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ABSTRACT. We show that a germ of a real analytic Lorentz metric on R3 which is locally homogeneous on an
open set containing the origin in its closure is necessarily locally homogeneous. We classifiy Lie algebras that can
act quasihomogeneously—meaning they act transitively on an open set admitting the origin in its closure, but not
at the origin—and isometrically for such a metric. In the case that the isotropy at the origin of a quasihomogeneous
action is semi-simple, we provide a complete set of normal forms of the metric and the action.

1. INTRODUCTION

A Riemannian or pseudo-Riemannian metric is called locally homogeneous if any two points can be con-
nected by flowing along a finite sequence of local Killing fields. The study of such metrics is a traditional field
in differential geometry. In dimension two, they are exactly the semi-Riemannian metrics of constant sec-
tional curvature. Locally homogeneous Riemannian metrics of dimension three are the subject of Thurston’s
3-dimensional geometrization program [Thu97]. The classification of compact locally homogeneous Lorentz
3-manifolds was given in [DZ10].

The most symmetric geometric structures after the locally homogeneous ones are those which are quasi-
homogeneous, meaning they are locally homogeneous on an open set containing the origin in its closure,
but not locally homogeneous in the neighborhood of the origin. In particular, all the scalar invariants of a
quasihomogeneous geometric structure are constant. Recall that, for Riemannian metrics, constant scalar
invariants implies local homogeneity (see [PTV96] for an effective result).

In a recent joint work with A. Guillot, the first author obtained the classification of germs of quasihomo-
geneous, real analytic, torsion free, affine connections on surfaces [DG13]. The article [DG13] also classifies
the quasihomogeneous germs of real analytic, torsion free, affine connections which extend to compact sur-
faces. In particular, such germs of quasihomogeneous connections do exist.

The first author proved in [Dum08] that a real analytic Lorentz metric on a compact 3-manifold which is
locally homogeneous on a nontrivial open set is locally homogeneous on all of the manifold. In other words,
quasihomogeneous real analytic Lorentz metrics do not extend to compact threefolds. The same is known
to be true, by work of the second author, for real analytic Lorentz metrics on compact manifolds of higher
dimension, under the assumptions that the Killing algebra is semisimple, the metric is geodesically complete,
and the universal cover is acyclic [Mel09]. In the smooth category, A. Zeghib proved in [Zeg96] that compact
Lorentz 3-manifolds which admit essential Killing fields are necessarily locally homogeneous.
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Here we simplify arguments of [Dum08] and introduce new ideas in order to dispense with the compact-
ness assumption and prove the following local result:

Theorem 1. Let g be a real-analytic Lorentz metric in a connected open neighborhood U of the origin in R3.
If g is locally homogeneous on a nontrivial open subset in U, then g is locally homogeneous on all of U.

As a by-product of this new proof, we classifiy Lie algebras that can act isometrically for a three-dimensional
Lorentz metric and quasihomogeneously, meaning they act transitively on an open set admitting the origin in
its closure, but not at the origin. In the case that the isotropy at the origin of such a quasihomogeneous action
is semisimple, we provide a complete set of normal forms of the metric and the action, which, by Theorem 1
above, are all locally homogeneous (see Proposition 10 and Proposition 11).

We also present a new approach to the problem in Section 5, relying on the Cartan connection associated
to a Lorentzian metric. This approach yields a nice alternate proof of our results.

Our work is motivated by Gromov’s Open-Dense Orbit Theorem [DG91, Gro88] (see also [Ben97, Fer02]).
Gromov’s result asserts that, if the pseudogroup of local automorphisms of a rigid geometric structure—such
as a Lorentz metric or a connection—acts with a dense orbit, then this orbit is open. In this case, the rigid
geometric structure is locally homogeneous on an open dense set. Gromov’s theorem says little about this
maximal open and dense set of local homogeneity, which appears to by mysterious (see [DG91, 7.3.C]). In
many interesting geometric situations, it can be shown to be all of the connected manifold. This was proved,
for instance, for Anosov flows preserving a pseudo-Riemannian metric arising from differentiable stable and
unstable foliations and a transverse contact structure [BFL92]. In [BF05], the authors deal with this question;
their results indicate ways in which some rigid geometric structures cannot degenerate off the open dense set.

The composition of this article is the following. In Section 2 we use the geometry of Killing fields and
geometric invariant theory to prove that the Killing Lie algebra of a three-dimensional quasihomogeneous
Lorentz metric g is a three-dimensional, solvable, nonunimodular Lie algebra. We also show that g is locally
homogeneous away from a totally geodesic surface S, on which the isotropy is a one parameter semisim-
ple group or a one parameter unipotent group. In the case of semisimple isotropy, Theorem 1 is proved in
Section 3. The proof of this case relies on the classification of normal forms of the metrics admitting quasi-
homogeneous isometric actions (see Proposition 10 and Proposition 11). In the case of unipotent isotropy,
Theorem 1 is proved in Section 4. Section 5 provides an alternative proof of Theorem 1 using the formalism
of Cartan connections.

Our result raises the following question:

Question 1. Let g be a smooth Lorentz metric on a connected three-dimensional manifold M. If g is locally
homogeneous on an open, dense subset of M, then must g be locally homogeneous on all of M?

We are aware of noncompact quasihomogeneous examples of lower regularity C1, recently discovered by
C. Frances. We would like to thank C. Frances for interesting conversations on the topic of this paper. We
thank the referee for her/his careful reading of our manuscript and many useful remarks.

2. KILLING LIE ALGEBRA. INVARIANT THEORY

Let g be a real analytic Lorentz metric defined in a connected open neighborhood U of the origin in R3,
which we assume is also simply connected. In this section we recall the definition and several properties of
the Killing algebra of (U,g). These were proved in [Dum08] without use of the compactness assumption.
For completeness, we briefly explain their derivation again here.

Classically, (see, for instance [Gro88, DG91]) one considers the k-jet of g by taking at each point u ∈U
the expression of g up to order k in exponential coordinates. In these coordinates, the 0-jet of g is the
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standard flat Lorentz metric dx2 + dydz. At each point u ∈U , the space of exponential coordinates is acted
on simply transitively by O(2,1), the identity component of which is isomorphic to PSL(2,R). The space
of all exponential coordinates in U compatible with a fixed orientation and time orientation is a principal
PSL(2,R)-bundle over U , which we will call the orthonormal frame bundle and denote by R(U).

Geometrically, the k-jets of g form an analytic PSL(2,R)-equivariant map g(k) : R(U)→V (k), where V (k)

is the finite-dimensional vector space of k-jets at 0 of Lorentz metrics on R3 with fixed 0-jet dx2 +dydz. The
group O0(2,1)' PSL(2,R) acts linearly on this space, in which the origin corresponds to the k-jet of the flat
metric. One can find the details of this classical construction in [DG91].

Recall also that a local vector field is a Killing field for a Lorentz metric g if its flow preserves g wherever
it is defined. Note that local Killing fields preserve orientation and time orientation, so they act on R(U). The
collection of all germs of local Killing fields at a point u has the structure of a finite dimensional Lie algebra g
called the local Killing algebra of g at u. At a given point u ∈U , the subalgebra i of the local Killing algebra
consisting of the local Killing fields X with X(u) = 0 is called the isotropy algebra at u.

The proof of Theorem 1 will use analyticity in an essential way. We will make use of an extendability
result for local Killing fields proved first by Nomizu in the real-analytic Riemannian setting [Nom60] and
generalized then for any Cω rigid geometric structure by Amores and Gromov [Amo79, Gro88, DG91]. This
phenomenon states that a local Killing field of g can be extended analytically along any curve γ in U , and the
resulting Killing field germ at the endpoint only depends on the homotopy type of γ . Because U is assumed
connected and simply connected, local Killing fields extend to all of U. Therefore, the local Killing algebra
at any u ∈U equals the algebra of globally defined Killing fields on U , which we will denote by g.

Definition 2. The Lorentz metric g is locally homogeneous on an open subset W ⊂U , if for any w ∈W and
any tangent vector V ∈ TwW , there exists X ∈ g such that X(w) =V. In this case, we will say that the Killing
algebra g is transitive on W .

Any two points in a connected open subset W on which g is locally homogeneous can be related by flowing
along a finite sequence of local Killing fields of g.

Notice that Nomizu’s extension phenomenon does not imply that the extension of a family of pointwise
linearly independent Killing fields stays linearly independent. The assumption of Theorem 1 is that g is
transitive on a nonempty open subset W ⊂U . Choose three elements X ,Y,Z ∈ g that are linearly independent
at a point u0 ∈W . The function volg(X(u),Y (u),Z(u)) is analytic on U and nonzero in a neighborhood of u0.
The vanishing set of this function is a closed analytic proper subset S′ of U containing the points where g is
not transitive. Its complement is an open dense set of U on which g is transitive.

From now on we will assume that g is a quasihomogeneous Lorentz metric in the neighborhood U of the
origin in R3, with Killing algebra g. Let S be the complement of the maximal open subset of U on which g acts
transitively—that is, of a maximal locally homogeneous subset of U . It is an intersection of closed, analytic
proper subsets, so S is a nontrivial closed and analytic subset of positive codimension passing through the
origin. The aim of this article is to prove that this is impossible.

