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Abstract. We attempt to survey some of the interrelationships between al-

gebraic K-theory, topology, and analysis. The exposition is in two parts, the
first dealing with K-theory of group rings and connections with topology, and
the second dealing with flat bundles, secondary invariants, and connections
with differential geometry.

Brief Outline

This mini-course is divided into two sections, each with its own bibliography.
They can be read independently of one another, even though there are some con-
nections between the two. The first describes a “modern” perspective on one of
the most classical areas of algebraic K-theory, the study of Whitehead groups and
K-theory of group rings. The second describes the connection between the theory
of secondary classes in topology and differential geometry with algebraic K-theory,
especially for fields, and provides an introduction to some recent work of Neumann
and Yang on hyperbolic 3-manifolds.

Both parts of the mini-course are intended for beginners in these areas, with
some previous exposure to higher K-theory, as might be found in [R1] or in [LP],
for example. Therefore I hope the experts will forgive me for deliberately bypassing
many interesting and intricate technical details, and for skipping over much of the
history, in order to concentrate on what seem to me to be the key ideas of the
subject. For this reason, some statements are not entirely accurate. The reader
who wants to know more is urged to consult the papers in the bibliography.

I should also say that there is little if anything that is new in these notes, except
for the way I have organized the material. My aim has been primarily to show how
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recent developments in algebraic K-theory are related to problems in other areas
of mathematics.

I. “Assembly, Novikov Conjectures, and Control”.

A. Classical applications of the K-theory of group rings
B. Assembly and standard examples
C. Novikov conjectures
D. A survey of some recent results
E. K-theory with control

II. “K-Theory, Secondary Invariants, and Differential Geometry”.

A. Invariants of flat vector bundles
B. Secondary invariants of elliptic operators
C. Invariants of hyperbolic 3-manifolds

Notation

k — a regular commutative ring. (The main case of interest, as we shall see, is
k = Z. We will also be interested in the case of k a field.)

kG — the group ring over k of a group G.
BG — the classifying space of G, a space with contractible universal cover and

fundamental group G (and the homotopy type of a CW complex). Such a space is
unique up to homotopy equivalence. It has the property that H∗(BG) is the usual
group homology of G.

K(R) — the (non-connective) K-theory spectrum of a ring R. By definition,
its homotopy groups are the K-groups of R. The associated infinite loop space
is K0(R) × BGL(R)+, the result of applying the Quillen +-construction to the
classifying space of the general linear group GL(R), modified to have the correct
π0. The non-negative homotopy groups of K(R) are the same as those of K0(R)×
BGL(R)+. But in general, K(R) can have homotopy groups in negative degrees,
the negative K-groups of R in the sense of Bass.

Ki(R) — equal by definition to πi(K(R)).

I. “Assembly, Novikov Conjectures, and Control”

A. Applications of K-theory of group rings

Group rings arise in topology because if X is a space with universal cover X̃,

then the (singular, simplicial, or cellular) chain complex of X̃, equipped with its
action of π1(X), or equivalently, the chain complex of X with local coefficients, is

C∗(X̃; k) ∼= C∗(X; kπ1(X)),

a chain complex of free kπ1(X)-modules.

I.A.1. Definition. Let
{

Wh1(G) = K1(ZG)/ ({±1} ×Gab) ,

Wh0(G) = K0(ZG)/Z.

Here {±1}×Gab maps to K1(ZG) via the obvious embedding of {±1}×G into the
units of the ring ZG, and Z embeds in K0(ZG) as K0(Z). The groups Wh1 and
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Wh0 are related, since

Wh0(G) →֒ Wh1(G× Z)

as a direct summand, by the Bass-Heller-Swan Theorem [BHS].

Classical applications of K1(ZG).
Whitehead torsion. If X →֒ Y is a (simplicial) homotopy equivalence of finite

polyhedra, its Whitehead torsion in Wh(π1(X)) is the obstruction to “simplicity.”
Roughly speaking, this measures whether the homotopy equivalence is built out of
elementary expansions and contractions or not. See [Co]. While, from its definition,
Whitehead torsion appears to be a simplicial notion, Chapman [Ch] proved the
remarkable fact that it is really a topological invariant, i.e., it is preserved under
homeomorphisms (even those that do not respect the simplicial structure).

The s-Cobordism Theorem. Suppose Xn, X ′n are closed connected manifolds,
Wn+1 is a compact manifold with boundary, and ∂W = X ∐X ′. Then W is called
a cobordism between X and X ′. W is called an h-cobordism if X →֒ W , X ′ →֒ W
are homotopy equivalences. The most obvious example of an h-cobordism is of
course a cylinder, W = X × [0, 1]. Observe that the Whitehead torsion of X →֒ W
in Wh(π1(X)) vanishes if W ∼= X × [0, 1]. The classification theory of manifolds is
heavily based on:

I.A.2. The s-Cobordism Theorem (Barden-Mazur-Stallings; see [Ke]). If
n ≥ 5, then an h-cobordism is diffeomorphic to a cylinder if and only if its White-
head torsion vanishes. Furthermore, again assuming n ≥ 5, every class in
Wh(π1(X)) can be realized by an h-cobordism.

