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Historically, one of the earliest motivations for the development of K-theory
was the need to put on a firm algebraic foundation a number of invariants or
obstructions that appear in topology. The primary purpose of this chapter is
to examine many of these K-theoretic invariants, not from a historical point
of view, but rather a posteriori, now that K-theory is a mature subject.

There are two reasons why this may be a useful exercise. First, it may help
to show K-theorists brought up in the “algebraic school” how their subject
is related to topology. And secondly, clarifying the relationship between K-
theory and topology may help topologists to extract from the wide body
of K-theoretic literature the things they need to know to solve geometric
problems.

For purposes of this article, “geometric topology” will mean the study
of the topology of manifolds and manifold-like spaces, of simplicial and CW-
complexes, and of automorphisms of such objects. As such, it is a vast subject,
and so it will be impossible to survey everything that might relate this subject
to K-theory. I instead hope to hit enough of the interesting areas to give the
reader a bit of a feel for the subject, and the desire to go off and explore more
of the literature.

Unless stated otherwise, all topological spaces will be assumed to be Haus-
dorff and compactly generated. (A Hausdorff space X is compactly generated if
a subset C is closed if and only if C∩K is closed, or equivalently, compact, for
all compact subsets K of X. Sometimes compactly generated spaces are called
k-spaces. The k stands both for the German Kompakt and for Kelley, who
pointed out the advantages of these spaces.) This eliminates certain patholo-
gies that cause trouble for the foundations of homotopy theory. “Map” will al-
ways mean “continuous map.” A map f : X → Y is called a weak equivalence if
its image meets every path component of Y and if f∗ : πn(X,x)→ πn(Y, f(x))
is an isomorphism for every x ∈ X.
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1 The Wall Finiteness Obstruction and its Variants

We begin this survey with the “Wall finiteness obstruction,” not because it
came first historically (Whitehead torsion dates back much earlier) and not
because it is most important (again, most geometric topologists would argue
that Whitehead torsion is more fundamental) but because most algebraic
treatments of K-theory usually begin with K0 of a ring or a category.

The discussion here will be brief; for a more complete treatment, see [33].
A basic theorem of homotopy theory states that every space X has a

CW-approximation; in other words, there is a CW-complex Y and a weak
equivalence Y → X. More is true; the Y is unique up to homotopy equivalence
and can be chosen functorially in X. In fact one can take Y = |S•(X)| to be
the geometric realization of the simplicial set S•(X) of singular n-simplices in
X [59, Chaps. 10, 16].

One says a space X is dominated by a space Y if there are maps f : X → Y
and g : Y → X such that g ◦ f ' 1X , where the symbol ' denotes “is
homotopic to.” A corollary of the CW-approximation theorem is that if a
space X is dominated by a CW-complex, then it is homotopy-equivalent to
a CW-complex. We say X is finitely dominated if it is dominated by a finite

CW-complex. Clearly this is a necessary condition for X to be homotopy-
equivalent to a finite CW-complex. The condition of being finitely dominated
is sometimes not so hard to check. For example, a famous theorem of Borsuk [9,
p. 1093] implies that any compact, locally contractible, and finite dimensional
metric space is a retract of a finite polyhedron, hence in particular is finitely
dominated.

Theorem 1.1 (Wall [100], [101]). Let X be a path-connected and lo-

cally 1-connected space, and let C∗(X) be its singular chain complex. Note

that the singular chain complex C∗(X̃) of the universal cover X̃ can be

regarded as a complex of free R-modules, where R = Zπ1(X), and that

C∗(X) = Z ⊗R C∗(X̃). Then if X is finitely dominated, π1(X) is finitely

presented and C∗(X̃) is chain homotopy-equivalent to a finite complex C∗

of finitely generated projective R-modules. The “Euler characteristic” of this

complex,

χ(X) =
∑

i

(−1)i[Ci],

is well defined in K̃0(R) (the quotient of K0(R) by the copy of Z coming from

the finitely generated free R-modules), and vanishing of χ(X) in K̃0(R) is

necessary and sufficient for X to be homotopically finite (homotopy-equivalent

to a finite CW-complex.)

Proof. We give a brief sketch. If X is finitely dominated, then π1(X) is an al-
gebraic retract of a finitely presented group, hence is itself finitely presented.
First we note that the Euler characteristic χ(X) is well defined. The key
thing to prove is that if there is a chain equivalence h : C∗ → C ′

∗, then
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∑
i(−1)i[Ci] =

∑
i(−1)i[C ′

i]. But this is true even for the K0(R)-valued Eu-

ler characteristic (not only for its image in K̃0(R)), by the Euler-Poincaré
principle.

Clearly, if there is an equivalence Z → X with Z a finite CW-complex,
then C∗(X̃) is chain homotopy-equivalent to C∗(Z̃), which in dimension j is

a free R-module with one generator for each j-cell in Z. Thus [Ci(Z̃)] lies in
the subgroup Z of K0(R) generated by the free modules, and maps to 0 in

K̃0(R), so χ(X) = χ(Z) = 0.
Wall’s main contribution was to prove sufficiency of the condition. First

one shows that if χ(X) = 0, then C∗(X̃) is chain equivalent to a finite com-
plex of finitely generated free R-modules. This is elementary; start with an
equivalent finite complex C∗ of projective modules, say of dimension n, and
choose a finitely generated projective R-module Q0 such that C0⊕Q0 is free.
Then the direct sum of C∗ with the complex

Q0

∼=
←− Q0 ← 0← · · ·

is still equivalent to C∗(X̃) and is free in degree 0. Proceed similarly by induc-
tion. Since χ(X) = 0, once the (n−1)-st module has been made free, the n-th
module is stably free. So making Qn−1 larger if necessary, one can arrange
that all the modules are now free (and still finitely generated).

The last step is to build a finite CW-complex Z modeling the free chain
complex from the last step, and to construct the required homotopy equiva-
lence h. The Z and the h are constructed simultaneously by starting with a
2-complex Z(2) with the correct fundamental group (recall π1(X) is finitely
presented) and with the correct C1 and C2, along with a map h(2) : Z(2) → X
inducing an isomorphism on π1. Then one attaches cells and extends the map
by induction on the dimension. This is an exercise in obstruction theory.
Eventually one gets the desired complex Z and a map h : Z → X which is an
isomorphism on π1 and which induces a homology isomorphism Z̃ → X̃. By
Whitehead’s Theorem, this map is a homotopy equivalence. ut ut

One situation where the Wall finiteness obstruction comes into play is the
spherical space form problem. This is the problem of determining what finite
groups G can act freely on Sn. Of course, there are certain obvious examples,
namely groups which act freely and isometrically on Sn with its standard
metric. These are classified in [105]. The necessary and sufficient condition for
G to act freely and isometrically on some Sn is that for all primes p and q, not
necessarily distinct, all subgroups of G of order pq must be cyclic. But if one
doesn’t require the action to be isometric (or even smooth), there are many
more examples. The one obvious necessary condition is a homological one. For
if X is a connected CW-complex with finite fundamental group G and with
universal cover X̃ homotopy-equivalent to Sn, then the spectral sequence

Hp(G,Hq(X̃, Z))⇒ Hp+q(X, Z)
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of the homotopy fibration X̃ → X → BG implies that G has periodic coho-
mology of period n+1, and thus that the Sylow subgroups of G are all either
cyclic or generalized quaternion [17, Ch. XVI, §9, Application 4]. Conversely,
if G satisfies this condition, Swan [87] showed that there is a periodic resolu-
tion of the trivial G-module Z by finitely generated projective ZG-modules.
In effect, the finiteness obstruction of this resolution is an obstruction to G
acting freely and cellularly on a finite homotopy n-sphere. (We are explain-
ing this a posteriori ; Swan’s paper predated Wall’s, but the principle is the
same.) But since K̃0(ZG) is finite for G finite, one can kill off the obstruc-
tion by replacing the period by a suitably large multiple. Thus the result of
[87] is that, after replacing the period of G by a suitably large multiple if
necessary, G acts freely and cellularly on a finite n-dimensional CW-complex
complex X̃ homotopy-equivalent to Sn, n one less than this larger period. For
an explanation of how one then checks if X can be chosen to be a smooth
manifold, see [88], [58], and [26]. The result of the analysis is that there is a
simple necessary and sufficient condition for G to act freely and smoothly on
some sphere:

Theorem 1.2 (Madsen-Thomas-Wall [58]). A finite group G acts freely

and smoothly on a sphere Sn for some n if and only if G has periodic coho-

mology, and if, in addition, every subgroup of G of order 2p, p an odd prime,

is cyclic.

However, it is not always easy to tell from knowledge of G what is the
minimal value of n. The necessity of the “2p condition” is due to Milnor [60],
and follows from the following geometric result:

Theorem 1.3 (Milnor [60]). Let T : Sn → Sn be a map of period 2 without

fixed points, and let f : Sn → Sn be a map of odd degree. Then there is a

point x ∈ Sn with Tf(x) = fT (x).

Proof of necessity of the Madsen-Thomas-Wall condition from Theorem 1.3.

