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The scalar curvature κ is the weakest curvature invariant one can attach (point-
wise) to a Riemannian n-manifold Mn. Its value at any point can be described in
several different ways:

(1) as the trace of the Ricci tensor, evaluated at that point.
(2) as twice the sum of the sectional curvatures over all 2-planes ei ∧ ej , i < j,

in the tangent space to the point, where e1, . . . , en is an orthonormal basis.
(3) up to a positive constant depending only on n, as the leading coefficient in

an expansion [22, Theorem 3.1]

VM (r) = VE(r)

(
1 −

κ

6(n+ 2)
r2 + · · ·

)

telling how the volume VM (r) of a small geodesic ball in M of radius r
differs from volume VE(r) = Cnr

n of a corresponding ball in Euclidean
space. Positive scalar curvature means balls of radius r for small r have a
smaller volume than balls of the same radius in Euclidean space; negative
scalar curvature means they have larger volume.

In the special case n = 2, the scalar curvature is just twice the Gaussian curvature.
This paper will deal with bounds on the scalar curvature, and especially, with

the question of when a given manifold (always assumed C∞) admits a Riemannian
metric with positive or non-negative scalar curvature. (If the manifold is non-
compact, we require the metric to be complete; otherwise this is no restriction at
all.) We will not go over the historical development of this subject or everything
that is known about it; instead, our focus here will be on updating the existing
surveys [20], [68], [69] and [58].

We should explain why we care so much about positivity of the scalar curvature.
Why not ask about metrics of negative scalar curvature, or of vanishing scalar cur-
vature, or of non-negative scalar curvature? More generally, we could ask which
smooth functions on a closed manifold M are realized as the scalar curvature func-
tion of some metric on M . It is a remarkable result of Kazdan and Warner that (in
dimensions > 2) the answer to this question only depends on which of the following
classes the manifold M belongs to:

(1) Closed manifolds admitting a Riemannian metric whose scalar curvature
function is non-negative and not identically 0.

(2) Closed manifolds admitting a Riemannian metric with vanishing scalar cur-
vature, and not in class (1).

(3) Closed manifolds not in classes (1) or (2).
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All these three classes are non-empty if n ≥ 2. By a simple application of the Gauss-
Bonnet Theorem, if n = 2, class (1) consists of S2 and RP2; class (2) consists of
T 2 and the Klein bottle; and class (3) consists of surfaces with negative Euler
characteristic.

Theorem 0.1 (“Trichotomy Theorem” [34], [33], [32]). Let Mn be a closed con-

nected manifold of dimension n ≥ 3.

(1) If M belongs to class (1), every smooth function is realized as the scalar

curvature function of some Riemannian metric on M .

(2) If M belongs to class (2), then a function f is the scalar curvature of some

metric if and only if either f(x) < 0 for some point x ∈ M , or else f ≡ 0.
If the scalar curvature of some metric g vanishes identically, then g is Ricci

flat. (I.e., not only does the scalar curvature vanish identically, but so does

the Ricci tensor.)
(3) If M belongs to class (3), then f ∈ C∞(M) is the scalar curvature of some

metric if and only if f(x) < 0 for some point x ∈M .

This Theorem thus shows that deciding whether a manifoldM belong to class (1)
is equivalent to determining whether M admits a metric of strictly positive scalar
curvature. Furthermore, in this case, there are no restrictions at all on possibilities
for the scalar curvature. We will include some more results about class (2) in the
last section of this paper.

Remark 0.2. Note that Theorem 0.1 partially justifies the comment above, that
existence of a metric of positive scalar curvature on a noncompact (connected)
manifold M is no restriction at all if the metric is not required to be complete.
Indeed, suppose M is diffeomorphic to an open subset of a compact manifold with
boundary M . (If M is homotopically finite with “tame” ends, this is not much of
a restriction.) Take the double of M along ∂M ; this is now a closed manifold X
in which M is embedded as an open subset with complement having non-empty
interior. By Theorem 0.1, there is a metric on X whose scalar curvature function is
positive on M but negative somewhere in the complement of M . The general case
(where M cannot be embedded in a closed manifold) can be deduced from this case
with somewhat more work.

Most of the results presented in this paper are due to other authors, but the
organization here may be a bit different than in the original sources. In Section
1, we will discuss necessary and sufficient conditions for a closed manifold M to
admit a metric of positive scalar curvature. Part of this discussion (e.g., Conjecture
1.19, Theorem 1.20, and Remark 1.25) has been known for a while to the experts
but may not be in the literature in its present form. In Section 2, we will discuss
the topology of the space of metrics of positive scalar curvature in cases where this
space is non-empty. Some of the proofs in this section are new. Then Section 3 will
discuss the question of what non-compact manifolds admit a complete metric of
positive scalar curvature. Here, Theorem 3.4, Corollary 3.5, and part of Theorem
3.9 are new results. Section 4 will discuss a few other miscellaneous topics.
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1. The obstruction problem: which closed manifolds admit a metric

of positive scalar curvature?

If Mn is a closed n-manifold, when can M be given a Riemannian metric for
which the scalar curvature function is everywhere strictly positive? (For simplicity,
such a metric will henceforth be called a metric of positive scalar curvature.)

Answering this basic question involves two disjoint sets of techniques: obstruc-

tion results, showing that some manifolds do not admit metrics of positive scalar
curvature, and positive results, showing that many manifolds do admit such metrics.

1.1. Obstruction results. All known obstruction results follow from one of three
basic principles:

(1) The result of Lichnerowicz [40], that if D/ is the Dirac operator on a spin
manifold M (a self-adjoint elliptic first-order differential operator, acting
on sections of the spinor bundle), then

(1.1) D/ 2 = ∇∗∇ +
κ

4
.

Here ∇ is the covariant derivative on the spinor bundle induced by the Levi-
Civita connection, and ∇∗ is the adjoint of ∇. Since the operator ∇∗∇ is
obviously self-adjoint and non-negative, it follows from equation (1.1) that
the square of the Dirac operator for a metric of positive scalar curvature is
bounded away from 0, and thus that the Dirac operator cannot have any
kernel. It follows that any index-like invariant of M which can be computed
in terms of harmonic spinors (i.e., the kernel of D/ ) has to vanish.

(2) The Schoen-Yau minimal surface technique [61], which implies that if Mn

is an oriented manifold of positive scalar curvature, and if Nn−1 is a closed
stable minimal hypersurface in M dual to a non-zero class in H1(M,Z),
then N also admits a metric of positive scalar curvature.

(3) The Seiberg-Witten technique [73], which implies that if M 4 is a closed 4-
manifold with a non-zero Seiberg-Witten invariant, then M does not admit
a metric of positive scalar curvature.

Each of these three techniques has its own advantages and disadvantages. Tech-
nique (1) applies to manifolds of all dimensions, and is usually the most powerful,
but it only applies to spin manifolds, or at least to manifolds with a spin cover (i.e.,

to manifolds M such that w2(M̃) = 0, where M̃ is the universal cover of M and w2

is the second Stiefel-Whitney class). Technique (2) applies whether or not M and
N are spin, but it requires H1(M,Z) to be non-zero, which is quite a restriction
on π1(M). In addition, since solutions to the minimal hypersurface equations in
general have singularities, this technique only works without modification up to
dimension 7 or 8. There have been hopes for a long time (see for example [64]) that
one could “excise the singularities” to make this technique work in high dimensions,
and now Lohkamp [43] has announced a precise result of this sort, based in part
on joint work with Ulrich Christ, though as of the time of writing this paper, the
details have not yet appeared. Finally, technique (3) again does not require a spin
condition, but works only in the special dimension 4. (Sometimes one can reduce
problems about manifolds in dimensions 5 through 8 to this case using technique
(2).) Let’s now go into the three techniques in somewhat more detail.
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1.1.1. The Dirac obstruction. We start with (1) of §1.1, the Dirac operator method.
If M is a spin manifold of dimension n, there is a version of the Dirac operator
which commutes with the action of the Clifford algebra C`n (see [37, § II.7]). In
particular, its kernel is a (graded) C`n-module, which represents an element α(M)
in the real K-theory group KOn = KO−n(pt) (see [37, Def. II.7.4]).

Theorem 1.1 (Lichnerowicz [40]; Hitchin [29]). If Mn is a closed spin manifold

for which α(M) 6= 0 in KOn, then M does not admit a metric of positive scalar

curvature.

We recall that KOn
∼= Z for n ≡ 0 mod 4, that KOn

∼= Z/2 for n ≡ 1, 2 mod 8,
and KOn = 0 for all other values of n. Furthermore, for n ≡ 0 mod 4, the invariant

α(M) is essentially equal to Hirzebruch’s Â-genus Â(M), namely α(M) = Â(M)

for n ≡ 0 mod 8, and α(M) = Â(M)/2 for n ≡ 4 mod 8. So this result immediately
shows that there are many manifolds, even simply connected ones, which do not
lie in class (1) of the Kazdan-Warner trichotomy (see Theorem 0.1). E.g., the
Kummer surface K4, the hyperplane in the complex projective space CP3 given by

the equation z4
0 + z4

1 + z4
2 + z4

3 = 0, is spin and has Â(K) = 2, and hence does not
admit a metric of positive scalar curvature.

We observe that α(M) depends only on the spin bordism class [M ] ∈ Ωspin
n . In

fact, we can interpret α(M) as the image of [M ] under a natural transformation
of generalized homology theories as follows. Let KO∗(X) and ko∗(X) denote the
periodic and connective real K-homology of a space X , respectively (so KO∗(X)
satisfies Bott periodicity, and the spectrum defining ko∗ is obtained from the peri-
odic KO-spectrum by killing all homotopy groups in negative degrees). Then there
are natural transformations

(1.2) Ωspin
∗ (X)

D
−→ ko∗(X)

per
−→ KO∗(X),

the first of which sends the bordism class [M, f ] to f∗([M ]ko), where [M ]ko∈ ko∗(M)
denotes the ko-fundamental class of M determined by the spin structure, and the
second of which builds in Bott periodicity by inverting the Bott generator of ko8

∼=
Z. With this notation, α(M) = per ◦D([M ]) (in the case X = pt).