An immediate corollary is worth pointing out explicitly: if there is an h-
cobordism W between Xn and X ′n, if Wh(π1(X)) = 0, and if n ≥ 5, then W
is diffeomorphic to X × [0, 1], and in particular, X ′ is diffeomorphic to X. How-
ever, the hypotheses here are stronger than they need to be to reach this conclusion.
For example, it can happen that X ′ ∼= X even if W 6∼= X × [0, 1]. In this case, W
is called an inertial h-cobordism based on X.

So Whitehead torsion plays a big role in manifold theory. The oldest example
of interest is the classification of lens spaces X, quotients of S2k−1, viewed as the
unit sphere in Ck, by a free (complex) linear action of Z/p, where p is an odd prime.
In this case, Wh(π1(X)) is known to be free abelian of rank (p − 3)/2, and there
can be many lens spaces with the same dimension and fundamental group that
are h-cobordant and not homeomorphic. Theorem I.A.2 immediately implies that
there must be plenty of “fake” lens spaces and/or non-trivial inertial h-cobordisms
of lens spaces when n, p ≥ 5, since the Whitehead group is infinite and there are
only finitely many lens spaces for fixed n and p.

Of course, when the first work on lens spaces was done, the s-Cobordism The-
orem did not exist. Instead, obstructions to diffeomorphisms (or PL homeomor-
phisms) between lens spaces were constructed using the classical theory of Reide-
meister torsion, which is closely related to Whitehead torsion [M]. Thanks to the
topological invariance of Whitehead torsion, we now know that it also obstructs
homeomorphisms and not just PL homeomorphisms.

Classical applications of K0(ZG). The Wall obstruction. If X is a con-
nected CW complex and if X is “finitely dominated,” that is, is homotopically a
retract of a finite CW complex, then often one wants to know if X is homotopy
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equivalent to a finite complex. This is not always the case; a necessary and suffi-
cient condition is the vanishing of its Wall obstruction in Wh0(π1(X)). The idea
is that if X were actually homotopically finite, its chain complex with local coeffi-
cients would be equivalent to a finite chain complex of finitely generated free ZG-
modules. Finite domination gives only that the chain complex is chain homotopy
equivalent to a finite chain complex of finitely generated projective ZG-modules.
The alternating sum of the classes of these projective modules, computed in the

stable class group K̃0(ZG) = Wh0(π1(X)), is the Wall obstruction. Since the class

group K̃0(ZG) = Wh0(π1(X)) measures the (stable) difference between projective
and free modules, if the obstruction is non-zero, then it’s easy to see that the given
chain complex cannot be chain homotopy equivalent to a finite chain complex of
finitely generated free ZG-modules, and thus X cannot be homotopy-equivalent
to a finite complex. Wall [Wa] proved the much more difficult converse, that if
the obstruction vanishes, then one can construct a finite CW complex homotopy-
equivalent to X.

K0(ZG) also arises in the spherical space form problem (Swan [Sw] et al.),
the problem of determining what finite groups can act freely on spheres, and in
the problem of determining if a non-compact manifold is homeomorphic to the
interior of a compact manifold with boundary (Siebenmann). In both cases, a Wall
obstruction is responsible.

B. Assembly

Out of the spectrum K(k) we can make a homology theory H∗( · ; K(k)) such
that

H∗(point; K(k)) = K∗(k).

The definition is simply that

(I.B.1) H∗(X; K(k)) = π∗(X+ ∧K(k)),

where X+ denotes X with a disjoint basepoint adjoined,1 and the basic properties
of stable homotopy guarantee that this satisfies the Eilenberg-MacLane axioms for
a homology theory. This somewhat intangible homology theory is close to ordinary
homology with coefficients in K∗(k). More precisely, there is a spectral sequence of
Atiyah-Hirzebruch type

(I.B.2) E2
p q = Hp(X; Kq(k)) ⇒ Hp+q(X; K(k)).

Since we are assuming k is regular, Kq(k) = 0 for q < 0, and so the spectral
sequence is confined to the first quadrant.

Many results on K-theory of group rings make use of a natural map

H∗(BG; K(k))
A−→ K∗(kG),

or to be fancier, a map of spectra

BG+ ∧K(k) → K(kG),

called assembly. There are many possible definitions; here are a few:

1Those not familiar with spectra might be confused about what the definition means. Here
π∗ is computed in the category of spectra, and so really refers to stable homotopy, i.e., to a limit
of homotopy groups of spaces.
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I.B.3. Definition (Loday [L]). Note that G →֒ GL1(kG) →֒ GL(kG), so one
obtains an induced map

α:BG → BGL(kG) → BGL(kG)+ → K(kG).

Then if µ:K(kG)∧K(k) → K(kG) is the usual product coming from tensor products
over k, A is the composite

BG+ ∧K(k)
α∧id−−−→ K(kG) ∧K(k)

µ−→ K(kG).

