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Abstract. We state a geometrically appealing conjecture about when a closed manifold 
with finite fundamental group lr admits a Riemannian metric with positive scalar curva- 
ture: this should happen exactly when there are no KO.-valued obstructions coming from 
Dirac operators. When the universal cover does not have a spin structure, the conjecture 
says there should always be a metric of positive scalar curvature, and we prove this if 
the dimension is ~ 5 and if all Sylow subgroups of ~r are cyclic. In the spin case, the 
conjecture is closely tied to the structure of the a~embty map KO.(Bzc) ---* KO°(R~r), 
and we compute this map explicitly for all finite groups It. Finally, we give some evidence 
for the conjecture in the case of spin manifolds with 7r = Z/2. 

§0. INTRODUCTION 

This paper is a continuation of my previous papers [111], [1t2], and [113], but  with 
an emphasis on manifolds with finite fundamental group. In other words, I shall t ry 
to answer the following question: given a smooth closed connected manifold M "  with 
finite fundamental group 7r, when does it admit a metric of positive scalar curvature? A 
few very partial results on this problem were given in [R2] and [R3], and some further 
cases were studied in [KS1] and [KS2]. Extrapolating from these and other cases, I 
would like to make here a somewhat audacious but intuitively appealing conjecture: 

CONJECTURE O. 1. A closed manifold M" with flnite fundamental group admits a metric 
of positive scalar curvature if and only if  all (KO.-valued) index obstructions associated 
to Dirac operators with coe~cien~s in fiat bundles (on M and it covers) vanish, a~ least 
f i n > 5 .  

The rest of this paper will be devoted to explaining exactly what are the obstruc- 
tions described in the Conjecture, and to proving that the Conjecture is valid in many 
cases. As explained in [GL2] and in [R2], the problem naturally splits into two cases, 
depending on whether or not w2(/~/), where M is the universal cover of M,  vanishes. If 
w2(-~/') ¢ 0, so that M (and afortiori M) doesn't admit a spin structure, then there 
are no Dirac operators with coefficients in fiat bundles defined on M or on any of its 
covers. Thus the Conjecture reduces to: 

CONJECTURE 0.2. If M"  is a closed connected manifold with ~nite fundamental group 
r ,  and if  w2(/~l r) ¢ 0 and n _> 5, then M admits a metric of positive scalar curvature. 

Section 1 will be devoted to the proof of an interesting case of Conjecture 0.2. I 
would like to thank the referee for some corrections to the proofs and improvements in 
the exposition. By the way, the condition in Conjecture 0.2 that  ~r be finite cannot be 
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omitted in general, as shown by the example in [GL3, p. 186] of CP2#T 4. (The reader 
concerned about the fact that this example has the exceptional dimension 4 can easly 
replace it by (CP 2 x $2)#T6 . )  

The rest of the paper, §§2 and 3, will deal with the spin case, that is, the case where 
w2(M) = 0. Section 2 actually involves no geometry, only pure algebraic topology 
and algebra, and may have some independent interest because of its parallels to known 
results about assembly maps in L-theory and algebraic K-theory. Theorem 2.5 was 
proved during a visit to /~rhus in 1985, and I would like to thank Ib Madsen and 
Gunnar Carlsson for helpful suggestions at that time. 

The concluding section, §3, returns to the problem of positive scalar curvature. Here 
Conjecture 0.1 is restated in the spin case, using the language of §2, and we give some 
evidence for the Conjecture in the "hard case" of spin manifolds with fundamental 
groups of even order. We also briefly indicate how to interpret the Conjecture when 
w2(M) = 0 but w2(M)  ~ O, though there are substantial technical difficulties in getting 
any good results for this case. 

§1. POSITIVE SCALAR CURVATURE 
W H E N  THE UNIVERSAL COVER IS NON-SPIN 

The object of this section is to give some evidence for Conjecture 0.2 above. In fact, 
this conjecture was proved in [R2, Theorem 2.14] in the case where ~r is cyclic of odd 
order, and this result was strengthened in [KS1] to cover the case of any group of 
odd order with periodic cohomology (or equivalently, with all Sylow subgroups cyclic). 
One of the technical advances in [KS1] was Corollary 1.6 of that paper, which showed 
that the conjecture holds for a finite group ~r if and only if it holds for all its Sylow 
subgroups. However, as is clear from [R2], [l:t3], [KS1], and [KS2], it is much harder 
to prove results for even-order groups than for the odd order case. Thus the following 
theorem is in a way much more convincing evidence for Conjecture 0.2. 

