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Abstract. These are informal notes from my course at the 3era Escuela de
Invierno Luis Santaló-CIMPA Research School on Topics in Noncommutative
Geometry. Feedback, especially from participants at the course, is very wel-
come.

The course basically is divided into two (related) sections. Lectures 1–3
deal with Kasparov’s KK-theory and some of its applications. Lectures 4–5
deal with one of the most fundamental examples in noncommutative geometry,
the noncommuative 2-torus.
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Lecture 1. Introduction to Kasparov’s KK-theory

1.1. Why KK? KK-theory is a bivariant version of topological K-theory, defined
for C∗-algebras, with or without a group action. It can be defined for either real
or complex algebras, but in these notes we will stick to complex algebras for sim-
plicity. Thus if A and B are complex C∗-algebras, subject to a minor technical
requirement (that B be σ-unital, which is certainly the case if it is either uni-
tal or separable), an abelian group KK(A,B) is defined, with the property that
KK(C, B) = K(B) = K0(B) if the first algebra A is just the scalars. (For the basic
properties of K0, I refer you to the courses by Reich and Karoubi.) The theory
was defined by Gennadi Kasparov in a remarkable series of papers: [33, 34, 35].
However, the definition at first seems highly technical and unmotivated, so it’s
worth first seeing where the theory comes from and why one might be interested
in it. For purposes of this introduction, we will only be concerned with the case
where A and B are commutative. Thus A = C0(X) and B = C0(Y ), where X and
Y are locally compact Hausdorff spaces. We will abbreviate KK(C0(X), C0(Y ))
to KK(X,Y ). It is worth pointing out that the study of KK(X,Y ) (without
considering KK(A,B) more generally) is already highly nontrivial, and encom-
passes most of the features of the general theory. Note that we expect to have
KK(C, C0(Y )) = KK(pt, Y ) = K(Y ), the K-theory of Y with compact support.
Recall that this is the Grothendieck group of complexes of vector bundles that are
exact off a compact set. It’s actually enough to take complexes of length 2, so
an element of K(Y ) is represented by a pair of vector bundles V and V ′ over Y ,

together with a morphism of vector bundles V
ϕ
−→ V ′ that is an isomorphism off

a compact set. Alternatively, K(Y ) can be identified with the reduced K-theory

K̃(Y+) of the one-point compactification Y+ of Y .
A good place to start in trying to understand KK is Atiyah’s paper [4] on

the Bott periodicity theorem. Bott periodicity, or more generally, the Thom iso-
morphism theorem for a complex vector bundle, asserts that if p : E → X is
a complex vector bundle (more generally, one could take an even-dimensional
real vector bundle with a spinc structure), then there is a natural isomorphism
βE : K(X) → K(E), called the Thom isomorphism in K-theory. In the special
case where X = pt, E is just Cn for some n, and we are asserting that there is

a natural isomorphism Z = K(pt) → K(Cn) = K(R2n) = K̃(S2n), the Bott pe-
riodicity map. The map βE can be described by the formula βE(a) = p∗(a) · τE .
Here p∗(a) is the pull-back of a ∈ K(X) to E. Since a had compact support, p∗(a)
has compact support in the base direction of E, but is constant on fibers of p, so
it certainly does not have compact support in the fiber direction. However, we
can multiply it by the Thom class τE , which does have compact support along the
fibers, and the product will have compact support in both directions, and will thus
give a class in K(E) (remember that since E is necessarily noncompact, assuming
n > 0, we need to use K-theory with compact support). The Thom class τE , in
turn, can be described [59, §3] as an explicit complex

∧• p∗E over E. The vector
bundles in this complex are the exterior powers of E pulled back from X to E, and

the map at a point e ∈ Ex from
∧j

Ex to
∧j+1

Ex is simply exterior product with
e. This complex has compact support in the fiber directions since it is exact off the
zero-section of E. (If e 6= 0, then the kernel of e∧ is spanned by products e∧ω.)
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So far this is all simple vector bundle theory and KK is not needed. But it comes
in at the next step. How do we prove that βE is an isomorphism? The simplest
way would be to construct an inverse map αE : K(E) → K(X). But there is no
easy way to describe such a map using topology alone. As Atiyah recognized, the
easiest way to construct αE uses elliptic operators, in fact the family of Dolbeault
operators along the fibers of E. Thus whether we like it or not, some analysis comes
in at this stage. In more modern language, what we really want is the class αE
in KK(E,X) corresponding to this family of operators, and the verification of the
Thom isomorphism theorem is a Kasparov product calculation, the fact that αE is a
KK inverse to the class βE ∈ KK(X,E) described (in slightly other terms) before.
Atiyah also noticed [4] that it’s really just enough (because of certain identities
about products) to prove that αE is a one-way inverse to βE , or in other words, in
the language of Kasparov theory, that βE ⊗E αE = 1X . This comes down to an
index calculation, which because of naturality comes down to the single calculation
β ⊗C α = 1 ∈ KK(pt, pt) when X is a point and E = C, which amounts to the
Riemann-Roch theorem for CP1.

What then is KK(X,Y ) when X and Y are locally compact spaces? An element
of KK(X,Y ) defines a map of K-groups K(X) → K(Y ), but is more than this;
it is in effect a natural family of maps of K-groups K(X × Z) → K(Y × Z) for
arbitrary Z. Naturality of course means that one gets a natural transformation of
functors, from Z 7→ K(X × Z) to Z 7→ K(Y × Z). (Nigel Higson has pointed out
that one can use this in reverse to define KK(X,Y ) as a natural family of maps
of K-groups K(X × Z) → K(Y × Z) for arbitrary Z. The reason why this works
will be explained in Lecture 3 in this series.) In particular, since KK(X × Rj)
can be identified with K−j(X), an element of KK(X,Y ) defines a graded map of
K-groups Kj(X) → Kj(Y ), at least for j ≤ 0 (but then for arbitrary j because
of Bott periodicity). The example of Atiyah’s class αE ∈ KK(E,X), based on
a family of elliptic operators over E parametrized by X , shows that one gets an
element of the bivariant K-group KK(X,Y ) from a family of elliptic operators
over X parametrized by Y . The element that one gets should be invariant under
homotopies of such operators. Hence Kasparov’s definition of KK(A,B) is based
on a notion of homotopy classes of generalized elliptic operators for the first algebra
A, “parametrized” by the second algebra B (and thus commuting with a B-module
structure).

1.2. Kasparov’s original definition. As indicated above in Section 1.1, an ele-
ment of KK(A,B) is roughly speaking supposed to be a homotopy class of families
of elliptic pseudodifferential operators over A parametrized by B. For technical
reasons, it’s convenient to work with self-adjoint bounded operators1, but it’s well-
known that the most interesting elliptic operators send sections of one vector bundle
to sections of another. The way to get around this is to take our operators to be
self-adjoint, but odd with respect to a grading, i.e., of the form

(1.1) T = T ∗ =

(
0 F ∗

F 0

)
.

1Often we want to apply the theory to self-adjoint differential operators D, which are never

bounded on L2 spaces. The trick is to replace D by D(1 + D2)−
1
2 , which has the same index

theory as D and is bounded.
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The operator F here really does act between different spaces, but T , built from
F and F ∗, is self-adjoint, making it easier to work with. Then we need various
conditions on T that correspond to the terms “elliptic,” “pseudodifferential,” and
“parametrized by B.” So this boils down to the following. A class in KK(A,B) is
represented by a Kasparov A-B-bimodule, that is, a Z/2-graded (right) Hilbert B-
module H = H0⊕H1, together with a B-linear operator T ∈ L(H) of the form (1.1),
and a (grading-preserving) ∗-representation φ of A on H, subject to the conditions
that φ(a)(T 2 − 1) ∈ K(H) and [φ(a), T ] ∈ K(H) for all a ∈ A. These conditions
require a few comments. The condition that φ(a)(T 2 − 1) ∈ K(H) is “ellipticity”
and the condition that [φ(a), T ] ∈ K(H) is “pseudolocality.” If B = C, a Hilbert
B-module is just a Hilbert space, L(H) is the set of bounded linear operators on
H, and K is the set of compact operators on H. If B = C0(Y ), a Hilbert B-
module is equivalent to a continuous field of Hilbert spaces over Y . In this case,
K(H) is the associated set of continuous fields of compact operators, while L(H)
consists of continuous fields (continuity taken in the strong-∗ operator topology) of
bounded Hilbert space operators. If X is another locally compact space, then it
is easy to see that Kasparov’s conditions are an abstraction of a continuous family
of elliptic pseudolocal Hilbert space operators over X , parametrized by Y . Finally,
if B is arbitrary, a Hilbert B-module means a right B-module equipped with a
B-valued inner product 〈 , 〉B, right B-linear in the second variable, satisfying
〈ξ, η〉B = 〈η, ξ〉∗B and 〈ξ, ξ〉B ≥ 0 (in the sense of self-adjoint elements of B),
with equality only if ξ = 0. Such an inner product gives rise to a norm on H:

‖ξ‖ = ‖〈ξ, ξ〉B‖
1/2
B , and we require H to be complete with respect to this norm.

Given a Hilbert B-module H, there are two special C∗-algebras associated to it.
The first, called L(H), consists of bounded B-linear operators a on H, admitting
an adjoint a∗ with the usual property that 〈aξ, η〉B = 〈ξ, a∗η〉B for all ξ, η ∈ H.
Unlike the case where B = C, existence of an adjoint is not automatic, so it must be
explicitly assumed. Then inside L(H) is the ideal of B-compact operators. This is
the closed linear span of the “rank-one operators” Tξ,η defined by Tξ,η(ν) = ξ〈η, ν〉B .
Note that

〈Tξ,η(ν), ω〉B = 〈ξ〈η, ν〉B , ω〉B = 〈ω, ξ〈η, ν〉B〉
∗
B

= (〈ω, ξ〉B〈η, ν〉B)
∗

= 〈η, ν〉∗B〈ω, ξ〉
∗
B

= 〈ν, η〉B〈ξ, ω〉B = 〈ν, η〈ξ, ω〉B〉B

= 〈ν, Tη,ξ(ω)〉B ,

so that T ∗
ξ,η = Tη,ξ. It is also obvious that if a ∈ L(H), then aTξ,η = Taξ,η, while

Tξ,ηa = T ∗
η,ξ

(
a∗

)∗
=

(
a∗Tη,ξ

)∗
= T ∗

a∗η,ξ = Tξ,a∗η, so these rank-one operators

generate an ideal in L(H), which is just the usual ideal of compact operators in
case B = C. For more on Hilbert C∗-modules and the C∗-algebras acting on them,
see [40] or [46, Ch. 2].