Suppose G acts freely on a sphere and there is some subgroup H of G of order
2p which is not cyclic. Then H is dihedral. Let T be the action of the genera-
tor of H of order 2, and let f be the action of the generator of H of order p.
Then by Theorem 1.3, TfT−1f−1 has a fixed point. Since G acts freely, that
means TfT−1f−1 = 1, so the two generators of H commute with each other,
a contradiction. ut ut

Another application is to the problem of when a non-compact manifold
M is homeomorphic to the interior of a compact manifold W with boundary.
Clearly this implies that M should be homologically finite. Since any compact
topological manifold W , even with boundary, has the homotopy type of a finite
CW-complex, an additional necessary condition is that the Wall obstruction
of M should vanish. The highly influential thesis of Siebenmann [78] showed
that in high dimensions, this condition and an obvious “tameness” condition
are sufficient.
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2 Flat Bundles and K-Theory

Another connection between geometric topology (or more precisely, geometry
and topology of manifolds) and algebraic K-theory comes from the study of
flat vector bundles. Suppose M is a smooth manifold and E →M is a smooth
vector bundle over M . A connection on E is a way of differentiating sections
of E. More precisely, a connection is a map

∇ : Γ∞(E)→ Γ∞(E ⊗ T ∗M),

where Γ∞ denotes “smooth sections,” which we also think of as a bilinear
pairing Γ∞(E)×Γ∞(TM)→ Γ∞(E), (s,X) 7→ ∇X(s), satisfying the “Leib-
niz rule” ∇X(fs) = X(f) · s + f∇X(s) for f ∈ C∞(M). (See for example
[29, pp. 56–60].) A connection is flat if it satisfies the analogue of the identity
d2 = 0 for the exterior derivative, or in other words if [∇X ,∇Y ] = ∇[X,Y ]

for all vector fields X and Y . This condition turns out to be equivalent [29,
Cor. 3.22] to saying that there is a reduction of the structure group of the
bundle from G = GL(n, R) or GL(n, C) to a discrete group. Now isomor-
phism classes of ordinary vector bundles are determined by their “transition
functions,” and are thus parameterized by the non-abelian sheaf cohomology
group H1(M,G), G the sheaf of germs of G-valued functions on M . Equiv-
alently, there are classified by homotopy classes of maps M → BG. In the
same way, isomorphism classes of flat vector bundles (where we keep track of
the flat structure ∇) are parameterized by non-abelian sheaf cohomology of
the constant sheaf, H1(M,Gδ) = Hom(π1(M), Gδ) or by homotopy classes of
maps M → BGδ, where Gδ denotes G with the discrete topology. Via the plus

construction BGL(n, C)δ → BGL(∞, C)δ → B
(
GL(∞, C)δ

)+
, we see that

flat complex vector bundles give classes in H0(X; K(C)), the cohomology of
X with coefficients in the (algebraic, not topological) K-theory spectrum of
C. In particular, flat complex vector bundles over homology n-spheres can be
viewed as representing classes in H0(Sn; K(C)) = πn(K(C)) = Kn(C), and it
is easy to see that every class in Kn(C) arises from some flat vector bundle
over a homology n-sphere. In a similar vein, Hausmann and Vogel [40, Corol-
lary 4.2] have shown that for any ring A and n ≥ 5, Kn(A) can be described
as the “homology sphere bordism” of BGL(A), i.e., as the group of equiva-
lence classes of pairs (Σn, f), where Σn is a (based) oriented n-dimensional
PL manifold which is an integral homology sphere2, f : Σn → BGL(A) (and
sends basepoint to basepoint), and (Σn

1 , f1) ' (Σn
2 , f2) if and only if there

exists a compact manifold W n+1 with ∂M = Σ1 q −Σ2, there exists a map
F : W → BGL(A) extending f1 and f2 (sending a “base arc” joining the
basepoints of the boundary components to the basepoint of BGL(A)), and
the inclusions Σj ↪→W are integral homology equivalences.

2 We use PL manifolds rather than smooth ones to avoid complications coming
from the finite group Θn of exotic n-spheres.
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We return again to the study of flat real or complex vector bundles. Suslin
has shown [85] that for k any infinite field (in particular for k = R or C),
the inclusion GL(n, k)δ ↪→ GL(∞, k)δ induces an isomorphism on Hj( ; Z)
for j ≤ n. Thus for studying characteristic classes of flat vector bundles
on n-dimensional spaces, it’s enough to look at flat vector bundles of rank

≤ n. There are stability theorems saying that the map B
(
GL(n, k)δ

)+
→

B
(
GL(∞, k)δ

)+
is (n/2)-connected, and it’s plausible that this map is even

n-connected. Hence for computing Kn(R) or Kn(C), it’s enough to look at
flat vector bundles of rank ≤ 2n, and it may even be that every class in
Kn(R) or Kn(C) is represented by a flat vector bundle of rank n. But while

the map πn

(
B

(
GL(n, R)δ

)+
)
→ Kn(R) may be surjective, it is known not

to be injective; we will see why in a moment.
Various natural geometric questions about flat bundles can now be reduced

(at least in part) to K-theory, and vice versa. (However, if one is interested
in bundles not in the stable range, e.g., with rank equal to the dimension
of the base space, then unstable K-theory is required.) We give only a few
representative examples.

First we should say something about characteristic classes. A basic fact
about flat vector bundles is that since the real (or rational) Chern or Pon-
trjagin classes of a vector bundle can be computed from the curvature of a
connection using Chern-Weil theory, and since a flat connection has (by defi-
nition) curvature zero, these classes for a flat vector bundle necessarily vanish
[29, 9.1 and 9.2]. Hence the Chern or Pontrjagin classes of a flat vector bundle
are torsion. Since Ktop

2n (C) ∼= Z is determined by Chern classes, it follows that
the natural map from algebraic to topological K-theory, K2n(C)→ Ktop

2n (C),
coming from the obvious continuous map GL(n, C)δ → GL(n, C), vanishes
for n > 0. (However the map of spectra K → Ktop induces isomorphisms on
homotopy groups with finite coefficients by a famous theorem of Suslin [86],
which is related to the fact that the Chern classes of flat bundles can carry
non-trivial torsion information.)

One might guess on the basis of the above that all rational invariants of flat
vector bundles have to vanish, but celebrated work of Milnor [61] shows that
this is not the case for the Euler class of an oriented real vector bundle. More
precisely, Milnor showed that if M 2 is a closed oriented surface of genus g ≥ 2,
so that the oriented rank-two real vector bundles E over M are classified by
〈e(E), [M ]〉 ∈ Z, where e(E) is the Euler class in H2(M, Z), then E admits
a flat connection if and only if |〈e(E), [M ]〉| < g. (See also [29, §9 and Corol-
lary 9.18] for a nice exposition.) This theorem prompted a huge explosion of
interest in characteristic classes of flat vector bundles. For example, Deligne
and Sullivan [27] showed that every flat complex vector bundle over a finite
CW-complex becomes trivial on some finite cover. Using some of the ideas of
Milnor, Smillie [81] showed there are flat manifolds with non-zero Euler char-
acteristic in all even dimensions greater than or equal to four. This in turn
motivated a more complete study by Hausmann [39] of what manifolds can



K-Theory and Geometric Topology 7

admit a flat structure, i.e., a flat connection on the tangent bundle. For exam-
ple, he showed that (in dimension ≥ 5) a stably parallelizable closed manifold
M2m is semi-s-cobordant to a manifold M ′ with a Z-flat structure (coming
from a map π1(M

′)→ BSL(2m, Z)) if and only if it is parallelizable. Here M
semi-s-cobordant to M ′ means that there is a compact manifold W 2m+1 with
boundary ∂W = M qM ′ such that the inclusion M ↪→W is a simple homo-
topy equivalence. (If the same is true for M ′ ↪→W , then M and M ′ are called
s-cobordant, hence diffeomorphic if they have dimension ≥ 5; see section 3 be-
low.) In particular, every parallelizable closed manifold is homology-equivalent
to a closed manifold with a Z-flat structure. Hausmann’s methods proved at

the same time that the natural map πn

(
B

(
GL(n, R)δ

)+
)
→ Kn(R) cannot

be injective for n = 2m even, for the image of the Euler class e under the
restriction map Hn(BSL(n, R), Q)→ Hn(BSL(n, R)δ, Q) is non-zero on the

image of the Hurewicz map πn

((
BGL(n, R)δ

)+
)

= πn

((
BSL(n, R)δ

)+
)
→

Hn

((
BSL(n, R)δ

)+
, Z

)
∼= Hn(SL(n, R)δ, Z), but does not lie in the image

of the restriction map Hn(BSL(∞, R)δ, Q)→ Hn(BSL(n, R)δ, Q). Note that

this now implies that the map B
(
GL(n, R)δ

)+
→ B

(
GL(∞, R)δ

)+
cannot

be (n + 1)-connected.
The vanishing of rational characteristic classes of flat bundles makes it

possible to define secondary characteristic classes, which can be used to detect
some of the K-theory of fields. For simplicity we consider only complex vector
bundles. From the long exact sequence

· · · → H2k−1(X, C×)
∂
−→ H2k(X, Z)→ H2k(X, C)→ H2k(X, C×)

∂
−→ · · · ,

(1)
it follows that any integral torsion cohomology class in degree 2k lifts to a class
of degree 2k− 1 with coefficients in C×. A choice of such a lifting for the k-th
Chern class of a flat rank-n vector bundle (E,∇) over X, defined using the flat
connection ∇, was (essentially) given by Chern and Simons [23], [24] and is
called the Chern-Simons class. For example, a flat structure on a complex line
bundle over X is given simply by a homomorphism π1(X) → C×, and thus
defines a class in H1(X, C×). In general, Chern and Simons consider the case,
which one can always reduce to, where X is a smooth manifold, and then they
use the connection ∇ to construct a closed differential form on the principal
GL(n)-bundle associated to E, whose restriction to each fiber is integral. One
can then view this form as defining a (C/Z ∼= C×)-valued class on the base.
An alternative approach to the construction of the Chern-Simons classes for
flat bundles may be found in [29, Exercise 3, pp. 163–164]. The approach there
involves the space F = GL(n, C)/GL(k − 1, C), which is (2k − 2)-connected
and satisfies H2k−1(F, Z) ∼= Z. For the reader’s convenience, we fill in some
of the missing details.

