
1 9.7, 9.8 WS solutions

1.1 Problem 1

1. (a) In order to use the Alternating Series Test for a given series
∑∞
n=1 cn, what properties must the terms

cn of the series have?

(b) It is a fact that
∑∞
n=1

(−1)n
2n+1 = π/4. Find the smallest positive integer j > 0 for which the Alter-

nating Series Test guarantees that
∑j
n=0

(−1)n
2n+1 differs from π/4 by less than 0.001.

(a) In order to use the Alternating Series Test for a given series
∑∞
n=1 cn, what properties must the terms

cn of the series have?

The alternating series test needs the terms cn to be positive, decreasing, and have limn→∞ cn = 0.

(b) It is a fact that
∑∞
n=1

(−1)n
2n+1 = π/4. Find the smallest positive integer j > 0 for which the Alternating

Series Test guarantees that
∑j
n=0

(−1)n
2n+1 differs from π/4 by less than 0.001.

The jth truncation error of any series
∑
n≥0 bn is Ej = |

∑∞
n=0 bn −

∑j
n=0 bn|.

We know that for a convergent alternating series
∑∞
n=0(−1)nan or

∑∞
n=0(−1)n+1an, that Ej ≤ aj+1,

and Ej = |
∑∞
n=0

(−1)n
2n+1 −

∑j
n=0

(−1)n
2n+1 | = |π/4−

∑j
n=0

(−1)n
2n+1 | since

∑∞
n=1

(−1)n
2n+1 = π/4.

In this case, aj+1 = 1
2(j+1)+1 = 1

2j+3 , so we need to find the smallest j making this less than 0.001 = 1
103 .

Thus 1
2j+3 ≤

1
103 or 1000 = 103 ≤ 2j + 3, so 1000− 3 ≤ 2j =⇒ 997/2 ≤ j so 498 ≤ j.

Thus j = 498 is the smallest positive integer for which the Alternating Series Test guarantees that∑j
n=1

(−1)n
2n+1 differs from π/4 by no more than 0.001.

1.2 Problem 2

2. Suppose
∑∞
n=1 an3n converges.

(a) Find limn→∞(an3n), giving reasons.

(b) Prove that n
√
an ≤ 1/3 for all large values of n. (First show that n

√
an ≤ 1/3 if and only if n

√
an3n ≤ 1,

and then use the Ratio or Root Test, whichever applies.)

(a) Find limn→∞(an3n), giving reasons.

Well, by the divergence test, a convergent series
∑
n≥0 bn must have limn→∞ bn = 0, so limn→∞ an3n = 0.



(b) Prove that n
√
an ≤ 1/3 for all large values of n. (First show that n

√
an ≤ 1/3 if and only if n

√
an3n ≤ 1,

and then use the Ratio or Root Test, whichever applies.)

Well, n
√
an ≤ 1/3 ⇐⇒ 3 n

√
an ≤ 1 ⇐⇒ n

√
3n n
√
an = n

√
an3n ≤ 1.

Note that since limn→∞ an3n = 0, then using the definition of limit, given ε with 0 < ε < 1, there’s some
N so for all n ≥ N we have an3n ≤ ε.

Then n
√
an3n ≤ n

√
ε < 1 for all n ≥ N since x1/n is an increasing function for all positive integers n.

Thus, for all n ≥ N , we have n
√
an ≤ 1/3.

1.3 Problem 3

3. Suppose the radius of convergence of
∑
n≥1 anx

n is precisely 4. Which of the following numbers is
necessarily in the interval of convergence, and why?

(a) 3.9 (b) 4.1 (c) -3 (d) -5

The radius of convergence R about 0 guarantees that all values of x in (−R,R) make the series
∑
n≥1 anx

n

converge. Thus if this value is 4, we have at least an interval of convergence of (−4, 4) (the only other pos-
sible intervals of convergence for the series are (−4, 4], [−4, 4], and [−4, 4), so the series does not necessarily
converge for x = ±4).

The only numbers falling in the interval (−4, 4) are (a) 3.9 and (c) -3.

