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ABSTRACT 

IfKis  an infinite field and ifG ffi GL(n, K) with the discrete topology, then all 
principal-series representations of G are irreducible, and any two such with 
the same central character ~/are weakly equivalent to one another and to the 
w-regular representation. In addition, every irreducible unitary represen- 
tation of G which is not one-dimensional weakly contains a representation of 
the principal series. We deduce that every maximal ideal of C*(G) is either of 
codimension 1 or else a kernel of a principal-series representation. In par- 
ticular, except in the exceptional case where K is an infinite algebraic 
extension of a finite field, the reduced C*-algebra of PGL(n, K) is simple, as 
was also shown by de la Harpe in many cases. 

Introduction, notation and statement of results 

Suppose K is an infinite field, K x is its multiplicative group, n > 2, and 

G = GL(n, K). We give all of  these the discrete topology. Also we usually think 

of  K just as an additive group, and le t /~ denote its Pontryagin dual group, 
which is compact. We shall consider in this paper the unitary representation 

theory of the group G. There are many motivations for studying this topic. 
One is that G is one of the few highly non-commutative infinite discrete groups 

about whose unitary representations one can say very much. (Other known 
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examples tend to be amenable, such as the infinite symmetric group, studied by 
Thoma [10], and finitely generated torsion-free nilpotent groups [4]. On the 
other hand, G is amenable only in one special case m see Proposition 9 below.) 
A second motivation is that when K is a number field (the case of primary 
interest to us), G embeds as a lattice subgroup of GL(n, AK), and the study of 
the interaction between the unitary representations of these two groups might 
encode some number-theoretic information. It is also possible that the study of 
the unitary representation theory of G should also give some clue of what one 
should expect for arithmetic groups such as GL(n, Cx), e.g., GL(n,Z). 
(Nevertheless, there are substantial differences between GL(n, K) and 
GL(n, Z) m for example, as the former is not finitely generated, it can't have 
Kazhdan's property T [8], though the latter does for n > 3.) 

We let B denote the Borel subgroup of G consisting of upper-triangular 
matrices, so that B = A I~ N, where A ~ (KX) n is the group of invertible 
diagonal matrices and N is the group of upper-triangular matrices with l's on 
the diagonal. Let W denote the group of permutation matrices in G, the 
matrices with exactly one 1 in each row and column and with O's elsewhere. 
The group W, which is isomorphic to Sn, may be identified with the Weyl 
group of A, and by Bruhat decomposition, G -- lIw~,1BwB. (See, for instance, 
28.3, 34.5 and 35.1 in [6], though for GL(n) this is much more elementary, and 
follows from basic linear algebra as in [7], 3.7.) We also denote by Z the group 
of scalar matrices, which is the center of G; note that Z ~ K x. All these groups 
are given the discrete topology. 

All group representations to be considered in this paper are unitary re- 
presentations on Hilbert spaces. As usual, ~ denotes the set of equivalence 
classes of in'educible representations of G, and C*(G) denotes the group C*- 
algebra of G, the completion of CG in the greatest C*-norm. Any unitary 
representation ~t of G canonically extends to a • -representation of C*(G), and 
when we refer to the kernel of it, ker 7t, we usually mean the kernel in C*(G), 
rather than the kernel in G (which is usually uninteresting, since G is close to 
being simple). We denote by Prim G the primitive ideal space of C*(G), with 
the Jacobson topology. A representation zt is said to be weakly contained in a 
representation t7 iffker tt ___ ker o" in C*(G), or equivalently (by Fell's Theorem 
- -  [2] or [1, 18.1.4]), if any matrix coefficient of ~t may be approximated 
pointwise by matrix coefficients of a multiple of tz. Representations are weakly 
equivalent if each is weakly contained in the other, i.e., if they have the same 
kernel in C*(G). Since G is not type I (the only discrete groups that are type I 
are those with an abelian subgroup of finite index [11]), the natural surjection 



Vol. 67, 1 9 8 9  REPRESENTATION THEORY OF GL(n) 69 

~ Prim G (sending ~z to ker n) is not one-to-one, and for K countable, G is 

not even countably separated as a Borel space [1, 9.5.6]. Thus we cannot 
realistically expect to do any better than to classify irreducible representations 
up to weak equivalence, i.e., to compute Pr im G. One of us accomplished this 
in [4] for finitely generated torsion-free nilpotent groups, and the answer in 
that case turned out to parallel to some extent the Kirillov theory of  unitary 
representations of nilpotent Lie groups. Thus one might expect the classifica- 
t ion of Pr im G to reflect some of what is known about unitary representations 
of  GL(n) over finite or local fields. However, as we shall see, the theory is 
substantially different. 

