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Abstract

In the previous works of the author and S.Newhouse ( [9] and [10]) a
class of piecewise smooth two-dimensional systems with countable Markov
partitions was studied, and Bernoulli property was proved.
In this paper we consider 2-d maps F satisfying the same hyperbolicity and
distortion conditions, and assume similar conditions for F−1. We assume
additionally that contraction of each map increases when points approach
the boundary of its domain. For such systems we extend the results of [8],
and prove exponential decay of correlations.

1 Statement of results
1. As in [9] , [10] we consider the following 2-d model. Let Q be the unit

square. Let ξ = {E1,E2, . . . ,} be a countable collection of closed curvi-
linear rectangles in Q. Assume that each Ei lies inside a domain of def-
inition of a C2 diffeomorphism fi which maps Ei onto its image Si ⊂ Q.
We assume each Ei connects the top and the bottom of Q. Thus each Ei is
bounded from above and from below by two subintervals of the line seg-
ments {(x,y) : y = 1, 0≤ x≤ 1} and {(x,y) : y = 0, 0≤ x≤ 1}. Hyperbol-
icity conditions that we formulate below imply that the left and right bound-
aries of Ei are graphs of smooth functions x(i)(y) with

∣∣∣dx(i)
dy

∣∣∣ ≤ α where α

is a real number satisfying 0 < α < 1.
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The images fi(Ei) = Si are narrow strips connecting the left and right sides
of Q and that they are bounded on the left and right by the two subintervals
of the line segments {(x,y) : x= 0, 0≤ y≤ 1} and {(x,y) : x= 1, 0≤ y≤ 1}
and above and below by the graphs of smooth functions Y i(X), | dY (i)

dX | ≤ α .
We are saying that E ′i s are full height in Q while the S′is are full width in Q.

2. For z ∈ Q, let `z be the horizontal line through z. We define δ z(Ei) =
diam(`z

⋂
Ei), δ i,max = maxz∈Q δ z(Ei), δ i,min = minz∈Q δ z(Ei).

We assume the following

Geometric conditions

G1. For i 6= j holds
int Ei∩ int E j = /0 and int Si∩ int S j = /0 .

G2. mes(Q\∪i int Ei) = 0 where mes stands for Lebesgue measure.

G3. For some 0 < a≤ b < 1 and some CG ≥ 1 holds

C−1
G ai ≤ δ i,min ≤ δ i,max ≤CGbi

Remark 1.1 Condition [G3] is a simplified version of respective assump-
tions in [9] and [10] , but still allows the widths of Ei to oscillate exponen-
tially.

In the standard coordinate system for a map F : (x,y)→ (F1(x,y),F2(x,y))
we use DF(x,y) to denote the differential of F at some point (x,y) and Fjx,
Fjy, Fjxx, Fjxy, etc., for partial derivatives of Fj, j = 1,2 .

Let JF(z) =| F1x(z)F2y(z)−F1y(z)F2x(z) | be the absolute value of the Jaco-
bian determinant of F at z.

3. Next we assume
Hyperbolicity conditions
There exist constants 0 < α < 1 and K0 > 1 such that for each i the map

F(z) = fi(z) for z ∈ Ei

satisfies
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H1. | F2x(z) |+α| F2y(z) |+α2| F1y(z) | ≤ α| F1x(z) |
H2. | F1x(z) |−α| F1y(z) | ≥ K0.

H3. | F1y(z) |+α| F2y(z) |+α2| F2x(z) | ≤ α| F1x(z) |
H4. | F1x(z) |−α| F2x(z) | ≥ JF(z)K0.

4. Some corollaries from Hyperbolicity conditions.

For a real number 0 < α < 1, we define the cones

Ku
α = {(v1,v2) : | v2 | ≤ α| v1 |}

Ks
α = {(v1,v2) : | v1 | ≤ α| v2 |}

and the corresponding cone fields Ku
α (z),Ks

α (z) in the tangent spaces at
points z ∈ R2.