1.4 Problem 4

4. (a) Write down the power series for 1
1−x , and tell why the radius of convergence is 1.

(b) Use the fact that d
dx ( 1

1−x ) is 1
(1−x)2 to find the power series for 1

(1−x)2 . Then determinethe radius

of convergence both by using the Ratio Test and by citing the Differentiation Theorem for power series.

(c) Evaluate
∑∞
n=1 n( 1

2 )n−1. (Hint: The series found in (b) might be helpful.)

(a) Write down the power series for 1
1−x , and tell why the radius of convergence is 1.

Recall that our geometric series 1
1−r =

∑
n≥0 r

n converges only when |r| < 1, so the interval of conver-

gence of the geometric series is (−1, 1). Thus the radius of convergence of 1
1−x =

∑
n≥0 x

n is 1.

(b) Use the fact that d
dx ( 1

1−x ) is 1
(1−x)2 to find the power series for 1

(1−x)2 . Then determine the radius of

convergence both by using the Ratio Test and by citing the Differentiation Theorem for power series.

The power series for 1
(1−x)2 is the derivative of the series for 1

1−x =
∑
n≥0 x

n. This derivative is∑
n≥0 nx

n−1.



To find the radius of convergence we first use the Ratio test: limn→∞ |an+1/an| = limn→∞ | (n+1)xn

nxn−1 | =

limn→∞ | (n+1)
n x| = |x|. This is less than 1 for |x| < 1, telling us that the radius of convergence is 1.

We could also cite the Differentiation Theorem for power series to say that differentiation/integration of
power series doesn’t change the radius of convergence.

(c) Evaluate
∑∞
n=1 n( 1

2 )n1. (Hint: The series found in (b) might be helpful.)

Note that since 1/2 is in (-1,1), the interval of convergence of
∑∞
n=1 nx

n−1 = 1
(1−x)2 by part (b), we have∑∞

n=1 n( 1
2 )n−1 = 1

(1−1/2)2 = 1
1/4 = 4.

1.5 Problem 5

5.(a) Write the power series for ex, and then explain why xex =
∑∞
n=0

xn+1

n! .

(b) By integrating the power series for xex, show that
∑∞
n=0

1
(n+2)n! =

∫ 1

0
xex dx = 1.

(a) Write the power series for ex, and then explain why xex =
∑∞
n=0

xn+1

n! .

The power series for ex is
∑
n≥0

xn

n! , convergent for all x. Note that
∑∞
n=0

xn+1

n! = x ·
∑
n≥0

xn

n! is a
power series for f (a series of the form

∑
n≥0 anx

n) that agrees with f on its domain. Note f(x) = xex has
derivatives of all orders at 0, so any such power series of f at 0 is the only one (i.e. a power series expansion
for f is unique).

We could also check derivatives:
f ′(x) = ex + xex, f ′′(x) = ex + ex + xex = 2ex + xex, f ′′′(x) = 3ex + xex, ... ,f (n)(x) = nex + xex.

Then f ′(0) = 1, f ′′(0) = 2, f ′′′(0) = 3, ...., f (n)(0) = n for n ≥ 1. Thus the power series for f would
be

∑
n≥0

f (n)(0)

n!
xn = f(0) +

∑
n≥1

n

n!
xn = 0 +

∑
n≥1

1

(n− 1)!
xn =

∑
n≥0

1

n!
xn+1

which agrees with our result.

(b) By integrating the power series for xex, show that
∑∞
n=0

1
(n+2)n! =

∫ 1

0
xex dx = 1.

Note
∫
xex dx can be solved by integration by parts u = x,= ex dx , so du = dx, v = ex, yielding∫

xex dx = xex −
∫
ex dx = xex − ex + C. Then∫ 1

0

xex dx = [xex − ex]10 = (e− e)− (0− 1) = 1.

Since xex =
∑
n≥0

1
n!x

n+1,
∫ 1

0
xex dx =

∫ 1

0

∑
n≥0

1
n!x

n+1 dx :



∑
n≥0

∫ 1

0

1

n!
xn+1 dx =

∑
n≥0

[
1

(n+ 2)n!
xn+2]10 =

∑
n≥0

1

(n+ 2)n!
.