The simplest kind of Kasparov bimodule is associated to a homomorphism
φ : A → B. In this case, we simply take H = H0 = B, viewed as a right B-
module, with the B-valued inner product 〈b1, b2〉B = b∗1b2, and take H1 = 0 and
T = 0. In this case, L(H) = M(B) (the multiplier algebra of B, the largest C∗-
algebra containing B as an essential ideal), and K(H) = B. So φ maps A into
K(H), and even though T = 0, the condition that φ(a)(T 2 − 1) ∈ K(H) is satisfied
for any a ∈ A.
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One special case which is especially important is the case where A = B and φ
is the identity map. The above construction then yields a distinguished element
1A ∈ KK(A,A), which will play an important role later.

In applications to index theory, Kasparov A-B-bimodules typically arise from
elliptic (or hypoelliptic) pseudodifferential operators. However, there are other
ways to generate Kasparov bimodules which we will discuss in Section 1.4 below.

So far we have explained what the cycles are for KK-theory, but not the equiv-
alence relation that determines when two such cycles give the same KK-element.
First of all, there is a natural associative addition on Kasparov bimodules, ob-
tained by taking the direct sum of Hilbert B-modules and the block direct sum
of homomorphisms and operators. Then we divide out by the equivalence relation
generated by addition of degenerate Kasparov bimodules (those for which for all
a ∈ A, φ(a)(T 2 −1) = 0 and [φ(a), T ] = 0) and by homotopy. (A homotopy of Kas-
parov A-B-bimodules is just a Kasparov A-C([0, 1], B)-bimodule.) Then it turns
out that the resulting semigroup KK(A,B) is actually an abelian group, with in-
version given by reversing the grading, i.e., reversing the roles of H0 and H1, and
interchanging F and F ∗. Actually, it was not really necessary to divide out by
degenerate bimodules, since if (H, φ, T ) is degenerate, then (C0((0, 1],H) (along
with the action of A and the operator which are given by φ and T at each point of
(0, 1]) is a homotopy from (H, φ, T ) to the 0-module.

An interesting exercise is to consider what happens when A = C and B is a unital
C∗-algebra. Then if H0 and H1 are finitely generated projective (right) B-modules
and we take T = 0 and φ to be the usual action of C by scalar multiplication,
we get a Kasparov C-B-bimodule corresponding to the element [H0] − [H1] of
K0(B). With some work one can show that this gives an isomorphism between
the Grothendieck group K0(B) of usual K-theory and KK(C, B). By considering
what happens when one adjoins a unit, one can then show that there is still a
natural isomorphism between K0(B) and KK(C, B), even if B is nonunital.

Another important special case is when A and B are Morita equivalent in the
sense of Rieffel [47, 50] — see [46] for a very good textbook treatment. That means
we have an A-B-bimodule X with the following special properties:

(1) X is a right Hilbert B-module and a left Hilbert A-module.
(2) The left action of A is by bounded adjointable operators for the B-valued

inner product, and the right action ofB is by bounded adjointable operators
for the A-valued inner product.

(3) The A- and B-valued inner products on X are compatible in the sense that
if ξ, η, ν ∈ X , then A〈ξ, η〉ν = ξ〈η, ν〉B .

(4) The inner products are “full,” in the sense that the image of A〈 , 〉 is
dense in A, and the image of 〈 , 〉B is dense in B.

Under these circumstances, X defines classes in [X ] ∈ KK(A,B) and [X̃] ∈
KK(B,A) which are inverses to each other (with respect to the product discussed
below in Section 1.3). Thus as far as KK-theory is concerned, A and B are es-

sentially equivalent. The construction of [X ] and of [X̃ ] is fairly straightforward;
for example, to construct [X ], take H0 = X (viewed as a right Hilbert B-module),
H1 = 0, and T = 0, and let φ : A → L(H) be the left action of A (which factors
through L(H) by axiom (2)). By axiom (4) (which is really the key property), any
element of A can be approximated by linear combinations of inner products A〈ξ, η〉.
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For such an inner product, we have

φ(A〈ξ, η〉)ν = ξ〈η, ν〉B = Tξ,η(ν),

so the action of A on H is by operators in K(H), which is what is needed for the
conditions for a Kasparov bimodule.

The prototype example of a Morita equivalence has A = C, B = K(H) (we
usually drop the H and just write K if the Hilbert space is infinite-dimensional and
separable), and X = H, with the B-valued inner product taking a pair of vectors in
H to the corresponding rank-one operator. Thus from the point of KK-theory, C

and K are essentially indistinguishable, and so are B and B ⊗K for any B. There
is a converse [10]; separable C∗-algebras A and B are Morita equivalent if and only
if A ⊗ K and B ⊗ K are isomorphic. (This condition, called stable isomorphism,
is obviously satisfied by B and B ⊗ K, since (B ⊗ K) ⊗ K ∼= B ⊗ (K ⊗ K) ∼=
B ⊗K.) However, a Morita equivalence between A and B leads directly to a KK-
equivalence, but not directly to an isomorphism A ⊗ K ∼= B ⊗ K (which requires
some arbitrary choices).

The most readable references for the material of this section are the book by
Blackadar [6], Chapter VIII, and the “primer” of Higson [29].

1.3. Connections and the product. The hardest aspect of Kasparov’s approach
to KK is to prove that there is a well-defined, functorial, bilinear, and associative
product ⊗B : KK(A,B) × KK(B,C) → KK(A,C). There is also an external

product ⊠ : KK(A,B) ×KK(C,D) → KK(A⊗ C,B ⊗D), where ⊗ denotes the
completed tensor product. (For our purposes, the minimal or spatial C∗-tensor
product will suffice.) The external product is actually built from the usual product
using an operation called dilation (external product with 1). We can dilate a class
a ∈ KK(A,B) to a class a⊠ 1C ∈ KK(A⊗ C,B ⊗ C), by taking a representative
(H, φ, T ) for a to the bimodule (H ⊗ C, φ ⊗ 1C , T ⊗ 1). Similarly, we can dilate a
class b ∈ KK(C,D) (on the other side) to a class 1B ⊠ b ∈ KK(B ⊗ C,B ⊗ D).
Then

a⊠ b = (a⊠ 1C) ⊗B⊗C (1B ⊠ b) ∈ KK(A⊗ C,B ⊗D),

and one can check that this is the same as what one gets by computing in the other
order as (1A ⊠ b) ⊗A⊗D (a⊠ 1D).

The Kasparov products, as they are called, encompass the usual cup and cap
products relating K-theory and K-homology. For example, the cup product in
ordinary topological K-theory for a compact space X , ∪ : K(X)×K(X) → K(X),
is a composite of two products. Given a ∈ K(X) = KK(C, C(X)) and b ∈ K(X) =
KK(C, C(X)), we first form the external product a⊠ b ∈ KK(C, C(X)⊗C(X)) =
KK(C, C(X ×X)). Then we have

a ∪ b = (a⊠ b) ⊗C(X×X) ∆,

where ∆ ∈ KK(C(X × X), C(X)) is the class of the homomorphism defined by
restriction of functions on X ×X to the diagonal copy of X .

In any event, it still remains to construct the product KK(A,B)×KK(B,C) →
KK(A,C). Suppose we have classes represented by (E1, φ1, T1) and (E2, φ2, T2),
where E1 is a right Hilbert B-module, E2 is a right Hilbert C-module, φ1 : A →
L(E1), φ2 : B → L(E2), T1 essentially commutes with the image of φ1, and T2

essentially commutes with the image of φ2. It is clear that we want to construct
the product using H = E1 ⊗B,φ2

E2 and φ = φ1 ⊗ 1: A → L(H). The main
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difficulty is getting the correct operator T . In fact there is no canonical choice;
the choice is only unique up to homotopy. The most convenient method of doing
the construction seems to be using the notion of a connection due to Connes and
Skandalis [13], nicely explained in [6, §18] or [61].

To motivate this, let’s just consider a simple example that comes up in index
theory, the construction of an “elliptic operator with coefficients in a vector bundle.”
Let T be an elliptic operator on a compact manifold M , which we take to be a
bounded operator of the form (1.1) (acting on a Z/2-graded Hilbert space H), and
let E be a complex vector bundle over M . Often we want to form TE , the same
operator with coefficients in the vector bundle E. This is actually a special case
of the Kasparov product. The sections Γ(M,E) are a finitely generated projective
C(M)-module E ; since C(M) is commutative, we can regard this as a C(M)-C(M)-
bimodule, with the same action on the left and on the right. Then E (concentrated
entirely in degree 0, together with the 0-operator), defines a KK-class [[E]] ∈
KK(M,M), while T defines a class [T ] in KK(M, pt). Note that forgetting the
left C(M)-action on E is the same as composing with inclusion of the scalars C →֒
C(M) to get from [[E]] a class [E] ∈ KK(pt,M) = K(M), which is the usual
K-theory class of E. The class of the operator TE will be the Kasparov product
[[E]] ⊗M [T ] ∈ KK(M, pt). Defining the operator, however, requires a choice of
connection on the bundle E. One way to get this is to embed E as a direct summand
in a trivial bundle M × Cn. Then orthogonal projection onto E is given by a self-
adjoint projection p ∈ C(M,Mn(C)). We can certainly form T ⊗ 1 acting on
H ⊗ Cn, on which we have an obvious action of C(M) ⊗Mn(C), but there is no
reason why T ⊗ 1 and p should commute, so there is no “natural” cut-down of T
to E. Thus we simply take the compression T ′ = p(T ⊗ 1)p acting on H′ = pH
with the obvious action φ′ of C(M). Since T commutes with the action of C(M)
up to compact operators, the commutator [p, T ⊗ 1] is also compact, so T ′ satisfies
the requirements that (T ′)2 − 1 ∈ K(H′) and [φ′(f), T ′] ∈ K(H′). Its Kasparov
class is well-defined, even though there is great freedom in choosing the operator
(corresponding to the freedom to embed E in a trivial bundle in many different
ways). (When n is large enough, all vector bundle embeddings of E into M × Cn

are isotopic, and thus the operators obtained by the above construction will be
homotopic in a way preserving the Kasparov requirements.)

