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I. A Survey of Bivariant

K-Theories

(1) Kasparov’s KK — constructed from “gen-

eralized elliptic operators”

(2) BDF-Kasparov Ext — constructed from

extensions of C∗-algebras by a stable C∗-

algebra, modulo split extensions. BDF one-

variable version constructed from extensions

of C∗-algebras by K.

(3) Algebraic Dual K-Theory — algebraic ana-

logue of one-variable Ext
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(4) Homotopy-Theoretic KK — analogue of

KK constructed using homotopy theory,

with “built-in UCT”

(5) Connes-Higson E-Theory — simpler replace-

ment for KK, designed to eliminate certain

difficulties

Of these, numbers 1, 2, and 5 make sense only

for C∗-algebras. #3 and #4 make sense for ar-

bitrary Banach (and even for many Fréchet) al-

gebras. But Kasparov’s KK is by far the most

important, because of the way it “fits” both

with classical index theory and with “exotic”

index theory like Mishchenko-Fomenko theory.

We’ll start with #3 and #4 since they can be

defined out of one-variable K-theory.
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I.1. Algebraic Dual K-Theory Let A be a

local Banach algebra, and let DKj(A) (D for

dual) be the set of commutative diagrams

Kj(A;Q)
ρ∗

//

��

Kj(A;Q/Z)

��

Q
ρ

// Q/Z,

where ρ : Q → Q/Z is the quotient map. Then

DK∗(A) can be made into an abelian group, a

subgroup of

Hom(Kj(A;Q), Q) ⊕ Hom(Kj(A;Q/Z), Q/Z).

Theorem 1 DK∗ is a cohomology theory on

local Banach algebras and satisfies Bott peri-

odicity and a UCT exact sequence

0 → Ext1Z(Kj−1(A), Z) → DKj(A)

→ Hom(Kj(A), Z) → 0.
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Proof. Clearly DK∗ is a contravariant homo-

topy functor with Bott periodicity. The UCT

map

DKj(A) ։ Hom(Kj(A), Z)

comes from chasing the diagram

Kj(A)

��

// Kj(A;Q)
ρ∗

//

��

Kj(A;Q/Z)

��

∂ // Kj−1(A)

Z // // Q
ρ

// Q/Z // 0.

The same diagram also gives the left side of

the UCT exact sequence once we remember

that Ext1Z(Kj−1(A), Z) is the cokernel of the

map

Hom(Kj−1(A), Q) → Hom(Kj−1(A), Q/Z).

We need to show that DK∗ comes with long

exact sequences, and this uses exactness of the

functors Hom( , Q) and Hom( , Q/Z), which

in turn relies on the fact that Q and Q/Z are

divisible and thus injective as Z-modules. �
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I.2. Homotopy-Theoretic KK-Theory

We will be brief about this since formal defi-

nitions require a lot of machinery. If A and B

are local Banach algebras, the K-groups of A

and B are in fact homotopy groups of spectra

K(A) and K(B), in fact of K-module spectra,

where K = K(C) is the spectrum of complex

K-theory. Thus one can define

KK(A, B) = HomK(K(A), K(B)),

computed in a suitable category. This is it-

self a K-module spectrum, so it has homotopy

groups satisfying Bott periodicity which one

can call the homotopy-theoretic KK-groups of

A and B, HKK∗(A, B). Properties of the cat-

egory of K-module spectra, studied by Bous-

field, imply that one has a UCT exact sequence

0 → Ext1Z(K∗−1(A), K∗(B)) → HKK(A, B)

→ Hom(K∗(A), K∗(B)) → 0.
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It’s fairly easy to see that all the other bivari-

ant K-theories we are discussing have natural

transformations to HKK, which in good cases

are isomorphisms. This gives a way to prove a

UCT in many situations.