The following proposition proved in [10] relates conditions H1-H4 above
with the usual definition of hyperbolicity in terms of cone conditions. It
shows that conditions H1 and H2 imply that the Ku

α cone is mapped into
itself by DF and expanded by a factor no smaller than K0 while H3 and H4
imply that the Ks

α cone is mapped into itself by DF−1 and expanded by a
factor no smaller than K0.

Unless otherwise stated, we use the max norm on R2, | (v1,v2) |=max(| v1 |, | v2 |).

Proposition 1.2 Under conditions H1-H4 above, we have

DF(Ku
α )⊆ Ku

α (1)

v ∈ Ku
α ⇒ | DFv | ≥ K0| v | (2)

DF−1(Ks
α )⊆ Ks

α (3)

v ∈ Ks
α ⇒ | DF−1v | ≥ K0| v | (4)
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Remark 1.3 The first version of hyperbolicity conditions appeared in the
paper of Smale [16]. It was developed in particular by Alexeev [4] and by
Hirsch, Pugh and Shub, see [7], [11] . Cone conditions for billiard systems
were first studied by Sinai, see [19].
Here we use hyperbolicity conditions from [10]. In [9] we used hyperbolic-
ity conditions from [4] which implied the invariance of cones and uniform
expansion with respect to the sum norm | v |= | v1 |+ | v2 |.

5. A theorem about systems satisfying Geometric and Hyperbolicity condi-
tions.

The map

F(z) = fi(z) for z ∈ int Ei

is defined almost everywhere on Q. Let Q̃0 =
⋃

i int Ei, and, define Q̃n,n> 0,
inductively by Q̃n = Q̃0

⋂
F−1Q̃n−1. Let Q̃ =

⋂
n≥0 Q̃n be the set of points

whose forward orbits always stay in
⋃

i int Ei. Then, Q̃ has full Lebesgue
measure in Q, and F maps Q̃ into itself.

The hyperbolicity conditions H1–H4 imply the estimates on the derivatives
of the boundary curves of Ei and Si which we described earlier. They also
imply that any intersection fiEi

⋂
E j is full width in E j. Further, Ei j =

Ei
⋂

f−1
i E j is a full height subrectangle of Ei and Si j = f j fiEi j is a full

width substrip in Q.

Given a finite string i0 . . . in−1, we define inductively

Ei0...in−1 = Ei0

⋂
f−1
i0 Ei1i2...in−1.

Then, each set Ei0...in−1 is a full height subrectangle of Ei0 .

Analogously, for a string i−m . . . i−1 we define

Si−m...i−1 = fi−1(Si−m...i−2

⋂
Ei−1)

and get that Si−m...i−1 is a full width strip in Q. It is easy to see that Si−m...i−1 =

fi−1 ◦ fi−2 ◦ . . .◦ fi−m(Ei−m...i−1) and that f−1
i0 (Si−m...i−1) is a full-width substrip
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of Ei0 .
We also define curvilinear rectangles Ri−m...i−1,i0...in−1 by

Ri−m...i−1,i0...in−1 = Si−m...i−1

⋂
Ei0...in−1

If there are no negative indices then respective rectangle is full height in Q.
For infinite strings, we have the following Proposition.

Proposition 1.4 Any C1 map F satisfying the above geometric conditions
G1–G3 and hyperbolicity conditions H1–H4 has a ”topological attractor”

Λ =
⋃

...i−n...i−1

⋂
k≥1

Si−k...i−1

The infinite intersections
⋂

∞
k=1 Si−k...i−1 define C1 curves y(x), |dy/dx| ≤ α

which are the unstable manifolds for the points of the attractor. The infinite
intersections

⋂
∞
k=1 Ei0...ik−1 define C1 curves x(y), |dx/dy| ≤ α which are

the stable manifolds for the points of the attractor. The infinite intersections

∞⋂
m=1

∞⋂
n=1

Ri−m...i−1,i0...in−1

define points of the attractor.

Proposition 1.4 is a well known fact in hyperbolic theory. For example it
follows from Theorem 1 in [4]. See also [11]. The union of the stable mani-
folds has full measure in Q. The trajectories of all points in this set converge
to Λ. That is the reason to call Λ a topological attractor.