We will next derive some basic properties of g that follow from quasihomogeneity.

Lemma 3 ([Dum08] Lemme 3.2(i)). The Killing algebra g cannot be both three-dimensional and unimodular.

Proof. Let (K1, K2, K3) be a basis of the Killing algebra. Again consider the analytic function v= volg(K1,K2,K3).
Since g is unimodular and preserves the volume form of g, the function v is nonzero and constant on each
open set where g is transitive. On the other hand, v vanishes on S: a contradiction. �

Lemma 4 ([Dum08] Lemme 2.1, Proposition 3.1, Lemme 3.2(i)).
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(i) The dimension of the isotropy at a point u ∈U differs from two.
(ii) The Killing algebra g is of dimension three.

(iii) The Killing algebra g is solvable.

Proof. (i) Assume for a contradiction that the isotropy algebra i at a point u∈U has dimension two. Elements
of i act linearly in exponential coordinates at u. Since elements of i preserve g, they preserve, in particular,
the k-jet of g at u, for all k ∈ N. This gives an embedding of i in the Lie algebra of PSL(2,R) such that the
corresponding two-dimensional connected subgroup of PSL(2,R) preserves the k-jet of g at u, for all k ∈ N.
But stabilizers in a finite-dimensional linear algebraic PSL(2,R)-action never have dimension two. Indeed, it
suffices to check this statement for irreducible linear representations of PSL(2,R), for which it is well-known
that the stabilizer in PSL(2,R) of a nonzero element is zero- or one-dimensional [Kir74].

It follows that the stabilizer in PSL(2,R) of the k-jet of g at u is of dimension three and hence equals
PSL(2,R). Consequently, in exponential coordinates at u, each element of sl(2,R) gives rise to a local linear
vector field which preserves g, because it preserves all k-jets of the analytic metric g at u. The isotropy algebra
i thus contains a copy of sl(2,R): a contradiction, since i was assumed of dimension two.

(ii) Since g is quasihomogeneous, the Killing algebra is of dimension at least 3. For a three-dimensional
Lorentz metric, the maximal dimension of the Killing algebra is 6. This characterizes Lorentz metrics of
constant sectional curvature. Indeed, in this case, the isotropy is, at each point, of dimension three (see, for
instance, [Wol67]). These Lorentz metrics are locally homogeneous.

Suppose that the Killing algebra of g is of dimension 5. Then, on any open set of local homogeneity the
isotropy is two-dimensional. This is in contradiction with point (i).

Last, suppose that the Killing algebra of g is of dimension 4. Then, at a point s ∈ S, the isotropy has
dimension ≥ 2. Hence, point (i) implies that the isotropy at s has dimension three and thus is isomorphic to
sl(2,R). Moreover, the standard linear action of the isotropy on TsU preserves the image of the evaluation
morphism ev(s) : g→ TsU , which is a line. But the standard 3-dimensional PSL(2,R)-representation does
not admit invariant lines: a contradiction.

Therefore, the Killing algebra is three-dimensional.
(iii) A Lie algebra of dimension three is semisimple or solvable [Kir74]. Since semisimple Lie algebras

are unimodular, Lemma 3 implies that g is solvable. �

Let us recall Singer’s result [Sin60, DG91, Gro88] which asserts that g is locally homogeneous if and only
if the image of g(k) is exactly one PSL(2,R)-orbit in V (k), for a certain k (big enough). This theorem is the
key ingredient in the proof of the following fact.

Proposition 5 ([Dum08] Lemme 2.2). If g is quasihomogeneous, then the Killing algebra g does not preserve
any nontrivial vector field of constant norm ≤ 0.

Proof. Let k ∈ N be given by Singer’s Theorem. First suppose, for a contradiction, that there exists an
isotropic vector field X in U preserved by g. Then the g-action on R(U), lifted from the action on U , preserves
the subbundle R′(U), where R′(U) is a reduction of the structural group PSL(2,R)∼= Oo(2,1) to the stabilizer
of an isotropic vector in the standard linear representation on R3:

H =

{(
1 T
0 1

)
∈ PSL(2,R) : T ∈ R

}
.

Restricting to exponential coordinates with respect to frames the first vector of which is X gives an H-
equivariant map g(k) : R′(U)→ V (k). On each open set W on which g is locally homogeneous, the image
g(k)(R′(W )) is exactly one H-orbit O ⊂V (k). Let s ∈ S be a point in the closure of W . Then the image under
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g(k) of the fiber R′(W )s lies in the closure of O . But H is unipotent, and a classical result due to Kostant and
Rosenlicht [Ros61] asserts that for algebraic representations of unipotent groups, the orbits are closed. This
implies that the image g(k)(R′(W )s) is also O . Moreover, this holds for all s ∈ S. Indeed, the restriction of g
to S being transitive (as will be proved independently in point (i) of Lemma 6), this holds for all s ∈ S.

Any open set of local homogeneity in U admits points of S in its closure. It follows that the image of R′(U)

under g(k) is exactly the orbit O . Singer’s theorem implies that g is locally homogeneous, a contradiction to
quasihomogeneity.

If there exists a g-invariant vector field X in U of constant strictly negative g-norm, then the g-action on
R(U) preserves a subbundle R′(U) with structural group H ′, where H ′ is the stabilizer of a strictly negative
vector in the standard linear representation of PSL(2,R) on R3. In this case, H ′ is a compact one param-
eter group in PSL(2,R). The previous argument again yields a contradiction, after replacing the Kostant-
Rosenlicht Theorem by the obvious fact that orbits of smooth compact group actions are closed. �

Lemma 6 (compare [Dum08], Proposition 3.3). After possibly shrinking U, we have

(i) S is a connected, real analytic submanifold of codimension one, on which g acts transitively.
(ii) The isotropy at a point of S is unipotent or R-semisimple.

(iii) The restriction of g to S is degenerate.

Proof. (i) The fact that S is a real analytic set was already established above: it coincides with the vanishing
of the analytic function v = volg(K1,K2,K3), where (K1, K2, K3) is a basis of the Killing algebra. If needed,
one can shrink the open set U in order that S be connected. By point (i) in Lemma 4, the isotropy algebra at
points in S has dimension one or three. We prove that this dimension must be equal to one.

Assume, for a contradiction, that there exists s ∈ S such that the isotropy at s has dimension three. Then,
the isotropy algebra at s is isomorphic to sl(2,R). On the other hand, since both are 3-dimensional, the
isotropy algebra at s is isomorphic to g. Hence, g is semisimple, which contradicts Lemma 4 (iii).

It follows that the isotropy algebra at each point s ∈ S is of dimension one. Equivalently, the evaluation
morphism ev(s) : g→ TsU has rank two. Since the g-action preserves S, this implies that S is a smooth
submanifold of codimension one in U and TsS coincides with the image of ev(s). The restriction of g to S
satisfies Definition 2, so is transitive.

(ii) Let i be the isotropy Lie algebra at s ∈ S. It corresponds to a 1-parameter subgroup of PSL(2,R),
which is elliptic, R-semisimple, or unipotent. In any case, there is a tangent vector V ∈ TsU annihilated by i.
Then i also vanishes along the curve exps(tV ), where defined. Because points of U\S have trivial isotropy,
this curve must be contained in S. Thus the fixed vector V of the flow of i is tangent to S.

If i is elliptic, it preserves a tangent direction at s transverse to the invariant subspace TsS ⊂ TsU . Within
TsS, there must also be an invariant line independent from V . But now an elliptic flow with three invariant
lines must be trivial. We conclude that i is semisimple or unipotent.

(iii) If the isotropy is unipotent, the vector V annihilated by i must be isotropic, and the invariant subspace
TsS must equal V⊥. So S is degenerate in this case.

If i is semisimple over R, then V is spacelike. The other two eigenvectors of i have nontrivial eigenvalues
and must be isotropic. On the other hand, i preserves the plane TsS, so it preserves a line of TsU transverse
to S and a line independent from V in TsS. These lines must be the eigenspaces of i. If the plane TsS ⊂ TsU
contains an isotropic line and is transverse to an isotropic line, then it is degenerate. �

According to Lemma 6 we have two different geometric situations, which will be treated separately in
Sections 3 and 4. The case of R-semisimple isotropy will be referred to as just “semisimple” below.
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3. NO QUASIHOMOGENEOUS LORENTZ METRICS WITH SEMISIMPLE ISOTROPY

If the isotropy at s ∈ S is semisimple, then it fixes a vector V ∈ TsS of positive g-norm. Using the transitive
g-action on S, we can extend V to a g-invariant vector field X on S with constant positive g-norm. In this
section we assume that the isotropy is semisimple. We can suppose that X is of constant norm equal to 1.

Recall that the affine group of the real line Aff is the group of transformations of R given by x 7→ ax+b,
with a ∈ R∗ and b ∈ R. If Y is the infinitesimal generator of the one-parameter group of homotheties and H
the infinitesimal generator of the one parameter group of translations, then [Y,H] = H.

Lemma 7 (compare [Dum08], Proposition 3.6). (i) The Killing algebra g is isomorphic to R⊕ aff. The
stabilizer of a point of S corresponds to a one-parameter group of homotheties in Aff.

