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Abstract

An idea which is now well established in the

physics literature is that “charges” on “branes”

should take values in twisted (topological) K-

theory, where the twisting is given by a coho-

mology class that represents the field strength.

It is also expected that “T-duality” should hold,

meaning that the theory on one space-time

(with background field) is equivalent to that

on another, where tori are replaced by their

duals. I will describe recent joint work with

Mathai Varghese in which we show how to

make this rigorous for space-times which are

principal torus bundles. A surprising conclu-

sion is that sometimes the T-dual of a torus

bundle turns out to involve noncommutative

tori.
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Some Ideas from Physics

Physics is described by “fields” φ (usually sec-

tions of vector bundles or connections on vec-

tor bundles) living on a manifold (“spacetime”)

X. They are subject to equations of motion.

In classical physics, the fields should give a crit-

ical point for the “action” S(φ). In quantum

physics, the theory is described by “path inte-

grals” like the partition function

Z(β) =
∫

e−S(φ;β) dφ,

obtained by integrating over all states, with the

classical solutions (minima of S) contributing

most heavily. Here β is the inverse tempera-

ture.
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The Idea of T-Duality

It has been noticed that many quantum me-

chanical systems, especially in supersymmetric

string theory, come with a symmetry known as

T-duality. This means that a theory living on

a torus is formally equivalent to one living on

the dual torus.

The simplest example is a free particle on a

torus Rn/Λ, where Λ is a lattice in Rn. The

partition function turns out to be the classical

theta function

ZΛ(β) =
∑
z∈Λ̂

e−2π2β|z|2

with Λ̂ the dual torus. By Poisson Summation,

this is essentially the same as the correspond-

ing function Z
Λ̂

for the dual torus R̂n/Λ̂.
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H-Fluxes, K-Theory, and Twistings

In some field theories, there are “background
fields” given by cohomology classes. For ex-
ample, in classical electromagnetism, the field
strength of the electromagnetic field defines a
class in H2. In (type II) string theory, there is
a field or H-flux δ ∈ H3.

In addition, in some field theories there are
“topological charges” living in (topological) K-
theory. In string theory, these arise from the
charges on D-branes, submanifolds which serve
as “boundaries” for “open strings.”

In the presence of a background H-flux given
by δ ∈ H3(X, Z), the picture must be twisted
and the charges take their values in twisted
K-theory K∗

δ (X). When H is torsion, this was
defined by Karoubi and Donovan. In general, it
is the K-theory of a stable continuous-trace al-
gebra CT (X, δ) locally isomorphic to C0(X,K),
K the compact operators, with twisting given
by δ.
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Explanation:

Every ∗-automorphism of K comes from con-

jugation by a unitary operator, so AutK = PU .

This is a K(Z,2)-space, so BPU is a K(Z,3)-

space and a class δ ∈ H3(X, Z) gives rise to a

principal PU-bundle over X and an associated

K-bundle of C∗-algebras. CT (X, δ) is the al-

gebra of sections (vanishing at infinity) of this

bundle of algebras, and δ is called the Dixmier-

Douady invariant.

One can in fact identify H3(X, Z) = Br X with

the Brauer group of continuous-trace algebras

over X, just as its torsion group is the Brauer

group of Azumaya algebras over X with finite-

dimensional fibers.
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Basic Setup and the
Mathematical Problem

Consider a “spacetime X compactified over a
torus T ,” i.e., a locally compact, homotopically
finite connected space X equipped with a free
action of a torus T . We have a principal T -
bundle

p : X → Z

and an H-flux class δ ∈ H3(X, Z). Does this
situation have a T-dual, and if so, what is it?

If there is a classical T-dual, we expect to have
another principal torus bundle

p# : X# → Z

and an H-flux class δ# ∈ H3(X#, Z) such that
the fibers of p# are “dual” to the fibers of p,
and such that there is a K-theory isomorphism

K∗
δ (X) ∼= K∗

δ#
(X#)

(possibly with a degree shift).
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T-Dualizability of Bundles

with H-Flux

Let p : X → Z be a principal T -bundle as above,

with T an n-torus, G its universal cover (a vec-

tor group). Also let δ ∈ H3(X, Z). For the pair

(X, δ) to be dualizable, we want the T -action

on X to be in some sense compatible with δ. A

natural hope is for the T -action on X to lift to

an action on the principal PU-bundle defined

by δ, or equivalently, to an action on CT (X, δ).

Equivariant Morita equivalence classes of such

liftings (with varying δ) define classes in the

equivariant Brauer group. Unfortunately

p∗ : Br(Z)
∼=−→ BrT (X)

and so BrT (X) is not that interesting. But

BrG(X), constructed from local liftings, is quite

a rich object.
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Theorem 1 Let

T � � ι // X
p

// // Z

be a principal T -bundle as above, with T an n-

torus, G its universal cover (a vector group).