6. Next we assume certain Distortion conditions.
As we have a countable number of domains the derivatives of fi grow. We
formulate certain assumptions on the second derivatives. We use the dis-
tance function d((x,y),(x1,y1)) = max(| x− x1 |, | y− y1 |) associated with
the norm | v |= max(| v1 |, | v2 |) on vectors v = (v1,v2).
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As above, for a point z ∈ Q, let lz denote the horizontal line through z, and
if E ⊆ Q, let δ z(E) denote the diameter of the horizontal section lz

⋂
E. We

call δ z(E) the z−width of E.

In given coordinate systems we write fi(x,y) = ( fi1(x,y), fi2(x,y)). We use
fi jx, fi jy, fi jxx, fi jxy, etc. for partial derivatives of fi j, j = 1,2.

We define

| D2 fi(z) |= max
j=1,2,(k,l)=(x,x),(x,y),(y,y)

| fi jkl(z) |.

Next we formulate distortion conditions which are used to control the fluc-
tuation of the derivatives of iterates of F along unstable manifolds, and to
construct Sinai local measures.

Suppose there is a constant C0 > 0 such that the following
Distortion conditions D1 are satisfied

D1. supz∈Ei,i≥1
| D2 fi(z) |
| fi1x(z) |

δ z(Ei)<C0.

7. An F−invariant Borel probablility measure µ on Q is called a Sinai−
Ruelle−Bowen measure (or SRB-measure) for F if µ is ergodic and there
is a set A ⊂ Q of positive Lebesgue measure such that for x ∈ A and any
continuous real-valued function φ : Q→ R, we have

lim
n→∞

1
n

n−1

∑
k=0

φ(Fkx) =
∫

φdµ. (5)

Existence of an SRB measure is a much stronger result than 1.4. It allows
to describe statistical properties of trajectories in a set of positive phase
volume.

Our conditions imply the following theorem proved in [9], [10].

Theorem 1.5 Let F be a piecewise smooth mapping as above satisfying the
geometric conditions G1–G3, the hyperbolicity conditions H1–H4 and the
distortion condition D1.

Then, F has an SRB measure µ supported on Λ whose basin has full Lebesgue
measure in Q. Dynamical system (F,µ) satisfies the following properties.
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(a) (F,µ) is measure-theoretically isomorphic to a Bernoulli shift.

(b) F has finite entropy with respect to the measure µ , and the entropy
formula holds

hµ(F) =
∫

log|DuF |dµ (6)

where DuF(z) is the norm of the derivative of F in the unstable direc-
tion at z.

(c)

hµ(F) = lim
n→∞

1
n

log | DFn(z) | (7)

where the latter limit exists for Lebesgue almost all z and is indepen-
dent of such z.

8. Additional hyperbolicity and distortion conditions and statement of the main
theorem.

When applying thermodynamic formalism to hyperbolic attractors one con-
siders the function φ(z) = − log(DuF(z)). Thermodynamic formalism is
based on the fact that the pullback of φ(z) into a symbolic space determined
by some Markov partition is a locally Hölder function.
In order to prove Hölder property of φ(z) we assume that the inverse map
F−1 satisfies distortion conditions similar to D1 . As branches f−1

i of F−1

are defined on strips Si we consider crossections of Si by vertical lines. Let
ξz(Si) be the z-height of Si, i.e. the height of the vertical crossections of
Si through z ∈ Si. For F−1(z) the derivative F−1

2y (z) plays the same role as
Fi1x(z) for F .

Distortion condition D2.

Suppose there is a constant C0 > 0 such that

D2. supz∈Si,i≥1
| D2 f−1

i (z) |
| f−1

i2y (z) |
ξz(Si)<C0.

In this paper we apply the same approach as in [8] to some models with
F satisfying distortion conditions D1 and D2. We assume additionally that
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variation of logF1x on initial rectangles Ei is uniformly bounded, and that
contraction is sufficiently strong .

Bounded Initial Variation.