(ii) The vector field X is the restriction to S of a central element X ′ in g.
(iii) The restriction of the Killing algebra to S has, in adapted analytic coordinates (x,h), a basis (−h ∂

∂h ,
∂

∂h ,
∂

∂x ).
(iv) In the above coordinates, the restriction of g to S is dx2.

Proof. (i) We show first that the derived Lie algebra g′ = [g,g] is 1-dimensional. It is a general fact that the
derived algebra of a solvable Lie algebra is nilpotent [Kir74]. Remark first that [g,g] 6= 0. Indeed, otherwise
g is abelian and the action of the isotropy i ⊂ g at a point s ∈ S is trivial on g and hence on TsS, which is
identified with g/i. The isotropy action on the tangent space TsS being trivial implies that the isotropy action
is trivial on TsU (An element of O(2,1) which acts trivially on a plane in R3 is trivial). This implies that the
isotropy is trivial at s ∈ S: a contradiction. As g is 3-dimensional, g′ is a nilpotent Lie algebra of dimension
1 or 2, hence g′ ' R, or g′ ' R2.

Assume, for a contradiction, that g′ ' R2. We first prove that the isotropy i lies in [g,g]. Suppose this is
not the case. Then [g,g] ' R2 acts freely and transitively on S, preserving the vector field X . Then X is the
restriction to S of a Killing vector field X ′ ∈ [g,g].

Let Y be a generator of the isotropy at s ∈ S. Since X is fixed by the isotropy, one gets, in restriction
to S, the following Lie bracket relation: [Y,X ′] = [Y,X ] = aY , for some a ∈ R. On the other hand, by our
assumption, Y /∈ [g,g], meaning that a = 0. This implies that X ′ is a central element in g. In particular, g′ is
at most one-dimensional: a contradiction. Hence i⊂ [g,g].

Now let Y be a generator of i, {Y,X ′} be generators of [g,g], and (Y,X ′,Z) be a basis of g. The tangent
space of S at a point s ∈ S is identified with g/i. Denote X̄ ′, Z̄ the projections of X ′ and Z to this quotient. The
infinitesimal action of Y on this tangent space is given in the basis {X̄ ′, Z̄} by the matrix

ad(Y ) =
(

0 ∗
0 0

)
because g′ ' R2 and ad(Y )(g) ⊂ g′. Moreover, ad(Y ) 6= 0, since the restriction of the isotropy action to
TsS is injective. From this form of ad(Y ), we see that the isotropy is unipotent with fixed direction RX ′: a
contradiction.

We have proved that [g,g] is 1-dimensional. Notice that i 6= [g,g]. Indeed, if they are equal, then the action
of the isotropy on the tangent space TsU at s ∈ S is trivial: a contradiction.

Let H be a generator of [g,g], and Y the generator of i. Then [Y,H] = aH, with a ∈ R. If a = 0, then the
image of ad(Y ), which lies in [g,g], belongs to the kernel of ad(Y ), which contradicts semisimplicity of the
isotropy. Therefore a 6= 0 and we can assume, by changing the generator Y of the isotropy, that a = 1, so
[Y,H] = H.

Let X ′ ∈ g be such that {X ′,H} span the kernel of ad(H). Then (Y,X ′,H) is a basis of g. There is b ∈ R
such that [X ′,Y ] = bH. After replacing X ′ by X ′+bH, we can assume [X ′,Y ] = 0. It follows that g is the Lie
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algebra R⊕ aff(R). The Killing field X ′ spans the center, the isotropy Y spans the one-parameter group of
homotheties, and H spans the one-parameter group of translations.

(ii) This comes from the fact that X is the unique vector field tangent to S invariant by g.

(iii) The commuting Killing vector fields X ′ and H are nonsingular on S. This implies that, in adapted
coordinates (x,h) on S, H = ∂

∂h and X = ∂

∂x . Because [Y,X ] = 0, the restriction of Y to S has the expression
f (h) ∂

∂h , with f an analytic function vanishing at the origin. The Lie bracket relation [Y,H] = H reads[
f (h)

∂

∂h
,

∂

∂h

]
=

∂

∂h
,

and leads to f (h) =−h.

(iv) Since H = ∂

∂h and X = ∂

∂x are Killing fields, the restriction of g to S admits constant coefficients with
respect to the coordinates (x,h). Since H is expanded by the isotropy, it follows that H is of constant g-norm
equal to 0. On the other hand, X is of constant g-norm equal to one. It follows that the expression of g on S
is dx2. �

Lemma 8. Assume g as in Lemma 7 acts quasihomogeneously on (U,g). In adapted analytic coordinates
(x,h,z) on U,

g = dx2 +dhdz+Cz2dh2 +Dzdxdh for some C,D ∈ R.
Moreover, in these coordinates, ∂

∂x , ∂

∂h , and −h ∂

∂h + z ∂

∂ z are Killing fields.

Proof. Consider the commuting Killing vector fields X ′ and H constructed in Lemma 7. Their restrictions to
S have the expressions H = ∂/∂h and X = ∂/∂x. Recall that on S, the vector field H is of constant g-norm
equal to 0 and X is of constant g-norm equal to one. Point (iv) in Lemma 7 also shows that g(X ,H) = 0 on S.
Moreover, being central, X ′ is of constant g-norm on U \S, hence of constant g-norm one on all of U .

Define a geodesic vector field Z as follows. At each point s ∈ S, there exists a unique tangent vector
Zs, transverse to TsS, such that g(Zs,Zs) = 0, g(Xs,Zs) = 0, and g(Hs,Zs) = 1. In fact, Zs spans the second
isotropic line (other than that generated by Hs) in X⊥s . In this line Zs is uniquely determined by the relation
g(Hs,Zs) = 1. Now X ′ and H are Killing and, in restriction to S, commute. So along S, the vector field Z is
stable by the flow of X and H. Now extend Z via the geodesic flow:

Z(exps(tZs)) := (exps)∗tZs(Zs) =
d
dt

exps(tZs)

The resulting geodesic vector field is well defined on a sufficiently small open neighborhood of S in U . Since
X ′ and H are Killing, their flows commute with the exponential map, so Z commutes with X ′ and H.

The image of S through the flow of Z defines a foliation by surfaces. Each leaf is given by expS(zZ), for
some z small enough. The leaf S corresponds to z = 0.

Let (x,h,z) be analytic coordinates in the neighborhood of the origin such that X ′ = ∂/∂x,H = ∂/∂h,Z =

∂/∂ z. The scalar product g(Z,X ′) is constant along the orbits of Z. This comes from the following classical
computation :

Z ·g(X ′,Z) = g(∇ZX ′,Z)+g(X ′,∇ZZ) = 0

since ∇ZZ = 0 and ∇·X ′ is skew-symmetric with respect to g. The same is true for g(Z,H). In particular, the
coefficients in g of dxdz and dhdz are constant on the orbits of Z.

Moreover, the invariance of the metric by the commutative Killing algebra generated by X ′ and H implies
that dxdz and dhdz are also constant along the orbits of X ′ and of H. This implies that the coefficients of
dxdz and dhdz are 0 and 1, respectively, not only on S, but over all of U .
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The coefficients of dh2 and dxdh depend only on z. Then

g = dx2 +dhdz+ c(z)dh2 +d(z)dxdh

with c and d analytic functions which both vanish at z = 0.
Next we use the invariance of g by Y . Recall that [Y,X ′] = 0 and [Y,H] = H. Note that Y preserves the two

isotropic directions of X ′⊥, which are spanned by Z and H−d(z)X ′. From g(X ′,H−d(z)X ′)≡ 1, compute

0 = Y.(g(X ′,H−d(z)X ′)) = g([Y,X ′],H−d(z)X ′)+g(X ′, [Y,H−d(z)X ′])

= g(X ′,H)− (Y.d)g(X ′,X ′) = d(z)− (Y.d)(z),

so Y.d = d. Then [Y,H−d(z)X ′] = H−d(z)X ′. Next, from g(H−d(z)X ′,Z)≡ 1,

0 = g([Y,H−d(z)X ′],Z)+g(H−d(z)X ′, [Y,Z]) = 1+g(H−d(z)X ′, [Y,Z]),

so [Y,Z] =−Z. Now, since Y and X ′ commute, the general expression for Y is

Y = u(h,z)
∂

∂h
+ v(h,z)

∂

∂ z
+ t(h,z)

∂

∂x

with u,v, and t analytic functions, where u(h,0) =−h, and v and t vanish on {z = 0}.
The other Lie bracket relations read

[u(h,z)
∂

∂h
+ v(h,z)

∂

∂ z
+ t(h,z)

∂

∂x
,

∂

∂h
] =

∂

∂h
and

[u(h,z)
∂

∂h
+ v(h,z)

∂

∂ z
+ t(h,z)

∂

∂x
,

∂

∂ z
] =− ∂

∂ z
.

The first relation gives
∂u
∂h

=−1
∂v
∂h

= 0
∂ t
∂h

= 0.

The second one leads to
∂u
∂ z

= 0
∂v
∂ z

= 1
∂ t
∂ z

= 0.

