Computing Global Characters

www.liegroups.org
Computing Global Characters
www.liegroups.org/papers
Computing Global Characters
www.liegroups.org/papers

π: irreducible admissible representation of G
Computing Global Characters
www.liegroups.org/papers

\(\pi \): irreducible admissible representation of \(G \)

Problem: Compute the (distribution) character \(\theta_\pi \) of \(\pi \)
π: irreducible admissible representation of G

Problem: Compute the (distribution) character θ_π of π

Harish-Chandra: function on the regular semisimple set
Computing Global Characters
www.liegroups.org/papers

π: irreducible admissible representation of G

Problem: Compute the (distribution) character θ_π of π

Harish-Chandra: function on the regular semisimple set

Roughly: fix H,

$$\theta_\pi(g) = \frac{\sum a(\pi, w)e^{w\lambda}(g)}{\Delta(g)}$$
Computing Global Characters

\[\pi: \text{irreducible admissible representation of } G \]

Problem: Compute the (distribution) character \(\theta_\pi \) of \(\pi \)

Harish-Chandra: function on the regular semisimple set

Roughly: fix \(H \),

\[
\theta_\pi(g) = \frac{\sum a(\pi, w)e^{w\lambda}(g)}{\Delta(g)}
\]

Problem: Compute \(a(\pi, w) \)
Why?
Why?

θ_{π} determines π
Why?

θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?
Why?

θ_π determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...
Why?

θ_π determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change, . . .

Stability
Application: Given a unipotent Arthur parameter Ψ, compute the Arthur packet Π_ψ.
Why?

θ_π determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change, ...

Stability

Application: Given a unipotent Arthur parameter Ψ, compute the Arthur packet Π_ψ.

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)
Why?

θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change, . . .

Stability

Application: Given a unipotent Arthur parameter Ψ, compute the Arthur packet Π_{ψ}.

Need to compute: $AV(\pi)$ (a set of \textcolor{red}{real} nilpotent orbits) (not just $AV(Ann(\pi))$ (a single complex nilpotent orbit))
Why?

θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change, . . .

Stability

Application: Given a unipotent Arthur parameter Ψ, compute the Arthur packet Π_ψ.

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)
(not just $AV(Ann(\pi))$ (a single complex nilpotent orbit))

Not known . . .
Why?

θ_π determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change, . . .

Stability

Application: Given a unipotent Arthur parameter Ψ, compute the Arthur packet Π_ψ.

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)

(not just $AV(Ann(\pi))$ (a single complex nilpotent orbit))

Not known . . . use character theory to get some information

(see www.liegroups.org/tables/unipotent)
Theme: When can you encapsulate very complicated objects with surprisingly little data?
Theme: When can you encapsulate very complicated objects with surprisingly little data?

Example: Reductive groups of rank m, and semisimple rank n:
Theme: When can you encapsulate very complicated objects with surprisingly little data?

Example: Reductive groups of rank m, and semisimple rank n:

\[
\text{pair of } m \times n \text{ integral matrices } (A, B)
\]
Theme: When can you encapsulate very complicated objects with surprisingly little data?

Example: Reductive groups of rank \(m \), and semisimple rank \(n \):

\[
\text{pair of } m \times n \text{ integral matrices } (A, B)
\]

such that \(A \times B^t \) is a Cartan matrix
Theme: When can you encapsulate very complicated objects with surprisingly little data?

Example: Reductive groups of rank m, and semisimple rank n:

A pair of $m \times n$ integral matrices (A, B) such that $A \times B^t$ is a Cartan matrix

$(A, B) \sim (g^t A, B g^{-1})$ for $g \in GL(m, \mathbb{Z})$
Example: Here is complete information about representations of $SL(2, \mathbb{R})$, including their characters.

block: block
0(0,1): 0 [i1] 1 (2,*) 0 e
1(1,1): 0 [i1] 0 (2,*) 0 e
2(2,0): 1 [r1] 2 (0,1) 1 1

block: klbasis
0: 0: 1
1: 1: 1
2: 0: 1
 1: 1
 2: 1

5 nonzero polynomials, and 0 zero polynomials, at 5 Bruhat-comparable pairs.
History

Inducted character formula, focus on the discrete series
History

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T,
A character of T_ρ (later)
History

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup \mathcal{T},
\Lambda character of T_ρ (later)

$$D(\tilde{g}) = \prod (1 - e^{-\alpha(g)})e^{\rho}(\tilde{g})$$
History
Inducted character formula, focus on the discrete series
Harish-Chandra: compact Cartan subgroup T,
Λ character of T_{ρ} (later)

$$D(\tilde{g}) = \prod (1 - e^{-\alpha(g)})e^{\rho}(\tilde{g})$$

\exists unique irreducible representation $\pi = \pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})}$$