A stronger result than Theorem 1.1 can be obtained by taking the fundamental
group into account and coupling the Dirac operator with flat or almost flat vector
bundles. To get good results, we need to use infinite-dimensional bundles, or at
least sequences of bundles whose dimensions go to infinity. Here we will use the
index theory of Mishchenko and Fomenko [46] and bundles of Hilbert C∗-modules
over the real C∗-algebra of the fundamental group. This algebra, denoted C∗

R
(π), is

the completion of the group ring R[π] for the largest C∗-norm, or in other words the
largest operator norm on a Hilbert space, when one lets R[π] acts on Hilbert spaces
via representations of π by invertible isometries. Ordinary flat vector bundles can’t
give very much, since the rational characteristic classes of any finite-dimensional
flat vector bundle are trivial by Chern-Weil theory.

We will also need a topological construction that will play a big role later. For
any (discrete) group π, there is a classifying space Bπ, which we can choose to be a
CW complex, having π as fundamental group and with contractible universal cover
Eπ. This space is unique up to homotopy equivalence. If M has fundamental group
π, then there is a classifying map f : M → Bπ which induces an isomorphism on
fundamental groups. This map is determined up to homotopy by an identification
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of π1(M) with π. Thus we can replace X by Bπ in (1.2) above and define, if Mn

is a spin manifold, an invariant αBπ(M) ∈ KOn(Bπ).
The best result one can obtain on the obstruction problem using the index theory

of the Dirac operator can be stated in the case of spin manifolds as follows:

Theorem 1.2 (Rosenberg [54]). For any discrete group π, there is a natural as-

sembly map A : KO∗(Bπ) → KO∗(C
∗
R
(π)) from the KO-homology of the classi-

fying space to the topological K-theory of the real group C∗-algebra. (The Baum-

Connes Conjecture implies, in particular, that this map is injective if π is torsion-

free.) If Mn is a closed spin manifold for which A(αBπ(M)) 6= 0 in KOn(C∗
R
(π)),

then M does not admit a metric of positive scalar curvature.

Sketch. Form the bundle VBπ = Eπ ×π C
∗
R
(π) over Bπ whose fibers are rank-

one free (right) modules over C∗
R
(π). As a “C∗

R
(π)-vector bundle” over Bπ, this

has a stable class [VBπ] in a K-group KO0(Bπ; C∗
R
(π)), and A is basically the

“slant product” with [VBπ]. This relies on an index theory, due to Mishchenko and
Fomenko, for elliptic operators with coefficients in a C∗

R
(π)-vector bundle. If M

is as in the theorem, then the (Clifford algebra linear) Dirac operator on M , with
coefficients in the bundle VBπ, has an index αBπ(M, f) ∈ KOn(C∗

R
(π)), which one

can show by the Kasparov calculus is just A ◦ per ◦ D([M, f ]). Since VBπ is by
construction a flat bundle, there are no correction terms due to curvature of the
bundle, and formula (1.1) applies without change. Hence if M has positive scalar
curvature, the square of this Dirac operator is bounded away from 0, and the index
vanishes. �

Remark 1.3. For purposes of the construction above, one could just as well use
the reduced real group C∗-algebra C∗

R,red(π), which is the completion of R[π] for its

action on L2(π) by left convolution. When π is amenable, this algebra coincides
with C∗

R
(π); otherwise, it is a proper quotient. The assembly map into KO∗(C

∗
R
(π))

potentially has a smaller kernel than the one into KO∗(C
∗
R,red(π)), but on the

other hand, the latter has a better chance of being an isomorphism. The Baum-
Connes Conjecture would imply that if π is torsion-free, the assembly map into
KO∗(C

∗
R,red(π)) is an isomorphism, whereas one cannot generally expect this for

the assembly map into KO∗(C
∗
R
(π)).

It was conjectured in [55], admittedly on the basis of rather flimsy evidence, that
when π is finite and Mn is a spin manifold, the vanishing of A(αBπ(M)) is not only
necessary, but also sufficient, for M to admit a metric of positive scalar curvature.
This conjecture is usually called the Gromov-Lawson-Rosenberg Conjecture. (See
Conjecture 1.22 below.) There are no known counterexamples to this conjecture in
dimensions n ≥ 5, though as we will see, there are reasons to be skeptical about it.

There is an analogue of Theorem 1.2 that holds when M does not admit a spin

structure, but w2(M̃) = 0. We call this the “twisted” case. The statement appears
a bit technical, and those not so interested in having the most general possible
result can ignore it and concentrate on just two cases: the case where M is spin,

which we have already discussed, and the case where M is oriented and w2(M̃) 6= 0,
in which case the Dirac operator method gives no information at all.

The following definitions are due to Stolz.

Definition 1.4. Let γ be a triple (π,w, π̂), where w : π → Z/2 is a group homo-
morphism (this will correspond to w1 of our manifold) and π̂ � π is an extension of
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π such that ker(π̂ → π) is either Z/2 or the trivial group. Let σ : Spin(n) → SO(n)
be the non-trivial double covering of the special orthogonal group SO(n). We note
that the conjugation action of O(n) on SO(n) lifts to an action on Spin(n). Let
π̂ n Spin(n) be the semi direct product, where ĝ ∈ π̂ acts on the normal subgroup
Spin(n) by conjugation by rw(bg). Here r ∈ O(n) is the reflection in the hyperplane
perpendicular to e1 = (1, 0, . . . , 0) ∈ Rn. Abusing notation, we also use the nota-
tion w for the composition π̂ → π → Z/2. We define G(γ, n) to be the quotient
of π̂ n Spin(n) by the central subgroup generated by (k,−1), where k ∈ π̂ is the
(possibly trivial) generator of ker(π̂ → π). Sending [a, b] ∈ G(γ, n) to rw(a)σ(b)
defines a homomorphism ρ(γ, n) : G(γ, n) → O(n).

A γ-structure on an n-dimensional Riemannian manifoldM is a principalG(γ, n)-
bundle P → M together with a G(γ, n)-equivariant map ρ : P → O(M). Here
O(M) is the orthogonal frame bundle of M , a principal bundle for the orthogonal
group O(n), and G(γ, n) acts on O(M) via the homomorphism ρ(γ, n).

Remark 1.5. Let M be a connected manifold with fundamental group π and with
w1(M) = w : π → Z/2. ThenM always admits a γ-structure for some γ = (π,w, π̂).

We can arrange to have ker(π̂ → π) 6= 0 exactly when w2(M̃) = 0.

(1) If π is the trivial group, then G(γ, n) = SO(n) (resp. Spin(n)) if ker(π̂ → π)
is trivial (resp. non-trivial). In this case a γ-structure on M amounts to an
orientation (resp. spin structure) on M (cf. [37, Def. II.1.3]).

(2) More generally, if w = 0 and π̂ = π (resp. π̂ = π × Z/2), then G(γ, n) =
π×SO(n) (resp. G(γ, n) = π×Spin(n)); in this case, a γ-structure amounts
to an orientation (resp. spin structure) on M , together with a principal π-

bundle M̃ →M .
(3) If M is not orientable, so w 6= 0, but w2(M̃) 6= 0, then G(γ, n) = π ×O(n)

and the γ-structure on M is determined by the classifying map M → Bπ×
BO(n), where the first component of the map is the classifying map for the
universal covering, and the second component is the classifying map for the
tangent bundle.

(4) A γ-structure determines a principal π-bundle M̃
def
= P/G1 → M , where

G1 is the identity component of G(γ, n). We note that G1 = SO(n) if
ker(π̂ → π) is trivial, and G1 = Spin(n) otherwise. Hence the principal

G1-bundle P → M̃ can be identified with the oriented frame bundle of M̃
or a double cover thereof.

The substitute for Theorem 1.2 in the twisted case involves a substitute C∗(γ)
for C∗

R
(π). This is defined as follows.

Definition 1.6. Let γ = (π,w, π̂) be a γ-structure as in Definition 1.4. We define a
Z/2-graded C∗-algebra C∗γ to be the −1-eigenspace for the involution on the group
C∗-algebra C∗π̂ defined by multiplication by the central generator k of ker(π̂ → π).
The Z/2-grading is given by the {±1}-eigenspaces of the involution C∗γ → C∗γ
which is the restriction of the involution C∗π̂ → C∗π̂ given by ĝ 7→ (−1)ŵ(ĝ) for
ĝ ∈ π̂ ⊂ C∗π̂, where ŵ is the composition of the projection map π̂ → π and
w : π → Z/2. In particular, C∗γ = 0 if π̂ = π and C∗γ = C∗π (with the trivial
grading) if w = 0 and π̂ = π × Z/2.

The analogue of Theorem 1.2 in the twisted case is then:
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Theorem 1.7 (Stolz; see [58, §5]). If Mn is a closed manifold with w2(M̃) = 0
and with γ-structure γ = (π,w, π̂), then there is a “twisted Dirac obstruction” in

KOn(C∗γ), whose vanishing is necessary for M to admit a metric of positive scalar

curvature.

Roughly speaking, this theorem, like Theorem 1.2, is proved by taking the “index
of the Dirac operator” in a suitable sense. Since our understanding of positive scalar
curvature is incomplete enough even for spin manifolds, or for oriented manifolds
with non-spin universal cover, we will concentrate hereafter on these simpler cases
and not mention the twisted case any further.

1.1.2. The minimal hypersurface method. Now let’s discuss (2) of §1.1, the minimal
hypersurface method. This relies on the following inequality, found in [61]:

Lemma 1.8 (Schoen-Yau [61]). Let Mn be a closed oriented n-manifold with

H1(M,Z) 6= 0 and with positive scalar curvature, and let Hn−1 be a stable minimal

hypersurface, minimizing (n− 1)-dimensional volume in its homology class. Then

(1.3)

∫

H

(
κφ2

2
+ |∇φ|2

)
d vol > 0,

with κ the scalar curvature of H in the induced metric from M and d vol the measure

on H defined by the induced metric, for all functions φ ∈ C∞(H) not vanishing

identically. (Here ∇ is to be computed with respect to the induced metric on H.)

From this one can deduce that H also has a metric of positive scalar curvature,
and in some cases, this leads to a contradiction, with the result that M could not
have had a metric of positive scalar curvature in the first place. For example, if
n = 3, then taking φ ≡ 1 in (1.3), we deduce that the integral of κ over H is
positive, which by Gauss-Bonnet implies that H must be a sphere. In particular,
since the homology class of H in H2(M,Z) is represented by a sphere, it lies in
the image of the Hurewicz map π2(M) → H2(M,Z). This is impossible if M is
aspherical with b1(M) > 0 (so that we could construct H in the first place), so we
see that an aspherical oriented closed 3-manifold M with b1(M) > 0 cannot have
a metric of positive scalar curvature. This sort of reasoning was refined in [62] to
show that if M is a compact oriented closed 3-manifold M with π1(M) containing a
product of two cyclic groups or a subgroup isomorphic to the fundamental group of
a compact Riemann surface of genus > 1, then M cannot admit a metric of positive
scalar curvature.

