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Motivation:

• Developing some of the formalism for deal-

ing with noncommutative spacetimes.

• Establishing a general formula for D-brane

charges.

• Finding a version of Grothendieck-Riemann-

Roch suited to the noncommutative world.
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A classical formula

Let X be a compact spinc manifold. Poincaré

duality in ordinary cohomology says the usual

cup-product pairing

(x, y) = 〈x ∪ y, [X]〉,

is non-degenerate, while on K-theory, we have

another pairing given by

([E], [F ]) = IndD/ E⊗F .

The Chern character gives an algebra isomor-

phism of K∗(X) ⊗ Q with H∗(X, Q), but un-

der this isomorphism, the two pairings don’t

match. Since, by the Index Theorem,

IndD/ E⊗F = 〈Todd(X) ∪Ch(E ⊗ F ), [X]〉,

we can, however, get an isometry of pairings

by correcting by the class
√

Todd(X). This sim-

ple observation, known to physicists from the

Minasian-Moore formula for the Ramond-Ra-

mond charge, is the origin of this paper.
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The diagram calculus for KK

To make it easier to do certain calculations
later, we represent classes in KK (or in similar
bivariant theories, like Puschnigg’s local bivari-
ant cyclic cohomology) by diagrams (which we
read from left to right). We have one “input”
for each tensor factor in the first argument of
KK, and one “output” for each tensor factor
in the second argument of KK. For conve-
nience, we can also add arrowheads pointing
toward the outputs. The Kasparov product
corresponds to concatenation of diagrams, ex-
cept that one is only allowed to attach an input
to a matching output. Thus, for example, an
element of KK(B ⊗A, C ⊗D) would be repre-
sented by a diagram like

B
AA

AA
AA

A ==zzzzzzzz

C

◦ ◦

A

}}}}}}} !!D
DD

DD
DD

D

D.
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The basic rule is that permutation of the in-

put or output terminals may involve at most

the switch of a sign. The nice thing about this

formalism is that one can show that all associa-

tivity formulae in Kasparov theory correspond

to the fact that one can concatenate in any or-

der, except perhaps for signs (which go away

in KK0). For example, if x ∈ KK•(B ⊗ A, C),

y ∈ KK•(D, A), and z ∈ KK•(E, B), then the

associativity of the product gives

z ⊗B (y ⊗A x) = ±y ⊗A (z ⊗B x),

even though when written this way, it looks as

if the factors are out of order. But one can

“prove” this graphically with the picture

E z //B

??
??

??
??

x //◦ C

D
y
//A

��������

//
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Of course, a picture by itself is not a rigorous
proof, but it can be made into one as follows.
Here × is used to denote the “exterior” Kas-
parov product, and for simplicity we assume
that all elements lie in KK0, so that we don’t
have to worry about sign changes. On the one
hand, we have

z ⊗B (y ⊗A x) := (z × 1D)⊗B⊗D (y ⊗A x)

= (z × 1D)⊗B⊗D

(
(1B × y)⊗B⊗A x

)
=

[
(z × 1D)⊗B⊗D (1B × y)

]
⊗B⊗A x.

But on the other hand we have

y ⊗A (z ⊗B x) := (1E × y)⊗E⊗A (z ⊗B x)

= (1E × y)⊗E⊗A

(
(z × 1A)⊗B⊗A x

)
=

[
(1E × y)⊗E⊗A (z × 1A)

]
⊗B⊗A x.

Now observe that

(z×1D)⊗B⊗D(1B×y)=z×y=(1E×y)⊗E⊗A(z×1A).

Essentially everything applies also to products
in bivariant cyclic homology, which has the
same formal properties.
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Application: the KK proof of Atiyah-Singer

Let M be a closed manifold, D an elliptic op-

erator on M , with class [D] ∈ KK(C(M), C),

σ(M) its symbol class in KK(C, C0(T
∗M)), [∂̄] ∈

KK(C0(T
∗M), C) the Dolbeault class. Let [c] ∈

KK(C, C(M)) be the class of the map C →
C(M) by constant functions. Then (almost

by definition) IndD = [c]⊗C(M) [D]. Atiyah-

Singer says this is equal to σ(D)⊗C0(T ∗M) [∂̄].