1.4. Cuntz’s approach. Joachim Cuntz noticed in [17] that all Kasparov bimod-
ules can be taken to come from the basic notion of a quasihomomorphism between
C∗-algebras A and B. A quasihomomorphism A ⇉ D D B is roughly speaking a
formal difference of two homomorphisms f± : A→ D, neither of which maps into B
itself, but which agree modulo an ideal isomorphic to B. Thus a 7→ f+(a) − f−(a)
is a linear map A→ B. Suppose for simplicity (one can always reduce to this case)
that D/B ∼= A, so that f± are two splittings for an extension

0 → B → D → A→ 0.

Then for any split-exact functor F from C∗-algebras to abelian groups (meaning
it sends split extensions to short exact sequences — an example would be F (A) =
K(A⊗ C) for some coefficient algebra C), we get an exact sequence

0 // F (B) // F (D) // F (A) //

(f+)∗
rr

(f−)∗

ll 0.
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Thus (f+)∗ − (f−)∗ gives a well-defined homomorphism F (A) → F (B), which we
might well imagine should come from a class in KK(A,B). (Think about Section
1.1, where we mentioned Higson’s idea of defining KK(X,Y ) in terms of natural
transformations of functors, from Z 7→ K(X × Z) to Z 7→ K(Y × Z). We will
certainly get such a natural transformation from a quasihomomorphism C0(X)⇉
D D C0(Y )⊗K, since C0(Y )⊗K and Y have the sameK-theory.) And indeed, given
a quasihomomorphism as above, we get a Kasparov A-B-bimodule, with B ⊕B as
the Hilbert B-module (with the obvious grading), with φ : A→ L(B ⊕ B) defined
by (

f+ 0
0 f−

)
, and T =

(
0 1
1 0

)
.

The “almost commutation” relation is[(
f+(a) 0

0 f−(a)

)
,

(
0 1
1 0

)]
=

(
0 f+(a) − f−(a)

f−(a) − f+(a) 0

)
∈ K(B ⊕B),

since K(B⊕B) = M2(B). In the other direction, given a Kasparov A-B-bimodule,
one can add on a degenerate bimodule and do a homotopy to reduce it to something
roughly of this form, showing that all of KK(A,B) comes from quasihomomor-
phisms (see [6, §17.6]).

The quasihomomorphism approach to KK makes it possible to define KK(A,B)
in a seemingly simpler way [18]. To do this, Cuntz observed that a quasihomomor-
phism A⇉ D D B factors through a universal algebra qA constructed as follows.
Start with the free product C∗-algebra QA = A∗A, the completion of linear combi-
nations of words in two copies of A. There is an obvious surjective homomorphism
QA ։ A obtained by identifying the two copies of A. The kernel of QA ։ A is
called qA, and if

0 // B // D // A //

f+
uu

f−

ii 0

is a quasihomomorphism, we get a commutative diagram

0 // qA //

��

QA //

��

A // 0

0 // B // D // A // 0,

with the first copy of A in QA mapping to D via f+, and the second copy of A in
QA mapping to D via f−. Thus homotopy classes of (strict) quasihomomorphisms
from A to B can be identified with homotopy classes of ∗-homomorphisms from
qA to B, and KK(A,B) turns out to be simply the set of homotopy classes of
∗-homomorphisms from qA to B ⊗K.

1.5. Higson’s approach. There is still another very elegant approach to KK-
theory due to Nigel Higson [28]. Namely, one can construct an additive category
KK whose objects are the separable C∗-algebras, and where the morphisms from
A to B are given by KK(A,B). Associativity and bilinearity of the Kasparov
product, along with properties of the special elements 1A ∈ KK(A,A), ensure
that this is indeed an additive category. What Higson did is to give an alternative
construction of this category. Namely, start with the homotopy category of sep-
arable C∗-algebras, where the morphisms from A to B are the homotopy classes
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of ∗-homomorphisms A → B. Then KK is the smallest additive category with
the same objects, these morphisms, plus enough additional morphisms so that two
basic properties are satisfied:

(1) Matrix stability. If A is an object in KK (that is, a separable C∗-algebra)
and if e is a rank-one projection in K = K(H), H a separable Hilbert space,
then the homomorphism a 7→ a⊗e, viewed as an element of Hom(A,A⊗K),
is an equivalence in KK, i.e., has an inverse in KK(A⊗K, A).

(2) Split exactness. If 0 // A // B // C //
s

vv
0 is a split short ex-

act sequence of separable C∗-algebras, then for any separable C∗-algebra
D,

0 // KK(D,A) // KK(D,B) // KK(D,C) //
s∗qq

0

and

0 // KK(C,D) // KK(B,D) //
s∗qq

KK(A,D) // 0

are split exact.

Incidentally, if one just starts with the homotopy category and requires (1),
matrix stability, that is already enough to guarantee that the resulting category
has Hom-sets which are commutative monoids and that composition is bilinear
[54, Theorem 3.1]. So it’s not asking much additional to require that one have an
additive category.

The proof of Higson’s theorem very much depends on the Cuntz construction in
Section 1.4 above.
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Lecture 2. K-theory and KK-theory of crossed products

2.1. Equivariant Kasparov theory. Many of the interesting applications ofKK-
theory involve actions of groups in some way. For this, Kasparov also invented an
equivariant version of the theory. In what follows, G will always be a second-
countable locally compact group. A G-C∗-algebra will mean a C∗-algebra A, along
with an action of G on A by ∗-automorphisms, continuous in the sense that the
map G × A → A is jointly continuous. (Another way to say this is that if we
give AutA the topology of pointwise convergence, then G→ AutA is a continuous
group homomorphism.) If G is compact, making the theory equivariant is rather
straightforward. We just require all algebras and Hilbert modules to be equipped
with G-actions, we require φ : A → L(H) to be G-equivariant, and we require the
operator T ∈ L(H) to be G-invariant. This produces groups KKG(A,B) for (sep-
arable, say) G-C∗-algebras A and B, and the same argument as before shows that
KKG(C, B) ∼= KG

0 (B), equivariant K-theory. (In the commutative case, this is
described in [59]. A general description may be found in [6, §11].) In particular,
KKG(C,C) ∼= R(G), the representation ring of G, in other words, the Grothendieck
group of the category of finite-dimensional representations of G, with product com-
ing from the tensor product of representations. The rings R(G) are commutative,
Noetherian if G is a compact Lie group, and often easily computable; for exam-

ple, if G is compact and abelian, R(G) ∼= Z[Ĝ], the group ring of the Pontrjagin
dual. If G is a compact connected Lie group with maximal torus T and Weyl group

W = NG(T )/T , then R(G) ∼= R(T )W ∼= Z[T̂ ]W . The properties of the Kasparov
product all go through without change, since it is easy to “average” things with re-
spect to a compact group action. Then Kasparov product with KKG(C,C) makes
all KKG-groups into modules over the ground ring R(G), so that homological alge-
bra of the ring R(G) comes into play in understanding the equivariantKK-category

KKG.
When G is noncompact, the definition and properties of KKG are considerably

more subtle, and were worked out in [35]. A shorter exposition may be found in
[36]. The problem is that in this case, topological vector spaces with a continuous
G-action are very rarely completely decomposable, and there are rarely enough
G-equivariant operators to give anything useful. Kasparov’s solution was to work
with G-continuous rather than G-equivariant Hilbert modules and operators; rather
remarkably, these still give a useful theory with all the same formal properties as
before. The KKG-groups are again modules over the commutative ring R(G) =
KKG(C,C), though this ring no longer has such a simple interpretation as before,
and in fact, is not known for most connected semisimple Lie groups.

A few functorial properties of the KKG-groups will be needed below, so we just
mention a few of them. First of all, if H is a closed subgroup of G, then any G-
C∗-algebra is by restriction also an H-C∗-algebra, and we have restriction maps
KKG(A,B) → KKH(A,B). To go the other way, we can “induce” an H-C∗-alge-

bra A to get a G-C∗-algebra IndGH(A), defined by

IndGH(A) = {f ∈ C(G,A) | f(gh) = h · f(g) ∀g ∈ G, h ∈ H,

‖f(g)‖ → 0 as g → ∞ mod H} .

The induced action of G on IndGH(A) is just left translation. An “imprimitivity

theorem” due to Green shows that IndGH(A) ⋊G and A⋊H are Morita equivalent.
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If A and B are H-C∗-algebras, we then have an induction homomorphism

KKH(A,B) → KKG(IndGH(A), IndGH(B)).

The last basic operation on the KKG-groups depends on crossed products, so we
consider these next.

2.2. Basic properties of crossed products. Suppose A is aG-C∗-algebra. Then
one can define two new C∗-algebras, called the full and reduced crossed products of
A by G, which capture the essence of the group action. These are easiest to define
when G is discrete and A is unital. Then the full crossed product A ⋊α G (we
often omit the α if there is no possibility of confusion) is the universal C∗-algebra
generated by a copy of A and unitaries ug, g ∈ G, subject to the commutation
condition ugau

∗
g = αg(a), where α denotes the action of G on A. The reduced

crossed product A ⋊α,r G is the image of A ⋊α G in its “regular representation”
π on L2(G,H), where H is a Hilbert space on which A acts faithfully, say by a
representation ρ. Here A acts by (π(a)f)(g) = ρ(αg−1(a))f(g) and G acts by left
translation. The compatibility condition is satisfied since

π(ug)π(a)π(u∗g)f(g′) = (π(a)π(u∗g)f)(g−1g′)

= ρ(αg′−1g(a))(π(u∗g)f)(g−1g′)

= ρ(αg′−1g(a))(f(g′))

= ρ(αg′−1(αg(a))(f(g′)) = π(αg(a))f(g′).

In the general case (where A is not necessarily unital and G is not necessarily
discrete), the full crossed product is still defined as the universal C∗-algebra for
covariant pairs of a ∗-representation ρ of A and a unitary representation π of G,
satisfying the compatibility condition π(g)ρ(a)π(g−1) = ρ(αg(a)). It may be con-
structed by defining a convolution multiplication on Cc(G,A) and then completing
in the greatest C∗-algebra norm. The reduced crossed product A ⋊α,r G is again
the image of A⋊αG in its “regular representation” on L2(G,H). For details of the
construction, see [44, §7.6] and [62, Ch. 2].

If A = C, the crossed product A ⋊ G is simply the universal C∗-algebra for
unitary representations of G, or the group C∗-algebra C∗(G), and A⋊rG is C∗

r (G),
the image of C∗(G) in the left regular representation on L2(G). The natural map
C∗(G)։ C∗

r (G) is an isomorphism if and only if G is amenable. When the action
α is trivial (factors through the trivial group {1}), then A⋊G is the maximal tensor
product A ⊗max C

∗(G) while A ⋊r G is the minimal tensor product A ⊗ C∗
r (G).