If n > 3, the reasoning to get from (1.3) to the fact that H admits a metric of
positive scalar curvature is a bit more complicated. Basically, (1.3) implies that
the conformal Laplacian of H (for the metric induced from M) is strictly positive,
which in turn implies (by an argument of Kazdan and Warner) that one can make
a conformal change in the metric of H to achieve positive scalar curvature.

Iterating use of this technique, one can show that many manifolds do not admit
metrics of positive scalar curvature, as long as one can produce chains of stable
minimal hypersurfaces going down in dimension from n to 2. For example, one can
formalize this as follows:

Theorem 1.9 (Schick, [60, Corollary 1.5]). Let X be any space, let 3 ≤ k ≤ 8,
and let α ∈ H1(X,Z). Let Hk(X,Z)+ denote the subset of Hk(X,Z) consisting of

classes f∗([N ]), where f : Nk → X and N is an oriented closed manifold of positive

scalar curvature. Then cap product with α maps Hk(X,Z)+ to Hk−1(X,Z)+.
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Here the restriction to k ≤ 8 is simply for the purpose of knowing that if
f : Nk → X , then there is a smooth, nonsingular minimal hypersurface of N dual
to f∗α. Schick’s original paper had k ≤ 7; this can be improved, as remarked in
[31], using better regularity results for minimal hypersurfaces in [65]. Presumably
the dimensional restriction can be removed altogether using the results of [43].

The minimal hypersurface technique is especially powerful in low dimensions.
For example, it was used to prove:

Theorem 1.10 (Schoen and Yau [64, Theorem 6]). No closed aspherical 4-manifold

can admit a metric of positive scalar curvature.

1.1.3. The Seiberg-Witten method. Finally we get to (3) of §1.1, the Seiberg-Witten
method. This applies only to oriented closed 4-manifolds. Any such manifold M
always admits a spinc structure ξ. It is not unique (in fact, the set of spinc structures
compatible with the orientation is a principal homogeneous space for H2(M,Z)),
but for each choice, provided b+2 (M) > 1, there is an integer invariant, called the
Seiberg-Witten invariant SW(ξ), which counts the number of solutions to a certain
non-linear elliptic system of partial differential equations. (The equations concern
a spinor field ψ, i.e., a section of the positive half-spinor bundle S+

ξ associated to

ξ, plus a connection A on the line bundle
∧2

S+
ξ . We require ψ to satisfy the Dirac

equation defined by the connection, D/ ξ,A(ψ) = 0, and in the “unperturbed” version
of the equations,1 also require the self-dual part of the curvature of A to be given
by the pairing of ψ with itself under the nontrivial bundle map

S+
ξ ⊗ S+

ξ → Ω2
+,

which of course is quadratic, not linear, in ψ.) When b+2 (M) = 1, it is still possible
to define SW(ξ), but in general it also depends on the Riemannian metric (or the
perturbation made to the equation). The basic connection between Seiberg-Witten
invariants and scalar curvature is the following:

Theorem 1.11 (Witten [73], [47, Corollary, 5.1.8]). Let M be an oriented closed

4-manifold with b+2 (M) > 1. If SW(ξ) 6= 0 for some spinc structure ξ, then M does

not admit a metric of positive scalar curvature.

On the other hand, for some special classes of 4-manifolds, one knows that the
Seiberg-Witten invariant can be non-zero. For example, one has:

Theorem 1.12 (Taubes [70]). Let Mn be a closed, connected oriented 4-manifold

with b+2 (M) > 1. If M admits a symplectic structure (in particular, if M admits the

structure of a Kähler manifold of complex dimension 2), then SW(ξ) 6= 0 for some

spinc structure ξ, and thus M does not admit a positive scalar curvature metric

(even one not well-behaved with respect to the symplectic structure).

This dramatic result implies that many smooth 4-manifolds do not admit metrics
of positive scalar curvature, even if they are non-spin and simply connected. In
other words:

Counterexample 1.13. In dimension 4, there exist:

(1) a simply connected spin manifold M 4 with Â(M) = 0 but with no positive

scalar curvature metric.

1Sometimes, for technical reasons, one needs to make a small perturbation. See [47, Chapter
6] for a detailed explanation. We’ll ignore this for the moment.
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(2) simply connected non-spin manifolds with no positive scalar curvature met-

ric.

Still more subtle things go wrong in dimension 4, such as:

Counterexample 1.14 (Hanke, Kotschick, and Wehrheim [25]). For any odd

prime p, there exists a smooth spin 4-manifold M 4 with fundamental group cyclic

of order p, such that M does not admit a metric of positive scalar curvature, but

its universal cover does.

When b+2 (M) = 1, then Seiberg-Witten invariants still exist, but they are not
necessarily independent of the metric g. However, it is still true that if SW(ξ, g) 6= 0,
then the metric g cannot have positive scalar curvature. This is useful in some cases,
since for example, one can show that if M is homeomorphic to CP2#nCP2 with
n ≤ 9, then the Seiberg-Witten invariants are actually independent of the choice of
metric. This was used in [48], [66], [15], and [49] to construct exotic 4-manifolds,
homeomorphic to classical simply connected manifolds of positive scalar curvature,
without metrics of positive scalar curvature. We will see that all of this is very
different from what happens in dimensions ≥ 5.

1.2. Positive results. The known positive results about existence of metrics of
positive scalar curvature come from a combination of

(1) specific constructions for certain special classes of manifolds, such as fiber
bundles with fibers of positive scalar curvature and the structure group
consisting of isometries (see, e.g., [67, Observation, p. 512]), manifolds with
a non-trivial action of SU(2) or SO(3) [38], or Toda brackets [7];

(2) surgery techniques for “propagating” positive scalar curvature from one
manifold to another.

Here (1) is self-explanatory, but only covers a rather small number of examples,
built out of standard building blocks such as spheres, projective spaces, and lens
spaces, using fairly standard constructions. Such techniques only work on “highly
symmetric” manifolds, and so one needs a way to get from these to more general
manifolds. That is what is provided by the surgery method (item (2) above).

The basic result on which everything is based is the following:

Theorem 1.15 (Surgery Theorem of Gromov-Lawson [23], Schoen-Yau [61]). Let

M ′ be a closed manifold of positive scalar curvature, not necessarily connected, and

suppose M is a manifold that can be obtained from M ′ by surgery in codimension

≥ 3. Then M also admits a metric of positive scalar curvature.

While this may not seem like much, this Surgery Theorem, together with the
method of proof of the s-cobordism theorem, implies a reduction of the question
of what manifolds Mn admit metrics of positive scalar curvature, provided that
n ≥ 5, to bordism theory. Further application of techniques developed in [67],
together with additional ideas of Jung based on the Baas theory of “bordism with
singularities,” ultimately reduce one down to the following statement. For sim-
plicity, we have ignored the “twisted case,” which is much more complicated to
describe, though the ideas are roughly the same.

Theorem 1.16 (Jung and Stolz). Let Mn be a closed connected oriented manifold

with fundamental group π and dimension n ≥ 5. Let Bπ be the classifying space

of π, or in other words, a K(π, 1) space, which is well defined up to homotopy
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equivalence, and let u : M → Bπ be a classifying map for the universal cover of π
(so that the universal cover of M is the pull-back under u of the universal principal

π-bundle).

(1) If M is spin, let [M ]ko ∈ ko∗(M) denote the ko-fundamental class of M
determined by the spin structure. Suppose u∗([M ]ko) ∈ kon(Bπ)+, the

subset of kon(Bπ) consisting of classes f∗([N ]ko) with Nn a spin manifold

of positive scalar curvature and with f : N → Bπ.

(2) If w2(M̃) 6= 0, i.e., the universal cover of M is not spin, suppose u∗([M ]) ∈
Hn(Bπ)+, the subset of Hn(Bπ) consisting of classes f∗([N ]) with Nn an

oriented manifold of positive scalar curvature and with f : N → Bπ.

Then (in either case) M admits a metric of positive scalar curvature.

Remark 1.17. Note there is a certain asymmetry between M and N in the the-
orem. While M has to be connected, and while u has to be a classifying map for
the universal cover of M , N need not be connected, and f can be arbitrary. In

addition, in case (2), while we require w2(M̃) 6= 0, there is no such condition on N .
Another curious fact is that while, a priori, kon(Bπ)+ and Hn(Bπ)+ are just

sets, they are in fact subgroups of kon(Bπ) andHn(Bπ). The reason is that addition
is represented in bordism theories by disjoint union of manifolds, and the disjoint
union of manifolds of positive scalar curvature clearly has a metric of positive scalar
curvature. Similarly, multiplication by −1 is represented by reversal of orientation
or spin structure, which has no effect on the positive scalar curvature condition.

Still another case of interest is the one where M is not orientable, but still

w2(M̃) 6= 0. In this case, there is an analogue of case (2) of Theorem 1.16, but
one needs to replace usual homology by homology with local coefficients. (See for
example [7, Theorems 2.5 and 2.7(3)].)

1.3. Classification conjectures. In this subsection, we will discuss what answers
might be expected to the question of what closed manifolds should admit metrics of
positive scalar curvature, and what is known about the status of these conjectures.

First of all, for simply connected manifolds of dimension ≥ 5, the problem is
fully understood.

Theorem 1.18 (Gromov-Lawson [23], Stolz [67]). Let Mn be a connected, simply

connected closed manifold, with n ≥ 5. Then if w2(M) 6= 0, M admits a metric of

positive scalar curvature. If w2(M) = 0, so that M admits a spin structure, then M
admits a metric of positive scalar curvature if and only if α(M) = 0 in KOn(pt).

Dimension 2 is of course also fully understood, and we would understand dimen-
sion 3 if the Thurston Geometrization Conjecture is true. (Of course, the Poincaré
Conjecture alone would settle the simply connected case.) But because of Coun-
terexample 1.13, the situation has to be more complicated in dimension 4. The
best we might hope for would be:

Conjecture 1.19. Let M4 be a closed simply connected 4-manifold. Then M

admits a metric of positive scalar curvature unless either M is spin with Â(M) 6= 0
or b+2 (M) ≥ 1 and some Seiberg-Witten invariant of M is non-zero.