For every rt E G, it I z must  be a multiple of a character g ,  called the central 
character of zt. In this way, one obtains a natural surjection Prim G 
2~ ~ (K x) ^. For g E 2~, the fiber is denoted Prim(G, g)  and corresponds to a 
quotient C*(G, g) of C*(G). One obvious representation of this algebra is 

2~ = Indzt ~ g,  

where Ind stands for unitary induction, which we call the g-regular represen- 
tation of G. Since G/Z is an infinite-conjugacy-class group, this is a II~ factor 
representation. We denote by C*(G, g) the C*-algebra 2v,(C*(G , g)). This 
algebra is prime, and in fact it will turn out that it is primitive (Theorem 4 
below - -  of course, the result is automatic by C*-algebra theory i fK(and  hence 
G) is countable [1, 3.9.1.c]) and almost always simple (note part (c) of that 
same theorem). 

It is easy to specify certain special irreducible representations of  G which 
will play an important  role in what follows. First, i f  ~ E (K x) ^, ~ o det defines a 
one-dimensional irreducible unitary representation of  G, with central 
character ~n. Since G~ is isomorphic to K x via the determinant  map 
[7, pp. 376-377], all one-dimensional unitary representations are of this form. 
Also note that if/z~ x denotes the group of n-th roots of  unity in K, which of  
course has order at most n, then we have the exact sequence of  discrete abelian 

groups 

1 ---,#~--K x -% K x ~KXl{n-th powers in K x } ~ 1, 

and thus the dual exact sequence of  compact  groups 

1 ---,(KX/{n-th powers in KX}) ^ ---(K x) ^ -% (K x) ^ ... (#x) ^ __. 1. 

I f  follows immediately that for g E ( K  x) ^, g can be written as ~n, for some 



70 R.E.  HOWE AND J. ROSENBERG Isr. J. Math. 

~0 ~ ( K  ×) ̂ , if and only if ~/vanishes on/z ~. When this is the case, we also see 

that the possible ¢'s are parameterized (non-canonically) by the character 

group of  KX/(n-th powers in KX}. In particular, there is only one if K is 

algebraically closed, or if  n is a power of the characteristic and K is perfect. 

The other basic representations of G are the principal series. If ¢~, . . . .  en 
(K x) ̂ , then (9'1, • • •, ~/,) may be viewed as a character of  A and hence of B (by 

extending to be trivial on N). The corresponding principal-series represen- 

tation of G is defined to be IndBt¢(~/~ . . . . .  ¢,~). Its central character is easily 

computed to be ~ = ¥t~/2""" ~,- Similarly, one can define other series of  

representations, called degenerate principal series, attached to standard 

parabolic subgroups other than B. Given positive integers m ~ , . . . ,  mr with 

m~ + • • • + mr ~- n, one can define the standard parabolic subgroup of block- 
upper-triangular matrices 

P(ml,...,mt) = 

w h e r e  

= (GL(m,, K) X . . .  X GL(mr, K)) Ix: N(m, , . . . ,m,  ) . 

{ti 0 

Then given ~/1, . . . .  ~r E(Kx)  ^, one can form the character 

(¥1 ° d e t ) ® . . .  ®(~6 ° det) 

of  GL(m~, K) X .  • • X GL(mr, K). This can be extended to Ptm,,...,m,) by making 

it trivial on Nt,~l,...,m,~, and inducing unitarily to G gives a representation of  the 

degenerate principal series for our chosen parabolic subgroup. 

We now have established the notation necessary to state our main results. As 

the first of  these is rather trivial, it does not seem appropriate to call it a 

theorem. 

PROPOSITION 1. Any principal-series representation of G, and in fact any 
degenerate-principal-series representation of G, is irreducible. 
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THEOREM 2. Any unitary representation of G which is non-trivial on 
the commutator subgroup SL(n, K) weakly contains a representation of the 
principal series. 

