A K-theory perspective on T-duality in string theory

Jonathan Rosenberg (University of Maryland)

joint work with Mathai Varghese (University of Adelaide) (Comm. Math. Phys., to appear)

May 9, 2004

Abstract

An idea which is now well established in the physics literature is that "charges" on "branes" should take values in twisted (topological) Ktheory, where the twisting is given by a cohomology class that represents the field strength. It is also expected that "T-duality" should hold, meaning that the theory on one space-time (with background field) is equivalent to that on another, where tori are replaced by their duals. I will describe recent joint work with Mathai Varghese in which we show how to make this rigorous for space-times which are principal torus bundles. A surprising conclusion is that sometimes the T-dual of a torus bundle turns out to involve noncommutative tori.

Some Ideas from Physics

Physics is described by "fields" ϕ (usually sections of vector bundles or connections on vector bundles) living on a manifold ("spacetime") X. They are subject to equations of motion. In classical physics, the fields should give a critical point for the "action" $S(\phi)$. In quantum physics, the theory is described by "path integrals" like the partition function

$$Z(\beta) = \int e^{-S(\phi;\beta)} d\phi,$$

obtained by integrating over all states, with the classical solutions (minima of S) contributing most heavily. Here β is the inverse temperature.

The Idea of T-Duality

It has been noticed that many quantum mechanical systems, especially in supersymmetric string theory, come with a symmetry known as T-duality. This means that a theory living on a torus is formally equivalent to one living on the dual torus.

The simplest example is a free particle on a torus \mathbb{R}^n/Λ , where Λ is a lattice in \mathbb{R}^n . The partition function turns out to be the classical theta function

$$Z_{\Lambda}(\beta) = \sum_{z \in \widehat{\Lambda}} e^{-2\pi^2 \beta |z|^2}$$

with $\widehat{\Lambda}$ the dual torus. By Poisson Summation, this is essentially the same as the corresponding function $Z_{\widehat{\Lambda}}$ for the dual torus $\widehat{\mathbb{R}}^n/\widehat{\Lambda}$.

H-Fluxes, K-Theory, and Twistings

In some field theories, there are "background fields" given by cohomology classes. For example, in classical electromagnetism, the field strength of the electromagnetic field defines a class in H^2 . In (type II) string theory, there is a field or H-flux $\delta \in H^3$.

In addition, in some field theories there are "topological charges" living in (topological) *K*-theory. In string theory, these arise from the charges on D-branes, submanifolds which serve as "boundaries" for "open strings."

In the presence of a background H-flux given by $\delta \in H^3(X,\mathbb{Z})$, the picture must be twisted and the charges take their values in twisted *K*-theory $K^*_{\delta}(X)$. When *H* is torsion, this was defined by Karoubi and Donovan. In general, it is the *K*-theory of a stable continuous-trace algebra $CT(X, \delta)$ locally isomorphic to $C_0(X, \mathcal{K})$, \mathcal{K} the compact operators, with twisting given by δ .

Explanation:

Every *-automorphism of \mathcal{K} comes from conjugation by a unitary operator, so Aut $\mathcal{K} = PU$. This is a $K(\mathbb{Z}, 2)$ -space, so BPU is a $K(\mathbb{Z}, 3)$ -space and a class $\delta \in H^3(X, \mathbb{Z})$ gives rise to a principal PU-bundle over X and an associated \mathcal{K} -bundle of C^* -algebras. $CT(X, \delta)$ is the algebra of sections (vanishing at infinity) of this bundle of algebras, and δ is called the Dixmier-Douady invariant.

One can in fact identify $H^3(X,\mathbb{Z}) = Br X$ with the Brauer group of continuous-trace algebras over X, just as its torsion group is the Brauer group of Azumaya algebras over X with finitedimensional fibers. Basic Setup and the Mathematical Problem

Consider a "spacetime X compactified over a torus T," i.e., a locally compact, homotopically finite connected space X equipped with a free action of a torus T. We have a principal T-bundle

$p \colon X \to Z$

and an H-flux class $\delta \in H^3(X,\mathbb{Z})$. Does this situation have a T-dual, and if so, what is it?