BIV. There exists B0 > 0 such that for all i and all {z1 = (x1,y1),z2 =
(x2,y2)} ∈ Ei holds

| logF1x(z1)− logF1x(z2) |< B0 (8)

For rectangles Ri, j = Si ∩ E j we define the maximal height Hmax(Ri, j) =
maxz∈Ri, jξz(Si), and the minimal width Wmin(Ri, j) = minz∈Ri, j δ z(E j). We
suppose the following condition of strong contraction holds.

Strong Contraction.

SC. There exists M0 > 0 such that for all i, j holds

Hmax(Ri, j)< M0Wmin(Ri, j) (9)

Examples where condition SC is satisfied can be constructed as follows.
The widths of E j decrease when E j accumulate toward one of the vertical
boundaries of Q, say toward {(x,y) : x = 0}. At the same time for each i
the heights ξz(Si) converge to 0 for {z = (x,y) : x→ 0} , in such a way that
condition SC is satisfied.

Let Hγ be the space of functions on Q satisfying Hölder property with ex-
ponent γ

| φ(x)−φ(y) | ≤ c| x− y |γ

We prove the following theorem

Theorem 1.6 Suppose F satisfies conditions of Theorem 1.5 and also con-
ditions D2, BIV and SC. Then (F,µ) has exponential decay of correlations
for φ ,ψ ∈Hγ . Namely there exist η(γ)< 1 and C =C(φ ,ψ) such that

|
∫

φ(ψ ◦Fn)dµ−
∫

φdµ
∫

ψdµ |<Cη
n (10)
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Below in Section 4 we consider examples of systems satisfying conditions
of theorem 1.6.

2 Hölder properties of log(DuF(z)) in the phase space.
The key step toward the proof of Theorem 1.6 is to establish that the pullback of
the function logDuF into respective symbolic space is Hölder continuous. Then
one can follow Ruelle-Bowen approach ([12], [6]), in particular results of Sarig
[13], and develop thermodynamic formalism for systems under consideration.
Hölder properties of the pullback of logDuF into symbolic space follow from
Hölder properties of logDuF in the phase space. In this Section we establish such
properties.
Although Markov partitions are partitions of the attractor, we need to check Hölder
property on actual two-dimensional curvilinear rectangles Ri−m...i−1,i0...in−1 . We
call respective partition Markov as well.
In our models Markov partitions consist of full height rectangles Ei.
For any function a(x,y) the variation of a(x,y) over a rectangle R is defined as

var(a(x,y))|R = sup
(x1,y1)∈R,(x2,y2)∈R

| a(x1,y1)−a(x2,y2) | (11)

The function logDuF is locally Hölder if for m ≥ 0, n ≥ 1 the variation of
logDuF on Ri−m...i−1,i0...in−1 satisfies

var(logDuF)|Ri−m...i−1,i0...in−1 <Cθ
min(m,n)
0 (12)

for some C > 0, θ0 < 1.

Proposition 2.1 logDuF is a locally Hölder function.

The strategy of the proof is similar to the one in the proof of Proposition 5.1 in
[8].
We prove Proposition 2.1 with some θ0 and C determined by hyperbolicity and
distortion conditions, and condition SC.

1. The sets Ri−m...i−1,i0...in−1 are bounded from above and below by some arcs
of two unstable curves Γu

i−m...i−1
, which are images of some pieces of the top
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and bottom of Q, and from left and right by some arcs of two stable curves
Γs

i0...in−1
, which are preimages of some pieces the left and right boundaries

of Q .
Let Z1,Z2 ∈ Ri−m...i−1,i0...in−1 be two points on the attractor. We connect
Z1,Z2 by two pieces of their unstable manifolds to two points Z3,Z4 which
belong to the same stable manifold. Let

γ1 = γ(Z1,Z3)⊂W u(Z1), γ2 = γ(Z2,Z4)⊂W u(Z2), γ3 = γ(Z3,Z4)⊂W s(Z3)
be respective curves all located inside Ri−m...i−1,i0...in−1 .
We estimate

| logDuF(Z1)− logDuF(Z2) | ≤ | logDuF(Z1)− logDuF(Z3) |+
| logDuF(Z3)− logDuF(Z4) |+ | logDuF(Z4)− logDuF(Z2) |