The proof comes from a class ∆ ∈ KK(C(M)⊗
C0(T

∗M), C) and the diagram

C [c]
//C(M)

RRRRRRRRRRRRRRRRR

∆ //◦ C

C σ(D)
//C0(T

∗M)

lllllllllllllllll

//
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Noncommutative Poincaré duality

Definition 1 A pair of separable C∗-algebras
(A, B) is said to be a strong Poincaré dual
pair if ∃∆ ∈ KKd(A ⊗ B, C) = Kd(A ⊗ B) and
∃∆∨ ∈ KK−d(C, A⊗B) = K−d(A⊗B) with the
properties

∆∨ ⊗B ∆ = 1A ∈ KK0(A, A) ,

∆∨ ⊗A ∆ = (−1)d 1B ∈ KK0(B, B) .

The element ∆ is called a fundamental K-
homology class for the pair (A, B) and ∆∨ is
called its inverse. A separable C∗-algebra A

is said to be a strong Poincaré duality alge-
bra (strong PD algebra for short) if (A, A◦) is
a strong PD pair, where A◦ denotes the op-
posite algebra of A, i.e., the algebra with the
same underlying vector space as A but with
the product reversed.

The use of the opposite algebra in this defi-
nition is to describe A-bimodules as (A⊗ A◦)-
modules.
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Then product on the right with ∆ and product

on the left with ∆∨ give inverse isomorphisms

Ki(A)
⊗A∆−−−→ Ki+d(B)

and

Ki(B)
∆∨⊗B−−−−→ Ki−d(A).

One also gets Poincaré duality with coefficients

in any auxiliary algebras (check this with the

diagram calculus):

KKi(C, A⊗D) ∼= KKi−d(C ⊗B, D).
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Sample application of the diagram calculus

Proposition 2 Let (A, B) be a strong PD pair,

and let ∆ ∈ Kd(A⊗B) be a fundamental class

with inverse ∆∨ ∈ K−d(A⊗B). Let

` ∈ KK0(A, A)

be an invertible element. Then

`⊗A ∆ ∈ Kd(A⊗B)

is another fundamental class, with inverse

∆∨ ⊗A `−1 ∈ K−d(A⊗B).

Sketch of proof. The harder direction can be

illustrated by the diagram

A`−1
//A A ` //A

??
??

??
??

∆ //C∆∨

??��������

��?
??

??
??

?◦ ◦ C

B
1B //B

��������

//

�
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Similarly, one gets a converse:

Proposition 3 Let (A, B) be a strong PD pair,

and let ∆1,∆2 ∈ Kd(A ⊗ B) be fundamental

classes with inverses ∆∨
1 ,∆∨

2 ∈ K−d(A ⊗ B).

Then ∆∨
1 ⊗B ∆2 is an invertible element in

KK0(A, A), with inverse given by (−1)d ∆∨
2 ⊗B

∆1 ∈ KK0(A, A).

Corollary 4 Let (A, B) be a strong PD pair.

Then the moduli space of fundamental classes

for (A, B) is isomorphic to the group of invert-

ible elements in the ring KK0(A, A).

Note: In the commutative case A = C(X), the

abelian group of units of KK(C(X), C(X)) is

by UCT an extension of AutK•(X) by

ExtZ(K•(X), K•+1(X)).
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When does this apply?

Note that the stable homotopy category of C∗-
algebras has an involution gotten by sending

A
f−→ B to A◦

f◦−→ B◦, and this involution passes

to the KK category. So if A is KK-equivalent

to C(X) for some compact space X, then A◦

is KK-equivalent to C(X)◦ = C(X) also, and

hence we have:

Theorem 5 Let A be a separable C∗-algebra

satisfying the UCT for KK (i.e., KK-equiva-

lent to a commutative C∗-algebra) with finitely

generated K-theory. Then A is always part of a

strong PD pair, and A is a strong PD algebra

(i.e., we can take the other element of the

pair to be A◦) if and only if either rkK0(A) =

rkK1(A) (in this case we can take d = 1) or

TorsK0(A) ∼= TorsK1(A) (in this case we can

take d = 0).
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Proof. Without loss of generality, we can as-

sume A abelian. Note that by the UCT, rkKj(A) = rkKj(A),

TorsKj(A) ∼= TorsKj+1(A)

(j = 0, 1 mod 2). So the condition for A to

be a strong PD algebra is necessary to have

an isomorphism Kj(A) → Kj+d(A). It remains

to show that for A and B commutative, an

isomorphism Kj(A) → Kj+d(B) can be imple-

mented by a suitable ∆. By the KT and UCT,

we can build ∆ and ∆∨ from knowledge of

K∗(A), one cyclic summand at a time. Alter-

natively, realize A as C0(X) for some (possibly

noncompact) manifold X, take B = C0(T
∗X),

and construct ∆ from the Dirac operator. When

X is spinc, B is KK-equivalent to A = A◦. �

The upshot of this is that strong PD pairs are

quite common.
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The Todd class

Lemma 6 Let A, B1, B2 be separable C∗-alge-
bras such that (A, B1) and (A, B2) are both
strong PD pairs. Then B1 and B2 are KK-
equivalent.

