[35].
Thanks.
The author is thankful to the referee for important corrections and
to L.Bunimovich for important recollections.
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