We get
u(h,z) =−h v(h,z) = z t(h,z) = 0.

Hence, in our coordinates, Y = −h∂/∂h+ z∂/∂ z. The invariance of g under the action of this linear vector
field implies c(e−tz)e2t = c(z) and d(e−tz)et = d(z), for all t ∈ R. This implies then that c(z) = Cz2 and
d(z) = Dz, with C,D real constants. �

3.1. Computation of the Killing algebra. We need to understand now whether the metrics

gC,D = dx2 +dhdz+Cz2dh2 +Dzdxdh

constructed in Lemma 8 really are quasihomogeneous. In other words, do the metrics in this family admit
other Killing fields than ∂/∂x, ∂/∂h and −h∂/∂h+ z∂/∂ z ? In this section we compute the full Killing
algebra g of gC,D. In particular, we obtain that the metrics gC,D = dx2 + dhdz+Cz2dh2 +Dzdxdh always
admit additional Killing fields and, by Lemma 4 (ii) are locally homogeneous.

The formula for the Lie derivative of g (see, eg, [KN96]) gives

(LT gC,D)

(
∂

∂xi
,

∂

∂x j

)
= T ·gC,D

(
∂

∂xi
,

∂

∂x j

)
+gC,D

([
∂

∂xi
,T
]
,

∂

∂x j

)
+gC,D

(
∂

∂xi
,

[
∂

∂x j
,T
])

.
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Let T = α∂/∂x+β∂/∂h+ γ∂/∂ z. The pairs(
∂

∂xi
,

∂

∂x j

)
=(1)

(
∂

∂ z
,

∂

∂ z

)
(2)
(

∂

∂x
,

∂

∂x

)
(3)
(

∂

∂x
,

∂

∂ z

)
(4)
(

∂

∂x
,

∂

∂h

)
(5)
(

∂

∂h
,

∂

∂ z

)
(6)
(

∂

∂h
,

∂

∂h

)
give the following system of PDEs on α,β and γ in order for T to be a Killing field:

0 = βz,(1)

0 = αx +Dzβx,(2)

0 = βx +Dzβz +αz,(3)

0 = γD+Dzαx +Cz2
βx + γx +αh +Dzβh,(4)

0 = βh +Cz2
βz +Dzαz + γz,(5)

0 = zCγ +Cz2
βh +Dzαh + γh.(6)

The following proposition finishes the proof of Theorem 1 in the case of semisimple isotropy on S:

Proposition 9. The Lorentz metrics gC,D are locally homogeneous for all C,D ∈ R.

Proof. It is straightforward to verify that

T = Dh
∂

∂x
+

1
2
(D2−C)h2 ∂

∂h
+((C−D2)zh−1)

∂

∂ z
satisfies equations (1)–(6). Note that T (0) =−∂/∂ z, so T /∈ g, and (U,g) is locally homogeneous. �

We explain now our method to find the extra Killing field T in Proposition 9, and we compute the full
Killing algebra, g, of gC,D. Recall the n-dimensional Lorentzian manifolds AdSn,Minn, and dSn, of constant
sectional curvature−1,0, and 1, respectively (see, eg, [Wol67]). Recall also that AdS3 is isometric to SL(2,R)
with the bi-invariant Cartan-Killing metric.

Proposition 10.
(i) If D 6= 0 and C /∈ {0,D2}, then (U,gC,D) is locally isometric to a left-invariant metric on SL(2,R) with

g ∼= R⊕ sl(2,R). The isotropy is the graph of a Lie algebra homomorphism of the R factor to the
subalgebra spanned by a R-semisimple element of sl(2,R).

(ii) If D 6= 0 and C = D2, then (U,gC,D) is locally isometric to a left-invariant metric on the Heisenberg
group with g∼=Rnheis. The isotropy is the R factor, which acts by a semisimple automorphism of heis.

(iii) If C = 0 and D 6= 0, then (U,gC,D) is locally isometric to AdS3, so g∼= sl(2,R)⊕ sl(2,R).
(iv) If C 6= 0 and D = 0, then (U,gC,D) is locally isometric to R× dS2, for which g ∼= R⊕ sl(2,R). The

isotropy is generated by a semisimple element of sl(2,R).
(v) If C = 0 and D = 0, then (U,gC,D) is locally isometric to Min3, so g∼= sl(2,R)nR3.

Proof. Recall that (x,h,z) are analytic coordinates on U , with S = z−1(0), such that all Lorentz metrics
gC,D admit the Killing fields X ′ = ∂

∂x , Y = −h ∂

∂h + z ∂

∂ z and H = ∂

∂h , for which the Lie bracket relations are
[Y,X ′] = [H,X ′] = 0 and [Y,H] = H. Moreover, Proposition 9 shows that all Lorentz metrics gC,D are locally
homogeneous and that their full Killing algebra g is of dimension at least four. In particular, the Killing
algebra g strictly contains the previous three-dimensional Lie algebra as a subalgebra l acting quasihomoge-
neously in the neighborhood of the origin.

Assuming gC,D is not of constant sectional curvature, then Lemma 4 (i) implies dim g= 4. We first derive
some information on the algebraic structure of g in this case.
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If dim g = 4, then it is generated by X ′,Y,H, and an additional Killing field T . Since the isotropy RY at
the origin fixes the spacelike vector X(0) and expands H, we can choose a fourth generator T of g evaluating
at the origin to a generator of the second isotropic direction of the Lorentz plane X(0)⊥. As the action of
Ad(Y ) on g is g-skew symmetric, we get at the origin : [Y,T ](0) = −T (0). Hence [Y,T ] = −T + aY for
some constant a ∈R, and we can replace T with T −aY in order that [Y,T ] =−T . Since X ′ and Y commute,
[X ′,T ] is also an eigenvector of ad(Y ) with eigenvalue −1. This eigenspace of ad(Y ) is one-dimensional, so
[T,X ′] = cT , for some c ∈ R.

The Jacobi relation

[Y, [T,H]] = [[Y,T ],H]+ [T, [Y,H]] = [−T,H]+ [T,H] = 0

says that [T,H] commutes with Y . The centralizer of Y in g is RY⊕RX ′. We conclude that [H,T ] = aX ′−bY ,
for some a,b ∈ R.

(i) Assume D 6= 0 and C /∈ {0,D2}. A straightforward computation shows that gC,D is not of constant
sectional curvature. We will construct a Killing field T = α∂/∂x+β∂/∂h+ γ∂/∂ z, meaning the functions
α , β and γ solve the PDE system (1)–(6). We will moreover construct it so that c = 0 and a = 1.

First we use the Lie bracket relations derived above for T and l. Remark that, since T and X ′ commute,
the coefficients α,β and γ of T do not depend on the coordinate x; in particular, equation (2) is satisfied. The
relation [H,T ] = aX ′−bY reads, when a = 1,[

∂

∂h
,T
]
=

∂

∂x
+b
(

h
∂

∂h
− z

∂

∂ z

)
.

This leads to αh = 1,βh = bh, and γh =−bz. Using equation (1), we obtain β = 1
2 bh2 +β0. We can take the

additive constant β0 = 0 because ∂

∂h ∈ l. Now equation (4) gives γ =−bzh−1/D.
Equation (6) now reads

0 = zC(− 1
D
− zbh)+Cz2bh+Dz−bz =−Cz

D
+Dz−bz

which yields b = D−C/D. Now γ can be written −1/D− zh(D−C/D).
Equation (3) says αz = 0, so we conclude α = h. The resulting vector field is

T = h
∂

∂x
+

1
2
(D− C

D
)h2 ∂

∂h
+

(
zh(

C
D
−D)− 1

D

)
∂

∂ z
.(7)

Note that the coefficients of T also satisfy equation (5), so T is indeed a Killing field.
We obtained this solution setting c = 0, so the Lie algebra g generated by {T,X ′,Y,H} contains X ′ as a

central element. We also set a = 1, and found b = D−C/D, so [H,T ] = X ′+(C/D−D)Y , which we will
call Y ′. It is straightforward to verify that for T as above, [Y,T ] =−T . Under the hypothesis C 6= D2, the Lie
subalgebra generated by {Y ′,H,T} is isomorphic to sl(2,R), with Y ′ R-semisimple, and it acts transitively on
U . Consequently, gC,D is locally isomorphic to a left-invariant Lorentz metric on SL(2,R). The full Killing
algebra is g∼= R⊕ sl(2,R), with center generated by X ′, and isotropy RY = R(X ′+Y ′). This terminates the
proof of point (i).

(ii) When D 6= 0 and C = D2, then (7) still solves the Killing equations. The bracket relations are the same,
but now [H,T ] = X ′. Then g∼=Rnheis, where the heis factor is generated by {H,T,X ′} and acts transitively,
and the R factor is generated by the isotropy Y , which acts by a semisimple automorphism on heis. Up to
homothety, there is a unique left-invariant Lorentz metric on Heis in which X ′ is spacelike, by Proposition
1.1 of [DZ10], where it is called the Lorentz-Heisenberg geometry.
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(iii) When C = 0 and D 6= 0, then (7) again solves the Killing equations. It now simplifies to

T = h
∂

∂x
+

1
2

Dh2 ∂

∂h
+

(
−zhD− 1

D

)
∂

∂ z
.