At the moment, we have no methods at all for attacking Conjecture 1.19. The
most mysterious case of all may be the one where b+2 (M) = 1 and b−2 (M) is large,
in which case the Seiberg-Witten invariants are not independent of the choice of
metric.
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In dimension 4, one possibility is to simplify the problem by allowing connected
sums with S2 × S2. (By a famous argument of Wall [71], this is known to make
simply connected surgery theory work in the smooth category, whereas without
stabilization, smooth surgery theory fails miserably [36].) Then one obtains a rather
simple result.

Theorem 1.20. Let Mn be a connected and simply connected smooth 4-manifold.

Then M#k(S2×S2) admits a metric of positive scalar curvature for some k if and

only if either w2(M) 6= 0, or else w2(M) = 0 and Â(M) = 0.

Proof. If M is spin and Â(M) 6= 0, then these conditions are preserved under
taking connected sums with S2×S2. Hence, by Lichnerowicz’s Theorem (Theorem
1.1), M#k(S2 × S2) does not admit a metric of positive scalar curvature, for any

value of k. If M is spin with Â(M) = 0, then the signature of M vanishes (since

in dimension 4, the signature and the Â-genus are proportional to one another),
and by Wall [71], M#k(S2 × S2) is diffeomorphic to a connected sum of copies
of S2 × S2, for sufficiently large k, and thus for such k, M#k(S2 × S2) admits a
metric of positive scalar curvature by the Surgery Theorem, Theorem 1.15. Finally,
if M is non-spin, then again by Wall [71], M#k(S2 × S2) is diffeomorphic to a

connected sum of copies of CP2 and CP2 once k is sufficiently large, and so once
again, M#k(S2 × S2) admits a metric of positive scalar curvature by the Surgery
Theorem. �

In dimensions ≥ 5, various attempts have been made to extrapolate from The-
orem 1.18 and Theorem 1.2 to a reasonable guess about necessary and sufficient
conditions for positive scalar curvature. The best known conjectures are the fol-
lowing:

Conjecture 1.21 (“Gromov-Lawson Conjecture”). Let Mn be a closed, connected

n-manifold with n ≥ 5 and with fundamental group π and classifying map u : M →

Bπ. If w2(M̃) 6= 0, then M admits a metric of positive scalar curvature. If

w2(M) = 0 (so we can choose a spin structure on M), then M admits a metric of

positive scalar curvature if and only if αBπ(M) = 0 in KOn(Bπ).

Conjecture 1.22 (“Gromov-Lawson-Rosenberg Conjecture”). Let Mn be a closed,

connected n-manifold with n ≥ 5 and with fundamental group π and classifying map

u : M → Bπ. If w2(M̃) 6= 0, then M admits a metric of positive scalar curvature.

If w2(M) = 0 (so we can choose a spin structure on M), then M admits a metric

of positive scalar curvature if and only if A ◦ αBπ(M) = 0 in KOn(C∗
R
(π)).

Conjecture 1.23 (“Stable Gromov-Lawson-Rosenberg Conjecture”). Let J 8 be a

simply connected spin 8-manifold with Â(J) = 1. (This implies that α(J) is a

“geometric representative” for Bott periodicity. For example, we can take J to be a

“Joyce manifold” with exceptional holonomy Spin(7).) Say that a closed n-manifold

Mn stably admits a metric of positive scalar curvature if M × J × · · · × J
admits a metric of positive scalar curvature for a sufficiently large number of J-

factors. Then if M is oriented with w2(M̃) 6= 0, M always stably admits a metric

of positive scalar curvature, and if M is spin, then M stably admits a metric of

positive scalar curvature if and only if A ◦ αBπ(M) = 0 in KOn(C∗
R
(π)).

A few words about the history are in order here. Conjecture 1.21 was hinted at
in [24], but in the same paper, it was observed that the conjecture cannot always be
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right in the non-spin case, because of the minimal hypersurface method. (For exam-
ple, apply Theorem 1.9 to the case X = T n, n ≤ 8. One sees that Hn(X,Z)+ = 0,
since otherwise, Theorem 1.9 shows Hn−1(X,Z)+ 6= 0. Iterating the construction,
one eventually comes down to the case n ≤ 2, where we know this is false. It fol-
lows that Conjecture 1.21 fails for (CP2 × S2)#T 6 or for CP4#T 8, since these are
oriented manifolds with non-spin universal cover mapping to non-trivial homology
classes in T 6, resp., T 8.)

Conjecture 1.22 was proposed in [55], but only when the fundamental group π is
finite. Counterexample 1.14 shows that it fails in dimension 4, but the conjecture
was only intended to apply in dimensions 5 and up. It was shown in [60] that the
conjecture fails when π is a product of a free abelian group and a finite group,
because one can use Theorem 1.9 to reduce to a low-dimensional case. A more
subtle counterexample was found in [13]; here it is shown that there is a torsion-
free group π for which the assembly map A is injective, but yet one can construct a
manifold Mn with fundamental group π for which αBπ(M) = 0 in KOn(Bπ) and
yet M does not admit a metric of positive scalar curvature. What goes wrong is
related to the fact that the periodization map per: ko∗(Bπ) → KO∗(Bπ) has a big
kernel. On the other hand, if π is such that A and per are injective for π, which is
the case for a large number of “nice” groups, then Conjectures 1.21 and 1.22 both
hold for π in the spin case, by a combination of Theorem 1.2 and Theorem 1.16.

Conjecture 1.23 was proposed in [57], where it was observed that the case

w2(M̃) 6= 0 is trivial since J is oriented bordant to a non-spin manifold of pos-
itive scalar curvature. In this same paper, Conjecture 1.23 was proved (or at least
the proof was sketched) when M is spin and π is finite, and also when π is torsion-
free and the assembly map A is injective. A much more general result was sketched
in [68] and [69, §3]. Namely, if the Baum-Connes Conjecture holds for π, or even
if the Baum-Connes assembly map KOπ

∗ (Eπ) → KO∗(C
∗
R
(π)) is injective, then

Conjecture 1.23 holds for π. (Here Eπ is the universal proper π-space; it coincides
with Eπ, and KOπ

∗ (Eπ) coincides with KO∗(Bπ), provided that π is torsion-free.)
The current status of the positive scalar curvature problem is thus very compli-

cated. There are good reasons to believe that the Stable Conjecture, Conjecture
1.23, holds in general, but this still begs the question of what is true unstably.

For finite groups, there is a bit more one can say. First of all, it was shown in
[4] that Conjecture 1.22 does hold for finite groups π with periodic cohomology.
(These are exactly the finite groups whose Sylow subgroups are all either cyclic or
generalized quaternion.) By a combination of results of [30] and [8], Conjecture
1.22 in the case of non-spin universal cover also holds for elementary abelian 2-
groups. Furthermore, by a combination of the results of [7] and [8], Conjecture 1.22
also holds (in both the spin and non-spin cases) for elementary abelian p-groups
with p odd, once n (the dimension of the manifold) exceeds the rank of π, or more
generally, provided one reformulates the conjecture just for “atoral” classes. But
even in the elementary abelian case, there is one tricky case nobody has been able to
handle. Namely, suppose p is an odd prime and one looks at the homology class in
Hn((BZ/p)n) represented by T n in the obvious way (the map on classifying spaces
induced by “reduction mod p” Zn → (Z/p)n). Is this homology class represented
by an oriented (or spin) manifold with positive scalar curvature? As for general
finite groups, nothing we know excludes the possibility that Conjecture 1.22 holds
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for all finite π, but in the other hand there is no obvious reason why a conjecture
that fails for infinite groups should hold for finite ones.

Another “stable” conjecture which has the advantage over Conjecture 1.23 of
having a simpler statement is the following:

Conjecture 1.24 (“S1-Stability”). Let Mn be a closed, connected n-manifold.

Then M admits a metric of positive scalar curvature if and only if M × S1 does.

Remark 1.25. One direction of this is trivial; certainly if M has a metric of
positive scalar curvature, then the obvious product metric on M ×S1 has the same
property. The converse would follow from most “reasonable” criteria (with good
functoriality in the fundamental group) proposed for positive scalar curvature, such
as Conjecture 1.21 or Conjecture 1.22 (in dimensions ≥ 5). This conjecture is also
compatible with Theorem 1.9. Unfortunately, Conjecture 1.24 fails in dimension
4. To see this, choose any smooth complex hypersurface V of odd degree ≥ 5 in
CP3. Then (since the degree of V is odd) V is a non-spin smooth simply connected
4-manifold with a Kähler structure and with b+2 > 1, hence by Theorem 1.12, V
does not admit a metric of positive scalar curvature. On the other hand, V × S1

is a closed oriented 5-manifold with fundamental group π = Z, representing 0 in
H5(BZ,Z) = H5(S

1,Z) = 0, so V ×S1 has a metric of positive scalar curvature by
Theorem 1.16.

The author does not know of any counterexamples to Conjecture 1.24 with n ≥ 5.
Of course the big problem with this conjecture is that it doesn’t settle the positive
scalar curvature problem for any manifold; it simply states the equivalence of the
problem on one manifold with the problem on another.

2. The moduli space problem: what does the space of positive scalar

curvature metrics look like?

In this section, we consider the following problem. If Mn is a closed manifold
which admits at least one Riemannian metric of positive scalar curvature, what is
the topology of the space R

+(M) of all such metrics on M? In particular, is this
space connected?

In general, the answer to this problem is not known, but a methodology exists
for approaching it, and there are lots of partial results. The one case that is totally
understood is the one where n = 2. By Gauss-Bonnet, the only closed 2-manifolds
admitting metrics of positive scalar curvature are S2 and RP2. And we have:

Theorem 2.1 ([58, Theorem 3.4]). The spaces R
+(S2) and R

+(RP2) are con-

tractible.

To deal with higher-dimensional manifolds, we first need some definitions.

Definition 2.2. Suppose M is a closed manifold, and let R
+(M) denote the space

of all Riemannian metrics of positive scalar curvature on M , with the C∞ topology.
We assume this space is non-empty. Then two metrics g0 and g1 in R

+(M) are
called concordant if there is a smooth metric g of positive scalar curvature on
M × [0, a], for some a > 0, which restricts in a neighborhood of 0 to the product
metric g0 × σ, and in a neighborhood of a to the product metric g1 × σ, where
σ is the standard metric on R (corresponding to dt2). The metrics g0 and g1 are
called isotopic if they lie in the same connected component (or path component, it
doesn’t matter) of R

+(M).
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It is easy to show that isotopic metrics of positive scalar curvature are con-
cordant. (The original argument is in [23, Lemma 3]; see also [58, Proposition
3.3].) The converse is not at all obvious and is now known to be false (see The-
orem 2.10 below), since a metric of positive scalar curvature on M × [0, a] may
not necessarily be a product metric, and there is no obvious way to “straighten
it.” Thus π0(R

+(M)), the set of path components of R
+(M), surjects onto the

set π̃0(R
+(M)) of concordance classes, and if the latter has more than one element

(respectively, is infinite), then so is the set of path components of R
+(M). The

major result in high dimensions (specialized to the case of closed manifolds, as there
is also a version for manifolds with boundary) is:

Theorem 2.3 (Stolz [68, Theorem 3.9], [58]). Let Mn be a connected closed spin n-
manifold with fundamental group π admitting a metric of positive scalar curvature,

and suppose n ≥ 5. Then there is a group Rn+1(π) acting simply transitively

on π̃0(R
+(M)). (Thus in some sense the latter only depends on π and on n.)