I.3. BDF Ext-Theory Of great historical im-

portance, because of its connection with the

Weyl-von Neumann Theorem, is BDF (Brown,

Douglas, Fillmore) Ext-theory. Let L = L(H)

be the algebra of bounded operators on an

infinite-dimensional separable Hilbert space H,

and let Q = L/K be the Calkin algebra. If A

is a separable C∗-algebra, each extension of A

by K is a pullback

0 //K // E

��

// A
τ

��

// 0

0 //K //L //Q // 0.
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Thus we think of ∗-homomorphisms τ : A → Q

as extensions, and divide out by conjugation

via unitaries in L. We can add extensions via

A
τ1⊕τ2 //Q⊕Q //Q(H⊕H) ∼= Q.

The result is well-defined modulo unitary con-

jugation, and makes classes of extensions into

an abelian semigroup. After dividing out by

the split extensions (this is unnecessary, by a

result of Voiculescu, if A is nonunital), those

τ ’s with a lifting

L

��

A

==

τ // Q,

we obtain an abelian semigroup Ext(A).

Theorem 2 (Arveson, Choi-Effros) An ex-

tension τ : A → Q is invertible in Ext(A) if

and only if it has a completely positive listing

A → L. The liftable extensions form a group,

and if A is nuclear, this group is all of Ext(A).
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Theorem 3 (O’Donovan, Salinas) Ext is ho-

motopy-invariant on quasidiagonal C∗-algebras.

It is easy to construct a natural transformation

Ext → DK1. In fact, given an extension

0 → K → E → A → 0,

tensor the extension with nuclear C∗-algebras

C with K1(C) = 0 and K0(C) = Q and Q/Z.

Then use the connecting map K1(A ⊗ C)
∂
−→

K0(K⊗C) ∼= K0(C) in the long exact K-theory

sequences for the tensored extensions to define

an element of DK1. (For example, to define

K-theory with coefficients in Q, one can take

C to be the “universal UHF algebra.”) In “fa-

vorable circumstances,” e.g., for A a type I

C∗-algebra, this natural transformation Ext →

DK1 is an isomorphism, and thus we obtain

the UCT for Ext, originally due to Brown.
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I.4. Kasparov KK-Theory Kasparov theory

really deserves a course in itself, but we at

least should explain what it is and why it’s so

important. Given a C∗-algebra B, one has the

notion of a (right) Hilbert B-module E. This

is like a Hilbert space, except that the inner

product takes values in B. As usual, we require

〈v, v〉 ≥ 0, but here ≥ is to be interpreted in the

sense of C∗-algebras, and the norm is defined

by ‖v‖2E = ‖〈v, v〉‖B.

Examples: If B = C, this is a Hilbert space. If

B = C0(X), this is the space of sections of a

continuous field of Hilbert spaces over X. B

is always a Hilbert module over itself, with in-

ner product 〈v, w〉 = v∗w. ℓ2(B) is the Hilbert

module of sequences {bk} with
∑

b∗kbk conver-

gent in B.
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If E is a (right) Hilbert B-module, we can de-

fine C∗-algebras K(E) and L(E), consisting of

bounded B-linear operators on E having ad-

joints with respect to the inner product. L(E)

is the set of all such operators, while K(E) is

the closed linear span of those of “rank one.”

If E = ℓ2(B), K(E) ∼= B ⊗ K, and L(E) ∼=

M(B ⊗K).

If A and B are separable C∗-algebras, KK(A, B)

is the abelian group of Kasparov A-B bimod-

ules modulo “homotopy.” A Kasparov A-B bi-

module is a pair (E, T ), where E = E0 ⊕ E1

is Z/2-graded and is both a right Hilbert B-

module and a left A-module (via a map φ :

A → L(E)). T ∈ L(E) is required to be odd

(i.e., to interchange E0 and E1), self-adjoint,

and to satisfy




φ(a)(T2 − 1) ∈ K,

Tφ(a) − φ(a)T ∈ K,

for all a ∈ A.
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As we mentioned, KK(A, B) consists of Kas-

parov A-B bimodules modulo homotopy. A

homotopy is the one-parameter family of Kas-

parov A-B bimodules induced by a single A-

C([0,1], B) bimodule.