2. First we estimate | logDuF(Z1)− logDuF(Z3) |. We connect Z1 and Z3 by a
chain of small rectangles R⊂Ri−m...i−1,i0...in−1 covering γ1. Then | logDuF(Z1)− logDuF(Z3) |
is majorated by the sum of similar differences for points z1,z2 ∈W u(Z1)∩R.
Because of cone conditions we can choose rectangles R = ∆x×∆y satisfy-
ing | ∆y |< α| ∆x |. Let R be one of such rectangles.
As in the proof of Proposition 5.1 in [8] the estimate of
| logDuF(Z1)− logDuF(Z3) | is reduced to the estimate

| logF1x(z1)− logF1x(z2) | (13)

for points z1,z2 ∈W u(Z1)∩R.
Let Γ1 ⊃ γ1 be the large piece of the same unstable manifold restricted to
Ei0 . Using the mean value theorem we estimate the variation of logDuF(z)
on R as

const supz∈R
| f1i j(z) |
| f1x(z) |

| Γ1 |
∆x
| Γ1 |

(14)

Note that differently from [8] here the ratios
| fi jkl |
| fi1x |

can be unbounded, so

in order to use distortion condition D1 we divide and multiply by | Γ1 |.
After we add over rectangles covering γ1 we get an estimate

| logDuF(Z1)− logDuF(Z3) |<C1
| γ1 |
| Γ1 |

(15)

Under fi0 the curve Γ1 is mapped onto a full width curve, and γ1 is mapped
onto a piece of W u( fi0(Z1),Ei1...in−1). The length of that curve is bounded
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by c 1
Kn−1

0
. Then applying again D1 we get

| logDuF(z1)− logDuF(z3) |<C2
1

Kn
0

(16)

where C2 is a uniform constant. Similar estimates hold for Z2,Z4 ∈ γ2.

| logDuF(Z2)− logDuF(Z4) |<C2
1

Kn
0

(17)

3. Next we estimate the variation of log | DuF(z) | between points Z3 and Z4,
which belong to the same stable manifold W s(Z3)=W s(Z4)⊂Ri−m...i−1,i0...in−1 .
BIV condition implies that expressions

| logDuF(Z3)− logDuF(Z4) | (18)

are uniformly bounded on full height rectangles, so it is enough to consider
subrectangles of Ri, j.
Hyperbolicity conditions imply ( see [10]) that any unit vector in Ku

α at a
point z ∈ Ei, in particular a tangent vector to W u(z), has coordinates (1,az)
with | az |< α . Thus we need to estimate

log | F1x(Z3)+aZ3F1y(Z3) |− log | F1x(Z4)+aZ4F1y(Z4) | (19)

This time instead of moving along W u(Z1) we are moving along W s(Z3),
which connects Z3 and Z4. In that case we use | ∆x |< α| ∆y |, so ∆y varia-
tions are added.
As in [8] the proof of 19 is reduced to the estimates of two kinds.

(a) First we combine similar terms, and estimate sums of contributions

| logF1x(z1)− logF1x(z2) | (20)

over small rectangles R covering γ3.
Let Γ3 ⊃ γ3 be the large piece of the same stable manifold restricted to
Ri−1,i0 . As above in 14 by using the mean value theorem we estimate
20 as

const supz∈R
| f1i j(z) |
| f1x(z) |

| Γ3 |
∆y
| Γ3 |

(21)
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The sum of such contributions is estimated as

const supz∈Ri−1,i0

| f1i j(z) |
| f1x(z) |

| Γ3 |
| γ3 |
| Γ3 |

(22)

Because of the strong contraction condition SC there exists a constant
M1 such that

| Γ3 |< M1| Γ1 | (23)

We rewrite the above estimate as

const supz∈Ri−1,i0

| f1i j(z) |
| f1x(z) |

| Γ1 |M1
| γ3 |
| Γ3 |

(24)

Using distortion condition D1 we get that 24 is bounded by

c1
| γ3 |
| Γ3 |

(25)

Because of distortion condition D2 ratios of lengths on stable man-
ifolds are preserved under the action of F−1 up to a constant. F−1

maps Γ3 onto a stable curve of full height, and γ3 is mapped onto a
curve which is full height in Si−m...i−2 . As lengths on stable manifolds
are contracted at least by K−1