Thus
∑
n≥0

1
(n+2)n! =

∫ 1

0
xex dx = 1.

2 9.7, 9.8 WS/Quiz solutions

2.1 Problem 1

1. (a) Define carefully: “The series
∑
n≥0 bn converges absolutely,” and write down a series that converges

absolutely, and one that converges conditionally.

(b) Define the radius of convergence R of a given power series, and write down a power series whose radius
of convergence is

√
3.

(c) Tell whether the interval of convergence I of a power series necessarily stays the same when the power
series is differentiated. Explain your answer by quoting an appropriate theorem.

(d) Find the radius of convergence of the power series for:

(a) e3x (b) sin(2x) (c) 2
1−x2

(a) Define carefully: “The series
∑
n≥0 bn converges absolutely,” and write down a series that converges

absolutely, and one that converges conditionally.

The convergent series series
∑
n≥0 bn converges absolutely if

∑
n≥0 |bn| converges.

An example of a series that converges absolutely is
∑
n≥1

(−1)n
n2 since

∑
n≥1 |

(−1)n
n2 | =

∑
n≥1

1
n2 = π2

6 .

An example of a series that converges conditionally is
∑
n≥1

(−1)n
n : note

∑
n≥1 |

(−1)n
n | =

∑
n≥1

1
n , the

harmonic series, diverges.
However, the terms (−1)nan = (−1)n · 1/n satisfy the hypotheses of the Alternating Series Test (since 1/n

is positive, decreasing, and limn→∞ 1/n = 0), so
∑
n≥1

(−1)n
n converges.

(b) Define the radius of convergence R of a given power series, and write down a power series whose
radius of convergence is

√
3.

The radius of convergence R of a power series
∑
anx

n is the number R > 0 such that the series converges
for all |x| < R and diverges for all |x| > R (if no R exists, then we say R = 0 when the series converges only
for x = 0, and R =∞ if the series converges for all x).

The series
∑∞
n=0( x√

3
)n is geometric, so it converges (to 1

1− x√
3

) if and only if | x√
3
| < 1 ⇐⇒ |x| <

√
3.

Thus the series
∑∞
n=0( x√

3
)n has radius of convergence

√
3.

(c) Tell whether the interval of convergence I of a power series necessarily stays the same when the power
series is differentiated. Explain your answer by quoting an appropriate theorem.



The interval of convergence of a power series does not necessarily stay the same when differentiated:
note

∑∞
n=1 x

n/n has interval of convergence [−1, 1) but its derivative
∑∞
n=1 x

n−1 has interval of convergence
(−1, 1).

(d) Find the radius of convergence of the power series for:

(A) e3x (B) sin(2x) (C) 2
1−x2

(A) The power series for ex is ex =
∑
n≥0

xn

n! which converges for all x, in particular, it converges for
y = 3x:

ey = e3x =
∑
n≥0

yn

n!
=

∑
n≥0

3n

n!
xn

so the power series for e3x is e3x =
∑
n≥0

(3x)n

n! =
∑
n≥0

3n

n! x
n, which converges for all x, so R =∞.

We could also do a ratio test to find the radius of convergence:

lim
n→∞

| 3n+1

(n+ 1)!
xn+1/(

3n

n!
xn)| = lim

n→∞
| 3 · n!

(n+ 1)!
x| = lim

n→∞
| 3x

n+ 1
| = 0 < 1 for all x

Thus e3x =
∑
n≥0

3n

n! x
n converges for all x, so R =∞ for the power series

∑
n≥0

3n

n! x
n for e3x.

(B) The power series for sin(x) is sin(x) =
∑
n≥0

(−1)n
(2n+1)!x

2n+1 which converges for all x. We could say

the same thing that we did in part (A), subbing in y = 2x so that the power series

sin(y) = sin(2x) =
∑
n≥0

(−1)n

(2n+ 1)!
y2n+1

converges for all y, so sin(2x) =
∑
n≥0

(−1)n22n+1

(2n+1)! x2n+1 converges for all x. Thus R = ∞ for the power

series
∑
n≥0

(−1)n22n+1

(2n+1)! x2n+1.