The following sequence is exact:

BrG(X)
F−→ Br(X) ∼= H3(X, Z)

ι∗−→ H3(T, Z).

Here F is the “forget G-action” map.

In particular, if n ≤ 2, every stable continuous-

trace algebra on X admits a G-action compat-

ible with the T -action on X.

When such a G-action exists, we will construct

a T-dual by looking at the C∗-algebra crossed

product

CT (X, δ) o G.

The desired K-theory isomorphism will come

from Connes’ “Thom isomorphism” theorem.
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Theorem 2 If n = 1, so G = R, the forgetful

map F : BrG(X) → Br(X) is an isomorphism,

and thus every δ ∈ H3(X, Z) is dualizable, in

fact in a unique way. One has

CT (X, δ) o R ∼= CT (X#, δ#)

and

K∗
δ#

(X#) ∼= K∗+1
δ (X)

for a commutative diagram of T-bundles

X ×Z X#

p∗(p#)

{{wwwwwwwwwwwwww (p#)∗(p)

$$IIIIIIIIIIIIII

X

p
$$IIIIIIIIIIIIIIII X#

p#
yyssssssssssssssss

Z .

(1)

And

p!(δ) = [p#], (p#)!(δ
#) = [p], (2)

where p! and (p#)! are the push-forward maps

in the Gysin sequences of the two bundles.
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Results for n = 2

From now on, we stick to the case n = 2 for
simplicity. H∗

M denotes cohomology with Borel
cochains in the sense of C. Moore.

Theorem 3 If n = 2, there is a commutative
diagram of exact sequences:

H0(Z, Z)

��

0

��

H2(X, Z) // H2
M(G, C(X, T))

ξ
//

a
��

ker F
η

//

��

0

C(Z, H2
M(Z2, T))

h
��

BrG(X)Moo

F
��

H1(Z, Z)

��

H3(X, Z)
p!oo

��

0 0

M : BrG(X) → C(Z, H2
M(Z2, T)) ∼= C(Z, T) is

the Mackey obstruction map, h : C(Z, T) →
H1(X, Z) sends a continuous function Z → S1

to its homotopy class, F : BrG(X)→ Br(X) is
the forgetful map.
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Applications to T-duality

Theorem 4 Let p : X → Z be a principal T2-

bundle as above. Let δ ∈ H3(X, Z) be an “H-

flux” on X. Then:

1. If p!δ = 0 ∈ H1(Z, Z), there is a (uniquely

determined) classical T-dual to (p, δ), consist-

ing of p# : X# → Z, which is a another prin-

cipal T2-bundle over Z, and δ# ∈ H3(X#, Z),

the “T-dual H-flux” on X#. One has a natural

isomorphism

K∗
δ#

(X#) ∼= K∗
δ (X).

2. If p!δ 6= 0 ∈ H1(Z, Z), then a classical T-

dual as above does not exist. However, there

is a “nonclassical” T-dual bundle of noncom-

mutative tori over Z. It is not unique, but the

non-uniqueness does not affect its K-theory,

which is naturally ∼= K∗
δ (X).
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An example

Let X = T3, p : X → S1 the trivial T2-bundle.

If δ ∈ H3(X, Z) 6= 0, p!(δ) 6= 0 in H1(S1).

By Theorem 4, there is no classical T-dual to

(p, δ). (The problem is that non-triviality of δ

would have to give rise to non-triviality of p#.)

One can realize CT (X, δ) in this case as fol-

lows. Let H = L2(T). Define the projective

unitary representation ρθ : Z2 → PU(H) by let-

ting the first Z factor act by multiplication by

zk, the second Z factor act by translation by

θ ∈ T. Then the Mackey obstruction of ρθ is

θ ∈ T ∼= H2(Z2, T). Let Z2 act on C(T,K(H))

by α, which is given at the point θ by ρθ. Define

the C∗-algebra

B= IndR2

Z2 (C(T,K(H)), α)

=
{
f : R2 → C(T,K(H)) :

f(t + g) = α(g)(f(t)), t ∈ R2, g ∈ Z2
}

.
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Then B is a continuous-trace C∗-algebra hav-

ing spectrum T3, having an action of R2 whose

induced action on the spectrum of B is the

trivial bundle T3 → T. The crossed product

algebra B o R2 ∼= C(T,K(H)) o Z2 has fiber

over θ ∈ T given by K(H) oρθ Z2 ∼= Aθ ⊗ K(H),

where Aθ is the noncommutative 2-torus. In

fact, the crossed product B o R2 is isomor-

phic to C∗(Hk) ⊗ K, where Hk is the integer

Heisenberg-type group,

Hk =


1 x 1

kz
0 1 y
0 0 1

 : x, y, z ∈ Z

,

a lattice in the usual Heisenberg group HR
(consisting of matrices of the same form, but

with x, y, z ∈ R).

The Dixmier-Douady invariant δ of B is k times

a generator of H3. We see that the group C∗-
algebra of Hk serves as a non-classical T-dual.
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