Furthermore, there is an “index homomorphism” θ : Rn+1(π) → KOn+1(C
∗
R
(π)).

Suppose furthermore that Nn+1 is a spin manifold with boundary ∂N = M . Then

a given metric of positive scalar curvature g on M extends to a metric of positive

scalar curvature on N which is a product metric in a collar neighborhood of the

boundary if and only if an obstruction defined by (N, g) vanishes in Rn+1(π1(N)).

Conjecture 2.4 (Stolz [58]). The index map θ : Rn+1(π) → KOn+1(C
∗
R
(π)) is

“stably” an isomorphism. The notion of stability here is similar to that in Conjec-

ture 1.23; we replace Rn+1(π) by lim
−→

Rn+1+8j(π), where the maps in the inductive

limit come from products with the manifold J8.

There is also a version of Theorem 2.3 and of Conjecture 2.4 for non-spin mani-
folds. In this case, Rn+1(π) should be replaced by Rn+1(γ) with γ as in Definition
1.4, and the real group C∗-algebra should be replaced by C∗(γ).

The index map θ of Theorem 2.3 can sometimes be used to distinguish different
connected components in R

+(M). This use of the index map is quite similar to,
and presumably generalizes2, earlier uses of the “relative index” or the relative
η-invariant to distinguish different connected components in R

+(M).
For example, Hitchin [29, Theorem 4.7] proved that if Mn is a closed spin mani-

fold admitting a metric of positive scalar curvature, then π0(R
+(M)) 6= 0 provided

that n ≡ 0 or 1 mod 8, and π1(R
+(M)) 6= 0 provided that n ≡ −1 or 0 mod 8.

Examination of his proof shows that in terms of the language of Theorem 2.3, he
was really showing that the composite

Rn+1(π)
θ
−→ KOn+1(C

∗
R(π)) → KOn+1(pt) ∼= Z/2

is surjective when n+1 ≡ 1 or 2 mod 8, basically because we know there are exotic
spheres in dimensions 1 or 2 mod 8 for which the α-invariant is non-zero.

Since there are still no high-dimensional manifolds for which the topology of
R

+(M) is fully understood, the rest of this section will consist largely of a catalog
of examples.

For example, one of the earliest results on the topology of R
+(M) is the following:

Theorem 2.5 (Gromov-Lawson [24, Theorem 4.47]). The space R
+(S7) has in-

finitely many connected components; in fact, π̃0(R
+(S7)) is infinite.

2The author is not sure if all the details of proving that the two constructions coincide have
been verified, but there is reason to believe this shouldn’t be so hard.
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Proof following [24]. The idea is to construct “exotic metrics” on S7 by using the
fact that there are many ways to write S7 as the unit sphere bundle of an oriented
R4-bundle E over S4. Such bundles are classified by two integer invariants: the
first Pontrjagin class p1 (always an even number) and the Euler class e. The unit
sphere bundle S(E) = M7 (with respect to some choice of smooth metric on the
vector bundle) is (oriented) homotopy equivalent to S7 if e = 1, and as shown by
Milnor [44], p2

1 ≡ 4 (mod 7) is necessary for M to be diffeomorphic to S7. The
value p1 = 2 corresponds to the usual presentation of S7 as the unit sphere bundle
of a quaternionic line bundle over HP1 ∼= S4. But in [35], it is shown that the
h-cobordism classes of smooth homotopy 7-spheres constitute a cyclic group Θ7 of
order 28, and thus there are other values of p1 (such as p1 = 2+28 = 30) for which
S(E) is diffeomorphic to S7.

Now it is easy to construct a metric of positive scalar curvature on the unit
disk bundle D(E) of E which is a product metric in a collar neighborhood of the
boundary S(E) ∼= S7. Suppose the metric obtained this way on S7 were “standard,”
i.e., concordant to the standard spherical metric g0. Then we could take a metric on
D8 of positive scalar curvature which is a product metric g0×σ (see Definition 2.2 for
the notation) in a collar neighborhood of the boundary S7, and glue the two metrics
together (after first inserting a “fitting,” a copy of S7×I with a concordance metric)
to get a metric of positive scalar curvature on M 8 = D(E) ∪S(E) (S7 × I) ∪S7 D8.

This is a contradiction, since M is a spin manifold with Â(M) 6= 0. In fact, a slight
variant of this calculation shows that if one takes two different values for p1(E) (but
for both of which we have S(E) ∼= S7), then the metrics obtained on S7 cannot be
concordant. Thus since there are infinitely many values of p1 for which S(E) ∼= S7,
there are infinitely many concordance classes of positive scalar curvature metrics
on S7. �

Now let’s give a different construction for exotic positive scalar curvature metrics
on homotopy 7-spheres, which works in any dimension 4k − 1, k ≥ 2. Afterwards,
we will say a bit about the special case k = 1. We actually do not know if R

+(S3)
has infinitely many connected components or not.

Theorem 2.6. The space R
+(S4k−1) has infinitely many connected components

for k ≥ 2; in fact, the index invariant R4k → KO4k
∼= Z is non-trivial.

Proof. Let M4k be the parallelizable manifold with boundary obtained from the
E8 plumbing as in [45]. In more specific terms, M is obtained by starting with the
4k-disk D4k and adding on 8 2k-handles D2k ×D2k, plumbed together to intersect
according to the Cartan matrix of E8. Note that M may be viewed as the result of
doing surgery on 8 copies of S2k−1 embedded into the boundary S4k−1 ofD4k. Since
we are assuming that k ≥ 2, the codimension condition of the Surgery Theorem
is satisfied, and so M admits a metric of positive scalar curvature extending a
standard “round” metric on the original 4k-disk D4k, and a product metric on the
boundary Σ4k−1 = ∂M . (Strictly speaking, we need the version of the Surgery
Theorem that applies to manifolds with boundary. This is a variant on Theorem
1.15 due to Gajer. See [17] and [68, Theorem 3.3] for details.) As argued by
Kervaire and Milnor, M is parallelizable and Σ is a nonstandard homotopy sphere.
To quickly sum up the argument, the main points are these:

(1) M and Σ are simply connected, since they are the result of highly connected
surgeries. (N.B.: The assumption k ≥ 2 is used here; if k = 1, Σ turns
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out to be the Poincaré homology sphere, the quotient of S3 by the binary
icosahedral group of order 120, and so is not simply connected. We will
come back to this point later.)

(2) M is parallelizable, since it is built by framed surgery from the tangent
bundles of spheres.

(3) Σ is a homology sphere, because of the fact that the Cartan matrix of E8

is unimodular. (This part is still valid even when k = 1.)
(4) Consider N4k = M4k ∪Σ cone(Σ). This is a topological 4k-manifold. How-

ever, it cannot be smooth, and so Σ is not diffeomorphic to S4k−1. The rea-
son is the following. Suppose we had Σ ∼= S4k−1, cone(Σ) ∼= D4k. Then N
would be smooth and almost parallelizable (parallelizable off a disk). Thus
all its Pontrjagin classes would vanish except for pk in degree 4k. (Any
lower Pontrjagin class would be detectable by its restriction to a proper
skeleton, and thus by its restriction to M 4k. But M4k is parallelizable.)
However, the signature of N is 8, since by construction, its intersection
form on middle homology is given by E8, which is unimodular of rank 8.
Thus, by the Hirzebruch signature formula, the term in the L-class of M
involving pk must evaluate to 8. This is a contradiction, since 〈pk, [M ]〉
is integral and we know the coefficient µk of pk in L; it’s a complicated
rational number related to the Bernoulli numbers:

µk =
22k(22k−1 − 1)

(2k)!
Bk

[28, §1.5]. In particular, its numerator is such that 〈µkpk, [M ]〉 can’t be 8.

Now let’s go back to the issue of positive scalar curvature metrics. Recall we’ve
constructed using surgery a metric of positive scalar curvature on M 4k which re-
stricts to a product metric in a collar neighborhood of the boundary homotopy
sphere Σ4k−1. By [35], there is a finite number m such that the m-fold connected

sum

m︷ ︸︸ ︷
Σ#Σ# · · ·#Σ is diffeomorphic to a standard sphere S4k−1. Thus there is a

(spin) cobordism P 4k, the trace of a surgery on a union on S0’s, from
∐m

j=1 Σ4k−1

to #m
j=1Σ

4k−1 ∼= S4k−1. Again by the Surgery Theorem, there is a metric of posi-

tive scalar curvature on P 4k which is a product metric on a neighborhood of each
boundary component: the metric constructed above (coming from M 4k) on each
copy of Σ4k−1, and some metric of positive scalar curvature g on S4k−1. We claim
that g is not in the same concordance class as the standard round metric g0 on
S4k−1, and in fact that the index obstruction to extending g to a metric on D4k,
restricting to a product metric near the boundary, is non-zero. This will prove the
theorem.

Indeed, if our claim is false, there is a metric of positive scalar curvature on

Q4k =
( m∐

j=1

M4k
)
∪‘

m
j=1

Σ4k−1 P ∪S4k−1 D4k

extending the metrics we’ve constructed on each copy of M and on P . (See Figure
1.) Now Q4k is a closed spin manifold, and by an argument similar to the one
used above with N4k, it is almost parallelizable. So all its Pontrjagin classes vanish
except for pk in top degree. Furthermore, the construction shows that the inter-
section form of Q on middle homology is a direct sum of m copies of E8, so the
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Figure 1. The construction of the manifold Q4k

signature of Q4k is 8m. That tells us, as above, that µk〈pk, [M ]〉 = 8m. But the

coefficient of pk in the Â polynomial, −(Bn/2(2n)!), is also non-zero. So Â(Q) 6= 0,
contradicting Theorem 1.1. This completes the proof, since we’ve shown that the
index obstruction to extending g over a disk D4k is non-zero. �

In [24] and [58], the question of whether R
+(S3) is disconnected was left open.