I.B.4. Definition (Weiss-Williams [WW]). Any homotopy functor (from
spaces to spectra) can be shown to have a “best approximation” by a homology
functor, and there is a natural transformation from this approximating functor to
the original functor. Apply this to X 7→ K(kπ1(X)) and the result is assembly. (To
be rigorous, one needs groupoids and ringoids because of basepoint problems.)

I.B.5. Examples.
(1) G arbitrary, K0(k) = Z (which is the case if k is a PID). In degree 0,

assembly is the map Z = K0(k) → K0(kG). In degree 1, assembly is the
map

K1(k)×Gab → K1(kG).

So Wh0(G) and Wh1(G) are the cokernels of assembly (with k = Z)
in degrees 0 and 1. To obtain a well behaved definition of higher and
lower Whitehead groups, we could define Wh(G; k) to be the cofiber of
A : BG+ ∧ K(k) → K(kG) (in the stable homotopy category), and let
Wh∗(G; k) = π∗(Wh(G; k)), Wh∗(G) = Wh∗(G; Z). This would agree
with our previous definitions of Wh0 and Wh1, and would also have some
good functorial properties. In general we would obtain an exact sequence

· · · −→ Wh∗+1(G; k)
∂−→

H∗(BG; K(k))
A−→ K∗(kG) −→ Wh∗(G; k)

∂−→
H∗−1(BG; K(k))

A−→ · · · .
(2) G = Z, kG = k[t, t−1]. Assembly A is an isomorphism (recall we’re assum-

ing k is regular)

K∗(k)⊕K∗−1(k)
∼=−→ K∗(k[t, t

−1]),

by the “Fundamental Theorem” of K-theory (Quillen’s generalization of
the Bass-Heller-Swan Theorem [Ql, §6, Theorem 8]). If we were to drop
the assumption that k is regular, assembly would still be a split injection,
but would have as cokernel a direct sum of two copies of NK∗(k).

(3) More generally, A an isomorphism for G free abelian or free (Quillen, Ger-
sten [Ge]).

(4) G finite. A can be interesting, but is usually very far from being an iso-
morphism. For example, if k = Z, Hp(G; Kq(Z)) ⊗ Q = 0 for p > 0,
so

rankHj(BG; K(Z)) = rankKj(Z) =





1, j = 0

1, j ≡ 1 (mod 4), j ≥ 5,

0, otherwise,
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while rankKj(ZG) depends on the representation theory of G, and can be
rather large. (To see this, relate Kj(ZG) to Kj(QG) using the localization
sequence. Since QG is a semi-simple algebra over a field, its K-theory splits
as a direct sum of K-groups of finite-dimensional division algebras.)

For an interesting subcase, suppose k = R. Then by a theorem of Suslin
[Su1], K(R) is equivalent to bo, the connective real topological K-theory
spectrum, provided one takes finite coefficients. Since RG is a direct sum
of matrix algebras over R, C, and H when G is finite, K(RG) is similarly
equivalent (with finite coefficients) to a direct sum of copies of bo, bu, and
bsp (a shifted version of bo). One gets the cleanest results when |G| is a
power of 2. Then assembly with Z/2∞ = lim−→Z/2m coefficients in periodic
topological K-theory is an isomorphism [R2], by a “dual” variant of the
Atiyah-Segal Theorem in topological K-theory. Putting this together with
Suslin’s theorem implies that A:H∗(BG; K(R)(Z/2∞)) → K∗(RG)(Z/2∞)
becomes an isomorphism after inverting the Bott element. Untangling this
statement for the integral assembly map shows that A:H∗(BG; K(R)) →
K∗(RG) has many Z/2 summands in its image not coming from K∗(R),
and thus is definitely a non-trivial map.

C. Novikov Conjectures

In the section above, we defined the assembly map

H∗(BG; K(k))
A−→ K∗(kG).

All the known results on assembly for the K-theory of group rings are consistent
with the following conjectures:

I.C.1. Conjecture. For G torsion-free, A is an isomorphism. (This includes
the conjecture that Wh∗(G) = 0.)

I.C.2. K-Theory Novikov Conjecture. For general G, A is rationally
injective.

Connections with Topology. Conjectures I.C.1–2 are analogues of conjec-
tures of Borel and Novikov (respectively) about “rigidity” of manifolds with large
fundamental group. For simplicity, we state these only for closed aspherical man-
ifolds. When applied to a manifold, closed means “compact without boundary,”
and aspherical means “having contractible universal cover.” The most familiar
examples of closed aspherical manifolds are double coset spaces Γ\G/K, where G
is a connected unimodular Lie group, K is a maximal compact subgroup, and Γ
is a discrete, torsion-free, cocompact subgroup of G. Compact Riemann surfaces
are of this form with G = PSL(2, R), and more generally, compact hyperbolic
n-manifolds are of this form with G = SO0(n, 1).

Borel’s conjecture in its simplest form, which was motivated by the Mostow
Rigidity Theorem, states that any homotopy equivalence between closed aspherical
manifolds should be homotopic to a homeomorphism. Novikov’s conjecture, when
specialized to closed aspherical manifolds, says that any homotopy equivalence be-
tween closed aspherical manifolds should preserve rational Pontrjagin classes. This
is weaker than, but consistent with, Borel’s conjecture, since by a famous theorem
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of Novikov, homeomorphisms preserve rational Pontrjagin classes. (In general, ho-
motopy equivalences between non-aspherical manifolds do not necessarily preserve
rational Pontrjagin classes.)