Let D denote the class of all separable C∗-
algebras A for which there exists another sep-
arable C∗-algebra B such that (A, B) is a strong
PD pair. For any such A, we fix a represen-
tative of the KK-equivalence class of B and
denote it by Ã. In general there is no canoni-
cal choice for Ã. If A is a strong PD algebra,
the canonical choice Ã := A◦ will always be
made.

In what follows we’ll need a choice of a bivari-
ant cyclic homology theory with a good mul-
tiplicative Chern character from KK. We can
use Puschnigg’s local bivariant cyclic cohomol-
ogy, here denoted HL (we are not using Leib-
nitz homology!).

14



Moreover, if A and B are in the class of C∗-
algebras for which the UCT holds for KK, then

HL•(A, B) ∼= HomC(K•(A)⊗Z C, K•(B)⊗Z C).

If K•(A) is finitely generated, this is also equal

to KK•(A, B)⊗Z C.

By multiplicativity of the Chern character, KK-

equivalence of algebras implies HL-equivalence,

but not conversely, and each strong PD pair

can also be made a PD pair for HL. How-

ever, frequently one does not want to take the

HL fundamental class Ξ equal to Ch(∆). (See

example below.)
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Definition 7 Let A ∈ D, let ∆ ∈ Kd(A⊗ Ã) be

a fundamental K-homology class for the pair

(A, Ã) and let Ξ ∈ HLd(A⊗ Ã) be a fundamen-

tal cyclic cohomology class. Then the Todd

class of A is defined to be the class

Todd
(
A

)
:= Ξ∨ ⊗Ã Ch

(
∆

)
in the ring HL0(A, A).

The Todd class is invertible with inverse given

by

Todd
(
A

)−1
= (−1)d Ch

(
∆∨

)
⊗Ã Ξ .
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Motivating example

Let A = C(X), X a compact complex mani-

fold. Then A is a strong PD algebra with ∆

given by the Dolbeault operator on X×X. We

can identify HL with HP (usual periodic cyclic

homology) in this case (after passage from

A to the dense subalgebra C∞(X)), and so

HL0(A, A) can be identified with EndH∗(X, Q).

The natural choice of Ξ and Ξ∨ comes from

usual Poincaré duality in rational cohomology.

Then Todd(A) is just cup product with the usual

Todd(X) ∈ H∗(X, Q).
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Another Example: Noncommutative Riemann

Surfaces

Let π be the fundamental group of a closed

Riemann surface Σg of genus g ≥ 1. Then

H2(π, T) ∼= H2(Σg, T) ∼= T, so for any θ ∈ R, we

have the twisted group algebra A
g
θ = C∗r(π, σθ)

for the cocycle σθ defined by exp(2πiθ). In

the case of genus 1, this is the usual rotation

algebra Aθ, and is simple if θ is irrational. A
g
θ is

a strong PD algebra with (Ag
θ)
◦ = A

g
−θ

∼= A
g
θ.

There is a standard choice of fundamental classes,

and thus of a Todd class, for A
g
θ, coming from

the commuting digram

K•(Σg)
∼= //

Ch
��

K•(A
g
θ)

Ch
��

H•(Σg;C)
∼= //HL•(A

g
θ).

Here the horizontal maps come from Baum-

Connes assembly and the downward maps are

isomorphisms after tensoring K-groups with C.
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K-oriented maps (d’après Connes-Skandalis)

Now we can define Gysin maps and, more gen-

erally, we can study K-oriented maps. If f : A →
B is a morphism of C∗-algebras in a suitable

category, a K-orientation is a functorial way of

defining f ! ∈ KK(B, A). If A and B are strong

PD algebras, then any morphism f : A → B is

K-oriented, and f ! is determined as follows:

f ! = (−1)dA∆∨
A ⊗A◦ [f◦]⊗B◦ ∆B.