The bracket relation is [H,T ] = X ′−DY , and g still contains a copy of R⊕sl(2,R), with center generated
by X ′ and sl(2,R) generated by {X ′−DY,H,T ′}. The sl(2,R) factor still acts simply transitively. On the
other hand, one directly checks that α = β = 0 and γ = e−Dx is a solution of the PDE system, meaning that
e−Dx∂/∂ z is also a Killing field. From[

X ′,e−Dx ∂

∂ z

]
=−De−Dx ∂

∂ z
6= 0

it is clear that this additional Killing field does not belong to the subalgebra generated by {T,X ′,Y,H}, in
which X ′ is central. It follows that the Killing algebra is of dimension at least five, hence six by Lemma 4 (i),
which implies that g0,D is of constant sectional curvature. Since g0,D is locally isomorphic to a left-invariant
Lorentz metric on SL(2,R), the sectional curvature is negative. Up to normalization, g0,D is locally isometric
to AdS3.

(iv) The Killing field T in (7) multiplied by D gives

TD = Dh
∂

∂x
+

1
2
(D2−C)h2 ∂

∂h
+
(
zh(C−D2)−1

) ∂

∂ z
.

Setting C 6= 0 and D = 0 gives

T0 =−
Ch2

2
∂

∂h
+(zhC−1)

∂

∂ z
which is indeed a Killing field of gC,0. The brackets are [X ′,T0] = 0, [H,T0] = CY , and [Y,T0] = −T0. As in
case (i), the Killing Lie algebra contains a copy of R⊕sl(2,R), with center generated by X ′, and sl(2,R) gen-
erated by {Y,H,T0}. Here the isotropy generator Y lies in the sl(2,R)-factor, which acts with two-dimensional
orbits. This local sl(2,R)-action defines a two-dimensional foliation tangent to X ′⊥. Recall that X ′ is of con-
stant g-norm equal to one, so X ′⊥ has Lorentzian signature. The metric is, up to homotheties on the two
factors, locally isomorphic to the product R×dS2.

(v) If C = D = 0, then gC,D is flat and g∼= sl(2,R)nR3. �

As a by-product of the proof of Theorem 1 in the case of semisimple isotropy, we have obtained the
following more technical result:

Proposition 11. Let g be a real-analytic Lorentz metric in a neighborhood of the origin in R3. Suppose that
there exists a three-dimensional subalgebra l of the Killing Lie algebra acting transitively on an open set
admitting the origin in its closure, but not in the neighborhood of the origin. If the isotropy at the origin is a
one-parameter R-semisimple subgroup in O(2,1), then

(i) There exist local analytic coordinates (x,h,z) in the neighborhood of the origin and real constants C,D
such that

g = gC,D = dx2 +dhdz+Cz2dh2 +Dzdxdh.

(ii) The algebra l is solvable, and equals, in these coordinates,

l= 〈 ∂

∂x
,

∂

∂h
,−h

∂

∂h
+ z

∂

∂ z
〉.

In particular, l∼= R⊕aff(R), where aff(R) is the Lie algebra of the affine group of the real line.
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(iii) All the metrics gC,D are locally homogeneous. They admit a Killing field T /∈ l of the form

T = Dh
∂

∂x
+

1
2
(D2−C)h2 ∂

∂h
+((C−D2)zh−1)

∂

∂ z
.

The possible geometries on (U,gC,D) are given by (i) - (v) of Proposition 10.

4. NO QUASIHOMOGENEOUS LORENTZ METRICS WITH UNIPOTENT ISOTROPY

We next treat the unipotent case of Lemma 6. The following results can be found in [Dum08] Propositions
3.4 and 3.5 in Section 3.1, where they are proved without making use of compactness. See also [Zeg96,
Proposition 9.2] for point (iii).

Proposition 12.
(i) The surface S is totally geodesic.

(ii) The Levi-Civita connection ∇ restricted to S is either flat, or locally isomorphic to the canonical bi-
invariant connection on the affine group of the real line Aff.

(iii) The restriction of the Killing algebra g to S is isomorphic either to the Lie algebra of the Heisenberg
group in the flat case, or otherwise to a solvable subalgebra sol(1,a) of Aff×Aff, spanned by the
elements (t,0),(0, t) and (w,aw), where t is the infinitesimal generator of the one-parameter group of
translations, w the infinitesimal generator of the one-parameter group of homotheties, and a ∈ R.

Recall that, as S has codimension one, the restriction to S of the Killing Lie algebra g of g is an isomor-
phism. The Heisenberg group and sol(1,−1) are unimodular, so by Lemma 3, g is isomorphic to sol(1,a),
with a 6=−1, and S is non flat.

Recall that in dimension three, the curvature is completely determined by its Ricci tensor, which is a
symmetric bilinear form. The Ricci tensor is determined by the Ricci operator, which is a field of g-symmetric
endomorphisms A : TU → TU such that Ricci(u,v) = g(Au,v), for any tangent vectors u,v.

Definition 13. The metric g is said to be curvature homogeneous if for any pair of points u,u′ ∈ U , there
exists a linear isomorphism from TuU to Tu′U preserving both g and the curvature tensor.

In dimension three, it is equivalent to assume in the previous definition that these linear maps preserve
both g and the Ricci operator A.

Proposition 14.
(i) The only eigenvalue of the Ricci operator is 0, everywhere on U.

(ii) The metric g is curvature homogeneous; more precisely, in an adapted framing on U, the Ricci operator
reads

A =

 0 0 α

0 0 0
0 0 0

 , α ∈ R∗.

Proof. (i) Pick a point s in S. The Ricci operator A(s) must be invariant by the unipotent isotropy (which
identifies with the stabilizer in the orthogonal group of g(s) of an isotropic vector X(s) ∈ TsU).

The action of the isotropy on TsU fixes an isotropic vector e1 = X(s) tangent to S and so preserves the
degenerate plane e⊥1 = TsS. In order to define an adapted basis, consider two vectors e2,e3 ∈ TsU such that

g(e1,e2) = 0 g(e2,e2) = 1 g(e3,e3) = 0 g(e2,e3) = 0 g(e3,e1) = 1
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The action on TsU of the one-parameter group of isotropy is given in the basis (e1,e2,e3) by the matrix

Lt =

 1 t − t2

2
0 1 −t
0 0 1

 , t ∈ R.

First we show that A(s) : TsU → TsU has, in our adapted basis, the following form: λ β α

0 λ −β

0 0 λ

 , α,β ,λ ∈ R.

Since A(s) is invariant by the isotropy, it commutes with Lt for all t. Each eigenspace of A(s) is preserved by
Lt , and eigenspaces of Lt are preserved by A(s). As Lt does not preserve any non trivial splitting of TsU , it
follows that all eigenvalues of A(s) are equal to some λ ∈ R. Moreover, the unique line and plane invariant
by Lt must also be invariant by A(s), so A(s) is upper-triangular in the basis (e1,e2,e3). A straightforward
calculation of the top corner entry of A(s)Lt = LtA(s) leads to the relation on the β entries and thus to our
claimed form for A(s).

Now the g-symmetry of A(s) means g(A(s)e2,e3) = g(e2,A(s)e3), which gives β = 0. Since the symmetric
functions of the eigenvalues of A are scalar invariants, they must be constant on all of U . This implies that
the only eigenvalue of A is λ , on all of U . It remains only to prove that λ = 0. Consider an open set in U on
which the Killing algebra sol(1,a) is transitive, so g is locally isomorphic to a left-invariant Lorentz metric
on SOL(1,a).

The sectional and Ricci curvatures and Ricci operator of a left-invariant Lorentz metric on a given Lie
group can be calculated, starting from the Koszul formula, in terms of the brackets between left-invariant
vector fields forming an adapted framing of the metric. In [CK09] Calvaruso and Kowalski calculate Ricci
operators for left-invariant Lorentz metrics on three-dimensional Lie groups, assuming they are not sym-
metric (see also previous curvature calculations in [Nom79], [CP97], [Cal07]). If the metric on U\S were
symmetric, then the covariant derivative of the curvature would vanish on all of U , which would imply U lo-
cally symmetric, hence locally homogeneous; therefore, we need consider only nonsymmetric left-invariant
metrics here. A consequence of their Theorems 3.5, 3.6, and 3.7 is that the Ricci operator of a left-invariant,
nonsymmetric Lorentz metric on a nonunimodular three-dimensional Lie group admits a triple eigenvalue λ

if and only if λ = 0, and the Ricci operator is nilpotent of order two. We conclude λ = 0, so A(s) has the
form claimed. Moreover, A is nilpotent of order two on U \S.

(ii) Because g acts transitively on S, there is an adapted framing along S in which A≡ A(s). The parameter
α in A(s) cannot vanish; otherwise the curvature of g vanishes on S and (S,∇) is flat, which was proved
to be impossible in Proposition 12. Now the Ricci operator on S is nontrivial and lies in the closure of the
PSL(2,R)-orbit O of the Ricci operator on U \ S. But we know from (i) that on U\S, the Ricci operator
is g-symmetric and nilpotent of order 2, so it has the same form as A(s), meaning it also belongs to the
PSL(2,R)-orbit of  0 0 1

0 0 0
0 0 0

 .