The Borel and Novikov conjectures are equivalent to statements similar to
Conjectures I.C.1–2 for the analogous assembly map in “L-theory” of group rings:

H∗(BG; L(Z))
A−→ L∗(ZG).

L-theory is a sort of K-theory for rings with involution that arises in surgery theory.
For more details, one can consult the papers in [NC].

Note an analogy: Wh1(G) classifies h-cobordisms modulo trivial ones. Simi-
larly, surgery theory says the homotopy groups of the cofiber of the L-theory as-
sembly map classify homotopy-equivalent manifolds modulo homeomorphism. So
we have the dictionary:

K-theory ⇐⇒ L-theory

Wh∗ “Structure sets”
Wh∗ = 0 Borel Conjecture
A⊗Q injective Novikov Conjecture.

Note. For groups with torsion, as we saw already in the last section, the
usual assembly map cannot possibly be an isomorphism, because of what happens
for finite groups. Instead, Farrell and Jones [FJ] conjecture (and prove in a few
cases) that a more complicated assembly map is an isomorphism. Earlier results in
the same direction were also given by Quinn [Qn]. The Farrell-Jones Conjecture
also has a counterpart in analysis, called the Baum-Connes Conjecture [BCH],
with K(kG) replaced by the topological K-theory of the reduced group C∗-algebra
of G. Very roughly speaking, the idea of all of these modifications of the assembly
map is to accept the K-theory of group rings of finite groups (or of virtually cyclic
groups, extensions of a finite group by Z) as a “black box,” and then to reduce
everything to this case.

D. Some Recent Results

I.D.1. Theorem (Bökstedt-Hsiang-Madsen [BHM]). The K-theory Novikov
Conjecture (I.C.2 ) is true for k = Z if Hi(G) is finitely generated for all i.

The method of proof of this theorem uses Waldhausen’s A-theory and the
cyclotomic trace. It is still unknown if one could prove it using only methods
“internal to K-theory”; most experts seems to doubt this. It is also unknown if the
condition on G is necessary.

I.D.2. Theorem (Farrell-Jones [FJ]). The K-theory isomorphism conjecture
is rationally true for k = Z, G a cocompact discrete subgroup in a connected Lie
group.

I.D.3. Theorem (Carlsson-Pedersen [CP1], [CP2]). The K-theory assembly
map is split injective if one can find a compact model for BG whose universal cover,
EG, has a G-equivariant contractible compactification X which is “small at ∞.”

The “small at ∞” condition means that if K is a compact set in EG, then its
translates under the G-action become arbitrarily small near Y = X r EG. More
precisely, if y ∈ Y and if U is a neighborhood of y in X, then there exists a smaller
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neighborhood V of y in X such that gK ∩ V 6= ∅ ⇒ gK ⊆ U . The prototype for
this situation arises when BG is a closed manifold of negative curvature. Then EG
has a natural disk compactification, obtained by adjoining the “sphere at infinity,”
and the condition is satisfied.

E. K-Theory with Control

Many of the proofs of the results above are based on the idea of K-theory with
control. This is motivated by controlled topology, of which a prototype result is
the Chapman-Ferry Theorem we now state. We will need the following concept:
suppose one has maps f, g:M → N and a reference map N → X, where X is a
metric space. Then a homotopy H from f to g is called δ-controlled if for each
m ∈ M , the image in X of the “track” Ht(m), 0 ≤ t ≤ 1, has diameter at most δ.
In this case, we also say that f and g are δ-homotopic.

I.E.1. Theorem (Chapman-Ferry [CF]). Given a closed topological manifold
Xn with n ≥ 5, which we equip with a metric d (in the sense of metric spaces, not
necessarily in the sense of Riemannian geometry), and given ε > 0, there exists a
δ > 0 such that any δ-controlled homotopy equivalence f : X ′n → Xn is ε-homotopic
to a homeomorphism. (A homotopy equivalence f :X ′ → X is called δ-controlled if
there is a homotopy inverse g:X → X ′ to f such that f ◦ g is δ-homotopic to 1X
and g ◦ f is δ-homotopic to 1X′ . We use X as the reference metric space in both
cases.)

The Idea of Controlled K-Theory. Let X be a space with some structure
that enables us to measure distances, for example a metric space. We consider
locally finite free or projective k-modules A =

⊕
x∈X Ax, where each Ax is a free or

projective k-module, and locally finite means that each x ∈ X has a neighborhood
U such that

⊕
x∈U Ax is finitely generated. The morphisms

φ : A → B, φ =
⊕

x,y

φx
y : Ax → By

are required to satisfy φx
y = 0 if x and y are “not close.” Out of this category, we

manufacture K-theory K(k;X) the usual way. There are two main examples.

I.E.2. Example 1 (The Bounded Case). We take for X a metric space,
and we require that given φ, ∃dφ > 0 such that φx

y = 0 if d(x, y) > dφ.