THEOREM 3. For any ~E(K×)  ^, any principal-series representation with 
this central character is weakly equivalent to 2v,. Hence any two such principal- 
series representations are weakly equivalent to each other. 

By putting all these results together, we obtain the following: 

THEOREM 4. (a) For each ~u ~ Z ^, C*(G, ~u) has at most one maximal ideal 
of infinite codimension, namely, ker 2~. (It can fail to be maximal only when K 
is an infinite algebraic extension of a finite field.) I f  g is non-trivial on lt~, this is 
the unique maximal ideal. Otherwise the other maximal ideals are the kernels 
of  the one-dimensional representations q~ o det with ~n = ~. 

(b) Except when K is an infinite algebraic extension of a finite field, 
C*(G, ¥) is simple for each ¥. In particular, C*(PGL(n, K)) is simple. 

(c) l fK  is an infinite algebraic extension of F~, then C*(G, ~u) is primitive for 
each ¥. The only primitive ideals of this algebra, other than {0}, are of 
codimension 1. Hence if ~/ does not vanish on #~, C*(G, ¢¢) is simple. 

Note that the simplicity of C*(PGL(n, K)) for fields K of characteristic 0 was 
conjectured by de la Harpe and proved for n < 3 [3 m but see the note "added 
in proof" on p. 253]. It is interesting to see that the same holds for most fields 
of characteristic p. 

Some of the results of this paper were obtained several years ago and 
announced at a meeting of the American Mathematical Society in Baltimore in 
1986 [5]. However, we have simplified many of the proofs in the meantime. 

Proofs of the theorems 

We proceed now to prove all the theorems stated above. Proposition 1 
follows easily from the following version of the Frobenius reciprocity theorem, 
due to Mackey [9, Theorem 4']. Mackey assumes separability of the Hilbert 
spaces, which is never really used in the proof. Since the result is very easy, we 
include a (slightly different) proof for completeness. 

THEOREM 5 (Mackey [9]). Let G be a discrete group, P a subgroup, rt a 
unitary representation of  P on a Hilbert space Hx, and cra unitary represen- 
tation of G on a Hilbert space H~. Then the map 
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T ~ S, where S~ = (T~)(e), 

induces an injection 

Hom~(tr, Indet~ n) ~ Home(a  le, n). 

PROOF. Recall that Indet~ n acts on the Hilbert space 

v = {f:  I f(gb) = n ( b ) - t f ( g )  for g E G ,  b EP ;  

(g II f ( g ) I I  • 

Since G is discrete, the point evaluation f u n c t i o n a l s f ~  f (g )  are bounded on 
V, so it is clear that the map T ~-~ S as defined is bounded. A simple 
calculation shows that this map sends a G-intertwining operator T:  Ho ~ Vto 
a P- intertwining operator S:  Ho --- H~. The map is an injection, since i fS  = 0, 
then for any v E H ,  and g ~ G, we have 

0 --~ S (a (g )  - iv) = T(tr(g - I)v)(e) = tr(g- 1)(Tv)(e) = (Tv)(g), 

hence Tv=-- O. [] 

REMARK. When G is infinite, the map of  the theorem is usually not a 

surjection. 

COROLLARY (Proposition 1). Let K be an infinite discrete field, G = 

GL(n,  K), and P = Ptr, l,...,m,~ some standard parabolic subgoup o f  G. Then for 

any one-dimensional unitary character ~o o f  P, Indet~ ~o is irreducible. 

PROOF. By Theorem 5, HomG(Indet6 ~, Indeta ~) ~ Home(Indeta ~0, ~o). 
We claim the latter is one-dimensional. Indeed, by Bruhat decomposition, G is 
a finite union of  P - P  double cosets PwiP, with w~ = 1 and wi S P  for i > 1. If  
we write P = MN,  where N is the unipotent  radical of P, then the functions in 
the Hilbert space V of Indet~ ~0 which are supported on Pw~P are an N- 
invariant subspace which does not contain the trivial representation of N for 
i > 1 (since K is infinite). Thus 

dim H o m p ( I n d e t  o ~o, ~o) < dim H O m N ( I n d p t  o ~o, ~o) = 1. [] 

The proofs of the main theorems, Theorems 2-4, will be fairly straight- 
forward once we have proved a few preliminary results. The first of  these is 
valid for arbitrary discrete groups and will be used many times below. 