We could also do a root test to find the radius of convergence of the power series

sin(2x) =
∑
n≥0

(−1)n

(2n+ 1)!
(2x)2n+1 =

∑
n≥0

(−1)n22n+1

(2n+ 1)!
x2n+1

A root test on the terms yields:

lim
n→∞

n

√
| (−1)n

(2n+ 1)!
x2n+1| = |x| lim

n→∞
n

√
| x

2n · x
(2n+ 1)!

| = |x|· lim
n→∞

n
√
|x|· lim

n→∞
n

√
1

(2n+ 1)!
= |x|· lim

n→∞
n

√
1

(2n+ 1)!

and note limn→∞
n
√

(2n+ 1)! = ∞ since limn→∞
n
√
n! = ∞, and n! < (2n + 1)! (by Stirling’s Approx-

imation n! ≈
√

2πn(n/e)n as n → ∞). Thus, for any x, the limit is 0 (less than 1), so our power series

converges for all x, so R =∞ for the power series
∑
n≥0

(−1)n22n+1

(2n+1)! x2n+1 for sin(2x).

(C) Note that 1
1−x = 1+x+x2 + ... =

∑
n≥0 x

n if and only if |x| < 1, so 2
1−x2 = 2(1+(x2)+(x2)2 + ...) =∑

n≥0 2(x2)n =
∑
n≥0 2x2n if and only if |x2| < 1 ⇐⇒ |x| < 1.

Thus the radius of convergence of the power series
∑
n≥0 2x2n for 2

1−x2 is R = 1.



2.2 Problem 2

Let f(x) = cos(2x). This problem focuses on the Taylor series of f about 0.

(a) The formula for the Taylor series of cosx about 0 is
∑
n≥0

(−1)n
(2n)! x

2n. Use it to find the Taylor se-

ries of cos(2x) about 0.

(b) Write down the 26th and the 27th Taylor polynomials of f . Are they the same? Explain your an-
swer.

(c) Show that |f (n+1)(x)| ≤ 2n+1 for all x and all positive integers n, and then use the Lagrange Re-
mainder Formula ((11) in Section 9.9) to show that limn→∞ rn(x) = 0 for all x. (Hint: You will need to use
Corollary 9.21 for the limit, i.e. if limn→∞ |an+1

an
| = r < 1 or limn→∞ | n

√
an| = r < 1 then limn→∞ an = 0).

(a) The formula for the Taylor series of cosx about 0 is
∑
n≥0

(−1)n
(2n)! x

2n. Use it to find the Taylor series

of cos(2x) about 0.

Since
∑
n≥0

(−1)n
(2n)! x

2n is the Taylor series of cosx about 0, the Taylor series of cos 2x about 0 is∑
n≥0

(−1)n

(2n)!
(2x)2n =

∑
n≥0

(−1)n4n

(2n)!
x2n

(b) Write down the 26th and the 27th Taylor polynomials of f . Are they the same? Explain your answer.

The 26th Taylor polynomial of f is

13∑
n≥0

(−1)n4n

(2n)!
x2n = 1− 4

2!
x2 +

42

4!
x4 + ...+

412

24!
x24 − 413

26!
x26

The 27th Taylor polynomial is the same since odd derivatives of f(x) = cos(2x) evidently have f (2n+1)(0) =

0 by uniqueness of the Taylor series about 0: if n is even, the nth coefficient is an = f(n)(0)
n! = (−1)n/24n/2

n! ,

so f (n)(0) = (−1)n/24n/2. If n is odd, an = 0 = f(n)(0)
n! , so f (n)(0) = 0 for odd n. You can verify this with

derivatives but it is unnecessary.