I.E.3. Example 2 (The Continuously Controlled Case [ACFP]).
Suppose X is a topological space which is open and dense in a larger space X.
(Often this will be some sort of compactification of X.) We suppose that for all
z ∈ X rX and for any neighborhood V of z in X, there exists a neighborhood U
of z in X with φx

y = 0, φy
x = 0 for x ∈ V , y /∈ U .

Connection with Assembly. The idea of how to apply controlled K-theory
to the study of assembly comes from the way K-theory of group rings arises in
topology in the first place. In other words, we equate a configuration of kG-modules
over a space having G as fundamental group to a configuration of k-modules over
the universal cover. Then we try to apply control on the universal cover (for
example, using some good compactification). When we can choose BG to be a
finite CW-complex, the usual assembly map for G is the map on G-fixed points of
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a G-equivariant bounded assembly map for X = EG:

Hlf(X;K(k)) → K(k;X).

Here, on the right, K(k;X) is the spectrum forK-theory with bounded control, as in
I.E.2. On the left, Hlf is the spectrum corresponding to locally finite homology. IfX
has a compactification X, this is the relative homology spectrum HSt(X,X; K(k))
for “Steenrod K-homology.” Now the idea is to compare actual G-fixed points with
“homotopy fixed points.” If Z is a G-space, G-fixed points in Z are in one-to-one
correspondence with MapsG(pt, Z), the G-maps from a point to Z. The homotopy

G-fixed points ZhG = MapsG(EG, Z) are obtained by “thickening” a point to the
contractible G-space EG. Via the obvious map EG → pt we obtain a canonical
map from G-fixed points to homotopy G-fixed points. Doing this on the spectrum
level, we obtain a commutative diagram

H(BG;K(k))
A−−−−→ K(kG)

∥∥∥
∥∥∥

Hlf(X;K(k))G
A−−−−→ K(k;X)G

y
y

Hlf(X;K(k))hG
A−−−−→ K(k;X)hG.

The vertical arrow on the left is shown fairly easily in [CP1] to be an equivalence,
so to prove injectivity of the assembly map, it is enough to obtain a (homotopy)
splitting of the horizontal arrow at the bottom. This can be done by studying the
“forget control” map from bounded control on X to continuous control at ∞.

An Additional Application. The idea of controlled K-theory has also been
used to give new proofs of Chapman’s theorem [Ch] on the topological invariance
of Whitehead torsion (Ranicki-Yamasaki [RY], Ferry-Pedersen [FP]). The way this
works is roughly as follows. Suppose X and Y are finite polyhedra and f :X → Y is
a homeomorphism which is not necessarily a simplicial map. Then f is in particular
a homotopy equivalence. By simplicial approximation, f can be approximated as
closely as desired by a simplicial map g in the same homotopy class. One needs
to show that the Whitehead torsion of g is trivial. The idea is to make use of the

fact that the lift of g to the universal covers, g̃: X̃ → Ỹ , is a boundedly controlled
homotopy equivalence, since f−1 can also be approximated closely by a simplicial
map that will be a homotopy inverse to g.
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II. “K-Theory, Secondary Invariants,
and Differential Geometry”

A. Flat Vector Bundles

II.A.1. Definition. If X is a manifold, a vector bundle E on X is called flat

if it has a connection with zero curvature. This implies E = X̃ ×σ V , where X̃ is
the universal cover of X and σ is a representation of G = π1(X) on V .

Thus flat bundles correspond to representations σ of G. Once this has been
noticed, we can also define a flat vector bundle over an arbitrary space X (not

necessarily a manifold) to be a bundle of the form E = X̃ ×σ V , again with X̃ the
universal cover of X. The stable class of such an E gives a map

X → BG
Bσ−−→ BGL(k) →֒ BGL(k)+,

where k = R or C (with the discrete) topology. This can be viewed as a coho-
mology class for the generalized cohomology theory defined by the algebraic K-
theory spectrum K(k)alg. Ignoring the flat structure amounts to looking at the
map X → BGL(k)top, which defines the associated class in topological K-theory.

By Chern-Weil theory (see, for example, [D1] or [MT]), the rational Chern
(resp., Pontrjagin) classes of a complex (resp., real) flat bundle over a manifold
must vanish. It is then easy to extend this result to the case where the base space
X is any space with the homotopy type of a finite-dimensional CW complex. The
bundle can still be non-trivial topologically, but we have:

II.A.2. Proposition. If E is a flat vector bundle over a finite CW complex
X, then E⊕E⊕· · ·⊕E (m summands) is trivial for some m, and E⊗E⊗· · ·⊗E
(n factors) is trivial for some n.