On the one hand, might expect π0(R
+(S3)) to be infinite via a certain index cal-

culation, but on the other hand, Hitchin showed in [29, §3] that the space of left

invariant positive scalar curvature metrics on SU(2) ∼= S3 is contractible. He also
computed the η-invariants for these metrics, and showed that it varies continuously.
The method of proof used above seems at first to be promising, in terms of showing
that the E8 manifold M4 has a metric of positive scalar curvature restricting to a
product metric on a neighborhood of the boundary, the Poincaré homology sphere
Σ3. If this were the case, there would be some hope of lifting the metric on Σ3

to the covering space S3, and showing that the metric constructed this way on
S3 is “exotic,” say by means of an η-invariant calculation. But unfortunately, the
argument breaks down right at the first step, because the codimension condition in
the Surgery Theorem 1.15 isn’t satisfied.

Next, we discuss various methods for detecting non-triviality of the topology
of R

+(M), M odd-dimensional, via eta invariants. Unfortunately, the ordinary
(untwisted) eta invariant of the Dirac operator doesn’t help much, since it vanishes
identically for metrics of positive scalar curvature on spin manifolds in dimension
≡ 1 mod 4 (see for example [20, Lemma 1.7.10]), while in dimension ≡ 3 mod 4, it

only helps if one can control the Â term in the Atiyah-Patodi-Singer Theorem [1].
However, there is also a reasonably large literature using the twisted eta invariant
(for the Dirac operator twisted by a flat bundle, and especially for the formal
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difference of two such twists of the same dimension) to prove facts about R
+(M)

when M is not simply connected. We will just give a few representative examples,
and leave it to the reader to consult [5], [39], [19], [18], [29], and [6] for more results
and details.

Theorem 2.7. Let M be a closed connected spin manifold of odd dimension, and

let g0 and g1 be metrics of positive scalar curvature on M . Let ρ be a virtual

unitary representation of π = π1(M) of virtual dimension 0, i.e., a formal difference

of two finite dimensional unitary representations ρ+ and ρ− of π with dim ρ+ =
dim ρ−. Let η0(ρ) = η(D/ 0, ρ, 0), η1(ρ) = η(D/ 1, ρ, 0), where D/ 0 and D/ 1 are the

Dirac operators for the metrics g0 and g1, and η(D/ j , ρ) is defined by

η(D/ j , ρ) = η(D/ j ⊗ 1V
ρ+

) − η(D/ j ⊗ 1V
ρ+

),

Vρ± denoting the flat vector bundle defined by ρ±. Then if η0(ρ) 6= η1(ρ), g0 and g1
and not concordant, and in particular, do not lie in the same connected component

of R
+(M).

Proof. Suppose g0 and g1 are concordant. Then there is a metric g of positive scalar
curvature on M × [0, 1], restricting to a product of g0 with a metric on the line in a
collar neighborhood of M ×{0} (which we may identify with M) and to a product
of g1 with a metric on the line in a collar neighborhood of M × {1} (which we
may identify with −M , M with the orientation reversed). The representations ρ±

of π give vector bundles Vρ± on M × [0, 1], which we equip with flat connections.
Now consider the index problem for D/M×[0,1] ⊗ 1V

ρ±
with Atiyah-Patodi-Singer

boundary conditions on M ×{0} and M ×{1}. Since M × [0, 1] has positive scalar
curvature and the vector bundle is flat, the Lichnerowicz identity (1.1) shows the
kernel of D/M×[0,1] vanishes, and thus the index is 0. Furthermore, since Vρ± is

flat, its Chern character reduces by Chern-Weil theory simply to dim ρ±. So by the
Atiyah-Patodi-Singer Theorem [1], we have

(2.1) 0 =
1

2

(
η(D/ 1, ρ

±) − η(D/ 0, ρ
±)

)
+

∫

M×[0,1]

Â · dim ρ±.

Subtract equation (2.1) for ρ− from equation (2.1) for ρ+, and the Â terms cancel.
So if η0(ρ) 6= η1(ρ), we get a contradiction, and the result follows. �

Corollary 2.8 (Botvinnik and Gilkey [5, Theorem 0.2]). Let M be a closed con-

nected spin (4k+1)-manifold with finite fundamental group π, admitting a metric of

positive scalar curvature, and assume that π has a non-zero virtual unitary represen-

tation ρ of virtual dimension 0, satisfying the parity condition Tr ρ(h) = −Tr ρ(h−1)
for all h ∈ π. Then π̃0(R

+(M)) is infinite.

Sketch of proof. An induction argument reduces everything to the case where π ∼=
Z/p is cyclic. We will give the proof in the case p is odd, which results in a
slight simplification since, in this case, any non-trivial irreducible representation
σ : π → U(1) gives a non-zero ρ of virtual dimension 0 satisfying the parity con-
dition (namely ρ = σ − σ), and any lens space with fundamental group π is auto-
matically spin. Then because of Theorem 2.3, it suffices to prove the result when
M itself is a 5-dimensional lens space L5. (To pass to the case k > 1, simply
take a product with copies of a Kummer surface and/or a Joyce manifold J 8, us-

ing the fact that η(M ×N, ρ) = η(M,ρ)Â(N) when N has dimension divisible by
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4 [20, Lemma 1.7.18].) By the Atiyah-Hirzebruch spectral sequence for bordism,

|Ωspin
5 (Z/p)| = p2 when p is odd. But the eta invariants of lens spaces for the stan-

dard metric of constant curvature, η(Ln)(ρ), are computed in [12] (for the signature
operator, but the same method also works for the Dirac operator) and in [20, The-
orem 1.8.5]. To fix notation, let L5(τ) = S5/τ be a lens space of dimension n with
fundamental group π = Z/p, associated to the representation τ = (λ, λa1 , λa2) of
π, where λ sends the generator of π to e2πi/p and 1 ≤ a1, a2 ≤ p− 1.) Note that τ
acts freely on C3 r {0}, and thus freely on the unit sphere S5. The formula in [20,
Theorem 1.8.5] gives

(2.2) η(L5(τ))(ρ) =
1

p

∑

h∈π, h6=1

Tr ρ(h) det(τ(h))1/2 det(τ(h) − 1)−1.

Because of the parity condition on ρ, the quantity inside the summation sign is
invariant under replacing h by h−1. (In fact that’s why we need the parity condition,
for if Tr(ρ(h)) = Tr(ρ(h−1)) for all h, then the quantity being summed is odd
and the η-invariant vanishes.) We might as well take ρ = λ1/2 − λ−1/2. Then if
τ = (λ, λ, λ), (2.2) becomes

η(L5(λ, λ, λ))(λ1/2 − λ−1/2) =
1

p

∑

h∈π, h6=1

1
(
λ(h)1/2 − λ(h)−1/2

)2

=
1

p

p−1∑

j=1

1

4 sin2(2πj/p)
= µ > 0

while if τ = (λ, λ, λ−1), (2.2) becomes

η(L5(λ, λ, λ−1))(λ1/2 − λ−1/2)

=
1

p

∑

h∈π, h6=1

1(
λ(h)1/2 − λ(h)−1/2

)(
λ(h)−1/2 − λ(h)1/2

)

=
1

p

p−1∑

j=1

1

−4 sin2(2πj/p)
= −µ < 0.

Let M5 = L5(λ, λ, λ) and call g0 the standard metric of positive scalar curvature

on M . Then η(g0)(ρ) = µ > 0. But since |Ωspin
5 (Z/p)| <∞, there is a spin bordism

(over BZ/p) from a disjoint union of finitely many copies of L5(λ, λ, λ−1), say r
copies, to M . We can use this (as in the proof of Theorem 2.6) to push the standard
metric on this disjoint union over to a metric g1 onM , which by an argument similar
to that in the proof of Theorem 2.7 must satisfy η(g1)(ρ) = −rµ < 0. Since we
just showed the standard metric g0 on M satisfies η(g1)(ρ) > 0, Theorem 2.7 shows
g0 and g1 are not concordant. Furthermore, we can construct metrics on M with
infinitely many values of the η-invariant, since we are free to replace r by r + p2j
for any j. (Recall |Ωspin

5 (Z/p)| = p2.) This completes the proof for this case. The
other cases are similar. �

Remark 2.9. In the language of Theorem 2.3, Corollary 2.8 says that under these
hypotheses, R4k+2(π) is infinite. Another way to prove this would be to show
directly that the index invariant

θ : R4k+2(π) → KO4k+2(C
∗
R(π)) = KO4k+2(Rπ)
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has infinite image. The representation-theoretic hypothesis guarantees that π has
at least one irreducible representation of complex type, i.e., that Rπ has at least
one summand of the form Mm(C). This summand contributes a Z to KO4k+2(Rπ),
and Corollary 2.8 says θ hits this Z non-trivially. This lends a bit of support to the
surjectivity part of Conjecture 2.4.

All of the results so far, showing that the topology of R
+(M) is nontrivial, have

been based on index theory or the eta-invariant. In dimension 4, Seiberg-Witten
theory can also be used, leading to a remarkable result:

Theorem 2.10 (Ruberman [59]). There is a simply connected 4-manifold with

infinitely many concordant but nonisotopic metrics of positive scalar curvature.

I am not aware of any results like this in higher dimensions.
Finally, there are some other results that imply something interesting about the

space R
+(M). For example, in [10], it is shown that if g is a metric on M and

(M, g) admits a spin cover with nonzero parallel spinors, then g cannot be deformed
to a metric of positive scalar curvature. If M is spin and simply connected, and has
nonzero parallel spinors for the metric g, then there can be no metrics of positive
scalar curvature in a neighborhood of g.

3. Complete metrics of positive scalar curvature on noncompact

manifolds

The study of complete metrics of positive scalar curvature on noncompact man-
ifolds is noticeably more complicated than for closed manifolds, and in this section
we will just touch on a few of the issues involved. We have divided the discus-
sion into two subsections: one on global results and one on metrics within a fixed
quasi-isometry class.

3.1. Global results. Some noncompact manifolds do not admit any complete met-
rics of positive scalar curvature at all; others admit such metrics, but not if the scalar
curvature is bounded below by a positive constant. While we still don’t know what
manifolds belong in these classes, we do have the following conjecture.

Conjecture 3.1 ([56, Conjecture 7.1]). Let Xn be a closed manifold which does

not admit a metric of positive scalar curvature. Then

(1) Xn × R does not admit a complete metric of positive scalar curvature;

(2) Xn×R2 admits no complete metrics of uniformly positive scalar curvature.