�
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Now Ricc(u,u) is a quadratic form of rank one equal to g(W,u)2, for some nonvanishing isotropic vector
field W on U , which coincides with X on S. Invariance of Ricci by g implies invariance of W . Proposition 5
implies that g is locally homogeneous.

5. ALTERNATE PROOFS USING THE CARTAN CONNECTION

The aim of this section is to give a second proof of Theorem 1 using the Cartan connection associated
to a Lorentz metric. The reader can find more details about the geometry of Cartan connections in the
book [Sha97]. We still consider g a Lorentz metric defined in a connected open neighborhood U of the origin
in R3.

5.1. Introduction to the Cartan connection. Let h = o(2,1)nR2,1. Let P = O(2,1) < O(2,1)nR2,1, so
p = o(2,1) ⊂ h. Let π : B→U be the principal P-bundle of normalized frames on U , in which the Lorentz
metric g has the matrix form

I=

 1
1

1

 .

(Note that B is nearly the same as the bundle R(U) from Section 2, though it has been enlarged to allow all
possible orientations and time orientations.)

The Cartan connection associated to (U,g) is the 1-form ω ∈ Ω1(B,h) formed by the sum of the Levi-
Civita connection of the metric ν ∈Ω1(B,p) and the tautological 1-form θ ∈Ω1(B,R2,1), defined by θb(v) =
b−1(π∗v). The form ω satisfies the following axioms for a Cartan connection:

(1) It gives a parallelization of B—that is, for all b ∈ B, the restriction ωb : TbB→ h is an isomorphism.
(2) It is P-equivariant: for all p ∈ P, the pullback R∗pω = Ad p−1 ◦ω .
(3) It recognizes fundamental vertical vector fields: for all X ∈ p, if X‡ is the vertical vector field on B

generated by X , then ω(X‡)≡ X .

The Cartan curvature of ω is

K(X ,Y ) = dω(X ,Y )+ [ω(X),ω(Y )].

This 2-form is always semibasic, meaning Kb(X ,Y ) only depends on the projections of X and Y to Tπ(b)U ;
in particular, K vanishes when either input is a vertical vector. We will therefore express the inputs to Kb as
tangent vectors at π(b). Torsion-freeness of the Levi-Civita connection implies that K has values in p. Thus
K is related to the usual Riemannian curvature tensor R ∈Ω2(U)⊗End(T M) by

b◦Rπ(b)(u,v)◦b−1 = Kb(u,v).

The benefit here of working with the Cartan curvature is that, when applied to Killing vector fields, it gives a
precise relation between the brackets on the manifold U and the brackets in the Killing algebra g.

The P-equivariance of ω leads to P-equivariance of K: (R∗pK)(X ,Y ) = (Ad p−1)(K(X ,Y )). The infinites-
imal version of this statement is, for A ∈ p,

K([A‡,X ],Y )+K(X , [A‡,Y ]) = [K(X ,Y ),A].

A Killing field Y on U lifts to a vector field on B, which we will also denote Y , with LY ω = 0. Note that
also LY K = 0 in this case. Thus if X and Y are Killing fields, then

X .(ω(Y )) = ω[X ,Y ] and Y.(ω(X)) = ω[Y,X ].
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In this case,

K(X ,Y ) = X .(ω(Y ))−Y.(ω(X))−ω[X ,Y ]+ [ω(X),ω(Y )]

= ω[X ,Y ]−ω[Y,X ]−ω[X ,Y ]+ [ω(X),ω(Y )]

= ω[X ,Y ]+ [ω(X),ω(Y )]

so, when X and Y are Killing, then

ω[X ,Y ] = [ω(Y ),ω(X)]+K(X ,Y ).(8)

Via the parallelization given by ω , the semibasic, p-valued 2-form K corresponds to a P-equivariant,
automorphism-invariant function

κ : B→∧2R2,1∗⊗p.

The P-representation on the target vector space is associated naturally to the adjoint representation of G
restricted to P, and will be denoted g ·κ(b), for g ∈ P and b ∈ B. We will use the same notation below for
other P-represenations associated to the adjoint, and also for the corresponding Lie algebra representations—
for example, X ·κ(b) for X ∈ p.

5.2. Curvature representation. Denote (e,h, f ) a basis of R2,1 in which the inner product is given by I. Let
E,H,F be generators of p with matrix expression in the basis (e,h, f )

E =

 0 −1
0 1

0

 H =

 1
0
−1

 F =

 0
−1 0

1 0

 .

Therefore this representation of p is equivalent to ad p via the isomorphism sending (e,h, f ) to (E,H,F).
Denote by ∗ the isomorphism R2,1→ R2,1∗ with w∗(u) = 〈w,u〉. Note that for p ∈ O(2,1) and x ∈ R2,1,

we have (px)∗ = p∗x∗ for the dual represention p∗x∗ = x∗ ◦ p−1.
Next we define an O(2,1)-equivariant homomorphism ϕ : ∧2R2,1∗⊗ o(2,1)→ R3∗⊗R3, where the rep-

resentation on End R3 is by conjugation. Define ϕ on simple tensors by

ϕ(v∗∧w∗⊗X) = (Xv)∗⊗w− (Xw)∗⊗ v = (w∗ ◦X)⊗ v− (v∗ ◦X)⊗w.

Equivariance is easy to check. When the input lies in the submodule W satisfying the Bianchi identity,
then the output is I-symmetric (see [Sha97], Section 6, Proposition 1.4 (ii)(c)). The Ricci endomorphism A,
defined in terms of the curvature tensor by

〈Axv,w〉= tr Rx(v, ·)w = Riccix(v,w), ∀v,w ∈ TxM

corresponds via ω to the function ϕ ◦κ . Recall that in dimension 3, the curvature tensor is determined by the
Ricci curvature, so ϕ restricted to W is actually an isomorphism onto its image.

This image is the sum E0⊕E2 of two irreducible components of the O(2,1)-representation on End R3.
The first, denoted E0, is the one-dimensional trivial representation, generated by the identity on R3, which we
will denote md . Another irreducible component E1 corresponds to endomorphisms in o(2,1), which satisfy
XI = −IX t . The O(2,1)-invariant complementary subspace, consisting of the I-symmetric endomorphisms,
splits into E0 and the last irreducible component, E2, which is five-dimensional. The component E0 captures
the scalar curvature, while E2 corresponds to the tracefree Ricci endomorphism.

In the second column of the following table, we list a basis for E0⊕E2, with notation for each element in
the first column, and the elements of W ⊂ ∧2R2,1∗⊗ o(2,1) mapping to them under ϕ in the third column.
Note that the elements in the last column span the space of all possible values of κ .



16 SORIN DUMITRESCU AND KARIN MELNICK

R3×3 W⊂ ∧2R2,1∗⊗o(2,1)
md 2( f ∗⊗ e+h∗⊗h+ e∗⊗ f ) h∗∧ e∗⊗F + e∗∧ f ∗⊗H + f ∗∧h∗⊗E
me2 e∗⊗ e e∗∧h∗⊗E
meh h∗⊗ e+ e∗⊗h f ∗∧ e∗⊗E + f ∗∧h∗⊗H

m2h2−e f 2h∗⊗h− f ∗⊗ e− e∗⊗ f 2 f ∗∧ e∗⊗H + f ∗∧h∗⊗E +h∗∧ e∗⊗F
mh f f ∗⊗h+h∗⊗ f h∗∧ f ∗⊗H + f ∗∧ e∗⊗F
m f 2 f ∗⊗ f h∗∧ f ∗⊗F

Assume now that g is quasihomogeneous. Recall that, by the results in Section 2, the Killing algebra
g is three-dimensional. It acts transitively on U , away from a two-dimensional, degenerate submanifold S
passing through the origin. Moreover, g acts transitively on S and the isotropy at points of S is conjugated
to a one-parameter semisimple group or to a one-parameter unipotent group in PSL(2,R). We will study the
interaction of g, ω(g), and κ , both on and off S.

5.3. Semisimple isotropy. Let b0 be a point of B lying over the origin and assume that the isotropy action of
g at 0 is semisimple, as in Section 3. A semisimple element of p is conjugate in P into RH, so up to changing
the choice of b0 ∈ π−1(0), we may assume that ωb0(g)∩p is spanned by H.

Proposition 15. (compare Lemma 7 (i)) If the isotropy of g at the origin is semisimple, then g∼= R⊕aff(R).