Proof. We may assume X connected. (Otherwise work one component at a
time.) Say E has rank r. Then [E] − r lies in the augmentation ideal of K(X)
and is a torsion element since its rational characteristic classes vanish. The first
statement follows from this since E⊕E⊕· · ·⊕E is eventually in the “stable range.”
As for the second statement, if r = 1, then since c1(E) (or w1(E) in the real case)
is torsion, some tensor power of E is trivial. If r > 1, then in K-theory we have

[E]n = (r + ([E]− r))n =

n∑

j=0

(
n

j

)
rn−j([E]− r)j ,

and we can make all the terms with j > 0 vanish for suitably high n since [E]− r
is both torsion and nilpotent. Again, E ⊗ E ⊗ · · · ⊗ E is eventually in the stable
range, so we can go back from K-theory to bundles. �

All this suggests studying the relationship between K(k)alg and K(k)top.

II.A.3. Theorem (Suslin [Su1]). If k = R or C, the natural map K(k)alg →
K(k)top induces an isomorphism on K-groups with finite coefficients (in positive
degrees).

However, for i > 0, Kalg
i (k) → Ktop

i (k) is very far from an isomorphism ratio-
nally. In fact, every class in K2(k) (which is a huge group) arises from some flat

vector bundle over T 2, so the map Kalg
2 (k) → Ktop

2 (k) has a huge kernel. This
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is a consequence of the fact that K2(k) is generated by Steinberg symbols, for if
{a, b} ∈ K2(k), a, b ∈ k×, then the class {a, b} arises from the rank-3 flat bundle
corresponding to the representation of π1(T

2) = Z2 sending the two generators to



a 0 0
0 a−1 0
0 0 1


 and




b 0 0
0 1 0
0 0 b−1


 .

When k = C, this bundle is topologically trivial. When k = R, the only obstruction
to its topological triviality is the second Stiefel-Whitney class w2 ∈ H2(T 2; Z/2) =
Z/2. So in either case, the kernel of the map

H0(T 2; K(k)alg) → H0(T 2; K(k)top) = KU0(T 2) or KO0(T 2)

is huge.

Chern-Simons Invariants. If E is a vector bundle over X (say over k = C)
with a flat connection θ, then dθ+ 1

2
[θ, θ] = 0 (since the left-hand side of this equa-

tion is the formula for the curvature Ω). Out of [θ, θ], Chern-Simons [ChS] (and
later, Cheeger-Simons [CgS] and Cheeger [Cg]) manufactured secondary invariants

Ĉm(E, θ) ∈ H2m−1(X;C/Z) with βĈm(E, θ) = −cm(E) ∈ H2k(X;Z). Of course,

this “transgression relation” does not specify Ĉm(E, θ) uniquely, so the point of the
construction is to have a specific choice, depending on the flat connection, of classes
with this property. When m = 1, it is obvious what to do. The flat connection
corresponds to a map π1(X) → GL(n, C) (where n is the rank of the bundle), and
taking the determinant gives a map π1(X) → C× ∼= C/Z, which amounts to a class

in H1(X;C/Z). With the correct choice of the isomorphism C× ∼= C/Z, this is Ĉ1.
In higher dimensions, the definition is more complicated, but is based on the

fact that if Pm is the invariant polynomial defining the m-the Chern class, the real
part of the coefficient of λn−m in det(λI + i

2πA), and if

Tcm(E, θ) = m

∫ 1

0

P (θ ∧ φm−1
t ) dt,

where

φm
t = tΩ+

1

2
(t2 − 2)[θ, θ],

then dTcm(E, θ) is the form defining the mth Chern class on the principal bun-
dle associated to E.2 This “transgressed Chern class” lives on the principal bundle

associated to E, but it descends to give the class Ĉm(E, θ) on M . A slick but some-

what non-constructive proof of the existence of the characteristic classes Ĉm(E, θ)
may be found in [CgS, Theorem 2.2].

It is perhaps worth mentioning that sometimes one can do something similar
with C replaced by an arbitrary k-algebra R (with unit; k = R or C). One can define
an R-bundle over X to be a locally trivial fiber bundle over X with fibers that are
finitely generated projective R-modules, where the transition functions are R-linear.
A flat R-bundle (E, θ) over X then corresponds to a homomorphism π1(X) →
GL(n, R) → K1(R). Applying the Chern character K1(R) → HC−

1 (R), which is
really just the logarithmic derivative (see [R, §6.2]), one obtains a homomorphism

2Caution: There is a rather bewildering assortment of sign and normalization conventions in
use in the literature, so the formulas here may differ by some constants from those you will find
in some other references.
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π1(X) → HC−

1 (R) and thus a characteristic class Ĉ1(E, θ) ∈ H1(X; HC−

1 (R)).
However, one has to be careful; the analogue of Proposition II.A.2 is false if one
replaces k by R.

The Chern-Simons invariants can be related to invariants coming from K∗(C).
For example:

II.A.4. Theorem (Dupont [D2]). 2Ĉ2 coincides with a homomorphism

H3(SL(2,C); Z) → C/Q

given by the dilogarithm (cf. Bloch-Wigner and [G]).

B. Secondary Invariants of Elliptic Operators

Roughly speaking, elliptic operators are to K-homology what vector bundles
are to K-cohomology, and there are similar secondary invariants. The most famous
are the η and ρ invariants for odd-dimensional manifolds. The η-invariant of a
self-adjoint elliptic operator D is a measure of the asymmetry of the spectrum, and
is defined by

(II.B.1) η(D) =
1√
π

∫
∞

0

t−1/2 Tr (De−tD2

) dt.