THEOREM 1.1. I f  M n is a closed orientable connected manifold with cyc//c finite fun- 
damental group ~r, and i£ w2(h~/") ~ 0 and n >_ 5, ~hen M admits a metric of positive 
scalar curvature. 

COROLLARY 1.2. I f  M "  is a dosed orientable connected manifold wlth a finite funda- 
men~al group lr, all of whose Sylow subgroups are cyclic, and if w2(/t~/) ¢ 0 and n _> 5, 
then M admits a metric of positive scalar curvature. 

PROOF OF COROLLARY: This follows immediately from the Theorem and from [KS1, 
Proposition 1.5]. | 

PROOF OF THEOREM: Because of the results of [R2] and [KSl] just quoted, it's enough 
to consider the case where our cyclic group has order a power of two. We begin with 
the key case where 7r is of order 2. By [R2, Theorem 2.13], it is enough to exhibit 
an oriented Riemannian manifold X n of positive scalar curvature, together with a map 
X" -4 RP °°, in every class in ~n(RP°°), for all n >_ 5. For this we use the well-known 
isomorphism of [S, pp. 216-217]: 

Q,(RP °°) ~ fl,= E) ~,,-z. 
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The summand of f/n corresponds to the case where X is simply connected (or at least the 
map X "  --* RP °° is null-homotopic), so this case is handled by [GL2, Proof of Theorem 
C]. So it remains to deal with the summand ~l ,-1.  Suppose y , - 1  represents a class in 
9~-1 .  By the analysis in [S, pp. 216-217], the corresponding element of ~ ( R P  °°) is 
represented by f : X'* --~ RP °°, where Y is the submanifold of X of codimension 1 which 
is dual to the line bundle defined by f .  Note that Y doesn't determine (X, f )  uniquely; 
however, the class of (X, f )  in a , ( R e  ¢°) is determined up to an element of ~,, (which 
we can "subtract off" by what we already know). Now given the manifold y , - 1 ,  if Y 
is orientable, we can simply orient Y and take X = Y x S 1, with f factoring through 
S 1 and inducing a surjection on ~rl. If Y has a metric of positive scalar curvature, 
we can give X a product metric, and then X will have positive scalar curvature as 
well. So suppose Y is not orientable, and let ]2 be its orientable double cover, which 
carries a canonical orientation-reversing involution r. Let cr be the orientation-reversing 
involution on S 1 defined by complex conjugation on the unit  circle in C. Then v × a 
is an or ientat ion-preserving involution on 1 / x  S 1, so X = (Y x S1)/(T x a) can be 
oriented, l~urthermore, there is a map ~rl(X) ---* Z/2, and thus a map f : X ~ RP °°, 
associated to this construction of X, for which Y is the dual submanifold. Finally, if Y 
has a metric of positive scalar curvature, we lift the metric to 1> and give Y x S 1 the 
product metric, and this descends to a metric of positive scalar curvature on X. 

Hence to complete the proof for the case where ~r has order 2, it will suffice to construct 
additive generators with positive scalar curvature for 9~,, for all n > 4. In fact, since 
the property of positive scalar curvature is preserved under taking products, it 's in fact 
enough to find mu l t i p l i c a t i ve  generators for 9l. with positive scalar curvature. But 
by the structure theory for unoriented bordism (see for instance [S, pp. 96-98]), 9l. is 
a polynomial algebra over the field F2 of two elements, with generators represented by 
even-dimensional real projective spaces and by hypersurfaces of degree (1, 1) in products 
of pairs of real projective spaces. These manifolds all have natural metrics of positive 
scalar curvature (cf. [GL2, p. 43]), so this completes the first part of the proof. 

Now we have to go on to the case where the order of ~r is any positive power of 2. 
The key fact we need, which is proved in IS, pp. 209-212 and 233-236], is that  the 
oriented bordism spectrum is Eilenberg-MacLane at 2, and thus that  for l r a  2-group, 
the Atiyah-Hirzebruch spectral sequence 

a.) 

collapses, and 

(1.3) 

Note that  the natural map ~,(B~r) ~ H,,(B~r, Z) corresponds to projection onto the 
(p = n, q --- 0) summand. 

In order to facilitate future improvements of Theorem 1.1, we first prove the following: 
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LEMMA 1.4. Let 7r be a finite 2-group and let M be a closed connected oriented n- 
manifold with fundamental group ~r such that w2(2V/) ~ O, n > 5, and the bordism class 
of M maps to zero in Hn(Bzr, l ) .  Then M admits a metric of positive scalar curvature. 