LEMMA 6. Let L be any discrete group and M any subgroup. Suppose rt is a 

unitary representation o f  L whose restriction to M weakly contains some repre- 



Vol. 67, 1 9 8 9  REPRESENTATION THEORY OF GL(n) 73 

sentation p o f  M. Then ~t weakly contains a representation tr o f  L such that tr lu 
contains p (literally, not just weakly). I f  p is irreducible, tr can be chosen 

irreducible. 

PROOV. It is obviously no loss of generality to assume p is cyclic with some 

unit cyclic vector ~, since we can deal with any cyclic component separately. 

By assumption, there are normalized matrix coefficients q~a of multiples of  

n, whose restrictions to M constitute a net converging to the coefficient 

m ~ (p(m)~,~)  of p. Since the space of normalized positive-definite 
functions on L is compact in the topology of  pointwise convergence, there 

is a subnet converging to a positive-definite function q~. Then ~0 can be 

realized as (tr(.)r/, t/), for some representation tr of  L and unit cyclic vector t/. 

Clearly tr has the desired property. Ifp is irreducible, then there are irreducible 

representations of L whose restrictions to M contain p, and we can take tr to be 

one of these. [] 

The proof of  Theorem 2 requires two more preliminaries. The first gives us a 

tool to handle representations of certain subgroups of G, and the second gives 

a way of  "recognizing" representations of the principal series. 

PROPOSITION 7. Consider the action o f  G = GL(n, K) on (K") ^, dual to the 

usual action on K ~. 
(i) I f  gt ÷ 1 in (K ~) ̂ , then the G-orbit o f  q/is dense in (K ~) ̂ . 
(ii) I f  K is countable, then the set o f  g with trivial stabilizer is dense G6 of  

full Haar measure. I f  n = 1, then whether K is countable or not, G acts freely 
o n  g - (1}. 

PROOF. (i) Write ~u = (~u~,..., ~u,) with ~u~E/(7. If  ~u ÷ 1, then trans- 

forming by an element of G if necessary, we can asume ~u~ ~ 1 for all i. Then 
considering the action of the diagonal subgroup A of  G shows it suffices to 

prove the result in the case n = 1. 
So take n = 1. For a ~ K  × = GL(1, K), let Ya - a - ~ ' ¥ ,  so 

~a(x) = ~(ax), x ~ K .  

Note that ~a~b = qta+b, SO if we let ~0 = lx, we see that 

H = { ~ a : a ~ K }  = K  x - ~  tO {lx} 

is a subgroup o f / ( .  If  K x. ~ were not dense in K, then/ - /would  be a proper 

closed subgroup, and by Pontryagin duality there would be some 0 # x E K  

annihilating H. This would mean 
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g(ax)  -- 1 for all a ~K,  

hence ~v(y) = 1 for all y ~ K ,  i.e., ¥ = l r ,  a contradiction. So K x.  ~' is dense. 

(ii) For g E G and ~, E (K n) ̂ , g .  g = ¥ if and only if 

(*) (g  - -  I ) ( K  n) __. ker ~. 

Here 1 denotes the identity element of G. If g ÷ 1, then (g - 1)(K n) is a 

non-zero linear subspace of K ~. If n = 1, this means it is everything, and (.) 

forces ¢ /=  1K. In general, the set ((K~)^) g of g-fixed points in (K~) ̂  is the 

annihilator of  this subspace, and so is a closed subgroup with void interior and 

Haar measure 0. If K is countable, then so is G, and the set of  ¢/'s with trivial 

stabilizer is the intersection of  countably many dense open sets of  full Haar 

measure. Density follows by the Baire category theorem. [] 

LEMMA 8. Let ~t be an irreducible unitary representation o f  G = GL(n,  K), 

and suppose the representation space ~t contains a non-zero B-eigenvector ~ for  

a character ~/= ( ~ , , , . . . ,  ~/~) o f  B with ~,~, . . . .  ~/~ all distinct. Then 7t ~-- 

IndB)~ ¥. 