Proposition 2.1. The space F = GL(n, C)/GL(k−1, C) is (2k−2)-connected

and satisfies H2k−1(F, Z) ∼= Z.
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Proof. There are deformation retractions from GL(n, C) down to U(n), and
from GL(k − 1, C) down to U(k − 1). Since U(k) acts transitively on the
unit sphere S2k−1 in Ck, with U(k − 1) the stabilizer of a point, F has the
homotopy type of S2k−1 when k = n, and then the result is obvious. If n > k,
we have a fibration

U(k)/U(k − 1)→ U(n)/U(k − 1)→ U(n)/U(k),

and since U(n)/U(k) is at least 2k-connected, the result follows. ut ut

The fact that F is highly connected is then used as follows.

Proposition 2.2. Again let F = GL(n, C)/GL(k−1, C). There is a “filling”

σ of F by singular simplices up through dimension 2k − 1, or in other words

a family of singular simplices

σ(g1, · · · , gq) : ∆q → F, g1, · · · , gq ∈ GL(n, C), q ≤ 2k − 1,

which satisfy

σ(g1, · · · , gq) ◦ εi =





g1 · σ(g2, · · · , gq), i = 0,

σ(g1, · · · , gigi+1, · · · , gq), 0 < i < q,

σ(g1, · · · , gq−1), i = q.

(2)

where the εi are the face maps.

Proof. This is proved by induction on q. To start the induction, let σ(∆0) be
the origin o = eGL(k − 1, C) in F . Assume σ is defined for smaller values
of q; then one can check that (2) defines σ(g1, · · · , gq) on the boundary of
∆q in a consistent way. (For example, we need to check that the formulas for
σ(g1, · · · , gq)◦ε

0 = g1·σ(g2, · · · , gq) and for σ(g1, · · · , gq)◦ε
1 = σ(g1g2, · · · , gq)

agree on the intersection of the 0-th face and the 1-th face, which is a (q− 2)-
simplex. So we need to check that g1 ·σ(g2, · · · , gq)◦ ε

0 = σ(g1g2, · · · , gq)◦ ε
0;

both are given by g1g2 · σ(g3, · · · , gq). The other verifications are similar.)
Thus we just need to fill in. But for q ≤ 2k − 1, πq−1(F ) = 0, and thus any
map Sq−1 ∼= ∂∆q → F extends continuously to ∆q. ut ut

Proposition 2.3. There is a GL(n, C)-invariant closed (2k − 1)-form ω on

F , representing the de Rham class of a generator of H2k−1(F, Z).

Proof. Since H2k−1(F, Z) ∼= Z by Proposition 2.1, and in fact by the proof of
that proposition there is a preferred generator (coming from the usual orienta-
tion of S2k−1), there is a canonical de Rham class representing this generator
in H2k−1(F, R). This de Rham class may be realized by a U(n)-invariant
closed real form, since U(n) is compact. (Just “average” any closed form in
the de Rham class with respect to Haar measure on the compact group.) Then
since GL(n, C) is the complexification of U(n) and acts transitively on F , we
may complexify to a GL(n, C)-invariant complex closed form. ut ut
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Proposition 2.4. Define a group cochain s on GL(n, C)δ (with values in

C/Z) by the formula

s(g1, · · · , g2k−1) =

∫

∆2k−1

σ(g1, · · · , g2k−1)
∗(ω) (reduced mod Z).

Then s is a cocycle and its cohomology class in H2k−1
(
BGL(n, C)δ, C/Z

)
is

a lifting of the k-th Chern class for flat bundles.

Proof. Let G = GL(n, C). By definition,

δs(g1, · · · , g2k) = s(g2, · · · , g2k)

+
∑

0<i<2k

(−1)is(g1, · · · , gigi+1, · · · , g2k) + s(g1, · · · , g2k−1)

=

∫

∆2k−1

(
σ(g2, · · · , g2k)∗(ω)

+
∑

0<i<2k

(−1)iσ(g1, · · · , gigi+1, · · · , g2k)∗(ω)

+ σ(g1, · · · , g2k−1)
∗(ω)

)

=

∫

C(g1,··· ,g2k)

ω ,

(3)
where C(g1, · · · , g2k) is the singular chain

g1 · σ(g2, · · · , g2k) +
∑

0<i<2k

(−1)iσ(g1, · · · , gigi+1, · · · , g2k) + σ(g1, · · · , g2k−1).

(Note that we’ve used G-invariance of ω to replace σ(g2, · · · , g2k) by g1 ·
σ(g2, · · · , g2k) here.) By the defining property (2) of σ, C(g1, · · · , g2k) is a
singular cycle. But ω represents an integral de Rham class, so its integral over
C(g1, · · · , g2k) vanishes in C/Z. Thus s is a group cocycle.

It remains to show that ∂[s] = ck in the sequence (1). But by the cal-
culation in (3), ∂[s] is represented by the group cocycle whose value on
(g1, · · · , g2k) is given by

∫
C(g1,··· ,g2k)

ω, C(g1, · · · , g2k) as above. We can see

that this is the primary obstruction to triviality of the universal bundle over
BGδ with fiber F (associated to the universal principal G-bundle over BGδ).
Indeed, it was the homotopy group π2k−1(F ) which in the proof of Proposition
2.2 gave the obstruction to extending the filling σ to dimension 2k, and had we
been able to do this, C(g1, · · · , g2k) would be the boundary of σ(g1, · · · , g2k)
and thus

∫
C(g1,··· ,g2k)

ω would have vanished. The definition of Chern classes

by obstruction theory then gives the result. ut ut
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3 Whitehead and Reidemeister Torsion

One of the early sources for the development of K-theory is the geometric
invariant known as Whitehead torsion, for which convenient textbook treat-
ments are [25] and [76]. However, the best condensed reference is still probably
Milnor’s classic survey article, [63]. Another good exposition is in [64]. In its
essence, the idea of Whitehead torsion is to measure the extent to which a
given homotopy equivalence, say between finite polyhedra, is of the “trivial”
sort. Here “trivial” homotopy equivalences are generated by three basic kinds
of operations: simplicial homeomorphisms (possibly after subdivision of some
simplices) and elementary expansions and collapses. Expansions and their
duals, collapses, are best illustrated by a picture (Fig. 1).
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X X

σn

Fig. 1. An elementary expansion (or collapse, depending on whether one reads the
picture from right to left or left to right)

In other words, we say X ′ collapses to X if X ′ = X ∪ σn, where σn is
an n-simplex attached to X along one of its codimension-one faces, and then
clearly we can “squash” X ′ down to X, and this gives a homotopy equivalence
from X ′ to X. A homotopy equivalence between finite polyhedra is called
simple if it can be constructed out of a chain of simplicial homeomorphisms
(after subdivision) and elementary collapses and expansions. There is a similar
notion for finite CW-complexes as well: in the CW-context, X ′ collapses to
X if X ′ is obtained from X by attaching first an (n − 1)-cell with a null-
homotopic attaching map Sn−2 → X, and then an n-cell bounded in the
obvious way by this (n − 1)-cell, the same way Dn is bounded by Sn−1.
It is easy to see that a polyhedral collapse is a special case of a cellular
collapse, since attaching σn to X as in Fig. 1 is the same as first attaching the
boundary of σn and then filling in with an n-cell. Any homotopy equivalence
h : X → X ′ of (connected) finite polyhedra or finite CW-complexes has an
invariant τ(h) ∈ Wh(π1(X)), where Wh(π) is a certain quotient of K1(Zπ),
and this invariant is trivial exactly when h is simple. We will content ourselves
with describing this invariant in the simplest case. If h is an inclusion map and
(X ′, X) is a finite relative CW-complex, with all relative cells of dimensions
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n−1 and n (so that X ′ is obtained from X by attaching first (n−1)-cells and
then n-cells), then since h is a homotopy equivalence, the relative cellular chain

complex of the universal covers, C∗(X̃
′, X̃), reduces simply to an isomorphism

∂ : Cn → Cn−1 of finitely generated free Zπ1(X)-modules. We have obvious
bases for the chain modules Cn and Cn−1 which only depend on a choice of
orientation for each relative cell of (X ′, X) and a choice of an inverse image

for this cell in X̃ ′. Since the cellular boundary map ∂ is an isomorphism,
one can think of ∂ as defining an invertible matrix with entries in Zπ1(X).
Now of course the matrix depends on the choice of bases for the free Zπ1(X)-
modules involved, but the ambiguity in the choice only affects the K1-class of
the matrix by at most a sign (coming from the choices of orientations) and an

element of π1(X) (coming from the choices of inverse images in X̃ ′ for the cells
of (X ′, X)). Thus if we define Wh(π1(X)) to be the quotient of K1(Zπ1(X))
by the subgroup generated by the canonical images of Z× ∼= {±1} and of
π1(X), we obtain an invariant in this group independent of all choices.3 One
can show that this invariant vanishes if and only if the homotopy equivalence
is simple. The “if” direction is rather straightforward from the definitions.
The “only if” definition requires showing that that an elementary matrix
corresponds geometrically to a collapse. (This requires “unhooking” one of
the cells involved.)