There are a number of important natural ex-

amples of Kasparov A-B bimodules. The first

motivating example comes from index theory.

Suppose A = C(X), where X is a compact

even-dimensional spin manifold, and let B =

C and E be the Hilbert space of sections of

the complex spinor bundle of X. This is Z/2-

graded by the splitting into half-spinor bun-

dles. X has a Dirac operator D, which we can

view as an unbounded self-adjoint operator on

E. The operator D is odd with respect to the

grading, and since D is a first-order differen-

tial operator, D has bounded commutator with

functions in C∞(X).
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Now define T = D(D2 + 1)−1/2 by functional

calculus. This is still self-adjoint and odd with

respect to the grading, but is also bounded

(obvious). T2 − 1 ∈ K by ellipticity of D, and

[T, φ(a)] ∈ K for a ∈ C(M) since [D, φ(a)] ∈ L
for a ∈ C∞(M) and (D2 + 1)−1/2 is compact

(by ellipticity and pseudodifferential calculus,

for example).

A ∗-homomorphism φ : A → B can also be

viewed as a special case of a Kasparov A-B bi-

module; simply take E0 = B, E1 = 0 and T =

0. Since E is a rank-one B-module, K(E) = B
and L(E) = M(B), so all conditions are satis-

fied.

Finally, there’s one other important example,

that comes from extension theory. An exten-

sion of C∗-algebras

0 → B ⊗K → E → A → 0,

assuming it has a completely positive splitting

s : A → E, gives a class not in KK(A, B) but

in the “shifted” group KK1(A, B).
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One way to define the group KK1(A, B) is via

Kasparov A-B bimodules as before, but this

time without the Z/2-grading (and of course

without the requirement that the operator T

be odd).

The point is that the completely positive split-

ting and the “generalized Stinespring dilation

theorem” imply the extension comes from a

morphism φ : A → M(B⊗K) ∼= L(ℓ2(B)) and a

projection p ∈ L(ℓ2(B)) commuting with φ(A)

modulo B ⊗K ∼= K(ℓ2(B)). Then we can take

T = 2p − 1, which satisfies T2 = 1.

Incidentally, it would appear that a ∗-homo-

morphism φ : A → B should also define an ele-

ment of KK1(A, B) (with E = B, T = 0), but

this element is trivial, since it is homotopic to

the module with E = B, T = 1, which is “de-

generate” (i.e., has T2−1 and [T, φ(a)] actually

0, not just compact, for all a).
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I.5. Connes-Higson E-Theory

The last bivariant theory, E-theory, is defined

using the notion of asymptotic morphism φ :

A // B . This is not a ∗-homomorphism but a

1-parameter family of (set-theoretic) maps φt :

A → B which are a ∗-homomorphism “in the

limit,” e.g., φt(a1)φt(a2) → φt(a1a2) as t → ∞.

Any ∗-homomorphism defines an asymptotic

morphism (constant in t). There is an obvious

notion of homotopy for asymptotic morphisms.

The notation [[A, B]] denotes the homotopy

classes of asymptotic morphisms A // B .

E(A, B) is defined to be [[SA, SB⊗K]], where S

denotes C∗-algebraic suspension (tensor prod-

uct with C0(R)). The suspension and/or stabi-

lization are used to define a good addition op-

eration; in some cases one doesn’t need both.
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Theorem 4 (Connes-Higson) Any homotopy-

invariant, half-exact, stable functor on separa-

ble C∗-algebras factors through E-theory.

If A and B are separable C∗-algebras and A is

nuclear, then E(A, B) is naturally isomorphic

to KK(A, B).

However, the advantage of E over KK is that

the former is well-behaved (has exact sequences

in both variables) even when A is not nuclear.
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II. Algebras of Continuous Trace,

Twisted K-Theory

II.1. Algebras of Continuous Trace

Let X be a locally compact Hausdorff space.