Proof. Let Y ∈ g have ωb0(Y ) = H, so the corresponding Killing field vanishes at the origin. The projection
ωb0(g) of ωb0(g) to R2,1 is 2-dimensional, degenerate, and H-invariant. Again, by changing the point b0

in the fiber above the origin, we may conjugate by an element normalizing RH so that this projection is
span{e,h}. Therefore, there is a basis (X ,Y,Z) of g such that

ωb0(X) = h+αE +βF and ωb0(Z) = e+ γE +δF

for some α,β ,γ,δ ∈ R. Because Kb0(Y, ·) = 0, equation (8) gives

ωb0 [Y,X ] = [h+αE +βF,H] =−αE +βF ∈ ωb0(g)

so α = β = 0 and [Y,X ] = 0. A similar computation gives

ωb0 [Y,Z] = [e+ γE +δF,H] =−e− γE +δF

so δ = 0, and [Y,Z] =−Z.
Infinitesimal invariance of K by Y gives

Kb0([Y,X ],Z)+Kb0(X , [Y,Z]) = Y.(K(X ,Z))b0 = H‡.(K(X ,Z))b0 = [−H,Kb0(X ,Z)],

which reduces to Kb0(X ,Z) = [H,Kb0(X ,Z)]. Since K takes values in p, where ker(ad H− Id) = RE, we get

Kb0(X ,Z) = κb0(h,e) = rE for some r ∈ R.

Now equation (8) gives for X and Z,

ωb0 [X ,Z] = [e+ γE,h]+ rE

= −γe+ rE.

In order that this element belong to ωb0(g) = span{H,h,e+ γE}, we must have r =−γ2, and [X ,Z] =−γZ.
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The structure of the algebra g in the basis (X ,Y,Z) is

ad Y =

 0
0
−1

 ad X =

 0
0
−γ

 ad Z =

 0
0

γ 1 0

 .

This g is isomorphic to aff(R)⊕R, with center generated by γY −X . �

Let W = X − γY . Note that W (0) has norm 1 because ωb0(W ) = h. As in Section 3, where the central
element of g is called X ′, the norm of W is constant 1 on U because it is g-invariant and equals 1 at a point of
S. Existence of a Killing field of constant norm 1 has the following consequences for the geometry of U :

Proposition 16.
(i) The local g-action on U preserves a splitting of TU into three line bundles, L−⊕RW ⊕L+, with L−

and L+ isotropic.
(ii) The distributions L−⊕RW and L+⊕RW are each tangent to g-invariant, degenerate, totally geodesic

foliations P− and P+, respectively; moreover, the surface S is a leaf of one of these foliations, which
we may assume is P+.

Proof. (i) Because g preserves W , it preserves W⊥, which is a 2-dimensional Lorentz distribution. A 2-
dimensional Lorentz vector space splits into two isotropic lines preserved by all linear isometries. Therefore
W⊥ = L−⊕L+, with both line bundles isotropic and g-invariant.

(ii) Because the flow along W preserves L− and L+, the distributions L−⊕RW and L+⊕RW are involutive,
and thus they each integrate to foliations P− and P+ by degenerate surfaces.

Let x ∈U . Let V− ∈ Γ(L−) and V+ ∈ Γ(L+) be vector fields with V±(x) 6= 0 and [W,V±](x) = 0. It is
well known that a Killing field of constant norm is geodesic: ∇WW = 0. Moreover, because g(V±,V±) is
constant zero, W.(g(V±,V±)) =V±.(g(V±,V±)) = 0, from which

gx(∇WV±,V±) = gx(∇V±W,V±) = gx(∇V±V±,V±) = 0.

The tangent distributions TP± equal (V±)⊥, and it is now straightforward to verify from the axioms for ∇

that P− and P+ are totally geodesic through x.
The Killing field W is tangent to the surface S. Because S is degenerate, T S⊥ is an isotropic line of W⊥

and therefore coincides with L+ or L−. We can assume it is L+, so S is a leaf of P+; in particular, we have
shown S is totally geodesic. �

Proposition 17.
(i) For x ∈U and u,v ∈ TP±

x , the curvature Rx(u,v) annihilates (P±
x )⊥.

(ii) The Ricci endomorphism at x preserves each of the line bundles L+,RW, and L−.

Proof. (i) The argument is the same for P+ and P−, so we write it for P−. Let x ∈U\S. Because g acts
transitively on a neighborhood of x, there is a Killing field A− evaluating at x to a nonzero element of L−(x).
Note that [A−,W ] = 0. The orbit of x under A− and W coincides near x with an open subset of P−

x . Because
L− is g-invariant, the values of A− in this relatively open set belong to L−.

Now A−.(g(A−,A−)) = 0 implies g(∇A−A−,A−) = 0, and A−.(g(A−,W )) = 0 gives

0 = gx(∇A−A−,W )+gx(A−,∇A−W ) = gx(∇A−A−,W ),

using that P−
x is totally geodesic. Therefore (∇A−A−)x = aA− for some a ∈ R. The flows along A− and W

act locally transitively on P−
x preserving the connection ∇ and commuting with A−. Thus ∇A−A− ≡ aA− on

a neighborhood of x in P−
x .
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Next, W.(g(A−,W )) = 0 gives

0 = g(∇W A−,W )+g(A−,∇WW ) = g(∇W A−,W ),

using that W is geodesic. Therefore (∇W A−)x = bA− for some b ∈ R. Again invariance of ∇, A−, and W
implies that ∇W A− ≡ bA− on a neighborhood of x in P−

x . Now we compute

Rx(A−,W )A− = (∇A−∇W −∇W ∇A− −∇[A−,W ])A
− = ∇A−(bA−)−∇W (aA−) = abA−−baA− = 0.

This property of the curvature we have proved on U\S remains true on S because it is a closed condition.

(ii) It suffices to show that the Ricci endomorphism preserves L−⊕RW = TP− and L+⊕RW = TP+.
Then invariance of L+ and L− will follow from symmetry of A with respect to g. Again, we just write the
proof for P−. The Ricci endomorphism preserves TP− if and only if Riccix(u,v) = Riccix(v,u) = 0 for any
u ∈ L−x , v ∈ TP−

x . Assume u 6= 0 and complete it to an adapted basis (u,w,z) of TxU with w =W (x), z ∈ L+
x ,

and gx(u,z) = 1. Then, by part (i),

Riccix(v,u) = gx(R(v,u)u,z)+gx(R(v,w)u,w)+gx(R(v,z)u,u) = 0+0+0 = 0.

�

Let R be the g-invariant reduction of B to the subbundle comprising frames (x,(v−,W (x),v+)) with v− ∈
L−x and v+ ∈ L+

x . Now R is a principal A-bundle, where R∗ ∼= A < P is the subgroup with matrix form

A =


 λ 2

1
λ−2

 : λ ∈ R∗
 .

Note that, at any b ∈R, the projection ωb(W ) = h. Proposition 17 translates to the following statement
on R.

Proposition 18. For any b ∈R, the component κ̄b in the representation E0⊕E2, corresponding to the Ricci
endomorphism, is diagonal, so has the form

κ̄b = ymd + zm2h2−e f y,z ∈ R.

Note that H · κ̄b = 0, so by P-equivariance of κ̄ , the derivative in the vertical direction H‡.κ̄b = 0. Because
this curvature function is also g-invariant, it is constant on RU\S. By continuity, we conclude that on all R,

κ̄ ≡ ymd + zm2h2−e f y,z ∈ R.

Since g acts transitively on U \ S and preserves R, for any b ∈ R|U\S there exists a sequence an in A
such that ϕnba−1

n → b0, where each ϕn is in the pseudo-group generated by flows along local Killing fields
in g; then (Ad an)(ωb(g))→ ωb0(g) in the Grassmannian Gr(3,h). Let us consider such a sequence an

corresponding to a point b ∈ B lying above U \S. Then we prove the following

Lemma 19. Write

an =

 λ 2
n

1
λ−2

n

 , λn ∈ R∗.

Then λn→ ∞.
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Proof. First note that λn cannot converge to a nonzero number, because in this case limn(Ad an)(ωb(g)) =

ωb0(g) would still project onto R2,1 modulo p, contradicting that the g-orbit of 0 is two-dimensional. This
also shows that an cannot admit a convergent subsequence, meaning that an goes to infinity in A.

The space ωb(g) can be written as span{e+ρ(e),h+ρ(h), f +ρ( f )} for ρ : R2,1→ p a linear map. The
space (Ad an)(ωb(g)) contains λ−2

n f + an · ρ( f ), so it contains f + λ 2
n an · ρ( f ). If λn → 0, then this last

term converges to f + ξ ∈ ωb0(g), for some ξ ∈ p (because the adjoint action of an on p is diagonal with
eigenvalues λ 2

n , 1 and λ−2
n ). But ωb0(g) is spanned by e and h, so this is a contradiction. �

Differentiating the function κ̄ : B→ V(0) = E0⊕E2 gives, via the parallelization of B arising from ω ,
a P-equivariant, automorphism-invariant function D(1)κ̄ : B→ V(1) = h∗⊗V0, and similarly, by iteration,
functions D(i)κ̄ : B→V(i) = h∗⊗V(i−1); automorphism-invariant here means D(i)κ̄( f (b)) = D(i)κ̄(b) for all
b ∈ B and all automorphisms f . For vertical directions X ∈ p, the derivative is determined by equivariance:
X‡.κ̄ = −X · κ̄ . Our goal, in order to show local homogeneity of U , is to show that D(i)κ̄ has values on B
in a single P-orbit. Because κ̄ determines κ for 3-dimensional metrics, it will follow that D(i)κ has values
on B in a single P-orbit, which suffices by Singer’s theorem to conclude local homogeneity (see Proposition
3.8 in [Mel11] for a version of Singer’s theorem for real analytic Cartan connections and also [Pec14] for the
smooth case). By P-equivariance of these functions, it suffices to show that the values on R lie in a single
A-orbit. We will prove the following slightly stronger result:

Proposition 20. The curvature κ̄ and all of its derivatives D(i)κ̄ are constant on R.