It would appear that the construction of Whitehead torsion is highly de-
pendent on a choice of simplicial or cellular structures for the spaces involved,
but a deep and surprising theorem of Chapman says that this dependence is
illusory.

Theorem 3.1 (Chapman [19]). If X and X ′ are connected finite polyhedra

and h : X → X ′ is a (simplicial) homotopy equivalence, then τ(h) is a topo-

logical invariant. In other words, if we can fit h into a commutative diagram

X
h

//

f

��

X ′

f ′

��

Y
h′

// Y ′,

where Y and Y ′ are also finite polyhedra, h′ is a simplicial homotopy equiva-

lence, and f and f ′ are homeomorphisms, then τ(h) = τ(h′).

This suggests that Whitehead torsion has some deeper significance, and
in fact it plays a basic role in the classification of manifolds, for the follow-
ing reason. If M and M ′ are compact connected n-manifolds (smooth, let’s
say), an (n + 1)-manifold with boundary W is called a cobordism between M
and M ′ if ∂W = M qM ′. (If W , M , and M ′ are oriented, then W should

3 Strictly speaking, τ(X ′, X) is this class multiplied by a sign depending on the
parity of n; that’s because when there are relative cells of many dimensions, what
we want is a kind of multiplicative analogue of the Euler characteristic.
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induce the opposite of the given orientation on M ′, so that M × [0, 1] is an
allowable cobordism from M to itself.) We call W an h-cobordism if the inclu-
sions M ↪→ W and M ′ ↪→ W are homotopy equivalences, in which cases the
torsions τ(W,M) and τ(W,M ′) are defined. We call W an s-cobordism if the
inclusions M ↪→W and M ′ ↪→W are simple homotopy equivalences, i.e., the
torsions τ(W,M) and τ(W,M ′) both vanish. An h-cobordism is called trivial

if it is diffeomorphic to M × [0, 1]. When this is the case, note that M ′ is au-
tomatically diffeomorphic to M , and τ(W,M) and τ(W,M ′) are both trivial.
Smale’s famous h-cobordism theorem [62] asserts that every simply connected
h-cobordism is trivial if n ≥ 5. However, this cannot possibly be true in the
non-simply connected case because of the Whitehead torsion obstruction, and
the substitute is the s-cobordism theorem.

Theorem 3.2 (s-cobordism theorem [52]). Suppose W n+1 is an h-co-

bordism between connected smooth manifolds M and M ′, and suppose n ≥ 5.
If τ(W,M) = 0, then W is trivial. Moreover, if n ≥ 5, then every element

of Wh(π1(M)) can be realized by an h-cobordism from M to some homotopy-

equivalent manifold M ′.

The same statement holds in the PL category, for which a suitable refer-
ence is [76], and even (thanks to the work of Kirby-Siebenmann [54]) in the
topological category.

The importance of Whitehead torsion for geometric topology makes it
important to understand the Whitehead group Wh(π) for various classes of
groups π. It is not too hard to prove that Wh(π) = 0 for π of order ≤ 4 and
that Wh(π) is infinite cyclic for π of order 5. More generally, the most basic
fact about the Whitehead group for finite groups is:

Theorem 3.3 (Bass – see [66], Theorems 2.5 and 2.6). Suppose π is a

finite group. Then Wh(π) is finitely generated, and rk(Wh(π)) is the difference

between the number of irreducible representations of π over R and the number

of irreducible representations of π over Q.

Just as an example, if π is of order p, an odd prime, π has (p − 1)/2
inequivalent two-dimensional irreducible representations over R, but one (p−
1)-dimensional irreducible representation over Q (since Qπ ∼= Q × Q(ζ), ζ
a primitive p-th root of unity, and [Q(ζ) : Q] = p − 1), so rk(Wh(π)) =
p−1
2 + 1− 2 = (p− 3)/2.

However, computing the exact structure of Wh(π) for finite groups π is
difficult, though in principle understood. The best survey on this is the book
[66] by Oliver.

For infinite groups π, there is a widespread belief that Wh(π) should be
attributable to the torsion in π. (For an exact formulation of a conjecture to
this effect, see the chapter by Lück and Reich.) But still open is the most
fundamental version of this conjecture:

Conjecture 3.4. The Whitehead group Wh(π) vanishes for any torsion-free
group π.
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There are many situations in geometric topology where Whitehead torsion
is not well defined, but one can still define a torsion-like invariant called Rei-

demeister torsion. For example, if X is a finite connected CW-complex with
fundamental group π, it may be that the reduced cellular chain complex C̄∗(X̃)
is not acyclic (i.e., Hj(X, Zπ) 6= 0 for some j > 0), so that τ(X, ∗) is unde-
fined, and yet C∗(X,V ) may be acyclic for some local coefficient system V . In
this case, we can define the Reidemeister torsion of X with coefficients in V .
Roughly speaking, the difference between Whitehead and Reidemeister torsion
is this. An n×n matrix a with entries in Zπ defines a class in Wh(π) if the ma-
trix is invertible. However, it may be that the matrix is not invertible, but its
image under some representation of π is invertible. For example, suppose one
has an orthogonal or unitary representation π → O(m) or π → U(m). Then
this induces a ring homomorphism Zπ →Mm(R) or Mm(C), under which the
group of units Z× × π maps to matrices with determinant of absolute value
1. So the absolute value of the determinant |det(a)| ∈ R×

+ is unchanged if we
change a by an element of the image of Z× × π ⊆ GL(1, Zπ) ↪→ GL(n, Zπ).
The simplest geometric example is the case of X = S1 and the representation
of π1(S

1) ∼= Z sending the generator to eiθ, 0 < θ < 2π. The cellular chain

complex of S1 with coefficients in the associated local system is C
eiθ−1
−−−−→ C,

so the complex is acyclic (under the assumption 0 < θ < 2π) and the torsion
is |eiθ − 1| = 2| sin(θ/2)|.

There are two important classical examples of Reidemeister torsion. If X is
the complement of a knot in S3 and one takes the representation π1(X)→ C×

sending a generator of H1(X) = π1(X)ab ∼= Z to a transcendental number t,
then the Reidemeister torsion becomes essentially (except for a trivial factor)
the Alexander polynomial ∆(t) of the knot [63, Example 2, p. 387]. The second
important case is where X is a lens space, the quotient of S2n−1 by a free linear
action of a cyclic group π = Z/m on Cn. In this case, the Reidemeister torsion
is the essential invariant for classifying lens spaces with fixed dimension and
fundamental group up to homeomorphism. More precisely (see [63, §12] for
details), the lens spaces with fundamental group π and dimension 2n− 1 are
classified by n elements r1, · · · , rn ∈ (Z/m)×, modulo a certain equivalence
relation, and the Reidemeister torsion (for the representation of π sending the
generator to a primitive m-th root of unity t) turns out to be

n∏

j=1

(trj − 1) ,

modulo multiplication by factors of ±tk. The torsion is of course an invariant
of the simple homotopy type, and by Chapman’s Theorem (Theorem 3.1),
even a homeomorphism invariant. From this one can prove that two lens
spaces are homeomorphic if and only if they are isometric, which is certainly
not obvious. (On the other hand, there are plenty of examples of lens spaces
which are homotopy equivalent but not simple homotopy equivalent, and also
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plenty of examples of lens spaces with the same dimension and fundamental
group which are not even homotopy equivalent.)

One of the most remarkable things about Reidemeister torsion is its re-
lation to a global analytic invariant in Riemannian geometry, the analytic

torsion of Ray and Singer [73]. Ray and Singer defined the analytic torsion by
reformulating the definition of the Reidemeister torsion in terms of the “com-
binatorial Laplacian,” then replacing this operator in the definition by the
Laplace-Beltrami operator of Riemannian geometry. They conjectured that
the resulting invariant, given in terms of the spectrum of the Laplacian on
differential forms, coincides with the Reidemeister torsion, and this conjecture
was eventually proven by Cheeger [22] and Müller [65], working independently.

Various generalizations of the Cheeger-Müller theorem, for example, re-
placing ordinary determinants by the Kadison-Fuglede determinant4 on a fi-
nite von Neumann algebra (e.g., [12]), or allowing manifolds with boundary
or non-compact manifolds, are a major topic of current research.

4 Controlled K-Theory and Connections with Negative

K-Theory

One of the most interesting areas where algebraic K-theory and geometric
topology come together is in the subject of controlled K-theory. In this the-
ory, one studies not just projective modules over a ring and morphisms be-
tween them, but also the effect of imposing conditions on the “placement” or
“support” of the modules or morphisms.