Since the spectrum of an elliptic operator over a closed manifold consists entirely
of a discrete set of eigenvalues, each with finite multiplicity, this is formally

1√
π

∑

λ∈SpecD

∫
∞

0

t−1/2(λe−tλ2

) dt

=
∑

λ∈SpecD

sign(λ),

but the sum is not convergent. The main applications of the η-invariant stem from:

II.B.2. Theorem (Atiyah-Patodi-Singer [APS]). If M2n is compact Rie-
mannian with boundary N2n−1 (and with metric that is a Riemannian product
near the boundary), and DM is the Dirac operator on M , then for suitable bound-
ary conditions on DM , the operator is Fredholm with

IndDM = − 1
2
η(DN ) +

∫

M

Â(M).

Thus η(DN ) measures the deviation between the index of DM and the formula∫
M

Â(M) that would give this index if M had no boundary.
The η-invariant is closely related to Chern-Simons classes. Suppose we twist

D both by a flat bundle (E, θ) and by a trivial flat bundle of the same dimension.
If one subtracts the index formulas for the two cases, the integral cancels, whereas
the difference of the indices on the left is certainly an integer. So one gets a well
defined invariant η(E, θ) in C/Z (R/Z if the associated representation is unitary).
This invariant is related to Chern-Simons theory as follows:

II.B.3. Theorem (Atiyah-Patodi-Singer [APS]). A flat bundle (E, θ) on
N2n−1 defines a class in

K−1(N ;C/Z)
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(basically the same as Chern-Simons). The invariant η(E, θ) is this class paired
with the class in K1(N) of the relevant elliptic operator.

Other Secondary Invariants Related to K-Theory. There are other sec-
ondary invariants related to K-theory, which can be regarded as more complicated
variations on the themes we have discussed. Without going into details, let us
just mention the Helton-Howe invariants of almost-commuting operators [B], the
Connes-Karoubi multiplicative character of a p-summable Fredholm operator [CK],
and recent work of Kaminker [Km1, Km2].

C. Invariants of Hyperbolic 3-Manifolds

Our story here begins with:

II.C.1. Hilbert’s Third Problem. If P1 and P2 are polyhedra of the same
volume, can P1 be cut into finitely many pieces congruent to pieces that can be
reassembled to give P2?

More precisely, what Hilbert seems to have had in mind can be expressed in
modern language as follows. Form the abelian group SC(R3) with one generator
[P ] for each finite polyhedron P in R3, subject to the following:

II.C.2. Relations.
1. [P ] = [P1] + [P2] if P = P1 ∪P2 and if P1 and P2 intersect only along lower-

dimensional subpolyhedra. We write this situation as P = P1 ∪f P2, where
∪f stands for “union along faces.” Of course, disjoint union is a special case
of union along faces, so [P ∐Q] = [P ] + [Q].

2. [P ] = [Q] if P ∼= Q in the sense of Euclidean geometry, i.e., if there is a rigid
motion of Euclidean space (possibly orientation-reversing) taking P onto Q.

3. If P = P1 ∪f P2 and if Q = Q1 ∪f Q2, and if [P1] = [Q1], then [P ] = [Q] if
and only if [P2] = [Q2].

This is really the Grothendieck group of an abelian monoid (with cancellation)
defined by the same relations, where [P ] = [Q] is designed to systematize some
obvious conditions for P and Q to “have the same volume.” Axiom (1) says volume
is additive for unions along faces, axiom (2) says it’s a congruence invariant, and
axiom (3) says one can “subtract.” When [P ] = [Q], we say (for obvious reasons)
that P and Q are scissors congruent, and we call SC(R3) the scissors congruence
group (of Euclidean 3-space). Thus there is an obvious map SC → R obtained by
mapping [P ] 7→ vol(P ). Hilbert’s question was then: is this map an isomorphism?
Lurking in the background was Hilbert’s knowledge of the fact, proved by Bolyai
(though it could have been done by Euclid), that the answer to the corresponding
question is “yes” in R2 (if we replace volume by area). Here’s a sketch of the proof.

II.C.3. Theorem (Bolyai). If SC(R2) is the group defined generated by poly-
gons in R2, subject to Relations II.C.2, then the map SC(R2) → R, defined by
[P ] 7→ area(P ), is an isomorphism.

Proof (Sketch). First of all, SC(R2) is generated by those [P ] with P a
triangle, since any polygon can be decomposed (along faces) into triangles, as illus-
trated in Figure II.C.4(a) on the next page.

So it’s basically enough to show that the class of a triangle in the Euclidean
plane only depends on its area. Also note that we can easily go back and forth
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between triangles and parallelograms, since given any triangle △ABC, we can find
△ACD congruent to △ABC, and then [/ /ABCD] = 2[△ABC], as illustrated in
Figure II.C.4(b).