Again, the natural map from A⊗max C
∗(G) to A⊗C∗

r (G) is an isomorphism if and
only if G is amenable.

When A and the action α are arbitrary, the natural map A⋊αG։ A⋊α,rG is an
isomorphism if G is amenable, but also more generally if the action α is amenable
in a certain sense. For example, if X is a locally compact G-space, the action is
automatically amenable if it is proper, whether or not G is amenable. A good short
survey of amenability for group actions may be found in [1].

When X is a locally compact G-space, the crossed product C0(G) ⋊ G often
serves as a good substitute for the “quotient space” X/G in cases where the latter
is badly behaved. Indeed, if G acts freely and properly on X , then C0(X) ⋊ G
is Morita equivalent to C0(X/G). If G acts locally freely and properly on X ,
then C0(X) ⋊ G is Morita equivalent to an “orbifold algebra” that encompasses
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not only the topology of X/G but also the finite isotropy groups. But if the G-
action is not proper, X/G may be highly non-Hausdorff, while C0(X) ⋊ G may
be a perfectly well-behaved noncommutative algebra. A key case later on will the
one where X = T is the circle group, G = Z, and the generator of G acts by
multiplication by e2πiθ. When θ is irrational, every orbit is dense, so X/G is an
indiscrete space, and C(T) ⋊ Z is what’s usually denoted Aθ, an irrational rotation

algebra or noncommutative 2-torus.
Now we can explain the relationships between equivariantKK-theory and crossed

products. One connection is that if G is discrete and A is a G-C∗-algebra, there is a
natural isomorphism KKG(A,C) ∼= KK(A⋊G,C). Dually, if G is compact, there
is a natural Green-Julg isomorphism [6, §11.7] KKG(C, A) ∼= KK(C, A⋊G). Still
another connection is that there is (for arbitrary G) a functorial homomorphism

j : KKG(A,B) → KK(A⋊G,B ⋊G)

sending (when B = A) 1A to 1A⋊G. (In fact, j can be viewed as a functor from

the equivariant Kasparov category KKG to the non-equivariant Kasparov category
KK. Later we will study how close it is to being faithful.) There is also a variant of
j using reduced crossed products, denoted jr [35, §3.11]. If B = C and G is discrete,
then j can be identified with the map KK(A⋊G,C) → KK(A⋊G,C∗(G)) induced
by the inclusion of scalars C →֒ C∗(G). (The fact that G is discrete means that
C∗(G) is unital.) The map j is split injective in this case since it is split by the map
induced by C∗(G) → C, corresponding to the trivial representation of G. Similarly,
if G is compact, then via Green-Julg, j can be identified with the map KK(C, A⋊

G) → KK(C∗(G), A ⋊ G) induced by the map C∗(G) → C corresponding to the
trivial representation of G. This is again a split injection since C∗(G) splits as the
direct sum of C and summands associated to other representations.

2.3. The dual action and Takai duality. When the group G is not just locally

compact but also abelian, then it has a Pontrjagin dual group Ĝ. In this case, given
any G-C∗-algebra algebra A, say with α denoting the action of G on A, there is

a dual action α̂ of Ĝ on the crossed product A ⋊ G. When A is unital and G is
discrete, so that A ⋊ G is generated by a copy of A and unitaries ug, g ∈ G, the
dual action is given simply by

α̂γ(aug) = aug〈g, γ〉.

The same formula still applies in general, except that the elements a and ug don’t
quite live in the crossed product but in a larger algebra. The key fact about the

dual action is the Takai duality theorem: (A⋊αG) ⋊bα Ĝ ∼= A⊗K(L2(G)), and the

double dual action ˆ̂α of ˜̃G ∼= G on this algebra can be identified with α ⊗ Adλ,
where λ is the left regular representation of G on L2(G). Good expositions may be
found in [44, §7.9] and in [62, Ch. 7].

2.4. Connes’ “Thom isomorphism”. Recall that the Thom isomorphism the-
orem in K-theory (see Section 1.1) asserts that if E is a complex vector bundle
over X , there is an isomorphism of K-groups K(X) → K(E), implemented by
a KK-class in KK(X,E). Now if Cn (or R2n — there is no difference since
we are just considering the additive group structure) acts on X by a trivial ac-

tion α, then C0(X) ⋊α Cn ∼= C0(X) ⊗ C∗(Cn) ∼= C0(X) ⊗ C0(Ĉ
n) ∼= C0(E),
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where E is a trivial rank-n complex vector bundle over X . (We have used Pon-
trjagin duality and the fact that abelian groups are amenable.) It follows that
K(C0(X)) ∼= K(C0(X) ⋊α Cn). Since any action α of Cn is homotopic to the
trivial action and “K-theory is supposed to be homotopy invariant,” that suggests
that perhaps KK(A) ∼= KK(A⋊α Cn) for any C∗-algebra A and for any action α
of Cn. This is indeed true and the isomorphism is implemented by classes (which
are inverse to one another) in KK(A,A⋊α Cn) and KK(A⋊α Cn, A). It is clearly
enough to prove this in the case n = 1, since we can always break a crossed product
by Cn up as an n-fold iterated crossed product.

That A and A ⋊α C are always KK-equivalent or that they at least have the
same K-theory, or (this is equivalent since one can always suspend on both sides)
that A ⊗ C0(R) and A ⋊α R are always KK-equivalent or that they at least have
the same K-theory for any action of R, is called Connes’ “Thom isomorphism”

(with the name “Thom” in quotes since the only connection with the classical
Thom isomorphism is the one we have already explained). Connes’ original proof
is relatively elementary, but only gives an isomorphism of K-groups, not a KK-
equivalence, and can be found in [12] or in [20, §10.2].

To illustrate Connes’ idea, let’s suppose A is unital and we have a class in
K0(A) represented by a projection p ∈ A. (One can always reduce to this special
case.) If α were to fix p, then 1 7→ p gives an equivariant map from C to A

and thus would induce a map of crossed products C ⋊ R ∼= C0(R̂) → A ⋊α R or

C ⋊ C ∼= C0(Ĉ) → A ⋊α C giving a map on K-theory β : Z → K0(A ⋊ C). The
image of [p] under the isomorphism K0(A) → K0(A⋊C) will be β(1). So the idea is
to show that one can modify the action to one fixing p (using a cocycle conjugacy)
without changing the isomorphism class of the crossed product.

There are now quite a number of proofs of Connes’ theorem available, each using
somewhat different techniques. We just mention a few of them. A proof using K-
theory of Wiener-Hopf extensions is given in [49]. There are also fancier proofs using
KK-theory. If α is a given action of R on A and if β is the trivial action, one can try
to construct KKR elements c ∈ KKR((A,α), (A, β)) and d ∈ KKR((A, β), (A,α))

which are inverses of each other in KKR. Then the morphism j of Section 2.1 sends
these to KK-equivalences j(c) and j(d) between A⋊α R and A⋊β R ∼= A⊗C0(R).

Another rather elegant approach, using KK-theory but not the equivariant
groups, may be found in [26]. Fack and Skandalis use the group KK1(A,B), which
we have avoided so far in order to simplify the theory, but it can be defined with
triples (H, φ, T ) like those used for KK(A,B), but with two modifications:

(1) H is no longer graded, and there is no grading condition on φ.
(2) T is self-adjoint but with no grading condition, and φ(a)(T 2 − 1) ∈ K(H)

and [φ(a), T ] ∈ K(H) for all a ∈ A.

It turns out that KK1(A,B) ∼= KK(A⊗C0(R), B), and that the Kasparov product
can be extended to a graded commutative product on the direct sum ofKK = KK0

and KK1. The product of two classes in KK1 can by Bott periodicity be taken to
land in KK0.

We can now explain the proof of Fack and Skandalis as follows. They show that
for each separable C∗-algebra A with an action α of R, there is a special element
tα ∈ KK1(A,A⋊αR) (constructed using a singular integral operator). Note by the
way that doing the construction with the dual action and applying Takai duality
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gives tbα ∈ KK1(A⋊αR, A), since (A⋊αR)⋊bαR ∼= A⊗K, which is Morita equivalent
to A. These elements have the following properties:

(1) (Normalization) If A = C (so that necessarily α = 1 is trivial), then t1 ∈
KK1(C, C0(R)) is the usual generator of this group (which is isomorphic
to Z).

(2) (Naturality) The elements are natural with respect to equivariant homo-
morphisms ρ : (A,α) → (C, γ), in that if ρ̄ denotes the induced map on
crossed products, then ρ̄∗(tα) = ρ∗(tγ) ∈ KK(A,C ⋊γ R), and similarly,
ρ̄∗(tbγ) = ρ∗(tbα) ∈ KK(A⋊α R, C).

(3) (Compatibility with external products) Given x ∈ KK(A,B) and y ∈
KK(C,D),

(tbα ⊗A x)⊠ y = t
α̂⊗1C

⊗A⊗C (x⊠ y).

Similarly, given x ∈ KK(B,A) and y ∈ KK(D,C),

y ⊠ (x⊗A tα) = (y ⊠ x) ⊗C⊗A t1C⊗α. �

Theorem 2.1 (Fack-Skandalis [26]). These properties completely determine tα,
and tα is a KK-equivalence (of degree 1) between A and A⋊α R.

Proof. Suppose we have elements tα satisfying the properties above. Let us first
show that tα⊗A⋊αRtbα = 1A. For s ∈ R, let αs be the rescaled action αst = αst. Then
define an action β of R on B = C([0, 1], A) by (βtf)(s) = αst (f(s)). Let gs : B → A
be evaluation at s, which is clearly an equivariant map (B, β) ։ (A,αs). We also

get maps ĝs : B⋊βR → A⋊αs R, and the double dual map ˆ̂gs can be identified with
gs⊗1: B⊗K → A⊗K. By Axiom (2), (ḡs)∗(tβ) = g∗s(tαs) and (gs)∗(tbβ) = ḡ∗s(tbαs).

