EDS: Fundamental Theorem on the Maurer-Cartan form point (3) Spring 2020

Theorem 1. Let M be a manifold, and G a Lie group with Lie algebra \mathfrak{g} and Maurer-Cartan form ω^G . Let $\omega \in \Omega^1(M, \mathfrak{g})$.

1. For all $p \in M$, there is a neighborhood $U \subseteq M$ of p and a map $f: U \to G$ such that $f^* \omega = \omega^G$ if and only if

$$d\omega + \frac{1}{2}[\omega, \omega] = 0$$

- 2. A map f as above is unique up to post-composition with L_g for $g \in G$.
- 3. If M is simply connected (and connected), then f extends over M.

We proved (1) and (2) in class. The graph of f lies in an integral leaf in $M \times G$ for the differential ideal $\langle \theta \rangle = \langle \pi_M^* \omega - \pi_G^* \omega_G \rangle$. Here is a proof of (3). Let $p \in M$, and let \mathcal{L} be a leaf of the foliation for $\langle \theta \rangle$ through (p, e), where $e \in G$ is the identity. Assume that \mathcal{L} is a maximal leaf—that is, a maximal connected, integral manifold through (p, e). This can be defined as the set of all points which can be connected to (p, e) by a piecewise smooth path, which at all points of differentiability is tangent to ker θ . It is straightforward to find coordinate charts at each point of this set. There is a technical point, that it admits a second countable atlas, the verification of which can be found in Warner's book, Theorem 1.64.

The first point is that $\pi_M|_{\mathcal{L}}$ is a surjection onto M. Let γ be a piecewise smooth path from p to $q \in M$ and let

$$T = \sup_{t} \{ \gamma[0, t) \subset \pi_M(\mathcal{L}) \}$$

The desired lift of γ has the form $(\gamma(t), \delta(t))$, where $\delta(0) = e$ and $\omega^G(\delta'(t)) = \omega(\gamma'(t))$. We can assume γ' is defined on some interval $(T - \epsilon, T)$, and it is necessarily bounded as $t \to T$. Then δ solves a linear ODE with bounded coefficients, which means that δ extends continuously to [0, T], by a basic result on solutions of linear ODEs. We conclude γ lifts to \mathcal{L} on its full domain, and thus that all $q \in M$ are in $\pi_M(\mathcal{L})$ because M is path connected. The next point is to verify that for $q \in M$, there is a neighborhood U of q such that $\pi_M|_{\mathcal{L}}^{-1}(U)$ is a disjoint union of homeomorphic copies of U, in bijection with $\pi_M|_{\mathcal{L}}^{-1}(q)$. The set $\pi_M^{-1}(q) \cap \mathcal{L}$ has the form $\{(q, g_i)\}_i$ where

 $\{g_i\}_i$ is a closed, discrete subset of G. This means there is a neighborhood V_0 of g_0 such that $V_i = L_{g_i g_0^{-1}}(V_0)$ are disjoint neighborhoods of the g_i in G. Let \widetilde{U}_0 be a compact neighborhood of (q, g_0) in \mathcal{L} mapping diffeomorphically to $U = \pi_M(\widetilde{U}_0)$. If \widetilde{U}_0 is the graph of $f_0 : U \to G$, then $L_{g_i g_0^{-1}} \circ f_0 = f_i$ also pulls back ω^G to $\omega|_U$. Therefore $\widetilde{U}_i = (\mathrm{Id}_M \times L_{g_i g_0^{-1}})(\widetilde{U}_0)$ is a neighborhood of (q, g_i) in \mathcal{L} projecting diffeomorphically to U.

Now replace intersect \widetilde{U}_i with $M\times V_i$ to obtain the desired disjoint "stack of pancakes."