Probably the simplest example of controlled K-theory is an elegant de-
scription of negative K-theory by Pedersen [69], which led to a description
by Pedersen and Weibel [68], [67] of the homology theory attached to the
(nonconnective) K-theory spectrum K(R) of a ring R. These examples lead
to what is often called K-theory with bounded control . Say one is given a
ring R and a (non-empty) metric space (X, d). One considers the category
CX(R) of “locally finitely generated” configurations of projective modules over
X, i.e., maps x 7→ Px from X to finitely generated projective R-modules,
such that

⊕
x∈B Px is finitely generated for each set B ⊆ X of finite diame-

ter. Morphisms are R-module endomorphisms of
⊕

x∈X Px whose component
Px → Py vanishes once d(x, y) is sufficiently large. Applying the usual K-
theoretic constructions gives a K-theory spectrum K(R;X) and thus groups
Ki(R;X) = πi(K(R;X)). Here only the “large scale” geometry of X is rele-
vant. For example, if X has finite diameter, K(R;X) ' K(R; pt) = K(R), and
similarly K(R; Rn) ' K(R; Zn) (if Rn and Zn are given the usual metrics). In
this language, the main theorem of [69] asserts that K(R; Zn) is the usual non-
connective n-fold delooping of K(R), and thus K0(R; Zn) ∼= K−n(R). Then
the papers [68] and [67] go on to show that if O(Y ) is the infinite open cone

4 On a II1 factor A, this “determinant” gives an isomorphism K1(A) → R×

+ [57].
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on a compact space Y , with the usual metric (so that if Y is embedded in
Sn−1 ⊂ Rn, O(Y ) is an R×

+-invariant subset of Rn, from which it inherits the

induced metric), then Ki(R;O(Y )) ∼= H̃i−1(Y ; K(R)).
The boundedly controlled K-theory K(R;X) appears in many geomet-

ric applications, both directly and implicitly. Examples include the thin h-
cobordism theorem of Quinn [70, Theorem 2.7] (this predated the above for-
mulation of the theory, but involves some of the same ideas), the bounded
s-cobordism theorem of Ferry and Pedersen [34, Theorem 2.17], and the work
of Gunnar Carlsson [16] on the K-theoretic version of the Novikov conjecture.
(See also Carlsson’s chapter in this volume for more details.)

For applications to geometric topology, sometimes K-theory with ep-

silon control is more relevant. The best motivation for this subject is the
Chapman-Ferry Theorem ([32], [21]), which asserts that a homotopy equiva-
lence h : M ′ →M between closed manifolds M and M ′ of dimension n ≥ 5 is
homotopic to a homeomorphism once it is “sufficiently controlled.” To explain
what this means, recall that the definition of a homotopy equivalence means
that there is a map h′ : M →M ′ and there are homotopies H1 : h◦h′ ' idM ,
H2 : h′ ◦ h ' idM ′ . For h to be “sufficiently controlled” means that if we fix a
metric d on M , d(H1(x, t), x) ≤ ε and d(h ◦H2(y, t), h(y)) ≤ ε for all x ∈M ,
y ∈M ′, and all t ∈ [0, 1]. The theorem asserts that given M and d, there is a
ε > 0 such that all ε-controlled homotopy equivalences h : M ′ → M are ho-
motopic (even ε-homotopic) to homeomorphisms. While neither the statement
not the proof of the Chapman-Ferry Theorem involves K-theory directly, one
can see that there has to be a connection. In fact, for the theorem to be true,
it is clearly necessary (because of Theorem 3.1) for τ(h) = 0 ∈ Wh(π1(M))
once h is sufficiently controlled, which is not immediately obvious.

A treatment of ε-controlled Whitehead torsion and an associated con-
trolled s-cobordism theorem [20, §14] many be found in [20]. Chapman also
states and proves [20, §§6–8] an ε-controlled version of the Wall finiteness ob-
struction (Theorem 1.1). This concerns the situation where one has a space
X with a reference map p : X → B, B a metric space. We say X is ε-
dominated by a space Y if there are maps f : X → Y and g : Y → X such
that g ◦f 'ε 1X , where the symbol 'ε denotes “is ε-homotopic to,” i.e., there
is a homotopy whose composition with p doesn’t move points more than a
distance ε. Chapman answers the question of when an ε-finitely dominated
space is ε-homotopy equivalent to a finite polyhedron.

One can formulate many similar theorems that involve controlled versions
of Whitehead torsion or similar K-theoretic obstructions. Examples are the
thin h-cobordism theorem of Quinn ([70, Theorem 2.7] and [71, Theorem
2.1.1]).
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5 Equivariant and Stratified Situations

So far, we have mostly discussed the topology of smooth, topological, or PL
manifolds just by themselves. But K-theory also comes into play in the study
of actions of groups (let’s say finite groups for simplicity) on such manifolds, or
in the study of stratified spaces such as complex algebraic or analytic varieties.
(Such a variety has a dense open subset which is smooth; the complement of
this smooth set, the singular set , is of smaller dimension and itself contains
a dense smooth set, etc.) The connection between these two topics may be
seen in the fact that if a finite group G acts (smoothly, say) on a manifold M ,
then there is a dense open subset consisting of “principal orbits” (where the
stabilizers are as small as possible), and once again the complement of this
set is of smaller dimension and consists of more “singular” orbits.

The simplest example of a singular space is the one-point compactification
X = M+ of a non-compact manifold M , or equivalently, a compact space
with exactly one singular point. Detailed study of this example can tell us
much about the general case. Just as an example, a natural question is how
to formulate the s-cobordism theorem for such spaces. This problem is clearly
equivalent to that of formulating a (proper) s-cobordism theorem for non-
compact manifolds, which was done by Siebenmann in [79]:

Theorem 5.1 (proper s-cobordism theorem [79]). Suppose W n+1 is a

proper h-cobordism between connected smooth non-compact manifolds M and

M ′, and suppose n ≥ 5. (In other words, ∂W = M qM ′, and the inclusions

M ↪→W and M ′ ↪→W are proper homotopy equivalences. Then a Whitehead

torsion invariant τ(W,M) is defined in a group Whp(M), and if τ(W,M) = 0,
then W is isomorphic (in the appropriate category) to M × [0, 1]. Moreover,

if n ≥ 5, then every element of Whp(M) is realized by an h-cobordism. As-

suming for simplicity that M has one end E and that E is tame, i.e., that

for sufficiently large compact C ⊂M , M r C is connected and its fundamen-

tal group π1(E) is independent of C, the group Whp(M) fits into an exact

sequence

Wh(π1(E))→Wh(π1(M))→Whp(M)→ K̃0(Zπ1(E))→ K̃0(Zπ1(M)).

A direct algebraic description of the obstruction group Whp(M) is given
in [31].

A non-obvious corollary of this theorem is that simple homotopy type
has a geometrical meaning: two finite-dimensional CW-complexes have the
same simple homotopy type if and only if they have piecewise linearly homeo-
morphic (closed) regular neighborhoods in some Euclidean spaces. (For finite
CW-complexes this result is classical and is discussed in [103, pp. 22–23].)
One direction is clear: if X and X ′ are finite-dimensional CW-complexes with
piecewise linearly homeomorphic (closed) regular neighborhoods, then since
a PL homeomorphism is simple, we obtain a simple homotopy equivalence
from X to X ′ (via the intermediary of the regular neighborhoods). To prove
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the other direction, observe that a simple homotopy equivalence X ≈ X ′ can
without loss of generality be taken to be the inclusion of one end of a map-
ping cylinder. Taking a regular neighborhood in a sufficiently large Euclidean
space, one can convert this mapping cylinder into a proper h-cobordism, where
the two ends of the cobordism are regular neighborhoods of X and X ′. Then
simplicity of X ≈ X ′ says by Theorem 5.1 that the h-cobordism is a product,
and the result follows.

Next, we discuss some applications of algebraic K-theory to the study of
actions of finite groups on complexes or manifolds. Some of this could be (and
has been) generalized to actions of more general compact Lie groups or to
proper actions of infinite discrete groups, but even the case of finite groups is
too complicated to treat in detail here.

An easy place to begin is with the Wall finiteness obstruction. Let G be a
finite group and let X be a G-CW-complex. The notions of finite domination
and finiteness make sense in the equivariant world (we replace homotopies
by G-homotopies, homotopy equivalences by G-homotopy equivalences). So
it is natural to ask, assuming X is G-dominated by a finite G-CW-complex,
whether X is G-homotopy equivalent to a finite G-CW-complex. One case we
have effectively already done—if X is connected and simply connected and
the action of G on X is free, so Y = X/G has fundamental group G, then
this reduces to the question of whether Y is finitely dominated, which is the
case if and only of the usual Wall obstruction in K̃0(ZG) vanishes. The more
general situation was first treated by Baglivo [6], who studied the case where
X is connected in the equivariant sense, i.e., where XH is connected and non-
empty for every subgroup H ⊆ G. More general cases were treated by Lück
[56] and others—see [3] for a survey of the many approaches.