Let σs = tαs ⊗A⋊αsR tbαs ∈ KK(A,A). By associativity of Kasparov products,

(gs)∗
(
tβ ⊗B⋊βR tbβ

)
= tβ ⊗B⋊βR

(
tbβ ⊗B [gs]

)

= tβ ⊗B⋊βR

(
[ḡs] ⊗A⋊αsR tbαs

)

=
(
tβ ⊗B⋊βR [ḡs]

)
⊗A⋊αsR tbαs

=
(
[gs] ⊗A tαs

)
⊗A⋊αs R tbαs

= [gs] ⊗A σs.

Since gs is a homotopy of maps B → A and KK is homotopy-invariant, [gs] = [g0].
But g0 is a homotopy equivalence with homotopy inverse f : a 7→ a⊗ 1, so we see
that

σs = [f ] ⊗B
(
tβ ⊗B⋊βR tbβ

)
⊗B [g0]

is independent of s. In particular, σ1 = tα ⊗A⋊αR tbα agrees with σ0, which can be
computed to be 1A by Axioms (1) and (3) since the action of R is trivial in this
case. So tα ⊗A⋊αR tbα = 1A. Replacing α by α̂ and using Takai duality, this also
implies that tbα ⊗A tα = 1A⋊αR. So tα and tbα give KK-equivalences.

The uniqueness falls out at the same time, since we see from the above that
[gs] ⊗A tαs = tβ ⊗B⋊βR [ḡs] ∈ KK(B,A ⋊αs R), and that all the KK-elements
involved are KK-equivalences. Furthermore, we know by Axioms (1) and (3) that
tα0 = 1A ⊠ t1, where t1 is the special element of KK1(C, C0(R)) mentioned in
Axiom (1). This determines tβ (from the identity [g0]⊗A tα0 = tβ ⊗B⋊βR [ḡ0]), and
then tα is determined from the identity [g0] ⊗A tα = tβ ⊗B⋊βR [ḡ1]. �



16 JONATHAN ROSENBERG

2.5. The Pimsner-Voiculescu Theorem. Connes’ Theorem from Section 2.4
computes K-theory or KK-theory for crossed products by R. This can be used to
compute K-theory or KK-theory for crossed products by Z, using the fact from
Section 2.2 that if A is a C∗-algebra equipped with an action α of Z (or equivalently,
a single ∗-automorphism θ, the image of 1 ∈ Z under the action), then A ⋊α Z is

Morita equivalent to
(
IndR

Z(A,α)
)

⋊R. The algebra Tθ = IndR

Z(A,α) is often called

the mapping torus of (A, θ); it can be identified with the algebra of continuous
functions f : [0, 1] → A with f(1) = θ(f(0)). It comes with an obvious short exact
sequence

0 → C0((0, 1), A) → Tθ → A→ 0,

for which the associated exact sequence in K-theory has the form

· · · → K1(A)
1−θ∗−−−→ K1(A) → K0(Tθ) → K0(A)

1−θ∗−−−→ K0(A) → · · · .

Since

K0(A⋊α Z) ∼= K0(Tθ ⋊Indα R) ∼= K1(Tθ),

and similarly for K0, we obtain the Pimsner-Voiculescu exact sequence

(2.1)
· · · → K1(A)

1−θ∗−−−→ K1(A) → K1(A⋊α Z) →

→ K0(A)
1−θ∗−−−→ K0(A) → K0(A⋊α Z) → · · · .

Here one can check that the mapsKj(A) → Kj(A⋊αZ) are induced by the inclusion
of A into the crossed product. For another proof, closer to the original argument
of Pimsner and Voiculescu, see [20, Ch. 5].

2.6. The Baum-Connes Conjecture. The theorems of Connes and Pimsner-
Voiculescu on K-theory of crossed products by R and Z suggest the question of
whether there are similar results for other groups G. In particular, one would like
to know if the K-theory of C∗

r (G), or better still, the K-theory of reduced crossed
products A ⋊ G, can be computed in a “topological” way. The answer in many
cases seems to be “yes,” and the conjectured answer is what is usually called the
Baum-Connes Conjecture, with or without coefficients. The special case of the
Baum-Connes Conjecture (without coefficients) for connected Lie groups is also
known as the Connes-Kasparov Conjecture, and is now a known theorem.

The Baum-Connes conjecture also has other origins, such as the Novikov Con-
jecture on higher signatures and conjectures about algebraic K-theory of group
rings, which will be touched on in Reich’s lectures. These other motivations for the
conjecture mostly concern the case where G is discrete, which is actually the most
interesting case of the conjecture, though there are good reasons for not restricting
only to this case. (For example, as we already saw in the case of Z, information
about discrete groups can often be obtained by embedding them in a Lie group.)

Here is the formal statement of the conjecture.

Conjecture 2.2 (Baum-Connes). Let G be a locally compact group, second-coun-

table for convenience. Let EG be the universal proper G-space. (This is a con-

tractible space on which G acts properly, characterized [5] up to G-homotopy equiv-

alence by two properties: that every compact subgroup of G has a fixed point in EG,

and that the two projections EG × EG → EG are G-homotopic. Here the product
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space is given the diagonal G-action. If G has no compact subgroups, then EG is

the usual universal free G-space EG.) There is an assembly map

lim
−→

X⊆EG
X/G compact

KG
∗ (X) → K∗(C

∗
r (G))

defined by taking G-indices of G-invariant elliptic operators, and this map is an

isomorphism.

Conjecture 2.3 (Baum-Connes with coefficients). With notation as in Conjecture

2.2, if A is any separable G-C∗-algebra, the assembly map

lim
−→

X⊆EG
X/G compact

KKG
∗ (C0(X), A) → K∗(A⋊r G)

is an isomorphism.

Let’s see what the conjecture amounts to in some special cases. If G is compact,
EG can be taken to be a single point. The conjecture then asserts that the assembly

map KKG
∗ (pt, pt) → K∗(C

∗(G)) is an isomorphism. For G compact, C∗(G) is by
the Peter-Weyl Theorem the completed direct sum of matrix algebras

⊕
V End(V ),

where V runs over a set of representatives for the irreducible representations of
G. Thus K1(C

∗(G)) (remember this is topological K1) vanishes and K0(C
∗(G)) ∼=

R(G). The assembly map in this case is the Green-Julg isomorphism of Section
2.2. In fact, the same holds with coefficients; the assembly map KKG

∗ (C, A) =
KG

∗ (A) → K∗(A⋊G) is the Green-Julg isomorphism, and Conjecture 2.3 is true.
Next, suppose G = R. Since G has no compact subgroups and is contractible, we

can take EG = R with R acting on itself by translations. If A is an R-C∗-algebra,
the assembly map is a map KKR

∗ (C0(R), A) → K∗(A⋊ R). This map turns out to
be Kasparov’s morphism

j : KKR
∗ (C0(R), A) → KK∗(C0(R) ⋊ R, A⋊ R) = KK∗(K, A⋊ R) ∼= K∗(A⋊ R),

which is the isomorphism of Connes’ Theorem (Section 2.4). (The isomorphism
C0(R) ⋊ R ∼= K is a special case of the Imprimitivity Theorem giving a Morita

equivalence between
(
IndG{1}A

)
⋊G and A, or if you prefer, of Takai duality from

Section 2.3.) So again the conjecture is true.
Another good test case is G = Z. Then EG = EG = R, with Z acting by

translations and quotient space T. The left-hand side of the conjecture is thus
KKZ(C0(R), A), while the right-hand side is K(A⋊ Z), which is computed by the
Pimsner-Voiculescu sequence.

More generally, suppose G is discrete and torsion-free. Then EG = EG, and
the quotient space EG/G is the usual classifying space BG. The assembly map

(for the conjecture without coefficients) maps Kcmpct
∗ (BG) → K∗(C

∗
r (G)). (The

left-hand side is K-homology with compact supports.) This map can be viewed as
an index map, since classes in the K-homology group on the left are represented
by generalized Dirac operators D over Spinc manifolds M with a G-covering, and
the assembly map takes such an operator to its “Mishchenko-Fomenko index” with
values in the K-theory of the (reduced) group C∗-algebra. The connection between
this assembly map and the usual sort of assembly map studied by topologists is
discussed in [55]. In particular, Conjecture 2.2 implies a strong form of the Novikov
Conjecture for G.



18 JONATHAN ROSENBERG

2.7. The approach of Meyer and Nest. An interesting alternative approach
to the Baum-Connes Conjecture has been proposed by Meyer and Nest [42, 43].
This approach is also briefly sketched (in somewhat simplified form) in [20, §5.3]
and in [56, Ch. 5]. Meyer and Nest begin by observing that the equivariant KK-

category, KKG, naturally has the structure of a triangulated category. It has a
distinguished class E of weak equivalences, morphisms f ∈ KKG(A,B) which re-
strict to equivalences in KKH(A,B) for every compact subgroup H of G. (Note
that if G has no nontrivial compact subgroups, for example if G is discrete and
torsion-free, then this condition just says that f is a KK-equivalence after forget-
ting the G-equivariant structure.) The Baum-Connes Conjecture with coefficients,
Conjecture 2.3, basically amounts to the assertion that if f ∈ KKG(A,B) is in E ,
then jr(f) ∈ KK(A ⋊r G,B ⋊r G) is a KK-equivalence.2 In particular, suppose
G has no nontrivial compact subgroups and satisfies Conjecture 2.3. Then if A
is a G-C∗-algebra which, forgetting the G-action, is contractible, then the unique
morphism in KKG(0, A) is a weak equivalence, and so (applying jr), the unique
morphism in KK(0, A⋊r G) is a KK-equivalence. Thus A⋊r G is K-contractible,
i.e., all of its topological K-groups must vanish. When G = R, this follows from
Connes’ Theorem, and when G = Z, this follows from the Pimsner-Voiculescu exact
sequence, (2.1).

Now that we have several different formulations of the Baum-Connes Conjecture,
it is natural to ask how widely the conjecture is valid. Here are some of the things
that are known:

(1) There is no known counterexample to Conjecture 2.2 (Baum-Connes for
groups, without coefficients). Counterexamples are now known [27] to Con-
jecture 2.3 with G discrete and A even commutative.

(2) Conjecture 2.3 is true if G is amenable, or more generally, if it is a-T-

menable, that is, if it has an affine, isometric and metrically proper action on
a Hilbert space [30]. Such groups include all Lie groups whose noncompact
semisimple factors are all locally isomorphic to SO(n, 1) or SU(n, 1) for
some n.

(3) Conjecture 2.2 is true for connected reductive Lie groups, connected reduc-
tive p-adic groups, for hyperbolic discrete groups, and for cocompact lattice
subgroups of Sp(n, 1) or SL(3,C) [39].