PROOF OF LEMMA: We need to produce enough manifolds of positive scalar curvature 
to generate the summands in (1.3) other than the (p = n, q = 0) summand. These 
are of two types, copies of Hp(Brc, Z) in bidegrees (p, q) with q > 4 divisible by 4, and 
copies of Hp(Blr, l / 2 )  in bidegrees (p, q) for which flq contains a l / 2  summand. 

The summands of the first type are no problem, since they correspond to oriented 
bordism classes (over Blr) of the form 

N p × Y 4 t  ++BTr, 

where ¢ only depends on the first coordinate, where y4t is a generator for a torsion-free 

summand in ~4~, where g p L BTr generates a cyclic summand in Hp(B~r, l ) ,  and 
where p + 4t = n > 5. Since t > 1, then by [GL2, Theorem C], we may choose y4t to 
have positive scalar curvature, and then so does N p x y4t for suitable product metric. 

Consider now the summands of ~,(B~r) coming from H.(zr, l /2) .  If a class in H.(Tr, 

-l/2) is the reduction of an integral class, it can be realized by some N p ~ BTr with 
N p a closed oriented p-manifold, and as before, the corresponding classes in ~.(B~r) are 

represented by N p x Y ~ BTr, where ¢ only depends on the first coordinate, where Y is 
a closed oriented manifold giving a 2-torsion summand in f / . .  Since all such Y's can be 
chosen to admit metrics of positive scalar curvature [GL2, Theorem C], so can N x Y. 
So it remains to deal with classes in H.(zr, l / 2 )  which are no t  reductions of integral 
classes. Such classes only occur in even degree and c a n n o t  be represented by oriented 
manifolds mapping into BTr. They can, however, be represented by n o n - o r l e n t a b l e  
manifolds, since !Yl.(B~r) surjects onto H.(~r, l / 2 ) .  Thus consider a class in ~/.(BTr) 

corresponding to ¢.([Y]) x Y, where g p ~--~ BTr, N is non-orientable, IN] is its Z/2- 
fundamental class, and Y is an orientable manifold giving a Z/2-torsion class in ~'/.. 
Fortunately, we can construct an oriented manifold mapping into BTr and defining the 
same bordism class. 

Namely, observe that  the metrics of positive scalar curvature on the standard gener- 
ators of the torsion classes in f l . ,  the Dold manifolds appearing in the proof of [GL2, 
Theorem C], admit orientation-reversing (not necessarily free) involutions. If we choose 
such an involution a ~ on Y and let a be the orientation-reversing free involution on the 
oriented double cover N of N, then a x a '  is free and orientation-preserving, and we 
have a fibration 

Y -- ,  x x - - ,  g .  

The composite (N x Y ) / ( a  x a') ---, N L BTr now represents our class in ~2.(Bzr) by 
an oriented manifold of positive scalar curvature. This completes the proof. ! 

PROOF OF THEOREM 1.1, CONTINUED: Suppose now that  7r is a cyclic 2-group. By 
the lemma, it 's enough to exhibit an oriented manifold of positive scalar curvature 



174 

corresponding to each cyclic summand in H.(~r, Z). But lens spaces obviously do the 
trick. | 

In fact we can improve Corollary 1.2 considerably by allowing a much greater variety 
of Sylow 2-subgroups. The following two theorems give saznple results along these lines. 

THEOREM 1.5. I f  M "  is a closed orientable connected manifold witla fundamental  group 
~r = Q, ~Ae quaternion group of  order 8, and if  w2(/171 r) # 0 an(:/n > 5, then M admits  
a metric of  positive scalar curvature. 

PROOF: By Lemma 1.4, it is enough to exhibit an oriented Riemarmian manifold X "  of 
positive scalar curvature, together with a map X "  --+ BQ, in every class in H , ( Q ,  Z), for 

all n > 5. So we only have to worry about the case of manifolds of the form N n ~ BQ` 
generating a cyclic summand in H,,(Q, Z). By [CE, pp. 253-254], such summands 
occur only for n odd. If n = 3 (mod 4), there is only one such summand, generated 
by a quaternionic lens space, which can be given a metric of constant positive sectional 
curvature. If n - 1 (mod 4), there are two such summands, each of order 2, and since 
one can be taken to the other by an automorphism of Q, we only have to worry about 
one of them. Such a summand is represented by a submanifold of codimension 2 in a 
quaternionic lens space S4't-1/Q`, dual to a flat complex line bundle. Note that  Q  ̀<~ H,  
where H is the normalizer of a maximal torus in SU(2), which also acts freely on S 4"-1 , 
and that  H/Q, ~ S 1. Thus we have a fibration 