0 , all terms from above contribute an es-
timate less than

c2
1

Km
0

(26)

(b) Next, as in [8] we need to estimate

| aZ3−aZ4 | (27)

We repeat the arguments of Lemma 5.2 from [8], and prove by induc-
tion that there exist c0 > 0, 0 < θ0 < 1 such that

| aZ3−aZ4 |< c0θ
m
0 (28)

As in Lemma 5.2 from [8], the proof of 28 is reduced to estimates
of two types. Estimate of type 1 is obtained by taking sums of the
following expressions over W s(z,Ri−m...i−1,i0...in−1

logF1x(z1)− logF1x(z2) (29)
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where z1 and z2 are close points on W s(z,Ri−m...i−1,i0...in−1).
Such sums are estimated as above, and we get that respective sums are
bounded by

c3
1

Km
0

(30)

Estimate of type 2 is the estimate of

| F2y
F1x

(Z3)a(Z3)−
F2y
F1x

(Z4)a(Z4) | (31)

≤ | F2y
F1x

(Z3)a(Z3)−
F2y
F1x

(Z3)a(Z4) |

+| F2y
F1x

(Z3)a(Z4)−
F2y
F1x

(Z4)a(Z4) |

In order to estimate the second term in 31 we split γ3 into small pieces
and get as above the estimate 30.
The first term is estimated using inductive assumption.
Note that we can assume

1
K2

0
+α

2 < 1 (32)

That is because (as proved in [10]) one can consider some power F t

instead of F , and still have conditions D1 and D2 (with different con-
stants). By choosing appropriate power one can make K0 arbitrary
large. Then 32 will be satisfied. As exponential decay of correlations
for F t implies exponential decay of correlations for F , Theorem 1.6
follows from exponential decay of correlations for F t .
So, differently from [8], here we do not need 32 as an additional con-
dition H5.
Then as in [8] the total estimate is

| aF(Z3)−aF(Z4) |< c4
1

Km
0
+
( 1

K2
0
+α

2)c0θ
m
0 (33)

As K0 > 1 we can choose θ0 < 1 satisfying

θ0 >
1

K0
(34)

Also we can choose θ0 < 1 satisfying simulteneously
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1
K2

0
+α

2 < θ0 (35)

Then if
c0 >

c4

θ0− ( 1
K2

0
+α2)

(36)

we get the left side of 33 less than c0θ
m+1
0 .

4. From 34, 28 and 26 we get

| logDuF(z3)− logDuF(z4) |< c5θ
m
0 (37)

Combining 16, 17, 37 we conclude the proof of Proposition 2.1.

3 Proof of the main theorem
1. The following property, see [14], is useful for the study of the decay of

correlations.
Let A be the matrix of admissible transitions for a countable shift. The
matrix A satisfies Big Images and Preimages property if

BIP There is a finite set of states i1, i2, . . . iN such that for every state j in
the alphabet there are k, l such that aik ja jil = 1.

Proposition 6.3 from [8] based on the results of Sarig ( [13], [14]) gives
sufficient conditions for exponential decay of correlations for Hölder (in
particular smooth) functions restricted to the attractor. We state it as the
following theorem.

Theorem 3.1 Suppose there is a Markov partition of the attractor satisfy-
ing the following properties.

(a) The matrix A of admissible transitions is topologically mixing and sat-
isfies BIP property.

(b) Φ(x,y) =−log| DuF | is locally Hölder in the phase space.
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(c) A function φ(x) cohomologous to the pullback of Φ(x,y) into symbolic
space satisfies P(φ(x))< ∞.

then Theorem 1.6 holds.

2. After Hölder property of the Markov partition is established conditions of
the Theorem 3.1 are checked as in [8].
As A is Bernoulli, property (a) is satisfied.
Proposition 2.1 implies property (b).
The same arguments which were used in the proof of Theorem 1.6 in [8],
prove that property (c) is satisfied with P(φ) = 0.
That finishes the proof of Theorem 1.6.