There is now a vast literature on this subject, but our intention here is not to
be exhaustive, but just to give the reader some flavor of what’s going on.

2The reason for using jr in place of j for can be seen from the case of G nonamenable with

property T. In this case, C∗(G) has a projection corresponding to the trivial representation of G

which is “isolated,” and thus maps to 0 in C∗

r
(G). So these two algebras do not have the same

K-theory. It turns out at least in many examples that K0(C∗

r
(G)) can be described in purely

topological terms, but K0(C∗(G)) cannot.
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Lecture 3. The universal coefficient theorem for KK and some of

its applications

3.1. Introduction to the UCT. Now that we have discussed KK and KKG,
a natural question arises: how computable are they? In particular, is KK(A,B)
determined by K∗(A) and by K∗(B)? Is KKG(A,B) determined by KG

∗ (A) and
by KG

∗ (B)?
A first step was taken by Kasparov [34]: he pointed out that KK(X,Y ) is given

by an explicit topological formula when the one-point compactifications X+ and

Y+ are finite CW complexes: KK(X,Y ) ∼= K̃(Y+∧D(X+)), where D(X+) denotes
the Spanier-Whitehead dual of X+.3

Let’s make a definition — we say the pair of C∗-algebras (A,B) satisfies the

Universal Coefficient Theorem for KK (or UCT for short) if there is an exact
sequence

(3.1) 0 →
⊕

∗∈Z/2

Ext1Z(K∗(A),K∗+1(B)) → KK(A,B)

ϕ
−→

⊕

∗∈Z/2

HomZ(K∗(A),K∗(B)) → 0.

Here ϕ sends a KK-class to the induced map on K-groups.
We need one more definition. Let B be the bootstrap category, the smallest

full subcategory of the separable C∗-algebras (with the ∗-homomorphisms as mor-
phisms) containing all separable type I algebras, and closed under extensions,
countable C∗-inductive limits, and KK-equivalences. Note that KK-equivalences
include Morita equivalences, and type I algebras include commutative algebras.
Recall from Section 1.2 that stably isomorphic separable C∗-algebras are Morita
equivalent, hence KK-equivalent. Furthermore, separable type I C∗-algebras are
inductive limits of finite iterated extensions of stably commutative C∗-algebras [44,
Ch. 6]. Thus we could just as well replace the words “type I” by “commutative” in
the definition of B. Furthermore, any compact metric space is a countable limit of
finite CW complexes. Dualizing, that means that any unital separable commutative
C∗-algebra is a countable inductive limit (i.e., categorical colimit) of algebras of the
form C(X), X a finite CW complex, and any separable commutative C∗-algebra
is a countable inductive limit (i.e., colimit) of algebras of the form C0(X), X+ a
finite CW complex. We will use this fact shortly.

Theorem 3.1 (Rosenberg-Schochet [58]). The UCT holds for all pairs (A,B) with

A an object in B and B separable.

Unsolved problem: Is every separable nuclear C∗-algebra in B? Skandalis [60]
showed that there are non-nuclear algebras not in B, for which the UCT fails.

3.2. The proof of Rosenberg and Schochet. First suppose K∗(B) is injective
as a Z-module, i.e., divisible as an abelian group. Then HomZ( ,K∗(B)) is an
exact functor, so A 7→ HomZ(K∗(A),K∗(B)) gives a cohomology theory on C∗-
algebras. In particular, ϕ is a natural transformation of homology theories for
spaces (

X 7→ KK∗(C0(X), B)
)
 

(
X 7→ HomZ(K∗(X),K∗(B))

)
.

3Spanier-Whitehead duality basically interchanged homology and cohomology. ∧ denotes the
smash product, the product in the category of spaces with distinguished basepoint.
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Since ϕ is an isomorphism for X = Rn by Bott periodicity, it is an isomorphism
whenever X+ is a sphere, and thus (by the analogue of the Eilenberg-Steenrod
uniqueness theorem for generalized homology theories) whenever X+ is a finite
CW complex.

We extend to arbitrary locally compact X by taking limits, and then to the rest
of B, using the observations we made before the proof of the theorem. In order to
know we can pass to countable inductive limits, we need one additional fact about
KK, namely that it is “countably additive” (sends countable C∗-algebra direct
sums in the first variable to products of abelian groups). This fact is not hard to
check from Kasparov’s original definition. So the theorem holds when K∗(B) is
injective.

The rest of the proof uses an idea due to Atiyah [3], of geometric resolutions.
The idea is that given arbitrary B, we can change it up to KK-equivalence so that
it fits into a short exact sequence

0 → C → B → D → 0

for which the induced K-theory sequence is short exact:

K∗(B) K∗(D)։ K∗−1(C)

and K∗(D), K∗(C) are Z-injective. Then we use the theorem for KK∗(A,D) and
KK∗(A,C), along with the long exact sequence in KK in the second variable, to
get the UCT for (A,B). �

3.3. The equivariant case. If one asks about the UCT in the equivariant case,
then the homological algebra of the ground ring R(G) becomes relevant. This is
not always well behaved, so as noticed by Hodgkin [31], one needs restrictions on G
to get anywhere. But for G a connected compact Lie group with π1(G) torsion-free,
R(G) has finite global dimension, and the spectral sequence one ends up with does
converge to the right limit.

Theorem 3.2 (Rosenberg-Schochet [57]). If G is a connected compact Lie group

with π1(G) torsion-free, and if A, B are separable G-C∗-algebras with A in a suit-

able bootstrap category containing all commutative G-C∗-algebras, then there is a

convergent spectral sequence

ExtpR(G)(K
G
∗ (A),KG

q+∗(A)) ⇒ KKG
∗ (A,B).

The proof is more complicated than in the non-equivariant case, but in the same
spirit.

Also along the same lines, there is a UCT for KK of real C∗-algebras, due to
Boersema [8]. The homological algebra involved in this case is appreciably more
complicated than in the complex C∗-algebra case, and is based on ideas on Bousfield
[9] on the classification of K-local spectra.

3.4. The categorical approach. The UCT implies a lot of interesting facts about
the bootstrap category B. Here are a few examples.

Theorem 3.3 (Rosenberg-Schochet [58]). Let A, B be C∗-algebras in B. Then

A and B are KK-equivalent if and only if they have the isomorphic topological

K-groups.
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Proof. ⇒ is trivial. So suppose K∗(A) ∼= K∗(B). Choose an isomorphism

ψ : K∗(A) → K∗(B).

Since the map ϕ in the UCT (3.1) is surjective, ψ is realized by a class x ∈
KK(A,B) (not necessarily unique, but just pick one).

Now consider the commutative diagram with exact rows

0 // Ext1
Z
(K∗+1(B),K∗(A)) //

ψ∗∼=

��

KK∗(B,A)
ϕ

//

x⊗B

��

Hom(K∗(B),K∗(A)) //

ψ∗∼=

��

0

0 // Ext1
Z
(K∗+1(A),K∗(A)) // KK∗(A,A)

ϕ
// Hom(K∗(A),K∗(A)) // 0

By the 5-Lemma, Kasparov product with x is an isomorphism KK∗(B,A) →
KK∗(A,A). In particular, there exists y ∈ KK(B,A) with x⊗B y = 1A. Similarly,
there exists z ∈ KK(B,A) with z ⊗A x = 1B. Then by associativity

z = z ⊗A (x⊗B y) = (z ⊗A x) ⊗B y = y

and we have a KK-inverse to x. �

Corollary 3.4. We can also describe B as the smallest full subcategory of the

separable C∗-algebras closed under KK-equivalence and containing the separable

commutative C∗-algebras. A separable C∗-algebra A has the property that (A,B)
satisfies the UCT for all separable C∗-algebras if and only if it lies in B.

Proof. Let B′ be the smallest full subcategory of the separable C∗-algebras closed
under KK-equivalence and containing the separable commutative C∗-algebras. By
definition of B, B′ is a subcategory of B. But if A is in B, itsK-groups are countable.
For any countable groups G0 and G1, it is easy to construct a second-countable
locally compact space with these K-groups. So there is a separable commutative
C∗-algebra C0(Y ) with K∗(C0(Y )) ∼= K∗(A) (just as abelian groups). By Theorem
3.3, there is a KK-equivalence between A and C0(Y ), so A lies in B′.

As far as the last statement is concerned, one direction is the UCT itself. For the
other direction, suppose that (A,B) satisfies the UCT for all separable C∗-algebras
B. In particular, it holds for a commutative B with the same K-groups as A, and
by the argument above, A is KK-equivalent to B, hence lies in B. �

Recall that KK(A,A) = EndKK(A) is a ring under Kasparov product. We can
now compute the ring structure.

Theorem 3.5 (Rosenberg-Schochet). Suppose A is in B. In the UCT sequence

0 →
⊕

i∈Z/2

Ext1Z(Ki+1(A),Ki(A)) → KK(A,A)
ϕ
−→

⊕

i∈Z/2

End(Ki(A)) → 0,

ϕ is a split surjective homomorphism of rings, and J = kerϕ (the Ext term) is an

ideal with J2 = 0.

Proof. Choose A0 and A1 commutative with K0(A0) ∼= K0(A), K1(A0) = 0,
K0(A1) = 0, K1(A1) ∼= K1(A). Then by Theorem 3.3, A0⊕A1 is KK-equivalent to
A, and without loss of generality, we may assume we have an actual splitting A =
A0 ⊕A1. By the UCT, KK(A0, A0) ∼= EndK0(A) and KK(A1, A1) ∼= EndK1(A).

So KK(A0, A0)⊕KK(A1, A1) is a subring of KK(A,A) mapping isomorphically
under ϕ. This shows ϕ is split surjective. We also have J = KK(A0, A1) ⊕
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KK(A1, A0). If, say, x lies in the first summand and y in the second, then x⊗A1
y

induces the 0-map on K0(A) and so is 0 in KK(A0, A0) ∼= End(K0(A)). Similarly,
y⊗A0

x induces the 0-map on K1(A) and so is 0 in KK(A1, A1) ∼= End(K1(A)). �

3.5. The homotopy-theoretic approach. There is a homotopy-theoretic ap-
proach to the UCT that topologists might find attractive; it seems to have been
discovered independently by several people (e.g., [11, 32] — see also the review of
[11] in MathSciNet). Let A and B be C∗-algebras and let K(A) and K(B) be their
topological K-theory spectra. These are module spectra over K = K(C), the usual
spectrum of complex K-theory. Then we can define

KKtop(A,B) = π0(HomK

(
K(A),K(B))

)
.