Next, we show that two triangles △ABC and △ABD (with the same base
AB) define the same class in SC(R2) if they have the same altitude, i.e., if the
perpendicular distances from C andD to the line AB are the same. By what we just
proved, it’s enough to show that two parallelograms with a side in common and the
same height define the same class in SC(R2). This can be seen from the construction
in Figure II.C.5(a), together with Relation II.C.2(3), since [△ADF ] = [△BCE] (by
Relation II.C.2(2)), and

[\ /ABCF ] = [/ /ABCD] + [△ADF ] = [/ /ABEF ] + [△BCE].

Since we have shown that the class of any triangle in SC(R2) only depends on
its base and height, we will be done if we can show two right triangles with the same
area define the same class in SC(R2). The construction for doing this is illustrated
in Figure II.C.5(b). Here △ABD and △ACE are right triangles with the same
area. Thus |AC| · |AE| = |AB| · |AD|, which means

|AC|
|AB|

=
|AD|
|AE|

,

i.e., △ACD is similar to △ABE. That means EB and DC are parallel line sege-
ments, and so △BDE and △BCE have the same base and height. By what we
just proved,

[△BDE] = [△BCE].

But now

[△ABD] = [△BDE] + [△ABE] = [△BCE] + [△ABE] = [△ACE]. �

In dimension 3, Hilbert conjectured that the answer to his question was “no,”
and this was proven by Dehn (1900) even before the published version of Hilbert’s
question appeared. But the negative answer itself raises a question, to describe the
equivalence classes for scissors congruence. This can be done in any dimension, not
only in Euclidean space, but also in hyperbolic space. The question is especially
interesting for polyhedra in hyperbolic 3-space.

II.C.6. Theorem (Dupont-Sah [DS]). The scissors congruence group of poly-
hedra in hyperbolic 3-space is divisible without 2-torsion. It is the (−1)-eigenspace
for complex conjugation acting on P(C), where P(C) fits into the exact sequence

0 → Q/Z → H3(SL(2,C)
d;Z) → P(C)

→ C× ∧ C× Steinberg symbol−−−−−−−−−−−→ K2(C) → 0.

Aspherical Manifolds and K-Theory. Now suppose G is a group for which
BG can be taken to be a compact oriented manifold Mn, and one has a representa-

tion G
σ−→ GL(k). This induces a map BG

Bσ−−→BGL(k) and thus a class Bσ∗([M ])
in Hn(BGL(k)) = Hn(K(k)). We can detect it via any invariant of Kn(k) that
factors through the Hurewicz homomorphism.
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A B

CD

II.C.4. Figure. (a) Dividing a polygon into triangles.
(b) Triangles making up a parallelogram.

A B

CDEF

A B C

D

E

II.C.5. Figure. (a) Parallelograms with the same base and height.
(b) Right triangles with the same area.
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Application to Hyperbolic 3-Manifolds. We apply this idea to the situa-
tion of a compact oriented hyperbolic 3-manifold M3. The fundamental group G
comes with map to SO0(3, 1) ∼= PSL(2,C), the connected component of the iden-
tity in SO(3, 1). Modulo the [small] issue of lifting from PSL(2,C) to SL(2,C),
one basically gets a class in H3(GL(C)).

Now K-theory of fields, roughly speaking, splits into two parts: Milnor K-
theory KM

∗
(k), defined by higher-order analogues of Steinberg symbols, and the

more mysterious indecomposable K-theory. Recall:

Theorem (Suslin [Su2]). For a field k,

KM
n (k) ∼= Hn(GL(n, k))/im

(
Hn(GL(n− 1, k)) → Hn(GL(n, k))

)
.

While indecomposable K-theory is not very well understood in high degrees,
we have a good approximation to it in degree 3, the Bloch group B(k), a group with
explicit generators and relations. Modulo torsion, K3(k) is built out of K

M
3 (k) and

the Bloch group B(k) [Su3].
Since it comes from H3(GL(2)), the homology invariant of a hyperbolic 3-

manifold maps to 0 in Milnor K-theory and should basically live in the Bloch
group.

This is confirmed by:

Theorem (Neumann-Yang [NY1], [NY2], [NY3]). An oriented finite-volume
hyperbolic 3-manifold M3 has an invariant β(M) ∈ B(C) (roughly speaking, its
scissors congruence class). In fact, β(M) can be defined to live in B(k) for a number
field k(M) associated to M . (Roughly speaking again, this is the smallest field k
for which the defining representation of G = π1(M) can be defined over k.) Under
the (normalized) Bloch regulator B(C) → C/Q, β(M) goes to vol (M) + iCS (M),
where vol (M) is the volume of M for the hyperbolic metric of constant curvature
−1, and where CS (M) is the Chern-Simons invariant (gotten by integrating the

Chern-Simons class Ĉ2 over M).
If k(M) is embedded in C as an imaginary quadratic extension of a totally real

number field, then CS(M) is rational.

(Conjecturally, CS(M) is irrational if k(M) ∩ k(M) ⊂ R. This seems to be
backed by numerical evidence.)

References for Part II

Selected Books

[D1] J. Dupont, Curvature and characteristic classes, Lecture Notes in Math., vol. 640, Sprin-
ger-Verlag, Berlin, New York, 1978.
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