Exercises for Oberwolfach Seminar on Topological K-Theory of Noncommutative Algebras

Jonathan Rosenberg University of Maryland

May, 2005

Note: My slides for the Seminar are available at: http://www.math.umd.edu/users/jmr/OberwolfachS05.pdf The file is a work in progress, but I am updating it as I go along.

1 Lecture I: A Survey of Bivariant *K*-Theories

- 1. Verify that $K_*(_; \mathbb{Q})$ and $K_*(_; \mathbb{Q}/\mathbb{Z})$, as we defined them for local Banach algebras as $K_*(_\widehat{\otimes}D)$ for a suitable tensor product and suitable auxiliary algebras D, are indeed homology theories (homotopy invariant, half-exact, with long exact sequences).
- 2. Show that the definition of $K_*(\underline{\ }; \mathbb{Z}/n)$ defined using the mapping cone of the unital map $\mathbb{C} \to M_n(\mathbb{C})$ agrees with the "classical choice," where we take for D the commutative algebra $C_0(X \setminus \{x_0\})$, where X is the mod-n "Moore space," a CW complex with 3 cells defined by attaching a 2-cell to S^1 by a map of degree n, and x_0 is a basepoint (the 0-cell in X).
- 3. Check the details of the theorem that DK^* , as defined in the slides, is a cohomology theory on algebras.

2 Lecture II: Twisted *K*-Theory

1. Check the calculation of the twisted K-theory

$$K_{\delta_n}^{-*}(S^3) = K_*(CT(S^3, \delta_n)),$$

where δ_n has as Dixmier-Douady invariant *n* times the fundamental class on S^3 .

2. (harder) Use the last exercise and the Atiyah-Hirzebruch spectral sequence (the spectral sequence induced by the skeletal filtration) to show that if X is a finite CW complex and $\delta \in H^3(X, \mathbb{Z})$, there is a spectral sequence

$$H^p(X, K_q(\mathbb{C})) \Rightarrow K^{p+q \mod 2}_{\delta}(X),$$

in which the first non-trivial differential is $d_3 = _ \cup \delta + \mathrm{Sq}^3$.

3 Lecture III: Connes' Thom Isomorphism

- 1. Deduce from Connes' Thom isomorphism theorem that for a connected, simply connected solvable Lie group G of dimension n, $K_*(C^*(G))$ depends only on $n \mod 2$ and not on anything else. (Hint: G has a closed connected normal subgroup of codimension 1.)
- 2. Let α and α' be exterior equivalent actions of a locally compact group G on a C^* -algebra A. Prove that $A \rtimes_{\alpha} G$ and $A \rtimes_{\alpha'} G$ are *-isomorphic. Show in fact that one can choose the isomorphism to be the identity on the natural copies of A in the multiplier algebras.
- 3. Let \mathbb{R} act on $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$ by flow along lines of slope θ , i.e., by

$$\alpha_t(x,y) = (x+t, y+\theta t) \mod \mathbb{Z} \times \mathbb{Z}.$$

Compute the K-theory of the crossed product $T^2 \rtimes_{\alpha} \mathbb{R}$ (as a group). **Harder:** Find specific generators for $K_*(T^2 \rtimes_{\alpha} \mathbb{R})$. **Note:** This is an example of an *induced action*. Thus the K-theory can also be computed by the Pimsner-Voiculescu sequence for the action of \mathbb{Z} on \mathbb{T} by rotation by $2\pi\theta$.

4 Lecture IV: Applications to Physics

- 1. Suppose a compact group T acts freely on a (reasonably nice) space X, with the quotient map $X \to Z$ a principal T-bundle, and suppose $E \xrightarrow{p} X$ is a principal G-bundle over X, for G some other group (in our applications PU). Show that the T-action on X lifts to an action on E by bundle automorphisms if and only if p is pulled back from a G-bundle over Z.
- 2. Let $p: T \to Z$ be a principal \mathbb{T} -bundle, with T and Z locally compact. Let \mathbb{T} act on $C_0(T)$ in the obvious way. Show that $C_0(T) \rtimes \mathbb{T} \cong C_0(X, \mathcal{K})$, and that the dual action θ of \mathbb{Z} on $C_0(Z, \mathcal{K})$ has the property that $C_0(Z, \mathcal{K}) \rtimes_{\theta} \mathbb{Z} \cong C_0(T, \mathcal{K})$.
- 3. With notation as in the last exercise, verify that

$$\operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}} C_0(Z, \mathcal{K}) \cong CT(S^1 \times Z, \delta),$$

where $\delta = a \times [p]$, $a \in H^1(S^1)$ the usual generator and $[p] \in H^2(Z)$ the characteristic class of the \mathbb{T} -bundle $p: T \to Z$.