This is again using ideas of Bousfield [9].

Theorem 3.6. There is a natural map KK(A,B) → KKtop(A,B), and it’s an

isomorphism if and only if the UCT holds for the pair (A,B).

Observe that KKtop(A,B) even makes sense for Banach algebras, and always
comes with a UCT.

We promised in the first lecture to show that defining KK(X,Y ) to be the set
of natural transformations

(Z 7→ K(X × Z)) (Z 7→ K(Y × Z))

indeed agrees with Kasparov’s KK(C0(X), C0(Y )). Indeed, Z 7→ K(X × Z) is ba-
sically the cohomology theory defined by K(X), and Z 7→ K(Y ×Z) is similarly the
cohomology theory defined by K(Y ). So the natural transformations (commuting
with Bott periodicity) are basically a model for KKtop(C0(X), C0(Y )).

3.6. Topological applications. The UCT can be used to prove facts about topo-
logical K-theory which on their face have nothing to do with C∗-algebras or KK.
For example, we have the following purely topological fact:

Theorem 3.7. Let X and Y be locally compact spaces such that K∗(X) ∼= K∗(Y )
just as abelian groups. Then the associated K-theory spectra K(X) and K(Y ) are

homotopy equivalent.

Proof. We have seen (Theorem 3.3) that the hypothesis implies C0(X) and C0(Y )
are KK-equivalent, which gives the desired conclusion. �

Note that this theorem is quite special to complex K-theory; it fails even for
ordinary cohomology (since one needs to consider the action of the Steenrod alge-
bra).

Similarly, the UCT implies facts about cohomology operations in complex K-
theory and K-theory mod p. For example, one has:

Theorem 3.8 (Rosenberg-Schochet [58]). The Z/2-graded ring of homology opera-

tions for K( ; Z/n) on the category of separable C∗-algebras is the exterior algebra

over Z/n on a single generator, the Bockstein β.

Theorem 3.9 (Araki-Toda [2], new proof by Rosenberg-Schochet in [58]). There

are exactly n admissible multiplications on K-theory mod n. When n is odd, exactly

one is commutative. When n = 2, neither is commutative.
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3.7. Applications to C∗-algebras. Probably the most interesting applications of
the UCT for KK are to the classification problem for nuclear C∗-algebras. The
Elliott program (to quote M. Rørdam from his review of the Kirchberg-Phillips
paper [37]) is to classify “all separable, nuclear C∗-algebras in terms of an invariant
that has K-theory as an important ingredient.” Kirchberg and Phillips have shown
how to do this for Kirchberg algebras, that is simple, purely infinite, separable and
nuclear C∗-algebras. The UCT for KK is a key ingredient.

Theorem 3.10 (Kirchberg-Phillips [37, 45]). Two stable Kirchberg algebras A and

B are isomorphic if and only if they are KK-equivalent; and moreover every in-

vertible element in KK(A,B) lifts to an isomorphism A → B. Similarly in the

unital case if one keeps track of [1A] ∈ K0(A).

We will not attempt to explain the proof of Kirchberg-Phillips, but it’s based
on the idea that a KK-class is given by a quasihomomorphism, which under the
specific hypotheses can be lifted to a true homomorphism. More recent results of
a somewhat similar nature may be found in [22, 21, 41].

Given the Kirchberg-Phillips result, one is still left with the question of deter-
mining when two Kirchberg algebras are KK-equivalent. But those of “Cuntz
type” (like On)

4 lie in B, and Kirchberg and Phillips show that ∀ abelian groups
G0 and G1 and ∀g ∈ G0, there is a nonunital Kirchberg algebra A ∈ B with these
K-groups, and there is a unital Kirchberg algebra A ∈ B with these K-groups and
with [1A] = g. By the UCT, these algebras are classified by their K-groups.

The original work on the Elliott program dealt with the opposite extreme: stably
finite algebras. Here again, KK can play a useful role. Here is a typical result from
the vast literature:

Theorem 3.11 (Elliott [23]). If A and B are C∗-algebras of real rank 0 which

are inductive limits of certain “basic building blocks”, then any x ∈ KK(A,B)
preserving the “graded dimension range” can be lifted to a ∗-homomorphism. If x
is a KK-equivalence, it can be lifted to an isomorphism.

This theorem applies for example to the irrational rotation algebras Aθ, because
of an amazing result by Elliott and Evans [24] that shows that these algebras are
indeed inductive limits of the required type.

4This is the fundamental example of a Kirchberg algebra, invented by Cuntz [16]. It is the

universal C∗-algebra generated by n isometries whose range projections are orthogonal and add to
1. Cuntz proved that it is simple, and showed that On ⊗K is a crossed product of a UHF algebra
(an inductive limit of matrix algebras) by an action of Z. But crossed products by Z preserve the
category B, because of the arguments in Sections 2.4 and 2.5. Thus On lies in B.
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Lecture 4. A fundamental example in noncommutative geometry:

topology and geometry of the irrational rotation

algebra

4.1. Basic facts about Aθ. We previously mentioned the algebra Aθ, defined to
be the crossed product C(T) ⋊αθ

Z, where T is the circle group (thought of as
the unit circle in C) and where αθ sends the generator 1 ∈ Z to multiplication
by e2πiθ, i.e., rotation of the circle by an angle of 2πθ. This makes sense for any
θ ∈ R, but of course only the class of θ mod Z matters, so we might as well
take θ ∈ [0, 1). This algebra has two standard names: a rotation algebra (with
parameter θ), or irrational rotation algebra in the most important case of θ /∈ Q,
or a noncommutative (2-)torus, because of the fact that when θ = 0, we get back
simply C(T2), the continuous functions on the usual 2-torus. It is no exaggeration
to say that these C∗-algebras are the most important examples in (C∗-algebraic)
noncommutative geometry.

In this section we’ll try to lay out the basic facts about these algebras, without
attempting to prove everything or to explain the history of every result. The
standard references for a lot of this material are the fundamental papers of Rieffel
[48, 51]. A more extensive survey on this material can be found in [53].

We can describe the algebra Aθ quite concretely, using the definition of the
crossed product in Section 2.2. The algebra has two unitary generators U and
V , one of them generating C(T) and the other corresponding to the generator of
Z. They satisfy the commutation relation UV = e2πiθV U . The algebra Aθ is the
completion of the noncommutative polynomials in U and V . But because of the
commutation relation, we can move all U ’s to the left and all V ’s to the right in
any noncommutative monomial in U and V , at the expense of a scalar factor of
modulus 1. Thus Aθ is the completion of the polynomials

∑
m,n cm,nU

mV n (with

only finitely many non-zero coefficients). In fact, every element of Aθ is represented
by a formal such infinite sum, but it is not so easy to describe the C∗-algebra norm
in terms of the sequence of Fourier coefficients {cm,n}. The one thing we can say,
since ‖U‖ = ‖V ‖ = 1, is that the C∗-norm is bounded by the L1-norm, so that if the
coefficients converge absolutely, then the corresponding infinite sum does represent
an element of Aθ. (But the converse is false. This is classical when θ = 0, and
amounts to the fact that there are continuous functions whose Fourier series do not
converge absolutely.)

The algebra Aθ has a canonical trace τ , i.e., a bounded linear functional with
τ(ab) = τ(ba) for all a, b ∈ Aθ. We normalize by taking τ(1) = 1. Usually we add
the condition that τ should send self-adjoint elements to real values, though when
θ is irrational, this is automatic. When θ = 0, τ is just integration with respect to
Haar measure on T2 (normalized to be a probability measure).

There is a basic dichotomy between two cases. If θ is irrational, then no different
powers of e2πiθ coincide. It is not too hard to show from this that Aθ is simple and
that there is a unique trace in this case, defined by the condition that τ(UmV n) = 0
if m 6= 0 or n 6= 0. (Recall we do require τ(1) = 1.) So τ simply picks out the
(0, 0) coefficient c0,0 from

∑
m,n cm,nU

mV n. On the other hand, if θ = p
q ∈ Q,

then Aθ has a big center, and in fact Aθ is the algebra of sections of a bundle of
matrix algebras over T 2. In fact one can show in this case that Aθ ∼= EndT 2(V ),
the bundle endomorphisms of any complex line bundle V over T 2 with first Chern
class ≡ p (mod q) (times the usual generator of H2(T 2,Z)). The algebra has many
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traces in this case, but it’s still convenient to let τ be the one with τ(UmV n) = 0
if m 6= 0 or n 6= 0. (This along with the condition that τ(1) = 1 then determines τ
uniquely.)

The K-theory of Aθ can be computed from the Pimsner-Voiculescu sequence of
Section 2.5. In fact, the main motivation of Pimsner and Voiculescu for developing
this sequence was to compute K∗(Aθ). Since αθ is isotopic to the trivial action,
regardless of the value of θ, the map 1 − α(1)∗ in (2.1) is always 0. Hence, just
as abelian groups, one always has K0(Aθ) ∼= K1(Aθ) ∼= Z2. But one wants more
than this; one wants a description of the generators. Tracing through the various
maps involved shows that one summand in K0 is generated by the rank-one free
module (or the projection 1), and that the two summands in K1 are generated by
U and V , respectively. But the interesting feature is the order structure on K0,
which comes from the inclusions of projective modules. Note that the trace gives
a homomorphism from K0(Aθ) to R, sending a projective module to the trace of
a self-adjoint projection (in some matrix algebra) representing it. (It’s a fact that
every idempotent in a C∗-algebra is similar to a self-adjoint one; see for example
[6, §4.6]. Since the trace takes real values on self-adjoint elements, the dimension
of a projection is real-valued.)

Theorem 4.1. If θ 6∈ Q, the trace τ induces an isomorphism of K0(Aθ) with Z+θZ
as ordered groups. If θ ∈ Q, then τ still sends K0(Aθ) to Z + θZ (which is equal to

θZ in this case), but is no longer an isomorphism.

The original proof of this theorem was nonconstructive, i.e., it did not exhibit a
projective module of dimension θ that should be the missing generator of K0. We
will talk about this issue later in Section 4.3.