PROOF. It will be enough to show that the matrix coefficient ~ : g  

(it(g) ~, ~) of  7t coincides with an "obvious" matrix coefficient of  the principal- 

series representation. By Bruhat decomposition, G = U w z w B w B ,  so we can 
check this on each double coset separately. But for b~, b2EB,  

~(blwb2) = (lt(blwb2)~, ~) 

= (lt(w)n(b2) ~, r~(bi- l) ~ ) 

= (it (w)~(b2) ~, ¥(b71) ~) (by the eigenvector property) 

= ~,(b2)~/(b~)~(w). 

Thus ¢ is determined by its restriction to W. 

Now if w E W and a CA, 

w(a)e(w)= 

= (Tt(waw-l)Tt(w)~, ~) 

= (l t(w)~, x ( w a - l w - l ) ~ )  

= V / ( w a - ' w - q ~ ( w )  

= ~/(waw-q~(w) ,  
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hence if ~(w) ~ 0, ~u must  be w-invariant. But by assumption, the character ¥ 
is not fixed by any w ~ 1 in W. Thus (o vanishes on B w B  for all w ~ W - { 1 }, 
hence ~o is supported on B and n is induced from ~ on B. [] 

Now we are ready for the main results. It is convenient to begin with 

Theorem 3. 

PROOF OF THEOREM 3. Let  I//~E(KX) ^ and let ~ 1 , . . . ,  ~ ,~E(KX)  ^ with 
~ .  • • ~/, = ¥. It suffices to show that given finitely many elements ill, . . . .  g, E 
G, none of which is in Z,  there is a matrix coefficient of  IndBte(~l . . . .  , ¥ ,)  
which vanishes on all of  them. But for each i, the fixed point set of  fit in the flag 
variety G / B  is an algebraic subvadety of positive codimension. Thus there 
exists x B  ~ G / B  such that g~xB ÷ x B  for all i. Then the matrix coefficient of 
IndBte (~ l , . . . ,  ~/,) defined by x B  vanishes on g l , . . - ,  g,, as required. This 
shows 2~ is weakly contained in our principal-series representation. 

Note, however, that the reverse weak inclusion is trivial: since B is solvable, 
hence amenable, (~/1, • • -, ~,) is weakly contained in Indztn ~, and thus by 
induction in stages, IndBte(~fi, . . . .  ~,) is weakly contained in 

Indnto Indztn ~ ~ 2~. [] 

PROOF OF THEOREM 2. We begin by observing that it is enough to prove 
the theorem when K is countable. The reason is the following. Suppose we 
know the theorem in this case, and suppose lr is a unitary representation of 
G -- GL(n, K) (for general K now) with some central character, say ~ E (K x) ^. 
Because of Theorem 3, we need to show that if 7r is non-trivial on SL(n, K), 
then ~ weakly contains 2~. In other words, we need to show that given 
gl . . . . .  g, E G, there are matrix coefficients of multiples of 7r converging on 
these finitely many elements to the canonical matrix coefficient of  2~ (which is 
{# on Z and 0 off Z). By adding another gt if necessary, we may assume that 
g, ~ SL(n, K) and that 7r(g~) is not the identity operator. Then the subfield L of 
K generated by the matrix entries of  gl, . . . .  gr is countable, and ~ Isu,~) is 
non-trivial, so the desired result follows from the theorem for L.  (Should 
L turn out to be finite, first one should replace it by a countably infinite 

extension field.) 
Now we may suppose K is countable. Let lr be a unitary representation of G, 

say with central character {0, which is non,trivial on SL(n, K). Consider the 
subgroup Q -- H I~ U of  G, where H ~-- GL(n  - 1, K) and U ~ K "-  1, consist- 
ing of matrices of  the form 
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A(~_~),  A ~ G L ( n - I , K ) ,  x E K  "-1. 