Question: Formula for θ_{π} on other Cartans?
History
Inducted character formula, focus on the discrete series
Harish-Chandra: compact Cartan subgroup \(T \),
\(\Lambda \) character of \(T_{\rho} \) (later)
\[D(\tilde{g}) = \prod (1 - e^{-\alpha(g)})e^{\rho}(\tilde{g}) \]
\(\exists \) unique irreducible representation \(\pi = \pi(\Lambda) \) satisfying:
\[\theta_{\pi}(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})} \]

Question: Formula for \(\theta_{\pi} \) on other Cartans? notoriously difficult
History
Inducted character formula, focus on the discrete series
Harish-Chandra: compact Cartan subgroup T, Λ character of T_ρ (later)

$$D(\tilde{g}) = \prod(1 - e^{-\alpha(g)})e^\rho(\tilde{g})$$

\exists unique irreducible representation $\pi = \pi(\Lambda)$ satisfying:

$$\theta_\pi(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})}$$

Question: Formula for θ_π on other Cartans? notoriously difficult

Herb:
History
Inducted character formula, focus on the discrete series
Harish-Chandra: compact Cartan subgroup T
Λ character of T_{ρ} (later)

\[D(\tilde{g}) = \prod (1 - e^{-\alpha}(g)) e^{\rho}(\tilde{g}) \]

\exists unique irreducible representation $\pi = \pi(\Lambda)$ satisfying:

\[\theta_{\pi}(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})} \]

Question: Formula for θ_{π} on other Cartans? notoriously difficult
Herb:

(1) Stable sums of discrete series (two-structures)
History

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_ρ (later)

$D(\tilde{g}) = \prod (1 - e^{-\alpha(g)}) e^{\rho(\tilde{g})}$

\exists unique irreducible representation $\pi = \pi(\Lambda)$ satisfying:

$$\theta_\pi(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})}$$

Question: Formula for θ_π on other Cartans? notoriously difficult

Herb:

(1) Stable sums of discrete series (two-structures)

(2) Endoscopy
History
Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T,
Λ character of T_ρ (later)

$D(\tilde{g}) = \prod (1 - e^{-\alpha}(g)) e^\rho(\tilde{g})$

\exists unique irreducible representation $\pi = \pi(\Lambda)$ satisfying:

$$\theta_\pi(g) = \frac{\sum \text{sgn}(w)(w\Lambda)(\tilde{g})}{D(\tilde{g})}$$

Question: Formula for θ_π on other Cartans? notoriously difficult

Herb:

(1) Stable sums of discrete series (two-structures)

(2) Endoscopy

Other approaches (Schmid, Goresky-Kottwitz-MacPherson, Zuckerman, . . .)
Alternative Approach:
All representations at once, using KLV polynomials
Alternative Approach:
All representations at once, using KLV polynomials
(atlas software)
Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ
Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Theorem:

$$\Pi(G, \lambda) = \{(H, \Lambda) \mid \Lambda \in \hat{H}(\mathbb{R})_{\rho}, d\Lambda \sim \lambda\}/G(\mathbb{R})$$
Alternative Approach:
All representations at once, using KLV polynomials
(atlas software)

Assume regular infinitesimal character λ

Theorem:

$$\Pi(G, \lambda) = \{(H, \Lambda) \mid \Lambda \in \hat{H}(\mathbb{R})_\rho, d\Lambda \sim \lambda\}/G(\mathbb{R})$$

$$(H, \Lambda) \rightarrow \begin{cases} I(H, \Lambda) & \text{standard (induced) module} \\
\pi(H, \Lambda) & \text{irreducible Langlands quotient} \end{cases}$$
Fix H, Δ^+,
Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H \rho$
Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_\rho$

$$D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha(g)}) e^\rho(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_\rho)$$
Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_\rho$

$$D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha(g)}) e^{\rho}(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_\rho)$$

$$H(\mathbb{R})_+ = \{ g \in H \mid |e^{\alpha}(g)| > 1 \quad (\alpha \text{ real}) \}$$
Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_\rho$

$$D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha(g)})e^\rho(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_\rho)$$

$$H(\mathbb{R})_+ = \{ g \in H \mid |e^\alpha(g)| > 1 \quad (\alpha \text{ real}) \}$$