It follows from Theorem 4.1 that the irrational rotation algebras must split into
uncountably many Morita equivalence classes, since it is easy to see that Morita
equivalence preserves the ordering on K0, and since there are uncountably many
order isomorphism classes of subgroups of R of the form Z + θZ. In fact, any order
isomorphism Z + θZ → Z + θ′Z must be given by multiplication by some t 6= 0 in
R, with the property that t ∈ Z + θ′Z and tθ ∈ Z + θ′Z. If we write t = cθ′ + d and
tθ = aθ′ + b, a, b, c, d ∈ Z, then

θ =

(
a b
c d

)
· θ′

for the usual action of 2 × 2 matrices by linear fractional transformations. Since
the Morita equivalence must be invertible, we also have

(
a b
c d

)
∈ GL(2,Z).

So Morita equivalences of irrational rotation algebras correspond to the action of
GL(2,Z) by linear fractional transformations. The converse is also true.

Theorem 4.2 (Rieffel). Any unital C∗-algebra Morita equivalent to an irrational

rotation algebra Aθ is a matrix algebra over Aθ′ with θ′ in the orbit of θ for the

action of GL(2,Z) on RP1 by linear fractional transformations. Every matrix in

GL(2,Z) gives rise to such a Morita equivalence.

This is not true by “general nonsense” but requires an explicit construction,
which arises from the following theorem of Rieffel:
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Theorem 4.3 (Rieffel [50]). If G is a locally compact group with closed subgroups

H and K, then H ⋉ (G/K) and (H\G) ⋊K are Morita equivalent.

If we apply this with G = R, H = 2πZ, and K = 2πθZ, then H\G is the
usual model of T and (H\G) ⋊ K is Aθ, while H ⋉ (G/K) is A1/θ. The Morita
equivalence bimodule between these two algebras is a completion of S(R), with
the two generators of each algebra acting by translation and by multiplication by
an exponential, respectively. The reason why the two actions commute is that
translation by Z commutes with multiplication by e2πis, while translation by 1

θZ

commutes with multiplication by e2πiθs.
The other Morita equivalences required by the theorem can be constructed sim-

ilarly.

4.2. Basic facts about A∞
θ . One of the interesting things about Aθ is that it

behaves in many ways like a smooth manifold. That means that we should have an
analogue of the C∞ functions inside the algebra of “continuous” functions Aθ. To
find this, note that Aθ carries an action of the compact Lie group T2 via (z, w) ·U =
zU, (z, w) ·V = wV , for z, w ∈ T (viewed as complex numbers of modulus 1). This
is analogous to the action of T2 on itself by translations. The smooth subalgebra

A∞
θ is defined to be the set of C∞ vectors for this action, i.e., the elements a

for which (z, w) 7→ (z, w) · a is C∞ as a map T2 → Aθ. Alternatively, we can
describe A∞

θ as the intersection of the domains of all polynomials in δ1 and δ2, the
(unbounded) derivations obtained by differentiating the action. Since it is obvious
that δ1(U) = 2πiU and δ2(U) = 0, while δ2(V ) = 2πiV and δ1(V ) = 0, one readily
sees (as in the smooth case) that A∞

θ is a subalgebra and that it can be described
as

A∞
θ =

{
∑

m,n

cm,nU
mV n | cm,n is rapidly decreasing

}
,

where “rapidly decreasing” means decreasing faster than the reciprocal of any pos-
itive polynomial in m and n. Thus A∞

θ is isomorphic as a topological vector space
(not as an algebra) to S(Z2) and then by Fourier transform to C∞(T2).

Proposition 4.4. The inclusion of A∞
θ into Aθ is “isospectral” (i.e., an element

of the subalgebra is invertible in the subalgebra if and only if it has an inverse in

the larger algebra), and thus the inclusion A∞
θ →֒ Aθ induces an isomorphism on

K-theory.

Proof. Isospectral inclusions preserve K0 and (topological) K1, by the “Karoubi
density theorem,” so it is enough to prove the first statement. But this follows
from the characterization of A∞

θ in terms of derivations, and the familiar identity
δj(a

−1) = −a−1δj(a)a
−1, iterated many times. �

From this Proposition, as well as the fact that there is no essential difference
between smooth and purely topological manifold topology in dimension 2, one might
be tempted to guess that Aθ and A∞

θ behave similarly in all important respects.
But a deep fact is that this is false; Aut(Aθ) and Aut(A∞

θ ) are quite different from
one another.

Theorem 4.5. If θ is irrational, every automorphism of A∞
θ is “orientation-

preserving,” i.e., the determinant of the induced map on K1(Aθ) ∼= Z2 is +1.
On the other hand, Aθ has orientation-reversing automorphisms.
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Comment: The first part of this is due to [19]. The second part is due to Elliott
and Evans [24, 23].

4.3. Geometry of vector bundles. In classical topology, vector bundles play an
important role in studying compact manifolds M . Recall Swan’s Theorem ([6, §1.7]
or [20, §1.3.3]): there is an equivalence of categories between topological (respec-
tively, smooth) vector bundles over M and finitely generated projective modules
over C(M) (resp., C∞(M)). Thus in noncommutative geometry, finitely generated
projective modules play the same role as vector bundles. Because of Proposition
4.4, when it comes to irrational rotation algebras, the “vector bundle” theory is
essentially the same in both the continuous and C∞ cases, in that every finitely
generated projective module overAθ is extended from a finitely generated projective
module over A∞

θ , which is unique up to isomorphism.
Now K-theory gives the stable classification of vector bundles. The unstable

classification is always more delicate, but for Aθ, this, too is known:

Theorem 4.6 (Rieffel [51]). For Aθ with θ irrational, complete cancellation holds

for finitely generated projective modules, i.e., if P ⊕Q ∼= P ′⊕Q as Aθ-modules, for

any finitely generated projective Aθ-modules P, P ′, Q, then P and P ′ are isomorphic.

The isomorphism classes of projective submodules of a free Aθ-module of rank n are

distinguished by the trace, and are given exactly by elements of K0(Aθ) ∼= Z + θZ
between 0 and n (inclusive).

Once one knows the classification of the “vector bundles,” in both the smooth
and continuous categories, a natural next step is to study “geometry” on them. In
his fundamental paper [14], Alain Connes explained how the theory of connections
and curvature in differential geometry can be carried over to the noncommutative
case, at least when one has an algebra A like Aθ with an action of a Lie group G
for which the “smooth subalgebra” A∞ is the set of C∞-vectors for the G-action
on A. (This of course applies here with G = T2 acting as we described above.)
Then if V is a finitely generated (right) A∞-module, a connection on V is a map
∇ : V → V ⊗ g

∗ (g the Lie algebra of G) satisfying the usual Leibniz rule

∇X(v · a) = ∇X(v) · a+ v · (X · a), v ∈ V, a ∈ A∞, X ∈ g.

Usually one requires a connection to be compatible with an inner product also.

Connections always exist and have a curvature 2-form Θ ∈ EndA(V )⊗
∧2

g
∗ defined

as usual by
Θ(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Theorem 4.7 (Connes [14]). Every finitely generated projective module over A∞
θ

admits a connection of constant curvature (i.e., with the curvature in i
∧2

g
∗). The

curvature can be taken to be 0 if and only if the module is free. More precisely, on

the projective module with “dimension” p+ qθ > 0, p, q ∈ Z, the constant curvature

connections have curvature

Θ(δ1, δ2) =
2πiq

p+ qθ
.

Connes and Rieffel defined the notion of Yang-Mills energy of a connection,
precisely analogous to the classical case for smooth vector bundles over manifolds.
This is defined by

YM(∇) = −τEnd(V )

(
{Θ∇,Θ∇}

)
,

where { , } is the natural bilinear form on 2-forms.



28 JONATHAN ROSENBERG

Theorem 4.8 (Connes and Rieffel [15, 52]). If V is a finitely generated projective

module over A∞
θ , a connection ∇ on V gives a minimum for YM if and only if it

has constant curvature, and gives a critical point for YM if and only if it is a direct

sum of constant curvature connections (i.e., V has a decomposition V1 ⊕ · · ·Vn
with respect to which ∇ has a similar decomposition into connections of constant

curvature).

As we mentioned earlier, the original calculation of K0(Aθ) was nonconstructive,
and the problem remained of explicitly exhibiting representatives for the the finitely
generated projective modules. One answer is already implicit in what we have
explained: if P is a finitely generated projective A-module, then it gives rise to
a Morita equivalence between A and EndA(P ), so constructing all possible P ’s is
equivalent to finding all Morita equivalence bimodules for A. In the case of Aθ, they
are all similar to the bimodule we mentioned before between Aθ and A1/θ. But one
could ask for another answer to the problem, namely to give explicit representatives
for all the equivalence classes of projections in Aθ (or in matrix algebras over it).
Here two good solutions have been proposed, one by Rieffel [48] and one by Boca

[7]. Rieffel constructed explicit projections in Aθ of the form Uf + g + fU∗, where
f and g are functions of V . Boca instead constructed projections in terms of theta-
functions which can be described as follows: if X is an A-B Morita equivalence
bimodule as above, with A = Aθ, and if one can find an element ψ ∈ X with
〈ψ, psi〉B = 1B, then A〈ψ, psi〉 will be a projection in A. Boca’s projections come
from choosing ψ closely related to a Gaussian function in S(R).

4.4. Miscellaneous other facts about Aθ. Here we just mention a few other
things about the algebras Aθ. The work of Elliott and Evans [24, 23], which we
mentioned before, has more detailed implications for automorphisms and endomor-
phisms of Aθ. Assuming θ is irrational, given any A ∈ GL(2,Z), there is an auto-
morphism of Aθ inducing the map A on K1(Aθ) ∼= Z2, and given any B ∈ End(Z2)
(including 0!), there is a unital endomorphism ofAθ inducing the identity onK0(Aθ)
and the map B on K1(Aθ). Furthermore, the connected component of the identity
in Aut(Aθ) is topologically simple, and Aut(Aθ) is just an extension of this con-
nected group by GL(2,Z) [25]. All of this seems quite strange from the perspective
of ordinary manifold topology, since a self-map T 2 → T 2 inducing the identity on
K0(T 2) is of degree 1, and thus cannot induce the 0-map on K−1(T 2) ∼= H1(T 2).

However, the endomorphisms constructed by Elliott’s procedure are unlikely to
be smooth. Kodaka [38] did construct some special smooth proper unital endo-
morphisms of irrational rotation algebras, but only when θ lies in a real quadratic
number field.

And one more structural fact about the algebras Aθ: they have real rank zero,
that is, finite linear combinations of projections are dense in the set of self-adjoint
elements.
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Lecture 5. Applications of the irrational rotation algebra in

number theory and physics

5.1. Applications to number theory.

5.2. Applications to physics.
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