Observe first that n [ v must be non-trivial, for any elementary matrix in G 
can be conjugated into Uby an element of W c G, and thus ifn were trivial on 
U, it would be trivial on the subgroup of G generated by the elementary 
matrices, which is all of SL(n, K) by [7, Lemma 1, p. 376], a contradiction. 
Thus by Proposition 7, n I v weakly contains the orbit of some ~ E 0 with 
trivial stabilizer in H. By Lemma 6, with G in place of L and Q in place of M, rt 
weakly contains a representation tr of G whose restriction to Q contains an 
irreducible representation p of Q supported on the orbit of ~. By the Mackey 
machine for Q, p ~ IndvtQ ~'. In particular, p In is equivalent to the regular 
representation of H, and thus p remains unchanged up to weak equivalence 
after tensoring with any representation of H (extended to be trivial on U). 
However, p [ v weakly contains the trivial representation of U by Proposition 
7(i) again, so by Lemma 6, p weakly contains a representation of Q trivial on U, 
in fact (since we can tensor) any such representation. By Lemma 6, tr weakly 
contains a representation whose restriction to Q contains the regular represent- 
tion of H, extended to be trivial on U. In particular, a restricted to 
B(n - 1) 1~ U, where B(n - 1) is the upper-triangular subgroup of H, weakly 
contains every one-dimensional representation of this group, and tr restricted 
to B = B(n - 1). U. Z weakly contains every one-dimensional representation 
with central character ~o. Since K is infinite, we can choose such a character 
t~ = (~ , , . . . ,  ~,) with ~ .  • .J, = ~ and with the Ji's all distinct. By Lemma 6 
again, tr weakly contains a representation with a B- eigenvector with eigenvalue 
6. Then by Lemma 8, tr (and thus n) weakly contains IndBto ~. [] 

In order to prove Theorem 4, we need only one more ingredient, namely, to 
determine when G is and is not amenable. 

PROPOSITION 9. GL(n, K), with the discrete topology and with n > 2, is 

amenable i f  and only i f  K is an algebraic extension o f  a finite field. 

PROOF. IfKis an algebraic extension of a finite field, then Kis the union of 
an ascending sequence {Kk) of finite fields. Hence GL(n, K) = lirq GL(n, Kk) 
is an inductive limit of finite groups, and so is locally finite and amenable. Note 
that in this case, C*(G) is an AF-algebra (an inductive limit of finite-dimen- 
sional C*- algebras). 
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Therefore we may suppose either that K __D F v but that Kis not algebraic over 
the prime field, or else that K D_ Q. 

In the first case, K obviously includes Fp(t), a purely transcendental exten- 
sion of transcendence degree 1 over Fp. To show G = GL(n, K) is non- 
amenable, it suffices to show that it contains a non-amenable subgroup (since 
for discrete groups amenability descends to subgroups). Thus we need show 
only that GL(2, Q) and that GL(2, Fv(t)) are non-amenable. However, these 
discrete groups embed densely in GL(2, R) and GI_(2, Fp[[t]][t-~]), respec- 
tively, which are non-amenable Lie groups over local fields. (The non-amen- 
ability can be read off very explicitly from the representation theory, say from 
existence of complementary series.) If any of GL(2, Q) or GL(2, Fv(t)) were 
amenable, then the Lie group in which it embeds would have a mean invariant 

under the dense subgroup, and thus under the whole group by continuity, 
which is a contradiction. So all of these groups are non-amenable. [] 

PROOF OF TH~ORV.M 4. We have seen now that any irreducible represen- 
tation of C*(G, ~t) weakly contains either a one-dimensional representation or 
a representation of the principal series. Furthermore, all of the latter (with 
central character q/) are weakly equivalent to ;t~,. Thus the ideals of codimen- 
sion 1 (if any) and ker 2~, are the only possible maximal ideals of C*(G, ¥). 
Also, it is clear that the set of one-dimensional representations cannot weakly 
contain ;tw, whereas the reverse weak containment holds if and only if G is 
amenable, or by Proposition 9, if and only i fK  is algebraic over a finite field. 
Thus C*(G, ~) ~ C*(G, ~t)/ker 2 v, fails to be simple only when K is algebraic 
over a finite field and when there exist one-dimensional representations with 
central character ~t. Finally, when G is amenable, we know that 2~ is faithful on 
C*( G , q/). [] 

Extension of the results to other groups 

The reader will note that we have used very little of the structure of GL(n) 
except for Bruhat decomposition. This immediately suggests that most of  our 
results should go over to other split reductive algebraic groups over K. 
Unfortunately, there is a difficulty in working with SL(n) or Sp(n), which can 

be seen if one tries to prove the analogue of Proposition 7 for the Borel 
subgroup of SL(2, K). This group again has the structure K x I~ K, but an 
element a ~ K* acts on K by multiplication by a 2, and unless every element of  
Kis a square (i.e., Khas no quadratic extensions if char K ~ 2, or Kis perfect if 
char K -- 2), the proof of Proposition 7 breaks down. 
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However, it turns out our entire theory goes through for the group G = 
GSp(2n, K). This is the subgroup of matrices a E GL(2n, K) satisfying 

(**) aJta = c J, for some c E K × (depending on a), 

where J is the standard symplectic matrix 

j = (  O. 1. )~GL(2n,  K)" 
- 1 .  0. 