$$\theta_\pi(h) = \frac{\sum a(\pi, \Delta^+, \Lambda)\Lambda(\tilde{g})}{D(\Delta^+, \tilde{g})} \quad (g \in H(\mathbb{R})_+)$$
Fix \(H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_\rho \)

\[D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha(g)}) e^{\rho}(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_\rho) \]

\[H(\mathbb{R})_+ = \{ g \in H \mid |e^{\alpha}(g)| > 1 \quad (\alpha \text{ real}) \} \]

\[\theta_\pi(h) = \frac{\sum a(\pi, \Delta^+, \Lambda) \Lambda(\tilde{g})}{D(\Delta^+, \tilde{g})} \quad (g \in H(\mathbb{R})_+) \]

(drop \(\Delta^+ \))
Harish-Chandra’s character formula for discrete series + induced character formula ⇒:
Harish-Chandra’s character formula for discrete series + induced character formula \Rightarrow:

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \sum_{w \in W_{\mathbb{R}}} \frac{\text{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+)$$

$W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$
Harish-Chandra’s character formula for discrete series + induced character formula ⇒:

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \sum_{W_{\mathbb{R}}} \frac{\text{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+)$$

$W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$

Sue me:
Harish-Chandra’s character formula for discrete series + induced character formula ⇒:

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \sum W_{\mathbb{R}} \frac{\text{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+)$$

$W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$

Sue me: I’m surpressing an irksome sign
Harish-Chandra’s character formula for discrete series + induced character formula \(\Rightarrow\):

Proposition: Formula for \(\theta_{I(H,\Lambda)}\) on \(H(\mathbb{R})\):

\[
\theta_{I(H,\Lambda)}(h) = \frac{\sum W_{\mathbb{R}} \text{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+) \\
W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)
\]

Sue me: I’m suppressing an irksome sign

Corollary: \(\Gamma \in \overline{H(\mathbb{R})}_\rho\):

\[
a(I(H, \Lambda), \Gamma) = \begin{cases}
\pm 1 & \Gamma = w\Lambda \\
0 & \text{otherwise}
\end{cases}
\]
Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups?
Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups?

Theory of leading terms (growth of matrix coefficients):
Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups?

Theory of leading terms (growth of matrix coefficients):

If

\[(*) \quad \text{Re}\langle d\Lambda, \alpha^\vee \rangle \geq 0 \quad \text{for all } \alpha \in \Delta^+\]

then Λ occurs in $I(H, \Lambda)$ and the character formula for no other standard module:
Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups?

Theory of leading terms (growth of matrix coefficients):

If

\[(*) \quad \text{Re}\langle d\Lambda, \alpha^\vee \rangle \geq 0 \quad \text{for all } \alpha \in \Delta^+ \]

then Λ occurs in $I(H, \Lambda)$ and the character formula for no other standard module:

Theorem: Fix (H, Λ) satisfying $(*)$:

$$a(I(H', \Lambda'), \Lambda) = \begin{cases} \pm 1 & (H, \Lambda) \sim (H', \Lambda') \\ 0 & \text{otherwise} \end{cases}$$
\{\pi(H, \Lambda)\} \text{ and } \{I(H, \Lambda)\} \text{ are both bases of the Grothendieck group}
\{\pi(H, \Lambda)\} \text{ and } \{I(H, \Lambda)\} \text{ are both bases of the Grothendieck group}

\[I = \sum m(I, \pi)I \]
\{\pi(H, \Lambda)\} and \{I(H, \Lambda)\} are both bases of the Grothendieck group

\[I = \sum \text{m}(I, \pi)I \text{ (multiplicity formula)} \]
\{\pi(H, \Lambda)\} and \{I(H, \Lambda)\} are both bases of the Grothendieck group

\[I = \sum m(I, \pi)I \text{ (multiplicity formula)} \]

\[\pi = \sum M(I, \pi)I \text{ (character formula)} \]
\{\pi(H, \Lambda)\} \text{ and } \{I(H, \Lambda)\} \text{ are both bases of the Grothendieck group}

\[I = \sum \text{m}(I, \pi)I \text{ (multiplicity formula)} \]
\[\pi = \sum \text{M}(I, \pi)I \text{ (character formula)} \]

This is \textit{precisely} what is computed by the Kazhdan-Lustig-Vogan polynomials (the \texttt{klbasis} command)
Corollary: Assuming (*),

\[a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi) \]
Corollary: Assuming (*),

\[a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi) \]
\[= \pm P_{I, \pi}(1) \text{ (KLV polynomial)} \]
Corollary: Assuming (*),

\[a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi) \]

\[= \pm P_{I,\pi}(1) \text{ (KLV polynomial)} \]