S 1 ..-@ s , . - , I Q  ._+ S , . - , I H  = 

and it's easy to see that  the appropriate flat line bundle on $ 4 " - 1 / Q  is pulled back from 
the quotient. Thus N 4"-3 projects onto the submanifold R of C p 2 " - I / ( Z / 2 )  dual to 
the non-trivial flat line bundle on this manifold. By [BB, Theorem C], it 's enough to 
show that  R admits a metric of positive scalar curvature. But a little calculation shows 
that  R is a homogeneous manifold for a "large" compact Lie group (its double cover is a 
homogeneous complex quadric hypersurface in CP 2"-1) and so this is easy to check (it 
even has a metric with non-negative sectional curvature). This completes the proof. | 

THEOREM 1.6. I f  M n is a closed orientable connected mani£old witA fundamental  group 
~r a product  o f k  _< 4 cyc//c groups o f  order 2, a n d / f  w2(/I7/) # 0 and n _> 5, t/aen M 
admits  a metric of  positive scalar curvature. 

PROOF: The proof proceeds like that  of Theorem 1.5. The same reasoning will work, 
provided we can realize every additive generator in H , ( (Z /2 )  k, Z), n > 5, by an ori- 
entable manifold of positive scalar curvature mapping into B~r = (RP°°) k. However, 
these classes are all represented by products of either odd-dimensional real projective 
spaces (which are orientable) or else manifolds of the form (S  2m x S2J) / (a  x or'), where 
a and a '  are the antipodal involutions on even-dimensional spheres. (The latter rep- 
resent the Tor terms in the Kiinneth formula.) In any event, these manifolds all have 
non-negative sectional curvature, and zero curvature only occurs in the case of a torus 
($1) k, which can't  have the requisite dimension if k _< 4. (Compare [1{.3, Theorem 
3.61.) | 
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§2. THE KO-ASSEMBLY MAP 

For applications t o  the positive scalar curvature problem in §3, we need now to ex- 
amine in some detail the "assembly map" /3 : KO.(BTr) ---* KO.(C~(zc)) introduced 
in [K] (in the complex case) and in [R3, §2]. Here 7r is any group with the discrete 
topology (for the moment not necessarily finite), B~r is a K(Tr, 1)-space, and C~(~r) is 
some C*-completion of the real group ring R~r. We do not need to worry about which 
C*-completion is to be used, though in practice the usual choice would be the reduced 
C*-algebra, that  is, the completion of the group ring in the operator norm for its action 
on ~2(7r) by convolution. Since the space Bzr will rarely be a finite complex, the KO- 
homology groups KO.(BTr) are to be interpreted as what Kasparov called RKO.(BTr), 
that  is, as the inductive limit 

lim K O . ( X ) ,  
X "-. B *r 

where X runs over the finite subcomplexes of Blr. 
The first result of this section, for which we don't  claim any originality (in fact 

the theorem is known to most workers in the subject, though it seems never to have 
been stated anywhere in print) identifies Kasparov's/3 with a map with a homotopy- 
theoretic construction similar to that used in [L]. Recall that  from the point of view 
of a homotopy theorist, we may also identify KO.(BTr) with 7r.(BTr + A ( B O x  Z)), 
since BO x Z is the classifying space for real K-theory. Here the + means that  a 
disjoint basepoint is to be added--this  is to avoid getting the reduced homology groups. 
(More accurately, the homotopy groups here are those of spectra, and we use the usual 
periodic spectrum whose zeroth space is the infinite loop space BO × Z.) Similarly, 
KO.(C~(Tr)) ~- zc. (BO(C~(cr)) x KOo(C~(Tr))). Thus to construct an assembly map 
between these homotopy groups, it suffices to construct a map of spaces (or of spectra) 

(2.1) 7 :  B~+ A (BO × Z) -* BO(C~(~)) × KOo(C~(~)). 

The actual assembly map itself will then be the induced map 7* on homotopy groups. 

THEOREM 2.2 (FOLKLORE). The map fl : KO.(B~r) ---* KO.(C~(~r)) introduced by 
Kasparov coincides with the assembly map 7.,  where 7 as in (2.1) is constructed as the 
composite 

# o (BL A idBoxZ). 

 ere , is the  inclus ion and  

: × ^ (BO × Z) x 

is the multiplication map corresponding to the action of KO. (R)  on KO.(C~(~r)). 