An algebra of continuous trace over X is a C∗-

algebra A with spectrum X, such that for each

x0 ∈ X, there is an element a ∈ A such that

x(a) is a rank-one projection for each x in a

neighborhood of x0 (Fell’s condition). Such al-

gebras were studied by Fell and Dixmier-Doua-

dy, and are algebras of sections of continuous

fields of elementary C∗-algebras.

For simplicity, assume X 2nd countable (C0(X)

separable) and consider only separable alge-

bras. As far as K-theory is concerned, it is

no loss of generality to stabilize, i.e., to tensor

with K. Since K ⊗ K ∼= K (for the C∗-tensor

product), this is the same as restricting to al-

gebras A with A ∼= A ⊗K.
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Theorem 5 (Dixmier-Douady) Any stable

separable algebra of continuous trace over X

is isomorphic to Γ0(A), the sections vanishing

at infinity of a locally trivial bundle of alge-

bras over X, with fibers K and structure group

Aut(K) = PU = U/T. Classes of such bundles

are in natural bijection with H3(X, Z) (Čech

cohomology).

Proof. Local triviality is mostly general topol-

ogy and uses paracompactness. We just ex-

plain the last part. The point is that U (in the

weak operator topology) is contractible, so PU

has the homotopy type of BS1 = K(Z,2), and

BPU has the homotopy type of K(Z,3). Prin-

cipal PU-bundles over X are thus classified by

[X, BPU ] = [X, K(Z,3)] = H3(X, Z).

�
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The group H3(X, Z) can also be described as

the Brauer group of C0(X), i.e., the group of

algebras of continuous trace over X modulo

Morita equivalence over X. The group opera-

tion then corresponds to tensor product. This

point of view was first developed by Green

(1970’s, unpublished) and later used by Will-

iams, Raeburn, et al.

For X a finite CW complex, Serre and Grothen-

dieck had earlier studied the Brauer group of

C(X) in the purely algebraic sense, i.e., the

group of algebras of sections of bundles of ma-

trix algebras over X, modulo algebraic Morita

equivalence over X. Translated into our lan-

guage, their result is:

Theorem 6 Let X be a finite CW complex.

Then an element of the Brauer group H3(X, Z)

of continuous-trace algebras over X is repre-

sented by a bundle of finite-dimensional matrix

algebras if and only if the class is torsion.
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II.2. Twisted K-Theory Now we can de-

fine the twisted K-theory of a (locally com-

pact) space X with respect to a cohomology

class δ ∈ H3(X, Z) as the K-theory of the cor-

responding continuous-trace algebra CT (X, δ)

(which is locally isomorphic to C0(X,K). This

is somewhat analogous to the twisted coho-

mology (or cohomology with local coefficients)

attached to a flat line bundle.

Example: Let X = S3, so that H3(X) ∼= Z.

Thus we have a stable CT algebra over X for

each integer n. It can be obtained by clutch-

ing together two copies of C(D3,K) via a map

S2 → Aut(K) = PU of degree n. One finds

that if n 6= 0,

K∗(CT (S3, δn)) =




0, ∗ even,

Z/n, ∗ odd.
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III. Crossed Products by R and

Connes’ Thom Isomorphism

For what we will do later we will need a few

facts about crossed products by R, closely re-

lated to the Pimsner-Voiculescu sequence for

crossed products by Z. First let’s mention the

Takai Duality Theorem.