General \(\Lambda \): use coherent continuation (\texttt{wgraph} command)
Corollary: Assuming (*),

\[a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi) \]
\[= \pm P_{I,\pi}(1) \text{ (KLV polynomial)} \]

General \(\Lambda \): use coherent continuation (\texttt{wgraph} command)

\[a(\pi, w \times \Lambda) = \pm M(I(H, \Lambda), w^{-1} \cdot \pi) \]
Corollary: Assuming (*),

\[a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi) \]

\[= \pm P_{I,\pi}(1) \quad \text{(KLV polynomial)} \]

General \(\Lambda \): use coherent continuation (**wgraph** command)

\[a(\pi, w \times \Lambda) = \pm M(I(H, \Lambda), w^{-1} \cdot \pi) \]

Conclusion: KLV-polynomials \(\Rightarrow \)
explicit formulas for all \(a(\pi, \Lambda) \)
Example: $Sp(4, \mathbb{R})$

<table>
<thead>
<tr>
<th>Node</th>
<th>0(0,6)</th>
<th>1(1,6)</th>
<th>2(2,6)</th>
<th>3(3,6)</th>
<th>4(4,5)</th>
<th>5(5,4)</th>
<th>6(6,4)</th>
<th>7(7,3)</th>
<th>8(8,3)</th>
<th>9(9,2)</th>
<th>10(10,0)</th>
<th>11(10,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i1,i1)</td>
<td>(i1,i1)</td>
<td>(ic,i1)</td>
<td>(ic,i1)</td>
<td>(r1,C+)</td>
<td>(C+,r1)</td>
<td>(C+,r1)</td>
<td>(C-,i1)</td>
<td>(C-,i1)</td>
<td>(i2,C-)</td>
<td>(r2,r1)</td>
<td>(r2,rn)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>(4,*)</td>
<td>(6,*)</td>
<td>(5,*)</td>
<td>(6,*)</td>
<td>(0,1)</td>
<td>(0,2)</td>
<td>(1,3)</td>
<td>(10,*)</td>
<td>(10,*)</td>
<td>(10,11)</td>
<td>(9,*)</td>
<td>(9,*)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

Node labels: e, r1, r2, C-, C+, i1, i2, r1, rn
<table>
<thead>
<tr>
<th>0: 0: 1</th>
<th>9: 0: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 1: 1</td>
<td>1: 1</td>
</tr>
<tr>
<td>2: 2: 1</td>
<td>2: 1</td>
</tr>
<tr>
<td>3: 3: 1</td>
<td>3: 1</td>
</tr>
<tr>
<td>4: 0: 1</td>
<td>4: 1</td>
</tr>
<tr>
<td>1: 1</td>
<td>5: 1</td>
</tr>
<tr>
<td>4: 1</td>
<td>6: 1</td>
</tr>
<tr>
<td>10: 0: 1</td>
<td>9: 1</td>
</tr>
<tr>
<td>1: 1</td>
<td>1: 1</td>
</tr>
<tr>
<td>2: 1</td>
<td>2: 1</td>
</tr>
<tr>
<td>3: 1</td>
<td>3: 1</td>
</tr>
<tr>
<td>4: 1</td>
<td></td>
</tr>
<tr>
<td>5: 1</td>
<td>5: 1</td>
</tr>
<tr>
<td>6: 1</td>
<td>6: 1</td>
</tr>
<tr>
<td>7: 1</td>
<td>7: 1</td>
</tr>
<tr>
<td>8: 1</td>
<td>8: 1</td>
</tr>
<tr>
<td>9: 1</td>
<td></td>
</tr>
<tr>
<td>10: 1</td>
<td>10: 1</td>
</tr>
<tr>
<td>11: 2: q</td>
<td>11: 1</td>
</tr>
<tr>
<td>3: q</td>
<td></td>
</tr>
<tr>
<td>9: 1</td>
<td></td>
</tr>
<tr>
<td>11: 1</td>
<td>7: 1</td>
</tr>
<tr>
<td>8: 1</td>
<td></td>
</tr>
<tr>
<td>11: 1</td>
<td>7: 1</td>
</tr>
<tr>
<td>8: 1</td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>$(2, 1)$</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>$\pi(0)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(1)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(2)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(3)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(4)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(5)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(6)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(7)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(8)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(9)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(10)$</td>
<td></td>
</tr>
<tr>
<td>$\pi(11)$</td>
<td></td>
</tr>
</tbody>
</table>