PROOF: Let's go back to the original definition of Kasparov's map. For convenience 
set A = C~(r).  There is a canonical flat A-line bundle VB, on B~r defined as E~r x~ A, 
and given X ~ By ,  this pulls back to an A-line bundle Vx on X,  which has a class 
[l)x] in KO°(X;  A). The map/3 is obtained upon passage to the limit over X from the 
slant (or Kasparov) product 

®x[Vx] 
K O , ( X )  , KO.(A) .  
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On the other hand, products in homology and cohomology theories, such as this slant 
product pairing, come homotopy-theoretically from pairings of spectra. Thus given a 
class x E KO°(X;  A), it corresponds to the homotopy class of the classifying map 
f= : Z --* (BO(A) x KOo(A)) (or of the corresponding pointed map on X+). The 
associated pairing 

(2.3) K O . ( X )  ®xf~ KO. (A)  

is then given by 6., where 6 is the composite 

X + A (BO x Z) I.^id (BO(A) x KOo(A)) A (BO x Z) ~' ---, (BO(A) × KOo(A)). 

We apply this with x = [Yx], for which the classifying map f= is clearly just the 
composite 

Be 
Z ~ B~r , (BO(A) x KOo(A)). 

The result now follows on taking the limit over X. | 

We proceed now to compute/3 explicitly in the case where 7r is a finite group. In this 
case, the real group ring R~r is finite-dimensional, and although there are many different 
Banach algebra norms on this algebra, they are all equivalent and give the same K- 
theory. Furthermore, by Maschke's Theorem, R1r is semisimple; hence by Wedderburn 
theory, this algebra is a finite direct sum of matrix algebras over R, C, and H (the reals, 
complexes, and quaternions). There is one summand of given type for each irreducible 
representation of 7r of the same type. 

Since K-theory is invariant under Morita equivalence, we instantly deduce: 

LEMMA 2.4. For 7r a/~n/fe group, 

KO.(C~(Tr)) = KO.(RTr) -~ (@rKO.(pt)) ~ (@cK.(pt)) @ (@hKSp,(pt)). 

Here r, c, and h are the numbers of irreducible represenfafions of zc of reM, complex, 
and quaternionic fype (respecfively). | 

Note that it follows that all torsion-free summands in KO.(R~r) occur in even degree 
(in fact divisible by 4, except for summands associated to representations of complex 
type), and that all torsion is of order 2 and occurs in degrees 1 and 2 (rood 8) (if 
coming from representations of real type) and in degrees 5 and 6 (mod 8) (if coming 
from representations of quaternionic type). On the other hand, for ~r finite, KO.(B~r) 
consists en t i re ly  of torsion, and thus its image under # can hit only the Z/2 summands 
in degrees 1, 2, 5, or 6 (mod 8). The following theorem now completely describes the 
map. 
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THEOREM 2.5. If ~r is a finite 2-group, the map ~ : KO.(Bzc) --~ KO.(R~r) gives a 
split surjection onto each Z/2 surnmand on the right. I f  rc is a genera / f in i te  group, 
the image of fl consists exactly of the KO.(pt) summand corresponding to the trivia/ 
representation, plus the image under the map induced by the inclusion of the Sylow 
2-subgroup ~r2 of all torsion in KO.(Ir~). 

PROOF: First note that  we can reduce immediately to the case of a 2-group, because 
of the fact that  all torsion in KO.(RTr) is of order 2 and because of commutat ivi ty of 
the diagram 

~Tr 2 

KO,(B ) , 

(cf. [R1, proof of Proposition 2.7]) and the fact that  the map on the left is a split 
epimorphism when localized at the prime 2 (with the transfer as a splitting). 

Thus suppose ~r is a 2-group. The idea is to use the results of [AS], which describe 
KO*(B~r) (and in fact the pro-ring {KO*(X) :  X ~ BTr}), together with the univer- 
sai coefficient theorem for KO, due to Yosimura [Y]. (The lat ter  also works for real 
C*-algebras such as Rlr--see [MR].) Since the Atiyah-Segal results refer to I-adic com- 
pletions, where I is the augmentation ideal of the representation ring R(~r), we will also 
have to use the following well-known fact: 

LEMMA 2.6. If  G is a p-group and I is the augmentation ideed in the representation 
ring R(a), then I ®z Z/p is nilpotent. 