Note that GSp(2, K) -- GL(2, K), but that G is a proper subgroup of GL(2n) 
for n > 1. The map a ~ c, where c is as in (**), induces an identification of G~ 
with K x, and the commutator subgroup of G is Sp(2n, K). Furthermore, 
Sp(2n, K) is generated by symplectic transvections conjugate to matrices of the 
form 

1 , / '  

where ell is the usual (n X n) matrix unit [7, pp. 391-3971. The center ZofG is 
the same as the center of GL(2n, K), and can thus be identified with K x 
(of. Lemma 2 in [7, p. 3931). 

Note that if ~ E (K x) ̂ , the one-dimensional representation 

a ~ ~(c) (c as in (**)) 

has central character (o2, and all one-dimensional representations are of this 
form. Thus for ~,E(K x) ̂ , there exist one-dimensional representations with 
central character ~, if and only if ¥( - 1) -- 1. Except for this change, Theorem 
4 goes over verbatim to our new setting. 

We sketch now the modifications needed to adapt the proofs for GL(n) to 
GSp(2n). The role of Q in the proof of Theorem 2 will now be played by the 

parabolic subgroup Q -- H ~< U, where 

1. s ~M(n, K)} 

is unipotent and 

0 t a - I  
" a EGL(n, K), z ~ K  ×} 

is reductive. B will denote the Borel subgroup T ~  U, where Tis the subgroup 
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of H consisting of matrices for which the a ~ GL(n, K) is upper-triangular. 
Any one-dimensional representation of B factors through 

A = {diag(za~, za2 , . . . ,  za , , ,  a i -  ~, a f  ~ . . . .  , a f  ~) : z ,  a~ . . . . .  a,, E K  x } 

(K x) n + i. 

As before, the principal series consists of representations unitarily induced 
from one-dimensional unitary characters of B, and except for the obvious 
change in the Weyl group W (now ~ S~ I~ (Z2)n), Proposition 1, Theorem 3, 
and Proposition 9 go through as before. In Lemma 8, the condition that 
~/~,..., ¢/~ be distinct should be replaced by considering any character of A not 
fixed by any non-trivial element of W, i.e., a character of the form 

diag(zat . . . . .  za , , ,  a ?  l, . . . , a ;  l )  ~ ~Uo(Z )C,q( a O .  . . ¥ , , (  a, ,)  

with ~ ,  q/a, - - •, ~un, q/n all distinct. 
In the statement of Theorem 2, of course SL(n, K) should be replaced by 

Sp(2n, K). The fact that this subgroup is generated by symplectic transvections 
will guarantee that if n is a representation of G non-trivial on Sp(2n, K), then 
n ] u is non-trivial. Thus we need an analysis of the actions of H and T on 0 to 
replace Proposition 7. For this, note that Umay be identified with the additive 
group of the vector space Symn(K) of n × n symmetric matrices, and each 
element of Uhas n ( n  + 1)/2 "coordinates" in/~. Since diag(z . . . .  , z, 1 , . . . ,  1) 
acts on Symn(K) by multiplication by z, our previous Proposition 7 (applied to 
the action ofK x on each coordinate in turn) shows that every T-orbit in Uhas 
the trivial representation in its closure. Furthermore, a little linear algebra 
shows that every H-orbit in 0 contains a point whose stabilizer in A is 
contained in the diagonal matrices with all entries + 1. Reasoning as before 
shows that rc weakly contains a representation p whose restriction to B contains 
an irreducible representation trivial on U, which we can adjust by tensoring 
with any character of A trivial on the diagonal matrices with entries + 1 
(extended to be trivial on the commutator subgroup of T). By another 
application of Lemma 6, p weakly contains a representation with a B- 
eigenvector satisfying the condition of Lemma 8. Hence p (and thus n) weakly 

contains a representation of the principal series. 
It is also of interest to note that our proofs for GL(n) also go through with 

very little modification for SL(n), provided that n > 3. To deal with this case, 
one merely has to modify the definition of Q in the proof of Theorem 2 so that 
Q consists of matrices of the form 
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(A x ) 
0 (detA) -1 ' 

A ~ GL(n - 1, K), x ~ K " -  I. 