The equivariant Wall obstruction appears in a number of problems about
group actions, in combination with the Swan homomorphism

σ :
(
Z/|G|

)×
→ K̃0(ZG),

the boundary map σ in the Mayer-Vietoris sequence in K-theory

· · · → K1(Z)⊕K1

(
ZG/(n)

)
→ K1(Z/|G|)

σ
−→ K̃0(ZG)→ · · ·

associated to the pull-back square

ZG // //

ε

��
��

ZG/(n)

��
��

Z // // Z/|G|.

Here ε : ZG � Z is the augmentation map (sending each element of G to 1)
and n =

∑
g∈G g is the “norm element” of ZG. The relevance of the map σ in

this context was first noticed in [5].
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Let G be a finite group and let X be a G-CW-complex. Then X is called
Smith acyclic if, for each subgroup H of G of prime power order pr, r ≥ 1,
H̃∗(X

H , Fp) = 0. A famous result of P. A. Smith [82] says that the singular
set (the set of points with non-trivial stabilizer) of an action of G on a finite-
dimensional contractible space is Smith acyclic, and it is natural to ask about
the converse.

Theorem 5.2 ([5], Proposition 0.4). Let G a finite group, and let X be

a Smith acyclic finite G-CW-complex for which every point has a non-trivial

stabilizer. Then X is the singular set for an action of G on a contractible

finite G-CW-complex if and only if

∑

i

(−1)iσ
(
H̃i(X, Z/|G|)

)
= 0 (4)

in K̃0(ZG). (The Smith acyclicity of X implies that each H̃i(X, Z/|G|) is of

order prime to |G|, so that we can think of it as representing an element of(
Z/|G|

)×
, and thus (4) makes sense.)

The “only if” direction of this theorem follows from making precise the
equivariant Wall obstruction. If “if” direction is proved by a direct inductive
construction, where we add equivariant cells of type ei × G to X, analogous
to the proof of Theorem 1.1.

Theorem 5.2 paved the way for the study of many problems about exten-
sion of group actions and “homology propagation.” The latter has to do with
showing that, roughly speaking, if two manifolds have similar homology, then
they carry similar group actions. Results of this type may be found in [5],
[102], [14], and [15], just to cite a few sources.

Still another application of the equivariant Wall finiteness obstruction, but
one requiring controlled topology also, may be found in a dramatic theorem
of Steinberger and West [84]: a locally linear action of a finite group G on a
manifold M , assuming all components of the fixed point sets of all subgroups
have dimension ≥ 6 and none has codimension 1 or 2 in another, can be
given an equivariant handle structure if and only if, for each ε > 0, M is
equivariantly ε-homotopy equivalent to a finite G-CW-complex.

The equivariant Whitehead group WhG(X) and its basic properties were
defined by Illman [50]. Anderson [1], Hauschild [38], and Illman later [51]
showed that the equivariant Whitehead group WhG(X) can be expressed as
a direct sum of ordinary Whitehead groups Wh((WH)∗α). The sum is over
equivalence classes of connected components XH

α of fixed sets XH , where H
runs over the subgroups of G. The group (WH)α is defined as (WH)α = {w ∈
WH : w ·XH

α = XH
α }, where WH = NG(H)/H. Finally, the group (WH)∗α is

an extension of (WH)α by π1(X
H
α ). As expected, the equivariant Whitehead

group appears in the equivariant s-cobordism theorem in [83] and in [4].
Finally, we return to the case of more general stratified spaces. This case

gets to be quite complicated, and the best place for the novice to begin is
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first with the survey article [42] and then with Weinberger’s book [103]. As
explained in [42, §1], many definitions and categories of stratified sets have
been proposed. In all cases, we want to consider locally finite partitions Σ
of a locally compact, separable metric space X into pairwise disjoint, locally
closed subsets Xi, called the (pure) strata, each of which is a topological
manifold, with cl Xi ∩Xj 6= ∅ if and only if Xj ⊆ cl Xi. The index set is then
partially ordered by j ≤ i if and only if Xj ⊆ cl Xi. The closed sets cl Xi are
often called the closed strata. The differences between the various categories
of stratified spaces have to do with “gluing” conditions on how the strata
are joined. Essentially all of the definitions apply to “good” stratified spaces,
like projective algebraic varieties over C, but they do not necessarily apply to
orbit spaces of finite groups acting locally linearly on topological manifolds,
where one needs a weak form of the definition.

For many purposes, the best theory of stratified spaces to use is that of
Browder and Quinn [11]—see also [103, §§6-10]. In this theory one keeps track
of mapping cylinder neighborhoods. In other words, if Xi is a stratum and

ΣXi =def (cl Xi r Xi) =
⋃
{Xj | j � i},

we suppose there is a closed neighborhood Ni of ΣXi in Xi = clXi and a
map νi : ∂Ni → ΣXi such that:

1. ∂Ni is a codimension-1 submanifold of Xi,
2. Ni is the mapping cylinder of νi (with ∂Ni and ΣXi corresponding to the

top and bottom of the cylinder),
3. if j � i and Wj = Xj r int Nj , then νi|ν−1

i (Wj)
: ν−1

i (Wj) → Wj is a

submersion (in the appropriate category).

(See Fig. 2). Such mapping cylinder neighborhoods do not always exist in the

∂

i

N
iν

Σ

N
i

X
i

X
i

Fig. 2. A mapping cylinder neighborhood

weakest types of stratified sets, but an obstruction theory for their existence
was given in [72, Theorem 1.7].

In the PL Browder-Quinn theory, Whitehead torsion and the s-cobordism
theorem take an especially nice form. The appropriate obstruction group for
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a PL stratified space X with strata Xi as above is simply

WhBQ(X) =
⊕

i

Wh(cl Xi).

An h-cobordism W of stratified spaces, based on X, is itself a stratified space
with boundary XqX ′, where the inclusions of X and X ′ into W are stratified
homotopy equivalences, and the neighborhood data for the strata of Z are the
pullbacks with respect to the retractions of the data for X (and of X ′).

Theorem 5.3 (Stratified s-cobordism theorem [103, §6]). Let X be a

PL stratified space in the sense of Browder-Quinn above. Then assuming all

strata have dimension ≥ 5, PL h-cobordisms of PL stratified spaces based on

X are in natural bijection with WhBQ(X).

One thing to keep in mind, however, is that in the stratified (or equivari-
ant) world, the parallelism between the three categories of topological, PL,
and smooth manifolds breaks down. The stratified topological s-cobordism
theorem is quite different from the PL one, and involves a rather different
obstruction group Whtop(X). One can already see this in the case of the
one-point compactification X = M+ of a non-compact manifold M , say with
M PL (or even smooth). The space X has two strata, M and a point, so
WhBQ(X) = Wh(π1(X)), whereas Whtop(X) = Whp(M), the proper White-
head group that appears in Theorem 5.1 (see [103, pp. 131–132] for an expla-
nation of why this is the case). Also note that since Whtop(X) is a kind of “rel-
ative” Whitehead group, it can involve K0 and lower K-groups of the strata,
not just Whitehead groups of the closed strata as in the case of WhBQ(X).

6 Waldhausen’s A-Theory

For some of the applications of K-theory to geometric topology, one needs
a variant of algebraic K-theory called the algebraic K-theory of spaces, A-

theory , or Waldhausen K-theory . There are several equivalent versions of the
definition of Waldhausen’s A(X), but all of them are somewhat involved. So
it’s worth giving the informal definition first. If X is a pointed space, let
Q ((ΩX)+) = Ω∞Σ∞ ((ΩX)+) be the infinite loop space whose homotopy
groups are the stable homotopy groups of (ΩX)+, the loop group of X with
a disjoint basepoint attached. The space Q ((ΩX)+) can be viewed as a “ring
up to homotopy,” the multiplication coming from concatenation of loops in
ΩX. If X is path-connected, then π0(ΩX) = π1(X) is an actual group, and
there is a map Q ((ΩX)+) → Zπ1(X) from Q ((ΩX)+) to a genuine ring,
the group ring of π1(X). (The map Q(∗+) = Q(S0) → Z sends a stable map
S0 → S0, i.e., a map Sn → Sn for some n, to its degree.) Waldhausen’s A(X)
[93] is the K-theory space (the space whose homotopy groups are the K-
groups) of the ring up to homotopy Q ((ΩX)+), and the map Q ((ΩX)+)→
Zπ1(X) induces a “linearization map” L : A(X)→ K(Zπ1(X)) which is close
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to being an equivalence in “low degrees.” More precisely, the space A(X) splits
as Q(X+) ×Whdiff(X) ([94], [95], and [99]) for a certain homotopy functor
Whdiff to be discussed further in Section 7 below, but related to the (higher)
Whitehead groups of π1(X). The homotopy fiber of

L : A(∗)→ K(Z) = Z×BGL(Z)+

has finite homotopy groups, and localized at a prime p is known to be (2p−3)-
connected, with its first homotopy group isomorphic to Z/p in degree 2p− 2
([97], [55, Theorem 1.2]).