If there is a classical T-dual, we expect to have another principal torus bundle

$$p^{\#}: X^{\#} \to Z$$

and an H-flux class $\delta^{\#} \in H^3(X^{\#}, \mathbb{Z})$ such that the fibers of $p^{\#}$ are "dual" to the fibers of p, and such that there is a K-theory isomorphism

 $K^*_{\delta}(X) \cong K^*_{\delta^{\#}}(X^{\#})$

(possibly with a degree shift).

T-Dualizability of Bundles with H-Flux

Let $p: X \to Z$ be a principal *T*-bundle as above, with *T* an *n*-torus, *G* its universal cover (a vector group). Also let $\delta \in H^3(X,\mathbb{Z})$. For the pair (X,δ) to be dualizable, we want the *T*-action on *X* to be in some sense compatible with δ . A natural hope is for the *T*-action on *X* to lift to an action on the principal *PU*-bundle defined by δ , or equivalently, to an action on $CT(X,\delta)$. Equivariant Morita equivalence classes of such liftings (with varying δ) define classes in the equivariant Brauer group. Unfortunately

$p^*: \operatorname{Br}(Z) \xrightarrow{\cong} \operatorname{Br}_T(X)$

and so $Br_T(X)$ is not that interesting. But $Br_G(X)$, constructed from local liftings, is quite a rich object.

Theorem 1 Let

$T \stackrel{\iota}{\longrightarrow} X \stackrel{p}{\longrightarrow} Z$

be a principal T-bundle as above, with T an ntorus, G its universal cover (a vector group). The following sequence is exact:

 $\operatorname{Br}_G(X) \xrightarrow{F} \operatorname{Br}(X) \cong H^3(X,\mathbb{Z}) \xrightarrow{\iota^*} H^3(T,\mathbb{Z}).$

Here F is the "forget G-action" map.

In particular, if $n \leq 2$, every stable continuoustrace algebra on X admits a G-action compatible with the T-action on X.

When such a G-action exists, we will construct a T-dual by looking at the C^* -algebra crossed product

$CT(X,\delta) \rtimes G.$

The desired K-theory isomorphism will come from Connes' "Thom isomorphism" theorem.

Theorem 2 If n = 1, so $G = \mathbb{R}$, the forgetful map F: $Br_G(X) \to Br(X)$ is an isomorphism, and thus every $\delta \in H^3(X, \mathbb{Z})$ is dualizable, in fact in a unique way. One has

$$CT(X,\delta) \rtimes \mathbb{R} \cong CT(X^{\#},\delta^{\#})$$

and

$$K^*_{\delta^{\#}}(X^{\#}) \cong K^{*+1}_{\delta}(X)$$

for a commutative diagram of \mathbb{T} -bundles

And

$$p_!(\delta) = [p^{\#}], \quad (p^{\#})_!(\delta^{\#}) = [p], \quad (2)$$

where $p_{!}$ and $(p^{\#})_{!}$ are the push-forward maps in the Gysin sequences of the two bundles.

Results for n = 2

From now on, we stick to the case n = 2 for simplicity. H_M^* denotes cohomology with Borel cochains in the sense of C. Moore.

Theorem 3 If n = 2, there is a commutative diagram of exact sequences:

 $M: \operatorname{Br}_{G}(X) \to C(Z, H^{2}_{M}(\mathbb{Z}^{2}, \mathbb{T})) \cong C(Z, \mathbb{T})$ is the Mackey obstruction map, $h: C(Z, \mathbb{T}) \to$ $H^{1}(X, \mathbb{Z})$ sends a continuous function $Z \to S^{1}$ to its homotopy class, $F: \operatorname{Br}_{G}(X) \to \operatorname{Br}(X)$ is the forgetful map.