(c) Show that |f (n+1)(x)| ≤ 2n+1 for all x and all positive integers n, and then use the Lagrange Re-
mainder Formula ((11) in Section 9.9) to show that limn→∞ rn(x) = 0 for all x. (Hint: You will need to use
Corollary 9.21 for the limit, i.e. if limn→∞ |an+1

an
| = r < 1 or limn→∞ | n

√
an| = r < 1 then limn→∞ an = 0).

Well, note f ′(x) = −2 sin(2x), f ′′(x) = −4 cos(2x), f ′′′(x) = 8 sin(2x), f (4)(x) = 16 cos(2x), so we have

f (n)(x) = ±2n cos(2x) or f (n)(x) = ±2n sin(2x).

Either way |f (n)(x)| ≤ 2n since both | ± sin(2x)| ≤ 1, | ± cos(2x)| ≤ 1. Thus |f (n+1)(x)| ≤ 2n+1 for all x
and all positive integers n.

Then, for each x 6= 0, rn(x) = f(n+1)(tx)
(n+1)! xn+1 for some tx between 0 and x by the definition of the

Lagrange Remainder. Then

|rn(x)| = |f
(n+1)(tx)

(n+ 1)!
xn+1| ≤ 2n+1xn+1

(n+ 1)!



since f (n+1)(tx) ≤ 2n+1. We’ll now use corollary 9.21 to show

lim
n→∞

n
√
|rn(x)| < 1

and conclude that limn→∞ rn(x) = 0.
Well, for fixed x,

lim
n→∞

n

√
|f

(n+1)(tx)

n+ 1!
xn+1| ≤ lim

n→∞
n

√
| 2(n+2)

(n+ 2)!
xn+1 = lim

n→∞
n

√
2n · 22

(n+ 2)!
|x|n · |x| (1)

= 2|x| · lim
n→∞

n
√

4|x| · n

√
1

(n+ 2)!
(2)

since |f (n+1)(tn,x)| ≤ 2n+1. Note

lim
n→∞

n
√

4|x| = 1

since 4|x| is finite (we fixed an x), and

lim
n→∞

n

√
1

(n+ 2)!
= 0

since limn→∞
n
√
n! =∞ (by Stirling’s approximation n! ≈

√
2πn(ne )n as n→∞).

Thus 2|x| · limn→∞
n
√

4|x| · n

√
1

(n+2)! = 2|x| · 1 · 0 = 0, so

lim
n→∞

n
√
|rn(x)| = 0.

Thus limn→∞ rn(x) = 0 for all x by Corollary 9.21.

3 Quiz

3.1 Quiz Problem 1

1. Find an upper bound for the 10th truncation error E10 of
∑
n≥1(−1)n+1 1

n

Note E10 = |
∑∞
n=1(−1)n+1 1

n −
∑10
n=1(−1)n+1 1

n |. Since
∑
n≥1(−1)n+1 1

n is a convergent series by the

Alternating Series Test, we have the formula Ej < aj+1 for all j, or E10 < a11. Since an = 1
n , we have

E10 <
1

11
.

3.2 Quiz Problem 2

2. Determine whether the series diverges, converges conditionally, or converges absolutely:
∑
n≥3(−1)n+1 1

n(n−2) .

The series converges absolutely: first note 1
n(n−2) <

1
(n−2)2 . Then, by the comparison test,

∑
n=3

1

n(n− 2)
<

∑
n=3

1

(n− 2)2
=

∑
n=1

1

n2
=
π2

6



Thus the series is absolutely convergent, since
∑
|an| is convergent for an = (−1)n+1 1

n(n−2) .

3.3 Quiz Problem 3

3. Find the interval of convergence of the given series:
∑
n≥1

2n

nnx
n.

We’ll use the root test to find the interval of convergence:

lim
n→∞

n

√
| 2
n

nn
xn| = lim

n→∞

2|x|
n

= 0 < 1

since |x| <∞. Thus, by the root test, the series
∑
n≥1

2n

nnx
n is convergent for all x since for an = 2n

nnx
n

we have limn→∞
n
√
|an| < 1.

Hence the interval of convergence is (−∞,∞).