The main foundational paper on A(X), giving a rigorous definition and
proving the key properties, is [98]. As this is a 100-page technical tour de

force, there is no hope to explain it all here, so we will just quickly summarize
some of the key points. The longest part of the paper explains a method for
defining the K-theory of a category with cofibrations and weak equivalences.
Such a category C has a zero object and satisfies certain axioms modeled
on the properties of the category of finite pointed simplicial sets, where the
cofibrations and weak equivalences are defined as usual in homotopy theory.
Other examples of this structure are exact categories in the sense of Quillen,
with the admissible monomorphisms as cofibrations and the isomorphisms as
weak equivalences.

Given a category C with cofibrations and weak equivalences, Waldhausen
introduces the simplicial category wS•C. The category wSnC in degree n of
this simplicial category has as its objects the diagrams

Y1
// // Y2

// // · · · // // Yn,

with the arrows // // denoting cofibrations, and as its morphisms the
diagrams

Y1
// //

'

��

Y2
// //

'

��

· · · // //

'

��

Yn,

'

��

Z1
// // Z2

// // · · · // // Zn

with the vertical arrows weak equivalences. One also needs to specific choices
of quotients Yj/Yi. Thus, for example, wS0C is the trivial category consisting
only of the 0-object and the 0-morphism, and wS1C is (equivalent to) the
category wC of weak equivalences in C. The K-theory K(C) of the category
C can then be defined to be Ω|wS•C|. This turns out to be an infinite loop
space [98, p. 342]. Also, Waldhausen shows that this definition is essentially
equivalent to the usual definition (via the +-construction or Q-construction)

of Quillen K-theory (when both make sense). The equivalence wC
'
−→ wS1C

gives rise to a map Σ|wC| ↪→ |wS•C|, and thus to a dual map
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|wC| → Ω|wS•C| =def K(C).

The algebraic K-theory of a space X (which we think of as a simplicial set—
passage from simplicial sets to spaces is given by the geometric realization
functor | · |) is then defined to be K(Rf (X)), where Rf (X) is the category of
finite retractive spaces over X, or in other words, simplicial sets Y equipped
with an inclusion X ↪→ Y , plus a retraction r : Y → X, so that Y consists of
the union of X and finitely many additional simplices. The map X 7→ A(X)
is a homotopy functor of X [98, Proposition 2.1.7], and there is a pairing
A(X) ∧ A(X ′) → A(X × X ′) [96, pp. 400–402]. The map |wRf (∗)| → A(∗)
is characterized by a certain additivity property [96, Lemmas 1.1 and 1.2];
on the level of π0, it sends a homotopy equivalence class of finite spaces (or
simplicial sets) to π0(A(∗)) = Z, and turns out to be the Euler characteris-
tic. Other applications of the algebraic K-theory of spaces will be mentioned
in the following section, Section 7. But we just mention that A(X) satisfies
an analogue of the “fundamental theorem of K-theory” (the calculation of
K∗(R[t, t−1]) in terms of K∗(R)):

Theorem 6.1 ([44], [45], [77]). There is a splitting of A(X × S1) as

A(X × S1) ' A(X)×Ω−1A(X)× “Nil term”× “Nil term”.

(This notation isn’t completely precise but is meant to imply that the second

factor is a delooping of A(X). More details may be found in the original pa-

pers.) The two Nil terms are homeomorphic, and the “canonical involution” on

A(X×S1) (analogous to the involution on K-theory of rings coming from the

conjugate transpose on matrices) interchanges the two Nil terms and restricts

to the canonical involutions on the other two factors.

Given that the definition of A-theory involves so much abstract machinery,
it is perhaps surprising that so much is known about how to calculate A(X).
One of the key tools in this regard is the cyclotomic trace of Bökstedt, Hsiang,
and Madsen [8], a functorial map Trc: A(X) → TC(X; p) from A-theory to
topological cyclic homology. (To define this map, it is necessary to first fix a
prime p.) There is a beautiful theorem of Dundas about the fiber of this map
after p-completion:

Theorem 6.2 (Dundas [28]). If X is connected, then the diagram

A(X)∧p
Trc

//

L

��

TC(X; p)∧p

��

K(Zπ1(X))∧p
Trc

// TC(Zπ1(X); p)∧p

is homotopy Cartesian (i.e., is a homotopy pullback square).

In particular, the fiber of the cyclotomic trace map (after p-completion)
only depends on π1(X), and not on the rest of the homotopy type of X.
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(This was earlier proved in [7].) And after p-completion, the homotopy fiber
of the linearization map from A-theory to K-theory of the group ring can be
computed entirely from TC-theory.

7 K-Theory and Pseudo-Isotopy

Let M be a compact smooth manifold (for now without boundary, but we will
be forced to consider manifolds with boundary later). The space of pseudo-

isotopies (or concordances) of M is defined to be

C(M) = Diff(M × I rel (M × {0} ∪ ∂M × I)) ,

with the C∞ topology. (See Fig. 3.) This is of course a topological group un-
der composition of diffeomorphisms. A basic problem in manifold topology

∂

M × {1}

M × I∂

M × {1}

M × I

M × {0}M × {0}

Fig. 3. A pseudo-isotopy

is to understand this space, and especially its set of connected components.
This problem is closely related to computing π0(Diff(M)), the group of dif-
feomorphisms of M modulo isotopy. The reason is that, on the one hand, an
isotopy of diffeomorphisms of M clearly induces a pseudo-isotopy. But not
every pseudo-isotopy comes from an isotopy, since the “level sets” M × {t}
don’t have to be preserved for t > 0. (Again see Fig. 3.) But C(M) acts
continuously on Diff(M) by h · g = h|M×{1}g, and the (open) orbit of the
identity is the group of diffeomorphisms pseudo-isotopic to the identity. So
if C(M) is path-connected, pseudo-isotopic diffeomorphisms are isotopic. The
first major result about π0(C(M)) was a difficult theorem of Cerf [18]: C(M)
is path-connected if M is simply connected and dim M ≥ 6.5 However, it was
soon discovered that even in high dimensions, C(M) can be disconnected if
π1(M) is non-trivial, and Hatcher and Wagoner [37] (originally working in-
dependently) discovered a remarkable connection between π0(C(M)) and the
K-group K2(Zπ1(M)). This eventually led to an exact sequence for π0(C(M)):

5 There is an obvious analogue of C(M), denoted CPL(M), for PL manifolds, where
we replace Diff by the group of PL automorphisms. The analogue of Cerf’s the-
orem holds for this as well [75].
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K3(Zπ1(M))→Wh+
1 (π1(M); Z/2× π2(M))

→ π0(C(M))→Wh2(π1(M))→ 0. (5)

Here Wh2(π1(M)) denotes the quotient of K2(Zπ1(M)) by its intersection
(when we think of K2 as a subgroup of the Steinberg group) with the subgroup
of the Steinberg group St(Zπ1(M)) generated by the special elements wij(g),
g ∈ π1(M). This insures that we divide K2 by its trivial part (the image of
K2(Z) ∼= Z/2). (See [74, Definition 4.4.25].) The second term in (5) is to be
interpreted using the definition

Wh+
1 (π;A) = H0(π,Aπ)/H0(π,A).

Note that we need to keep track of the action of π1(M) on π2(M) to com-
pute this. Hatcher and Wagoner [37] constructed the surjection π0(C(M))→
Wh2(π1(M)) in (5), Hatcher [37] extended the exact sequence to Wh+

1 , and
K. Igusa [47] corrected a mistake of Hatcher and extended the sequence to
K3.

The exact sequence (5), along with Igusa’s work in [47] showing how the
first Postnikov invariant k1(M) ∈ H3(π1(M), π2(M)) can affect π0(C(M)),
makes it clear that calculation of the topology of C(M) must in general be
quite complicated. Since this problem is hard and “unstable,” it is useful to
“stabilize.” One can define a suspension map σ : C(M) → C(M × I). (The
subtlety here is that if M has a boundary, M × I is a manifold with corners,
but still, there is no problem in suspending a pseudo-isotopy ϕ to ϕ × idI .)
The inductive limit P(M) = lim

−→
C(M × In) turns out to be an infinite loop

space whose structure can be calculated in many cases; more about this later.
Then one can obtain results about C(M) itself thanks to a second result of
Igusa (quite technical to prove):

Theorem 7.1 ([48]). The suspension map σ : C(M) → C(M × I) is k-

connected if dim M ≥ max(2k + 7, 3k + 4).

Igusa’s proof follows an outline in [35] of an analogous theorem for CPL

of a PL manifold, but there are problems with the PL proof given there, due
to the fact that pushouts do not exist for most pairs of maps of polyhedra.
However, concordance stability for smooth manifolds implies stability for PL
or topological concordances, for manifolds that have a smooth structure, by
a result of Burghelea and Lashof [13].