10

Applications to T-duality

Theorem 4 Let $p: X \to Z$ be a principal \mathbb{T}^2 bundle as above. Let $\delta \in H^3(X,\mathbb{Z})$ be an "Hflux" on X. Then:

1. If $p_!\delta = 0 \in H^1(Z,\mathbb{Z})$, there is a (uniquely determined) classical *T*-dual to (p,δ) , consisting of $p^{\#}: X^{\#} \to Z$, which is a another principal \mathbb{T}^2 -bundle over *Z*, and $\delta^{\#} \in H^3(X^{\#},\mathbb{Z})$, the "*T*-dual *H*-flux" on $X^{\#}$. One has a natural isomorphism

$K^*_{\delta^{\#}}(X^{\#}) \cong K^*_{\delta}(X).$

2. If $p_! \delta \neq 0 \in H^1(Z, \mathbb{Z})$, then a classical *T*dual as above does not exist. However, there is a "nonclassical" *T*-dual bundle of noncommutative tori over *Z*. It is not unique, but the non-uniqueness does not affect its *K*-theory, which is naturally $\cong K^*_{\delta}(X)$.

An example

Let $X = T^3$, $p: X \to S^1$ the trivial \mathbb{T}^2 -bundle. If $\delta \in H^3(X,\mathbb{Z}) \neq 0$, $p_!(\delta) \neq 0$ in $H^1(S^1)$. By Theorem 4, there is no classical T-dual to (p, δ) . (The problem is that non-triviality of δ would have to give rise to non-triviality of $p^{\#}$.)

One can realize $CT(X,\delta)$ in this case as follows. Let $\mathcal{H} = L^2(\mathbb{T})$. Define the projective unitary representation $\rho_{\theta} : \mathbb{Z}^2 \to PU(\mathcal{H})$ by letting the first \mathbb{Z} factor act by multiplication by z^k , the second \mathbb{Z} factor act by translation by $\theta \in \mathbb{T}$. Then the Mackey obstruction of ρ_{θ} is $\theta \in \mathbb{T} \cong H^2(\mathbb{Z}^2, \mathbb{T})$. Let \mathbb{Z}^2 act on $C(\mathbb{T}, \mathcal{K}(\mathcal{H}))$ by α , which is given at the point θ by ρ_{θ} . Define the C^* -algebra

$$B = \operatorname{Ind}_{\mathbb{Z}^2}^{\mathbb{R}^2} (C(\mathbb{T}, \mathcal{K}(\mathcal{H})), \alpha)$$

= $\left\{ f : \mathbb{R}^2 \to C(\mathbb{T}, \mathcal{K}(\mathcal{H})) :$
 $f(t+g) = \alpha(g)(f(t)), t \in \mathbb{R}^2, g \in \mathbb{Z}^2 \right\}.$

Then *B* is a continuous-trace C^* -algebra having spectrum T^3 , having an action of \mathbb{R}^2 whose induced action on the spectrum of *B* is the trivial bundle $\mathbb{T}^3 \to \mathbb{T}$. The crossed product algebra $B \rtimes \mathbb{R}^2 \cong C(\mathbb{T}, \mathcal{K}(\mathcal{H})) \rtimes \mathbb{Z}^2$ has fiber over $\theta \in \mathbb{T}$ given by $\mathcal{K}(\mathcal{H}) \rtimes_{\rho_{\theta}} \mathbb{Z}^2 \cong A_{\theta} \otimes \mathcal{K}(\mathcal{H})$, where A_{θ} is the noncommutative 2-torus. In fact, the crossed product $B \rtimes \mathbb{R}^2$ is isomorphic to $C^*(H_k) \otimes \mathcal{K}$, where H_k is the integer Heisenberg-type group,

$$H_{k} = \left\{ \begin{pmatrix} 1 & x & \frac{1}{k}z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{Z} \right\},\$$

a lattice in the usual Heisenberg group $H_{\mathbb{R}}$ (consisting of matrices of the same form, but with $x, y, z \in \mathbb{R}$).

The Dixmier-Douady invariant δ of B is k times a generator of H^3 . We see that the group C^* algebra of H_k serves as a non-classical T-dual.