Theorem 7 (Takai) Let A be a C∗-algebra

and let α be an action of a locally compact

abelian group on A. Let A ⋊α G be the C∗

crossed product. Recall this is the comple-

tion of Cc(G, A) in the universal C∗ norm, with

convolution multiplication determined by the

formal relation g · a · g−1 = αg(a). Define the

dual action α̂ of Ĝ on A ⋊α G by multiplication

by Ĝ on functions on G. (The formal relations

are γ · a = a · γ, γ · g · γ−1 = 〈γ, g〉g.) Then

(A ⋊α G) ⋊α̂ Ĝ ∼= A ⊗K.
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Proof. Proof is just like that of the Stone-von

Neumann-Mackey Theorem, which is the spe-

cial case A = C. �

Theorem 8 (Connes) Let A be a C∗-algebra

and let α be an action of R on A. Then there

is a natural isomorphism

φ : K∗(A) → K∗+1(A ⋊α R).

Put another way, the K-theory of A ⋊ R is

in some sense independent of the action α.

Proof. We will sketch two proofs, Connes’

original one and a modification of one due to

Rieffel. In both cases there are two steps, con-

struction of φ and the proof that it’s an iso-

morphism.

The original proof of Connes relies on the “2×2

matrix trick.”
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Lemma 9 (Connes) Let α be an action of a

locally compact group G on a C∗-algebra A,

and let u be a unitary cocycle for G. (Thus u

is a strictly continuous map G → U(M(A)) and

ugh = ugαg(uh).) Then there is an action of G

on M2(A) restricting to α on one corner and to

α′ on the other corner. Here α′
g = Adug ◦ αg.

Proof. The cocycle condition guarantees that

α′ is an action. Simply define β on M2(A) by

the formula:

βg

(
a b
c d

)
=

(
αt(a) αt(b)u

∗
t

utαt(c) utαt(d)u
∗
t

)

and check that it works. �

Actions α and α′ related as in Lemma 9 are

called exterior equivalent.
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In many ways, the most satisfying proof of

Theorem 8 is the original one by Connes. This

depends on the following lemma.

Lemma 10 (Connes) Let α be an action of a

R on a C∗-algebra A, and let e be a projection

in A which is a smooth vector for α. Then

there is an exterior equivalent action α′ of R

on A which fixes e.

Proof. The fact that e is α-smooth means

that it lies in the domain of the derivation δ

which is the infinitesimal generator of α. Write

δ formally as i adH, where H is an unbounded

self-adjoint multiplier of A. Then replace H by

H ′ = eHe + (1 − e)H(1 − e) = H + i[δ(e), e],

which commutes with e. Define α′ by Ad
(
eitH ′

)
,

defined by expanding the series, and check that

it works. �
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Proof of Theorem 8 from Lemma 10. If φ is

to be natural and compatible with suspension,

it’s enough to define it on classes of projec-

tions e ∈ A. Since we can perturb a projec-

tion to a smooth projection, and close projec-

tions are equivalent in K0, we may assume e is

smooth. Apply Lemmas 10 and 9. We obtain

an action β on M2(A) with α in one corner

and α′ in the other corner, where α′ fixes e.

The inclusions A →֒ M2(A) into the two cor-

ners are both isomorphisms on K-theory, and

are equivariant for α, resp., α′. So we can re-

duce to the case where e is fixed. Then 1 7→ e

is an equivariant map C → A, so φ([e]) is de-

fined by naturality from the trivial case A = C,

A ⋊ R ∼= C0(R), where there is an obvious iso-

morphism K0(C) → K1(C0(R)). The fact that

φ is an isomorphism follows from naturality and

Takai duality. �
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Another proof of Theorem 8. We give an-

other proof based on the Pimsner-Voiculescu

sequence. This is based on ideas from a dif-

ferent proof by Rieffel. An advantage of this

proof is that it might work for local Banach

algebras. Start by defining an action of R on

C0([0,1), A) by

(α̃tf)(s) = αts(f(s)).

Note that we have an exact sequence

0 → S(A ⋊α R) → C0([0,1), A) ⋊α̃ R

(e0)∗−−−→ SA → 0.

The map φ will just be the index map for the

corresponding K-theory exact sequence. Since

C0([0,1), A) is contractible, “all” we need to

show is that K∗(B) = 0 implies K∗(B ⋊ R).