Before proceeding to the more technical aspects of pseudo-isotopy, it might
be worth explaining the rough idea of why π0(C(M)) is related to K2 (and in
fact surjects onto Wh2(π1(M))). The ideas here come from the papers of Cerf
[18] and Hatcher-Wagoner [37] quoted above. The starting point of the proof is
an observation of Cerf that C(M) is homotopy-equivalent to the space E(M) of
functions f : M×[0, 1]→ [0, 1] which are smooth, have no critical points, and
satisfy f(x, 0) = 0 and f(x, 1) = 1 for all x ∈M . The homotopy equivalence
is simply the map that sends h ∈ C(M) to f : (x, t) 7→ p2 ◦ h(x, t), where p2 :
M × [0, 1]→ [0, 1] is projection onto the 2nd coordinate. A homotopy inverse
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E(M) → C(M) to this map is constructed by fixing a Riemannian metric on
M and sending f ∈ E(M) to the pseudo-isotopy constructed from its gradient
flow. So given h ∈ C(M), its obstruction in Wh2(π) will be constructed using
a path ft of smooth functions M× [0, 1]→ [0, 1] with f0 = p2 and f1 = p2 ◦h.
If this path can be deformed to one with no critical points, then h must lie
in the identity component of C(M). One starts by using the usual ideas of
differential topology to deform f to a “generic” function with non-degenerate
isolated critical points, and then analyzes what happens as one goes from
one critical point to the next (so far this is like the start of the proof of the
h-cobordism theorem). In the simplest case where all the critical points are
either of index i or index i + 1, one gets for each t a realization of M × [0, 1]
as being obtained from M × [0, 1] by attaching i-handles and (i + 1)-handles.
Since M × [0, 1] is topologically a product, these handles have to cancel as
far as their effect on (π1(M)-equivariant) homology of the universal cover is
concerned, so one gets an intersection matrix A(t) in GL(Zπ1(M)) measuring
how the i-handles (coming from critical points of index i) are cancelled by
the (i + 1)-handles. The function t 7→ A(t) also has to be piecewise constant,
with jumps just at the critical values of t. For t close to 0, A(t) is the identity
matrix; near t = 1 it is a product of a permutation matrix and a diagonal
matrix with entries of the form ±g, g ∈ π1(M); and in between it changes
finitely many times by certain elementary matrices ejk(±g). So if one takes
the Steinberg generators xjk(±g) corresponding to the ejk(±g), one finds
that their product gives rise to an element of St(Zπ1(M)) which lifts A(1).
However there is a canonical way to lift any product of a permutation matrix
and a diagonal matrix, and in particular A(1), as a product of the wjk(±g)’s.
Dividing, one gets an element of K2(Zπ) which is well-defined modulo the
subgroup of St(Zπ1(M)) generated by all wij(g), g ∈ π1(M), i.e., an element
of Wh2(π1(M)). One can show that this element doesn’t change under smooth
deformation, so it gives an obstruction to being able to deform f to a function
without critical points.

A program for studying the stabilized pseudo-isotopy space PPL(M) in the
PL category, by relating it to more homotopy-theoretic objects, was sketched
in [36] and [35] without rigorous proofs. A vast generalization of the program
was developed and carried out by Waldhausen. He introduced homotopy func-
tors WhPL and Whdiff with the properties that Ω2Whdiff(M) ' P(M) for
compact smooth manifolds and Ω2WhPL(M) ' PPL(M) for compact PL
manifolds. As we mentioned before (near the beginning of section 6), Wald-
hausen showed that Whdiff(X) is one factor in A(X). (The other factor is
Q(X+).) There is also a map A(X)→WhPL(X), and its homotopy fiber is a
homology theory, but it’s a little harder to understand. The correct analogue
of the formula (5) for general X is an exact sequence [46, Theorem 13.1]:

π3(A(X))→ K3(Zπ1(X))→ H0(π1(X),
(
π2(X)⊕ Z/2

)
π1(X))

→ π2(A(X))→ K2(Zπ1(X))→ 0.
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The machinery that’s known for computing A(X) (at least rationally) in
some circumstances thus implies quite a lot of information about pseudo-
isotopies and groups of homeomorphisms and diffeomorphisms of manifolds.
For example, Farrell and Jones [30, Corollaries 10.6 and 10.7] compute the
rational homotopy groups πj(Homeo(M)) ⊗Z Q and πj(Diff(M)) ⊗Z Q for
M a real hyperbolic manifold of dimension m > 10 and j in a stable range
(≤ (m−4)/3). The connection between A(X) and pseudo-isotopies also makes
it possible to study not only “higher” Whitehead torsion (as in [35]), but also
higher Reidemeister torsion (as in [49]).

We should point out also that there are controlled versions of pseudo-
isotopy theory, which are related to negative K-theory (e.g., [2], [43], and
[41]).

8 K-Theory and Symbolic Dynamics

Among the lesser known applications of K-theory to geometric topology are
applications to symbolic dynamics, the study of invariant subspaces of the shift
map acting on infinite sequences of letters from some alphabet. To fix notation,
consider the full n-shift, X+

n = {0, 1, · · · , n − 1}N or Xn = {0, 1, · · · , n − 1}Z

with the product topology. (Topologically, X+
n and Xn are both Cantor sets

if n > 1.) Let σn : Xn → Xn and σ+
n : X+

n → X+
n be the shift map that

shifts a sequence one unit to the left. The map σn is a self-homeomorphism
of Xn, called the two-sided n-shift, and σ+

n is a surjective (but non-invertible)
self-map of X+

n , called the one-sided n-shift.
A subshift of finite type is a pair (XA, σA), where A is an n×n matrix with

entries in {0, 1}, where XA is the closed σn-invariant subset of Xn consisting of
sequences (xk) with allowable transitions, i.e., with Axk,xk+1

= 1 for all k, and

where σA = σn|XA
. The one-sided subshift of finite type (X+

A , σ+
A) is defined

similarly from (X+
n , σ+

n ). The first basic problem of symbolic dynamics is to
classify the pairs (XA, σA) and (X+

A , σ+
A) up to topological conjugacy. Note

that keeping track of the shift structure is essential here, since all XA’s and
X+

A ’s are Cantor sets6 and are thus homeomorphic to one another, regardless
of the values of n and of the matrix A.

One might, of course, wonder why we are considering homeomorphisms
of Cantor sets when we promised at the beginning of this article to restrict
attention to “topology of manifolds and manifold-like spaces, of simplicial and
CW-complexes, and of automorphisms of such objects.” The reason is that
as amply demonstrated by Smale [80], Bowen [10], and others, any attempt
to study the dynamics of smooth self-maps of manifolds inevitably leads to
problems of symbolic dynamics.

For purposes of studying the conjugacy problem for the pairs (XA, σA),
it’s convenient to allow A to be any square matrix with entries in N, the

6 This is assuming we are not in one of the uninteresting cases where XA or X+

A

contains an isolated point, as when A = (1).
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non-negative integers. There is a canonical way to do this [91, pp. 272–273]
without changing the definition of XA in the case of a 0-1 matrix, and so that
the 1×1 matrix (n) and the n×n matrix with all entries equal to 1 both give
rise to Xn. However, any XA can be rewritten as XA# for some 0-1 matrix
A# (usually of larger size than A).

The key initial work on the conjugacy problem for the pairs (XA, σA)
was done by Williams [104], who showed that σA and σB are topologically
conjugate if there are rectangular (not necessarily square!) matrices R and
S with entries in N such that RS = A, SR = B. This relation is called
elementary strong shift equivalence over N, but this is a slight misnomer: it is
not an equivalence relation. The equivalence relation it generates (on square
matrices of arbitrary size with entries in N) is called strong shift equivalence

over N, and Williams proved that σA and σB are topologically conjugate if
and only if the matrices A and B are strong shift equivalent over N. Williams
also gave a necessary and sufficient condition for topological conjugacy of the
one-sided shifts σ+

A and σ+
B in terms of conjugacy of “total amalgamations,”

and this criterion is computable. However, strong shift equivalence is not
especially computable—the problem is that there is no obvious way to bound
the length of a chain of elementary strong shift equivalences. Thus Williams
also introduced another equivalence relation. Two square matrices A and B
with entries in N are called shift equivalent over N if there are rectangular
matrices R and S with entries in N such that AR = RB, SA = BS, and for
some k ≥ 1, Ak = RS and Bk = SR. It turns out that shift equivalence over
N is computable and that the matrices A and B are shift equivalent over N
if and only if σk

A and σk
B are topologically conjugate for all sufficiently large

k. An unsolved problem for many years, called the shift equivalence problem,
was whether shift equivalence implies strong shift equivalence (over N), or
equivalently, if conjugacy of σk

A and σk
B for all large k implies conjugacy of σA

and σB .
The (negative) solution to the shift equivalence problem heavily involves

K-theory. First of all, shift equivalence turns out to be connected with the
ordering on K0 of a ring, a certain C∗-algebra associated to the shift. As a
result, one can for example prove:

Theorem 8.1 ([91, Corollary 2.13]). If A, B ∈ GL(n, Z) ∩Mn(N), then

A and B are shift equivalent over N if and only if A and B are conjugate in

GL(n, Z).

Also, if one drops the requirement that the matrices defining a shift equiva-
lence have non-negative entries and thus considers shift equivalence and strong
shift equivalence over Z, then these two conditions are indeed equivalent [90].

However, over N, Kim and Roush [53] showed that shift equivalence and
strong shift equivalence are not equivalent, even for primitive matrices (the
most important case). While their original construction did not directly in-
volve K-theory, it was partially motivated by work of Wagoner [89] relating
Aut(σA) to K2, and in [92], Wagoner, Kim, and Roush showed that one can
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indeed construct a counterexample to the shift equivalence problem using an
invariant based on K2(Z[t]/(t2)). A good introduction to this work may be
found in [91]. If one looks careful, one can see the connection with the ideas
of Cerf theory and the connection between pseudo-isotopy and K2.
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