PROOF OF LEMMA: This is-a special case of [Se, Lemma 3.6], which asserts that  if one 
has a split extension S ~-* G --- P of a p-group P by a cyclic group S of order prime to 
p, then the restriction map r : R(G) ®z Z/p ~ (R(S) ®z Z/p) P is surjective with kernel 
the nilradical of R(G) ®z Z/p. Take S = {1}, P = G; then I (U)  is just the kernel of 
r : R(G) --, R(S), and so [(G) ®z l / p  c nilrad R(G) ®z Z/p. This of course means 
I (G)  is nilpotent mod p, as claimed, l 

PROOF OF THEOREM (CONTINUED): We return to the case of ~r a 2-group. By Lemma 
2.6, I(~r) acts nilpotently on R(~r) ®z Z/2. Thus some power of I(~r) acts trivially on 
each Z/2 summand in KO~J(pt) (such summands can occur for j -= 1, 2, 5, or 6 (rood 
8)), and so nothing happens to these summands upon I-adic completion. 

We refer to the description of KO*(BTr) in [AS, p. 17] (though there is one misprint 
to correct--KO~6(pt) = R(~r)/RR(Tr), not R(~r)/RH0r)). Thus for j = 1, 2, 5, or 
6 (rood 8), respectively, KO-J(Bzr) is gotten from I-adic completion of KO~l(pt)  = 
RR(rr)/pR(~r), KO~2(pt) = R(Tr)/RH(~r), KO;S(pt) = RH(Tr)/~R(~r), and KO-~G(pt) = 
R(~r)/RR(~r). Matching these up with the description of KO.(R~r), we see that the 
"dual Kasparov map" 

a :  K O - J ( R ~ )  -~ KO-~(B~)  

as described in [K, §6.2] is an injection on the torsion for j -- 1, 2, 5, and 6 (rood 8), and 
even an isomorphism of F2.-vector spaces when j -- 1 or 5 (rood 8). (Note: As pointed 
out in the Remarks following [K, Corollary 2.15], there is a natural  identification of 
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KO-J(Rr) with KO;J(pt), whereby one can identify a with a similar map studied by 
Atiyah and Segal.) 

Now applying the universal coefficient theorem of [Y], together with the fact that 
Q/Z is an injective I-module, gives a commutative diagram 

KSp*(R~r; Q/Z) , Hom(KO,(RTr), Q/Z) 

°1 ,'1 
KSp*(B~r; Q/Z) , Hom(KO,(B~r), Q/Z). 

Let x E KOj(RTc) with j - 1 or 5 (mod 8) and let z~, . . . ,  zn be an F2-basis for the 
torsion subgroup of Ko-i-3(R~r) ~ KSp i+~ (R~r). The exact sequence 

0 , K S # ( R ~ ) ® z Q / Z  , K S # ( R ~ ; Q / Z )  , T o r ( K S # + ~ ( R ~ ) , Q / Z )  , 0 

I 
0 

shows these lift to unique elements ~'1,. • . ,  2'a in KSpJ(~7£; Q/Z),  each of order 2. Then 
c~(~,x),..., o~(5,,) must be linearly independent elements in KSIP(B~; Q/Z) (since ~(Zl ), 
. . . ,  o~(z,,) axe linearly independent in KSp j+~ (B~r) by the application of Atiyah-Segal). 
However, 

KSpi(Br; Q/Z) -~ Hom(KOj(B~r), Q/Z), 

so a(51) , . . . ,  ~(~',,) may be viewed a.s homomorphisms I(Oj(B~r) ---+ F2. Since these are 
linearly independent, we may choose an element y E KOj(B~r) with 

and then 

(v, ~(~j)) = (x, ~j) ~ z / 2  ,--,. Q/z,  

(/3(y), 5j) = (x, ~j) for all j, 

hence x =/3(y). 
This proves that for ~r a 2-group, /3 is surjective in degrees -- 1 or 5 (mod 8). But 

multiplication by the generator 0 of KOt (pt) gives isomorphisms 

K o , ( a ~ )  ~ Tors(XrO:(R.)), KO~(a . )  ~ Tors(KO6(R.)), 

hence since/3 commutes with multiplication by O,/3 is also surjective onto the torsion 
in degrees - 2 or 6 (mod 8). Finally, for the statement about splitting, recall that 
KO,(B~r) and KOs(B~r) are countable abelian torsion groups to which we can apply 
Pontryagin duality. For such a group H (which we give the discrete topology), the dual 
group H = Horn(H, 1 ) i s  compact and coincides with Horn(H, Q/Z); furthermore, 
we can recover H as Homcont(H, T). From the analysis above, Hom(KOI(Brc), Q/Z) 
and Hom(KO~(B~r), Q / l )  contain Z/2 summa~nds which map isomorphically under 
/3*. But direct sum decompositions of these dual groups dualize to give direct sum 
decompositions of KOI (BTr) and KOs(B~r) that g~ve a splitting of/3. | 
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REMARK 2.7. 