(Here B = C0([0,1), A) and the action is α̃.)
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Since we want to use Pimsner-Voiculescu, we

want to relate crossed products by R to crossed

products by Z. Now we need:

Theorem 11 (Packer-Raeburn) If α is an ac-

tion of a locally compact group G on a C∗-

algebra, and if N is a closed normal subgroup,

then after stabilizing, B⋊G is an iterated crossed

product ((B ⊗K) ⋊ N) ⋊ (G/N).

To finish the proof, use the Packer-Raeburn

trick to write

(B ⊗K) ⋊ R ∼= D ⋊β (R/Z), D = (B ⊗K) ⋊ Z.

By P-V, K∗(B) = 0 implies K∗(D) = 0. So we

need to show this implies K∗(D ⋊β (R/Z)) =

0. Use Takai Duality (possibly with additional

stabilization) to write

D ∼= (D ×β R/Z) ⋊
β̂

Z.
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Reiterating,

D ∼= (D ×β R/Z) ⋊
β̂

Z.

By P-V again and the fact that K∗(D) = 0, we

see 1−(β̂)∗ is an isomorphism of K∗(D×βR/Z).

But β̂ is the restriction of the R̂-action α̂, so it

acts trivially on K-theory. Thus 1−(β̂)∗ is both

0 and bijective. So K∗(D ⋊β (R/Z)) = 0, and

K∗(B ⋊ R) = 0. So we’ve seen that K∗(B) = 0

implies K∗(B ⋊ R) = 0, which completes the

proof of Connes’ theorem. �
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IV. Applications to Physics

K-theory, including twisted K-theory, is start-

ing to appear in the physics literature quite

frequently. Good first places to look are

E. Witten, D-Branes and K-Theory, J. High

Energy Physics 12 (1998) 019.

D. Freed, K-Theory in Quantum Field Theory,

math-ph/0206031.

The idea, to quote Witten, is that “D-brane

charge takes values in the K-theory of space-

time.” (In string theory, a D-brane is a sub-

manifold of space-time on which strings can

begin and end. The “D” stands for Dirichlet

and has to do with the boundary conditions

on open strings.) Twisting of K-theory comes

in because of a background field, called the

H-flux, given by a 3-dimensional cohomology

class.
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I will not try to explain the physics involved in

all this but instead will discuss some mathe-

matics related to it.

Another interesting feature of string theory is

the notion of T-duality (T for torus), which

postulates an equivalence of theories on two

different space-times X and X#, which are re-

lated by exchange of tori in X by their dual tori

in X#. Let’s try to make this precise in the

case where the tori involved are 1-dimensional.

The duality in this case should exchange Type

IIA and Type IIB theories (for those who know

what this means).

We consider two principal T-bundles X and X#

over a common base Z. Each is supposed to

be equipped with an H-flux, so there are asso-

ciated cohomology classes δ and δ# in H3(X)

and H3(X#), respectively.
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From the diagram

X

p ��@
@@

@@
@@

@ X#

p#||yyyyyyyy

Z

and the classes δ ∈ H3(X), δ# ∈ H3(X#), we

have continuous-trace algebras CT (X, δ) and

CT (X#, δ#). The circle group T acts freely

on X and X#, but not necessarily on CT (X, δ)

and CT (X#, δ#). In fact, given an action of a

group G on a space X and a class δ ∈ H3(X),

the action lifts to an action on CT (X, δ) if and

only if

(a) G fixes δ in H3, and

(b) the G-action on X lifts to an action on the

principal PU-bundle associated to δ.
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In our situation, (a) is obvious since the G in-

volved is connected, but (b) is unclear. In fact,

one can check:

Lemma 12 (Raeburn-Williams-Rosenberg)

The T-action on X lifts to an action on the

principal bundle associated to δ if and only if

δ ∈ p∗(H3(Z)). But if we view T as R/Z, the

action always lifts to R.