We can visualize this with the diagram

A B

BB
BB

BB
BB

∆B//C
∆∨

A

>>||||||||

  A
AA

AA
AA

A◦ ◦ C

A◦
f◦

//B◦

||||||||

//
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To check functoriality, observe that if A, B and

C are strong PD algebras, and if f : A → B,

g : B → C are morphisms of C∗-algebras, then(
(−1)dA∆∨

A ⊗A◦ [f◦]⊗B◦ ∆B

)
⊗B

(
(−1)dB∆∨

B ⊗B◦ [g◦]⊗C◦ ∆C

)
=

(
(−1)dA∆∨

A ⊗A◦ [(g ◦ f)◦]⊗C◦ ∆C

)
.

by associativity of the Kasparov product and

the basic relation

(−1)dB∆∨ ⊗B ∆ = 1B◦.

(Again, use the diagram calculus!)
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Noncommutative Grothendieck-Riemann-Roch

Theorem 8 Suppose A and B are strong PD
algebras with given HL fundamental classes.
Then one has the Grothendieck-Riemann-Roch
formula,

Ch(f !) = (−1)dB Todd(B)⊗BfHL!⊗ATodd(A)−1.

(1)

Proof. We will write out the right-hand side of
(1) and simplify. In the notation of Definition
7, the Todd class of B is the class

Todd
(
B

)
= Ξ∨B ⊗B̃ Ch

(
∆B

)
∈ HL0(B, B)

and the inverse of the Todd class of A is the
class

Todd
(
A

)−1
= (−1)dA Ch

(
∆∨

A

)
⊗ÃΞA ∈ HL0(A, A).

Since A and B are strong PD algebras, then
fHL! is determined as follows:

fHL! = (−1)dA Ξ∨A ⊗Ã [(fHL)◦]⊗B̃ ΞB,
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where [fHL] = HL(f) denotes the class in HL(A,

B) of the morphism (A
f−→ B), and [(fHL)◦] is

defined similarly.

Therefore the right hand side of (1) is equal

to

(−1)dB

(
Ξ∨B ⊗B̃ Ch

(
∆B

))
⊗B

(
Ξ∨A ⊗Ã [(fHL)◦]⊗B̃ ΞB

)
⊗A

(
Ch

(
∆∨

A

)
⊗Ã ΞA

)
,

which by the associativity of the intersection

product is equal to

(−1)dB

(
Ξ∨A ⊗A

(
Ch

(
∆∨

A

)
⊗Ã ΞA

))
⊗Ã [(fHL)◦]⊗B̃

((
Ξ∨B ⊗B̃ Ch

(
∆B

))
⊗B ΞB

)
.
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On the other hand,

f ! = (−1)dA ∆∨
A ⊗Ã [f◦]⊗B̃ ∆B.

Therefore the left hand side of (1) is equal to

(−1)dA Ch(∆∨
A)⊗Ã Ch[f◦]⊗B̃ Ch(∆B).

By the functorial properties of the bivariant

Chern character, one has

Ch[f◦] = [(fHL)◦].

In order to prove the theorem, it therefore suf-

fices to prove that(
Ξ∨B ⊗B̃ Ch

(
∆B

))
⊗B ΞB = (−1)dB Ch(∆B)

and

Ξ∨A ⊗A

(
Ch

(
∆∨

A

)
⊗Ã ΞA

)
= (−1)dA Ch(∆∨

A).

But both of these equalities also follow easily

from the diagram calculus.
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Symmetric fundamental classes

Definition 9 A fundamental class ∆ of a strong

PD algebra A is said to be symmetric if σ(∆)◦ =

∆ ∈ Kd(A⊗A◦) where

σ : A⊗A◦ −→ A◦ ⊗A

is the involution x ⊗ y◦ 7→ y◦ ⊗ x and σ also

denotes the induced map on K-homology. In

terms of the diagram calculus, ∆ being sym-

metric implies that

A x //A

BB
BB

BB
BB

∆ //

A
y

//A

BB
BB

BB
BB

//◦ C = ◦ C

A◦
y◦

//A◦

}}}}}}}}

//

A◦ x◦ //A◦

}}}}}}}}

∆ //

for all x and y.
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The isometric pairing formula

Finally we get to an analogue of the classical

isometry result that we started with:

Theorem 10 Suppose that A satisfies the UCT

for local cyclic homology, and that HL•(A) is

a finite dimensional vector space. If A has sym-

metric (even-dimensional) fundamental classes

in both K-theory and in cyclic theory, then the

modified Chern character

Ch⊗A

√
Todd(A) : K•(A) → HL•(A)

is an isometry with respect to the inner prod-

ucts

〈α, β〉 = (α× β◦)⊗A⊗A◦ ∆

and

(x, y) = (x× y◦)⊗A⊗A◦ Ξ.
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