4 One model with strong contraction
1. We fix some A > 1 and consider the following map F = { fn},n = 0,1 . . . of

the unit square Q into itself. The domain of fn is the full height rectangle En
bounded on the right by the vertical line x = 1

An and on the left by x = 1
An+1 ,

n = 0,1, . . .. Coordinates fn1 and fn2 of fn are given by

fn1(x,y) =
A2n+1

A−1
x
(
x− 1

An+1

)
(38)

fn2(x,y) = εny
(
x− 1

An+1

)
+δn (39)

If εn are small then the images Sn = fn(En) are narrow strips. From defini-
tion Sn are bounded on the left and on the right by some subintervals of the
left and the right boundaries of Q.
One can choose δ n and small εn so that Sn are located in Q and do not
intersect.

2. From 38, 39 we get the following partial derivatives.

fn1x =
A2n+1

A−1
(
2x− 1

An+1

)
(40)

fn1y = 0 (41)

fn2x = εny (42)
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fn2y = εn
(
x− 1

An+1

)
(43)

fn1xx =
2

A−1
A2n+1 (44)

fn2xy = εn (45)

fn1xy = fn1yy = fn2yy = fn2xx = 0 (46)

For x ∈ En satisfying 1
An+1 < x < 1

An we get

fn1x ≥
An

A−1
(47)

For any α < 1, if we choose εn decreasing, and ε0 sufficiently small, then
the above formulas imply Hyperbolicity Conditions with

K0 =
1

A−1
(48)

From 44 and 47 we get
| fn1xx |
| f 2

n1x |
< c (49)

but
| fn1xx |
| fn1x |

> An (50)

is unbounded. We get that Distortion Conditions of [8] are not satisfied.

At the same time, as all ratios
| fni jk |
| f 2

n1x |
, except for i = 1, j = k = x, are small

and decreasing with n, we get that Distortion Condition D1 is satisfied. Re-
spectively F has an SRB measure µ , and Theorem 1.5 holds for the map F .
As fn1x do not depend on y BIV condition is satisfied.
We assume

(a) A > 1 is sufficiently close to 1

(b) ε0 is sufficiently small.

Then D1 and 43 imply that condition SC is satified.
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3. To check condition D2 we evaluate partial derivatives of f−1
n .

Jacobian of fn equals

Jn =
A2n+1

A−1
(
2x− 1

An+1

)
εn
(
x− 1

An+1

)
(51)

Partial derivatives depend on coordinates (u,v) ∈ Sn, but we write them in
terms of coordinates (x,y) ∈ En.

f−1
n1u = J−1

n εn
(
x− 1

An+1

)
(52)

f−1
n1v = 0 (53)

f−1
n2u =−J−1

n εny (54)

f−1
n2v = J−1

n
A2n+1

A−1
(
2x− 1

An+1

)
(55)

Next we evaluate second partials of f−1
n by using formulas

f−1
n1uu = f−1

n1ux
∂x
∂u

+ f−1
n1uy

∂y
∂u

(56)

etc. Then we get

f−1
n1uu =

( A−1
A2n+1

)2 −2(
2x− 1

An+1

)3 (57)

f−1
n1uv = f−1

n1vv = f−1
n2vv = 0 (58)

f−1
n2uu = y

( A−1
A2n+1

)2 4x− 3
An+1(

2x− 1
An+1

)3(x− 1
An+1

)2 + (59)

( A−1
A2n+1

)2 y(
2x− 1

An+1

)2(x− 1
An+1

)2

f−1
n2uv =−

(A−1)
εnA2n+1

1(
x− 1

An+1

)2(2x− 1
An+1

) (60)

To check that D2 is satisfied we divide second derivatives by ( f−1
n2v)

2. Using
55 we get that second derivatives are multiplied by

ε
2
n
(
x− 1

An+1

)2 (61)
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Then the above formulas imply that for 1
An+1 < x < 1

An condition D2 is sat-
isfied.
Thus all conditions of Theorem 1.6 are satisfied, and our models have ex-
ponential decay of correlations.
Acknowledgements. I would like to thank Sheldon Newhouse, David
Ruelle and Omri Sarig for useful discussions during the preparation of this
paper.
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