Proof. One can do the first part purely topo-

logically, but also one can observe that since

T acts transitively on fibers of p, if there were

an action α on CT (X, δ), then CT (X, δ) ⋊α T

would be a continuous-trace algebra over Z,

say with class c ∈ H3(Z), and by Takai duality,

we’d have

CT (X, δ) ∼= CT (Z, c) ⋊α̂ Z ∼= p∗CT (Z, c).

For the second part, say X and Z are manifolds

and everything is smooth. (One can reduce to

this case.) Then one can construct a lifting

using a connection on the bundle. �
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Now let’s come back to T-duality. X
p
−→ Z

and X# p#

−−→ Z should be T-dual if the fibers

of p# are dual to the fibers of p, if there is

a well-defined procedure for creating (X#, δ#)

from (X, δ), if doing this process twice gets us

back where we started, and if there is a natural

isomorphism of twisted K-theories

K∗(X, δ) ∼= K∗+1(X#, δ#).

(The last condition is forced by equivalence of

the IIA string theory on X and the IIB theory

on X#.) In fact we can achieve all of these.

Theorem 13 (Raeburn-Rosenberg) Lift the

T-action on X to an R-action α on CT (X, δ).
It turns out all such choices are exterior equiv-

alent. Then

CT (X, δ) ⋊α R∼= CT (X#, δ#),

K∗(X, δ)∼= K∗+1(X#, δ#).

Here X# p#

−−→ Z is a principal T-bundle over Z
whose fibers are naturally dual to the fibers of

p. Doing this twice gets us back to (X, δ).
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In fact, we have formulas from which p# and

δ# can be computed. Recall that a principal

T-bundle over Z is determined by a character-

istic class [p] ∈ H2(Z), and that for any circle

bundle, we have a Gysin sequence

· · · → H1(Z)
∪[p]
−−−→ H3(Z)

p∗
−→ H3(X)

p!−→ H2(Z) → · · · .

Then

p!(δ) = [p#], (p#)!(δ
#) = [p].

Proof. We don’t have room for all the details,

but it’s easy to see that CT (X, δ) ⋊α R must

be a continuous trace algebra with spectrum a

circle bundle over Z. Furthermore, Takai du-

ality shows X and X# play symmetrical roles.

The isomorphism of twisted K-theories follows

from Connes’ Theorem in the previous lecture.

The characteristic class formula is proved by

checking certain examples and using functori-

ality.
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Certainly, if δ is in the image of p∗, then α can

be chosen trivial on Z = ker(R → T). Then

CT (X, δ) ⋊α|Z
Z ∼= CT (X, δ) ⊗ C(S1). So by

Packer-Raeburn (since things are stable)

CT (X#, δ#) ∼= CT (X × S1, δ × 1) ⋊ T,

with T acting freely on X and trivially on S1, so

X# = Z×S1 and p# is a trivial bundle. But if p

is trivial (so X = S1×Z) and δ = a×b, where a

is the generator of H1(S1) and b ∈ H2(Z), then

p!(δ) = b. Furthermore, it is known there is an

action θ of Z on C0(Z,K) with C0(Z,K) ⋊θ Z

having spectrum T , where T → Z is the prin-

cipal bundle with characteristic class b. If one

forms IndR
Z C0(Z,K), one can check that this is

isomorphic to CT (X, δ). Thus we can assume

α = IndR
Z θ, so

CT (X#, δ#) ∼=
(
IndR

Z C0(Z,K)
)

⋊Ind θ R
∼= Morita C0(Z,K) ⋊θ Z,

which has spectrum T . So [p#] = b = p!(δ).

The general cases are reduced to these. �
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The conclusion of this analysis is that use of

crossed products of continuous-trace algebras,

twisted K-theory, and the Connes Thom iso-

morphism enables us to put on a firm mathe-

matical basis a phenomenon suggested empir-

ically by physicists!
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