Unfortunately, we do not know of any way to avoid mention of the map KO.(RIr2) --4 
KO.(RTr) in Theorem 2.6, since this map fail to be injective or may fail to be surjective 
(or both) on the torsion. For instance, if ~r = $3, ~r2 = 7/2,  the map is injective but  
not surjective on torsion since ~" has 3 irreducible representations of real type and ~r2 
has only 2. On the other hand, if ~r = A4, then ~r2 ~ 7 /2  x 1/2 is normal, ~'2 has 
4 irreducible representations of real type, but 7r has only 2; the map induced by the 
inclusion in this case is surjective on torsion but not injective. 

§3. POSITIVE SCALAR CURVATURE 
WHEN THE UNIVERSAL COVER IS SPIN 

In this final section, we use the results of §2 to return to the positive scalar curvature 
problem for manifolds with finite fundamental group. In a while we shall mention how 
to understand Conjecture 0.1 w h e n / ~ / h a s  a spin structure but  M does not, but first 
we discuss the case where it is easiest to give specific results, namely the case where M 
itself is a spin manifold. First we recall one of the main results of [R3], which explains 
why Theorem 2.5 above is relevant to our problem. 

THEOREM 3.1 [R3, THEOREM 3.4]. Let M "  be a dosed Riemannian manifold with 
positive scalar curvature and with a spin structure s. Let f : M ~ BTr be the classifying 
map for ~he universal cover of M,  and let [M, s] E K O , ( M )  be the KO-fundamental 
class defined by the spin structure. Then ~ o f . ( [M,  s]) = 0 in KOn(C~(zr)). 

The precise meaning of Conjecture 0.1 in the spin case is that  we conjecture that the 
necessary condition for positive scalar curvature in Theorem 3.1 is actually sufficient. 
Note that  there are two ways of viewing the obstructions given by Theorem 3.1. For 
a spin manifold with finite fundamental group lr, one may think of there being a sin- 
gle obstruction to positive scalar curvature in KO,(R~r), or (by Lemma 2.4) of there 
being a whole family of obstructions, corresponding to indices of Dirac operators with 
coefficients in the various flat bundles parameterized by the irreducible representations 
of ~'. The  content of Theorem 2.5 is that  when ~- is a 2-group, e v e r y  irreducible rep- 
resentation of real or quaternionic type gives rise to genuine obstructions to positive 
scalar curvature (in dimensions 1 and 2 (mod 8) in the real case, 5 and 6 (rood 8) in 
the quaternionic case) for manifolds with the given fundamental  group. This is because 
every class in KO.(B~r) can be realized by a spin manifold with the correct fundamental  
group, provided we jack up the dimension sufficiently using Bott  periodicity. 

Now we consider the positive evidence for Conjecture 0.1 in the spin case. When 
the manifold is simply connected, the conjecture just becomes the original conjecture 
of Gromov and Lawson [GL2] about simply connected manifolds of positive scalar 
curvature, which it seems has now been verified by Stolz [Sz]. And by [R3] and [KS1], 
the conjecture in the simply connected case implies the conjecture for manifolds with 
fundamental  group of odd order, provided the Sylow subgroups of the fundamental  group 
are all cyclic. Even more than in the non-spin case treated in §1 above, the crucial case 
to consider is that  where the fundamental group ~r is a 2-group. Even the simplest case 
of a cyclic group of order 2 is quite hard; however, we do have the following positive 
result. Note that  when ~" = 1/2, M admits exact]y one non-trivial flat line bundle, 
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giving us a "twisted Dirac operator" having (by Lemma 2.4 and Theorem 2.5) a (][/2)- 
valued index which is an obstruction to positive scalar curvature in dimensions -= 1 and 
2 (mod 8). 