Proof. Recall that
κ̄ ≡ ymd + zm2h2−e f

on all of R, for some fixed y,z ∈ R. The proof proceeds by induction on i. Suppose that for i ≥ 0, the
derivative D(i)κ̄ is constant on R, so that in particular, the value D(i)κ̄ is annihilated by H. As in the proof for
i = 0 above, to show that D(i+1)κ̄ is constant on R, it suffices to show that H‡.D(i+1)κ̄b =−H ·D(i+1)κ̄b = 0
at a single point b ∈ R|U\S.

To complete the induction step, we will need the following information on ωb(g).

Lemma 21. At b ∈R lying over x ∈U\S, the Killing algebra evaluates to

ωb(g) = span{e+ γE +βH,h− γH, f +αH +δF}, γ,β ,α,δ ∈ R.

Proof. Write
ωb(g) = span{e+ρ(e),h+ρ(h), f +ρ( f )}.

From Proposition 15, we know that

(Ad an)(ωb(g))→ ωb0(g) = span{e+ γE,h,H}.

Now Lemma 19 implies that ρ(h) and ρ( f ) both have zero component on E. Indeed, since this component
is dilated by λ 2

n , it must vanish in order that E /∈ ωb0(g).
At the point b, let A− be a Killing field with π∗bA− ∈ L−

π(b), so we can assume ωb(A−) = e. We have
ωb(A−) = e+ ρ(e) and ωb(W ) = h+ ρ(h). Recall from Proposition 15 that κb0(h,e) = rE. The fact that
κ̄b = κ̄b0 implies that the full curvature κb = κb0 , so also

κb(e,h) = Kb(A−,W ) = rE.

On the other hand, equation (8) gives

0 = ωb[A−,W ] = [h+ρ(h),e+ρ(e)]+ rE,
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so
ρ(h)e = ρ(e)h and [ρ(h),ρ(e)] =−rE.

Writing ρ(e) = γE +βH +δF and ρ(h) = β ′H +δ ′F gives β ′ =−γ and δ = δ ′ = 0 from the first equation.
Note that the second equation gives γ2 =−r, which is consistent with Proposition 15. �

We now use g-invariance of D(i)κ̄ . For abitrary X ∈ h, write X‡ for the coresponding ω-constant vector
field on B. Lemma 21 gives

(1) (e+ γE +βH)‡(b).D(i)κ̄ ≡ 0
(2) (h− γH)‡(b).D(i)κ̄ ≡ 0
(3) ( f +αH +δF)‡(b).D(i)κ̄ ≡ 0

From (1),

D(i+1)
κ̄b(e) = −(γE +βH)‡(b).D(i)

κ̄

= (γE +βH) ·D(i)
κ̄b

= γE ·D(i)
κ̄b.

The last equality above follows from the induction hypothesis. Then

(H ·D(i+1)
κ̄b)(e) = H · (D(i+1)

κ̄b(e))−D(i+1)
κ̄b([H,e])

= H · (γE) ·D(i)
κ̄b−D(i+1)

κ̄b(e)

= γ([H,E]+EH) ·D(i)
κ̄b− γE · (D(i)

κ̄b)

= γE ·D(i)
κ̄b− γE ·D(i)

κ̄b = 0

where the last equality again uses the induction hypothesis. Item (2) gives, by a similar calculation,

D(i+1)
κ̄b(h) =−γH ·D(i)

κ̄b = 0

and
(H ·D(i+1)

κ̄b)(h) = 0.

Finally, (3) gives
D(i+1)

κ̄b( f ) = δF ·D(i)
κ̄b

and again
(H ·D(i+1)

κ̄b)( f ) = 0.

We have thus shown vanishing of H ·D(i+1)κ̄b on R2,1. The remainder of h is obtained by taking linear
combinations with p. The H-invariance of D(i)κ̄ and P-equivariance of D(i+1)κ̄ give, for X ∈ p,

(H ·D(i+1)
κ̄b)(X) = H · (D(i+1)

κ̄b(X))−D(i+1)
κ̄b([H,X ])

= −H ·X ·D(i)
κ̄b +[H,X ] ·D(i)

κ̄b

= −X ·H ·D(i)
κ̄b = 0.

The conclusion is H ·D(i+1)κ̄b = 0, as desired. �

Now if κ̄ and all its derivatives are constant on R, then U is curvature homogeneous to all orders, and
therefore, U is locally homogeneous by Singer’s theorem for Cartan connections [Mel11, Pec14].

Let us consider now the remaining case where the isotropy at the origin is unipotent.



QUASIHOMOGENEOUS THREE-DIMENSIONAL REAL ANALYTIC LORENTZ METRICS DO NOT EXIST 21

5.4. Unipotent isotropy.

Proposition 22. If the isotropy at 0 ∈ S is unipotent, then g is isomorphic to sol(a,b), for b 6=−a.

Proof. Let Y ∈ g generate the isotropy at 0. There is b0 ∈ π−1(0) for which ωb0(Y ) = E. The projection
ωb0(g) of ωb0(g) to R2,1 is 2-dimensional and E-invariant, so it must be span{e,h}. Therefore, there is a
basis (X ,Y,Z) of g such that

ωb0(X) = e+αH +βF and ωb0(Z) = h+ γH +δF

for some α,β ,γ,δ ∈ R. Because Kb0(Y, ·) = 0, equation (8) gives

ωb0 [Y,X ] = [e+αH +βF,E] = αE−βH ∈ ωb0(g)

so β = 0 and [Y,X ] = αY . A similar computation gives

ωb0 [Y,Z] = [h+ γH +δF,E] = e+ γE−δH

so δ =−α , and [Y,Z] = X + γY .
Infinitesimal invariance of K by Y gives

Kb0([Y,X ],Z)+Kb0(X , [Y,Z]) = [−E,Kb0(X ,Z)].

But the left side is 0 because [Y,X ](0) = 0 and [Y,Z](0) = X(0). Therefore E commutes with Kb0(X ,Z) ∈ p,
which means

Kb0(X ,Z) = rE for some r ∈ R.
Now equation (8) gives for X and Z,

ωb0 [X ,Z] = [h+ γH−αF,e+αH]+ rE

= γe+αh−α
2F + rE.

In order that this element belongs to ωb0(g), one must have α = 0 or γ = 0. First consider γ = 0. The
structure of the algebra g in the basis (X ,Y,Z) is

ad Y =

 0 1
α 0

0

 ad X =

 0
−α r

α

 ad Z =

 0 −1
−r 0
−α 0

 .

This algebra is unimodular, so this case does not arise, by Lemma 3.
Next consider α = 0. Then the Lie algebra is

ad Y =

 0 1
0 γ

0

 ad X =

 0 γ

0 r
0

 ad Z =

 −γ −1
−r −γ

0

 .

In order that g not be unimodular, γ must be nonzero (notice also that for γ = r = 0, we would get a Heisenberg
algebra). We obtain a solvable Lie algebra

g∼= Rnϕ R2, where ϕ =

(
−γ −1
−r −γ

)
.

If r > 0, then
g∼= sol(a,b), where a =−γ +

√
r, b =−γ−

√
r.

Conversely, ϕ is R-diagonalizable only if r > 0. �
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Proposition 23. (compare Proposition 14 (i))

(i) At points of S, there is only one eigenvalue of the Ricci operator.
(ii) This triple eigenvalue is positive if and only if the Killing algebra sol(a,b) is R-diagonalizable.

Proof. (i) The invariance of the Ricci endomorphism κ̄b0 by E means (see the table in Subsection 5.2):

κ̄b0 ∈ span{md ,me2}.

The triple eigenvalue is the coefficient of md .
(ii) The full curvature κb0 ∈W is E-invariant, so it is in the span of the elements of W corresponding to

md and me2 . Referring to the column labeled ∧2R2,1∗⊗p in the table reveals that md is the only of these two
components of κb0 possibly assigning a nonzero value to the input pair (e,h). Therefore the parameter r in
the proof of Proposition 22 coincides with the coefficient of the element corresponding to md in κb0 and with
half the triple eigenvalue of the Ricci endomorphism at 0. �

But, by the point (iii) in Proposition 12, we know that the Killing algebra sol(a,b) is R-diagonalizable.
This implies that r > 0.

On the other hand, recall that in [CK09] Calvaruso and Kowalski classified Ricci operators for left-
invariant Lorentz metrics g on three-dimensional Lie groups. In particular, they proved (see their Theorems
3.5, 3.6 and 3.7) that a Ricci operator of a left-invariant Lorentz metric on a nonunimodular three-dimensional
Lie group admits a triple eigenvalue r 6= 0 if and only if g is of constant sectional curvature. Since on U \S,
our Lorentz metric g is locally isomorphic to a left-invariant Lorentz metric on the nonunimodular Lie group
SOL(a,b) corresponding to the Killing algebra, this implies that g is of constant sectional curvature. In
particular, g is locally homogeneous.
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