Then Proposition 7 has to be modified to deal 
GL(n - 1, K) on (K "-  i)^ dual to the action 

g .  x = (det g)gx. 

with the action of H = 

In part (ii), the words "with trivial stabilizer" should be replaced by 

"with stabilizer the n-th roots of  unity." These of course correspond to the 

center Z of  SL(n, K). In part (i), the idea is that if ~u = (gl . . . .  , ~',-1), 

then by the lemma for GL(1), one can choose a net b~EK x with ~Ul(b~xl)~ 1 
for all xl ~K.  Then by compactness of (KX) ̂ , one can pass to a subnet and 

a s s u m e  ~//2(ba-Ix2) ---* ~ ( X l )  for some fixed ~u~ E(K x) ̂  and for all x2~K. Since 
g~ = diag(b~, b~- l, l , . . . ,  1) has determinant 1, for x ~ K"-  1, 

~l/(g a " X )  = ~bCl(b a X l ) l f f 2 ( b  a -  I x 2 ) l / / 3 ( x 3 )  • • • ~gn - l ( X n  - 1 )  

--- (1, ~g~, gh, • • •, g/,-l).X. 

Continuing in this way, we can eliminate one coordinate at a time and show 

that the trivial character lies in the closure of H .  g. 

Notes added in proof. 
1. The referee has kindly suggested an alternate argument for the proof of 

Proposition 9, which is to observe that GL(2, Q) and GL(2, Fp(t)) contain 
non-commutative free groups (see, e.g., J.-P. Serre, Trees, Springer-Veflag, 
Berlin, 1980, §II. 1.4 and §II. 1.6), and hence cannot be amenable. 

2. For the relationship of our work to an earlier paper of A. A. Kirillov 

(Positive definite functions on a group of matrices with elements from a discrete 
field, Dokl. Akad. Nauk SSSR 162 (1965), 503-505), see a forthcoming paper 

Un complOment ~ un thOorOme de Kirillov sur les caractOres de GL(n) d'un 
corps infini discret of the second author, to appear in C.R. Acad. Sci. Paris, 

S6r. I Math. 

REFERENCES 

I. J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977. 
2. J. M. G. Fell, The dualspaces of C*-algebras, Trans. Am. Math. Soc. 94 (1960), 365-403. 
3. P. de la Harpe, Reduced C*-algebras of discrete groups which are sirnple with a unique trace, 

in Operator Algebras and Their Connections with Topology and Ergodic Theory, Proceedings, 
Busteni, Romania 1983, Lecture Notes in Math., No. 1132, Springer-Vedag, Berlin, 1985, 
pp. 230-253. 



Vol. 67, 1989 REPRESENTATION THEORY OF GL(n) 81 

4. R. E. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent 
groups, Pacific J. Math. 73 (1977), 281-305. 

5. R. E. Howe and J. Rosenberg, The unitary representation theory of  GL(2) of an infinite 
discrete field, Abstracts Am. Math. Soc. 7 (1986), No. 2, 199, #827-22-42. 

6. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Math., Springer--c'erlag, 
New York, 1975. 

7. N. Jacobson, Basic Algebra I, 2nd ed., Freeman, New York, 1985. 
8. D.A. Kazhdan, On the connection of the dual space of a group with the structure of its closed 

subgroups, Funkcional. Anal. i Prilo~en. 1 (1967), 71-74. 
9. G. W. Mackey, On induced representations of groups, Am. J. Math. 73 (1951), 576-592. 
10. E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzdhlbar unendli- 

chen, symmetrischen Gruppe, Math. Z. 85 (1964), 40-61. 
I I. E. Thoma, Eine Charakterisierung diskreter Gruppen yore Type I, Invent. Math. 6 (1968), 

190-196. 