This conjecture is known to be true [24, §6 and §7] if n ≤ 2, i.e., if X is a point,
S1, T 2, a Klein bottle, or a compact surface without boundary with a hyperbolic
metric. The conjecture cannot be strengthened any further because of:

Proposition 3.2 ([56, Proposition 7.2]). Let Xn be any closed manifold. Then

Xn × R2 admits complete metrics of (non-uniformly) positive scalar curvature,

and Xn × Rk admits complete metrics of uniformly positive scalar curvature when

k ≥ 3.

Additional positive evidence for something like Conjecture 3.1 comes from non-
compact index theory, at least in the case of spin manifolds. For example, one
has:
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Theorem 3.3 ([24, Corollary B2]—see also [50]). Let Xn be a closed spin manifold

with Â(X) 6= 0. Then Xn × R does not admit a complete metric of positive scalar

curvature.

The following is based on some of the same ideas, but carried out in the context
of more sophisticated Kasparov theory.

Theorem 3.4. Let Xn be a closed spin manifold, and assume that A(αBπ(X)) 6= 0
in KOn(C∗

R
(π)). Then Xn × R does not admit a complete metric of uniformly

positive scalar curvature.

Proof. As some of the details are a bit complicated, we prefer to begin by explaining

first how the proof works when π is trivial, i.e., when we replace Â(X) in Theorem
3.3 by α(X) ∈ KOn (which can be non-zero also in dimensions 1 and 2 mod 8).
Then we will explain how to modify the proof to cover the general case.

Fix a Riemannian metric on X , and let D/X be the C`n-linear Dirac operator
on X , as used in the proof of Theorem 1.1. This operator defines a class [D/ X ]
in the Kasparov group KKO(CR(X), C`n), and α(X) is the image of this class in
KKO(R, C`n) = KKO(CR(pt), C`n) under the map of Kasparov groups induced
by the inclusion R ↪→ CR(X), or dually, the “collapse map” c : X � pt.

Next, observe that we have a similar class [D/X×R], defined by the Dirac oper-
ator on X × R for the product metric on this manifold, in the Kasparov group
KKO(CR

0 (X × R), C`n+1). This class is just the external Kasparov product of
[D/X ] with the Dirac operator class on the line. We have a commutative diagram
of groups:

KKO(CR(X), C`n)
c∗

//

∼=⊗y

��

KKO(CR(pt), C`n) = KOn

∼=⊗y

��

KKO(CR
0 (X × R), C`n+1)

(c×1)∗
// KKO(CR

0 (R), C`n+1)

,

where y ∈ KKO(CR
0 (R), C`1) isD/ R or the Bott periodicity operator (see [2, §19.2]),

and ⊗y denotes the (external) Kasparov product. This gives rise to the commuta-
tive diagram of Kasparov elements:

(3.1) [D/X ]
�

c∗
//

_

⊗y

��

α(X) ∈ KKO(CR(pt), C`n)
_

⊗y

��

[D/X×R]
�

(c×1)∗
// α(X) ⊗ y.

Now suppose that X × R admits a complete metric of uniformly positive scalar
curvature, say g. Then the Dirac operator D/ g for this metric g, which is essentially
self-adjoint since g is complete, and the Dirac operator for the product metric on
X × R, define the same Kasparov class [D/ g] = [D/X×R]. (This point is made in
[27]; the essential fact is that we are dealing with a Kasparov class for the algebra
of continuous functions which vanish at infinity, in which continuous functions of
compact support are dense, and any two complete metrics on a noncompact mani-
fold, when restricted to a fixed compact set, are homotopic through homotopies of
complete metrics supported on a slightly larger compact set.)

Next we note that Bott periodicity implies that the Kasparov class y, which lies
in KKO(CR

0 (R), C`1), has an inverse x ∈ KKO(C`1, C
R
0 (R)) ∼= KO−1(R) (see [2,
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§19.2]). Thus, putting this and the insensitivity of the Dirac class on X ×R to the
choice of complete metric together with (3.1), we obtain the equality

(3.2) α(X) = x ⊗CR

0
(R) (c× 1)∗([D/ g]) ∈ KKO(C`1, C`n+1) ∼= KOn.

The rest of the proof consists of showing that this Kasparov product vanishes,
using the fact that g has uniformly positive scalar curvature. For this, we need
explicit realizations for the classes x and (c × 1)∗([D/ g]), as well as the Kasparov
calculus for computing the product. Note incidentally that C`1 = R+Ri, where i2 =
−1, so we can identify C`1 with C, the grading given by complex conjugation. The
class x is represented by the C`1-C

R
0 (R) bimodule C`1⊗C

R
0 (R) = CR

0 (R)+ iCR
0 (R),

together with the operator F given by multiplication by

F =

(
0 −if(x)

if(x) 0

)
,

where f is a continuous function on the line that tends to 1 at +∞ and to −1
at −∞. It will be convenient to assume that −1 ≤ f ≤ 1, that f is smooth,
and that f ≡ −1 on (−∞,−a], f ≡ 1 on [a,∞), for some a > 0. Thus F 2 ≡ 1
except on [−a, a]. The class (c×1)∗([D/ g]) is represented by the graded real Hilbert
space H of L2 sections of the C`n+1-linear spinor bundle on (X×R, g), the operator
D = D/ g(D/

2
g)

−1, and the obvious action of CR
0 (R) by multiplication operators. (The

fact that g has positive scalar curvature implies that the differential operator D/ 2
g

is bounded away from 0, hence invertible, so we can use the above formula for D
instead of the more usual D/ g(1 + D/ 2

g)
−1. In particular, our choice of D satisfies

D2 = 1 precisely, not just “approximately.”)
We proceed to the compute the Kasparov product in (3.2). It acts on the graded

Hilbert space CC
0 (R)⊗̂CR

0
(R)H = C`1⊗̂H = HC, with the obvious action of C`1 on

the left, and the issue is to compute the relevant Fredholm operator G = F#D.
From the recipe for the Kasparov product (see [2, §18.4]), the operator G should

be chosen to be of the form

G = M1/4FM1/4 +N1/4DN1/4,

where 0 ≤M,N ≤ 1, M+N = 1, so that G2−1 is compact and the anticommutator
{G,F} is positive modulo compacts. (We are letting F act on function spaces on
Xn × R in the obvious way, through strictly speaking we should write F ⊗̂1, etc.)
We have

G2−1 = M1/4FM1/2FM1/4+N1/4DN1/2DN1/4−1+
{
M1/4FM1/4, N1/4DN1/4

}
.

In our situation, D2 = 1, and {F,D} is basically [D, if ], which is the commutator of
two pseudodifferential operators of order 0, hence is pseudodifferential of negative
order, but may not be compact since we are on a noncompact manifold. This
suggests taking N to be a multiplication operator given by a nonnegative function
on R of compact support, with F 2 = 1 on the support of M , in which case M will
commute with F and

M1/4FM1/2FM1/4 +N1/4DN1/2DN1/4 − 1

= MF 2 +N1/2D2N1/2 − 1 +N1/4
(
DN1/2D −N1/4D2N1/4

)
N1/4

≡MF 2 +N1/2D2N1/2 − 1 = M +N − 1 = 0
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modulo compacts. On the other hand,
{
M1/4FM1/4, N1/4DN1/4

}

= N1/4
{
M1/2F,D

}
N1/4

is compact since
{
M1/2F,D

}
is pseudodifferential of negative order andN has com-

pact support. So G2−1 is compact, and by a similar calculation,
{
N1/4DN1/4, F

}

is compact, hence {G,F} is positive modulo compacts. Thus G as we’ve written it
down is a representative for the “sharp product” F#D, and so by (3.2), α(X) can
be computed from the finite-dimensional kernel of G, which is a graded C`1-C`n+1

bimodule. Next, observe that we obtain a homotopy of Kasparov C`1-C`n+1 bi-
modules by letting the support of N grow and letting the support of M shrink,
so that M tends strongly to 1 and in the limit, the operator G becomes simply
D. Since D2 = 1, kerD = 0. This means the Kasparov module is trivial, i.e.,
α(X) = 0.

Now we indicate how to extend the proof to the case of an arbitrary group π. As
in the proof of Theorem 1.2, let VBπ be the “universal flat bundle” over Bπ with
fibers that are rank-one free (right) modules over C∗

R
(π). Pull this bundle back to a

bundle VX over X via f : X → Bπ, and extend the bundle in the obvious way to a
bundle V over X ×R. We now repeat the whole argument, replacing D/ g by D/ g ⊗ 1
acting on the C`n+1-module spinor bundle with coefficients in V . We construct
the operator D as before, this time obtaining a class [DX×R,V ] ∈ KKO(CR

0 (X ×

R), C∗
R
(π)⊗̂C`n+1) mapping to A(αBπ(X)) ⊗ y in KKO(CR

0 (R), C∗
R
(π)⊗̂C`n+1)

under (c ⊗ 1)∗. As before we take the Kasparov product with the class x and
obtain the desired conclusion. �

Corollary 3.5. Conjecture 1.22 implies part (1) of Conjecture 3.1, if we weaken

positive scalar curvature to uniformly positive scalar curvature, at least in the spin

case with n ≥ 5.

Proof. Conjecture 1.22 is simply the statement that the hypothesis of Theorem 3.4
is equivalent to Xn not having a metric of positive scalar curvature. �

Remark 3.6. We should mention that any counterexample to Conjecture 1.24 is
also a counterexample to Conjecture 3.1. Indeed, suppose Xn is a closed manifold
that does not admit a metric of positive scalar curvature, but such that Xn × S1

does admit such a metric. Then the lift of this metric to the covering space Xn×R

has uniformly positive scalar curvature, contradicting both parts of Conjecture 3.1.
Thus the example mentioned in Remark 1.25 above (which incidentally was simply
connected but not spin) shows that Conjecture 3.1 fails if n = 4, even if X is simply
connected. One can construct a similar example (again with n = 4) with X spin by
using part (1) of Counterexample 1.13. However, we know of no counterexamples
to Conjecture 3.1 with n > 4, and Corollary 3.5 suggests that such counterexamples
will be difficult to find.