THEOREM 3.2. Let M n be a closed spin manifold with fundamentM group F/2. I f  
5 < n _< 15, then Conjecture 0.1 holds for M; that is, M admits a metric of positive 
scalar curvature i f  and only i f  the KO.-vMued  index obstructions associated to the 
Dirac operator on M and the twisted Dirac operator on M vanish. 

Furthermore, /'or arbitrary n >_ 5, i f  M "  is a spin boundary (forgetting the funda- 
mental group) and i f  [M n] E ~sPin(RP°°) has order greater than 2, then M admits a 
metric of positive sca/ar curvature. 

PROOF: We use the isomorphism 

3.3 pin ~poo  ~-- --nkc'~Spin ~]~ pin(I~Pc°) : ~SnPin ~ "~n--1 

(the analogue of the decomposition of 12,(RP °°) used in the proof of Theorem 1.1) 
and the results of [ABP] and [G]. We may restrict attention to the second summand, 
since the first summand corresponds to the simply connected case of the positive scalar 
curvature problem. 

Let's handle the second statement first, since it will take care of much of the first 
statement (the "low-dimensional" case) as well. By [G, Corollary 3.5], the subgroup of 
f~Pin generated by elements of order greater than two is generated by products of certain 
spin manifolds M j  with Rp4k+2's. Under the isomorphism of (3.3), such products 
correspond in f~SPI"(RP~) with M j  × 8P 4k+3 (note RP 4k+3 is a spin manifold with 
fundamental group ][/2). Since RP 4k+3 has a metric of positive curvature, M j x  RP 4k+3 
has a metric of positive scalar curvature. 

Now let's go back to the case where 5 _< n < 15. [ABP,  Theorem 5.1] gives us 
a precise calculation of  ~Spin([~poo) -__~'~ QPinn_l. Consider first the summands coming 
from BO(0). Aside from cyclic summands of large order, which we've already handled, 
we have, in our range of values of n, Z/2-summands in dimensions 9 and 10. These 
correspond to manifolds for which the KO.-valued index of the twisted Dirac operator 
is non-zero (e.g., M0 s x S 1 with spin surgery to reduce the fundamental group to ][/2; 
here M0 s is a spin 8-manifold with .4-genus = 1). We've seen these manifolds do no t  
have metrics of positive scalar curvature. 

Next consider the remaining summands, which come from 8 0 ( 8 )  and from BO(10). 
We know the cyclic summands of large order correspond to manifolds of positive scalar 
curvature, and the remaining Z/2-summands occur in dimensions 9 and 10 (coming 
from BO(8))  and in dimensions 12, 13, and 14 (coming from BO(10)). We can find 
representatives for all of these with positive scalar curvature. For the generators in 
dimensions 9 and 10, one can take HP 2 x S 1 and HP 2 x ~1 x S 1, with suitable spin 
surgeries to reduce the fundamental group to Z/2. The generators in dimensions 12, 13, 
and 14 can be built from a spin manifold M 1° of positive scalar curvature (representing 
a ][/2 summand in oSpin~ M 1° S 1 "'10 / as x with spin surgery to reduce the fundamental 
group, as (M l° x S2)/cr, cra suitable free involution, and as M l° x RP s. | 

Finally, we explain the meaning of Conjecture 0.1 in the non-spin case. If M is a 
manifold whose universal cover M has a spin structure, then the sections of any flat 
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vec to r  bund le  over  M m a y  be  ident i f ied  wi th  a su i tab le  space  of vec to r -va lued  func t ions  
on JtSi r. As  such, t he re  is a Di rac  o p e r a t o r  ac t ing  on t h e m  (af te r  t ensor ing  w i th  the  

sp inor  bund le  on/~if).  For  some vec to r  bundles ,  the  Di rac  o p e r a t o r  will m a p  th is  space  
back  in to  i tself ,  and  thus  t he re  is an  a s soc ia t ed  K O , - v a l u e d  index  of  the  t w i s t e d  Di rac  
o p e r a t o r  which  will  be  an o b s t r u c t i o n  to a me t r i c  of pos i t ive  sca la r  c u r v a t u r e  on M .  
T h e  mean ing  of  t he  Con jec tu re  is t h a t  these  shou ld  be  t he  only  obs t ruc t i ons .  So far  
we have  on ly  p a l t r y  ev idence  for the  Conjec tu re ,  bu t  it  shou ld  be  poss ib le  to  tes t  i t  by  
us ing the  2 -connec ted  b o r d i s m  class of the  clasifying m a p  M --* Bvr, as i n t r o d u c e d  in  
[KS1] ,  [KS2] .  
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