In dimension 3, somewhat more is known; for example we have:

Theorem 3.7 (Schoen and Yau [63, Theorem 4]). Let M be a 3-dimensional con-

nected manifold admitting a complete metric of positive scalar curvature. Then

π1(M) cannot contain a subgroup isomorphic to the fundamental group of a closed

Riemann surface of positive genus.
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Aside from products of compact manifolds with Euclidean spaces, another very
interesting general class of noncompact manifolds comes from locally symmetric
spaces. The following was proved by Block and Weinberger:

Theorem 3.8 (Block and Weinberger [3]). Let M = Γ\G/K be an irreducible

locally symmetric space of noncompact type and finite volume. Then M can be

given a complete metric of uniformly positive scalar curvature if and only if Γ is an

arithmetic lattice of Q-rank ≥ 3.

Note incidentally that Γ is cocompact, i.e., M is compact, if and only if Γ has
Q-rank 0. This case is included in the theorem, but if M is compact, it cannot have
a metric of positive scalar curvature because of Theorems 1.2 and 1.7, or other
similar results. Also, we are not assuming a priori that Γ is arithmetic, though if it
is not, Theorem 3.8 says that M never has a complete metric of uniformly positive
scalar curvature.

3.2. Metrics in a fixed quasi-isometry class. Many of the interesting results
on positive scalar curvature for noncompact manifolds involve specifying the quasi-
isometry class of the metric, or what is almost the same, specifying the rate of
growth or decay of the metric at infinity.

One of the most effective tools for producing results of this sort is the coarse

index theory of Roe, as outlined in [51], [52], and [53]. The basic construction
involves a C∗-algebra C∗(M) attached to a “coarse space,” a metric space in which
closed bounded sets are compact. For present purposes we should really work
with the real version of the construction and write C∗

R
(M), but we will suppress

the R for notational convenience. The algebra C∗(M) is the completion of the
locally compact, finite propagation operators onM , acting on an auxiliary separable
Hilbert space, and when M is a complete Riemannian manifold, it really only
depends on the quasi-isometry class of the metric. For example, whenM is compact,
C∗(M) is just the algebra K of compact operators (which is Morita equivalent to
the scalars). Then we have the following result, generalizing Theorem 1.1 to the
noncompact case.

Theorem 3.9 (See [52, Definition 3.7 and Proposition 3.8].). Let (Mn, g) be a

complete Riemannian spin manifold. Then the Dirac operator for the metric g and

the given spin structure defines a class indD/ g ∈ KOn(C∗(M)), and if this class is

non-zero, g cannot have uniformly positive scalar curvature. In fact, when the index

is non-zero, there can be no complete metric of uniformly positive scalar curvature

in the same quasi-isometry class.

Proof. Roe states and proves this in the complex case, so we will just indicate how
to obtain the refinement in real K-theory. As usual, we work with the C`n-linear
Dirac operator D/ g. By (1.1), the spectrum of this operator is bounded away from 0
if g has uniformly positive scalar curvature. As in the proof of Theorem 3.4, choose a
continuous real-valued (odd) function f on R with −1 ≤ f ≤ 1 and with f(x) → 1 as
x→ +∞, f(x) → −1 as x → −∞, and observe that f(D/ g) is C`n-linear, odd (with
respect to the grading of the spinor bundle) and bounded. Furthermore, since the
hyperbolic equation ut = iD/ gu has finite propagation speed, f(D/ g) is a multiplier

of C∗(M), and defines a class indD/ g ∈ KKO(R, C∗(M)⊗̂C`n) ∼= KOn(C∗(M)),
and indD/ g is evidently 0 if D/ g has a bounded inverse, which is the case if g
has uniformly positive scalar curvature. Furthermore, this index class indD/ g is
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invariant under homotopies of the metric within the same quasi-isometry class (since
such homotopies give homotopies of the Kasparov class), so if the index is 6= 0, there
can be no complete metric of uniformly positive scalar curvature in the same quasi-
isometry class. �

Most of the known results about non-existence of complete metrics of uniformly
positive scalar curvature in quasi-isometry classes of noncompact manifolds come
from applying various tricks to detect the index class indD/ g topologically. Of
course, since it is the coarse geometry of M , not its usual topology, that is rel-
evant here, “topologically” means “in terms of coarse invariants,” such as coarse
KO-homology KOX∗(M) in the sense of [52]. There is a coarse assembly map

KOX∗(M) → KO∗(C
∗(M)) defined in [52, Ch. 8]. When M is uniformly con-

tractible, this is simply the map that takes the class [D] of an elliptic operator D
to ind(D) as defined above. More generally, this map is defined by taking indices
of the images of D on “coarse approximations” to X .

Conjecture 3.10 (Coarse Baum-Connes Conjecture [52, Conjecture 8.2]). For any

proper metric space M of bounded geometry, the coarse assembly map KOX∗(M) →
KO∗(C

∗(M)) is an isomorphism.

Incidentally, a counterexample to the surjectivity part of Conjecture 3.10 is
known [26, §6], but we shall only need the injectivity part. Putting together The-
orem 3.9 and Conjecture 3.10, we obtain:

Proposition 3.11 (Roe). If M is a uniformly contractible complete Riemannian

manifold of bounded geometry, and if (the injectivity part of the) Conjecture 3.10
holds for M , then there is no complete metric of uniformly positive scalar curvature

in the quasi-isometry class of the given metric on M .

Proof. In this case, the coarse assembly map takes [D/ g] ∈ KOn(M), which is a
generator in KOn(M) ∼= KOn(Rn) ∼= Z, to indD/ g, which by Theorem 3.9 is an
obstruction to uniformly positive scalar curvature in the quasi-isometry class of the
given metric on M . �

In some cases, one can prove Conjecture 3.10 and apply this result. For example,
we have the following results:

Theorem 3.12 (Yu [74, Corollary 7.3]). Let M be a uniformly contractible com-

plete Riemannian manifold with finite asymptotic dimension. Then M cannot have

uniformly positive scalar curvature.

Theorem 3.13 (Yu [75, Corollary 1.3]). Let M be a complete Riemannian mani-

fold with bounded geometry. If M is uniformly contractible and admits a uniform

embedding into Hilbert space, then M cannot have uniformly positive scalar curva-

ture.

Theorem 3.14 (Gong and Yu [21, Corollary 4.3]). Let M be a uniformly con-

tractible complete Riemannian manifold with bounded geometry. If M has subexpo-

nential volume growth, then M cannot have uniformly positive scalar curvature.

Another result related to Theorem 3.8 is the following:

Theorem 3.15 (Chang [9]). Let M = Γ\G/K be an irreducible locally symmetric

space of noncompact type and finite volume, and suppose Γ is an arithmetic lattice
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of Q-rank ≥ 3 (so that by Theorem 3.8, M admits a metric of positive scalar

curvature). Then no metric of positive scalar curvature on M can be quasi-isometric

to the standard locally symmetric metric.

Finally, there are results on positive scalar curvature in a quasi-isometry class
that involve still other versions of noncompact index theory. A typical example is:

Theorem 3.16 (Whyte [72]). Assume that Mn is a complete connected spin man-

ifold with bounded curvature and uniformly positive scalar curvature, and that Nn

is a closed spin manifold with Â(N) > 0. Let S be a discrete subset of M . Then the

connected sum of M with one copy of N attached at each point of S (see Figure 2)
admits a complete metric of uniformly positive curvature (in the canonical quasi-

isometry class of metrics) if [S] = 0 in Huf
0 (M), the uniformly finite homology of

M , and does not admit any complete metric of positive scalar curvature if [S] 6= 0

in Huf
0 (M).

N

S

N N N
M

Figure 2. The connected sum along a discrete subset

4. Miscellaneous topics

4.1. The second Kazdan-Warner class. Recall from Theorem 0.1 that if Mn is
a closed manifold of dimension n ≥ 3, and if M admits a metric with nonnegative
scalar curvature but not one with positive scalar curvature, then any such metric
must be Ricci-flat. Futaki [16] and Dessai [11] have obtained additional restrictions
on such manifolds. For example, [16] shows that simply connected manifolds of

dimension > 4 in class (2) of Theorem 0.1 must be spin, have non-vanishing Â-
genus, and have exceptional holonomy SU(2m), Sp(n) or Spin(7). Furthermore,

Futaki obtains additional constraints on the Â-genus, and Dessai shows that the
first Pontrjagin class must be non-trivial.

One also has certain results that constrain “almost non-negative scalar curva-
ture.” A closed manifold M is said [14] to have “almost non-negative scalar cur-
vature” if, for any ε > 0, there is a Riemannian metric g with sectional curvature
≤ 1 and with scalar curvature κ and diameter d satisfying κ ≥ −ε/d2. The re-
sults of [14] say that in some cases, this is impossible unless M lies in the second
Kazdan-Warner class.
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4.2. Metrics with negative scalar curvature. Lohkamp has also shown that
the results of Section 2 are also really very special to positive scalar curvature. On
any closed manifold Mn with n ≥ 3, Lohkamp showed [41] that the space of metrics
of negative scalar curvature is contractible, with a retraction onto the subspace of
metrics of constant scalar curvature −1. Furthermore, an arbitrary metric can be
perturbed so as to decrease its scalar curvature on a prescribed open set, without
changing the overall “shape” of the manifold. More precisely, one has:

Theorem 4.1 (Lohkamp [42]). Let (Mn, g) be a Riemannian n-manifold with n > 2
and with scalar curvature function κ. Let U be an open subset of M , and let f be

a smooth function on M such that f < κ on U and f = κ on M r U . Then for

each positive ε, there is a smooth metric gε on M such that gε = g outside the

ε-neighborhood of U and such that the scalar curvature function κε of gε satisfies

f − ε ≤ κε ≤ f on the ε-neighborhood of U . Moreover, gε can be chosen arbitrarily

close to g in the C0 topology.
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2#5CP

2,
Math. Res. Lett. 12 (2005), no. 5-6, 701–712. MR2189231

[50] John Roe, Partitioning noncompact manifolds and the dual Toeplitz problem, Operator al-
gebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge
Univ. Press, Cambridge, 1988, pp. 187–228. MR996446 (90i:58186)

[51] , Coarse cohomology and index theory on complete Riemannian manifolds, Mem.
Amer. Math. Soc. 104 (1993), no. 497, x+90. MR1147350 (94a:58193)

[52] , Index theory, coarse geometry, and topology of manifolds, CBMS Regional Confer-
ence Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical
Sciences, Washington, DC, 1996. MR1399087 (97h:58155)

[53] , Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathe-
matical Society, Providence, RI, 2003. MR2007488 (2004g:53050)

[54] Jonathan Rosenberg, C∗-algebras, positive scalar curvature, and the Novikov conjecture. III,
Topology 25 (1986), no. 3, 319–336. MR842428 (88f:58141)

[55] , The KO-assembly map and positive scalar curvature, Algebraic topology Poznań
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